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Abstract. We study the homology groups with coefficient in local systems arising
in the free field representation of minimal models of conformal field theory on an
elliptic curve with punctures. We define an action of the quantum enveloping
algebra Uq(sl2) on a space of relative cycles, extending results obtained previously
for the sphere. Absolute cycles are identified with singular vectors. In the case of
one puncture, we find that the resulting topological representation is essentially the
adjoint representation.

1. Introduction

Recent study [1-3] indicates that there exists a dictionary between homology of
certain configuration spaces with coefficients in local systems and representation
theory of quantum enveloping algebras [4]. The examples of local systems provid-
ing such connections come from integral representation of conformal blocks of
conformal field theory [5-14]. The idea is that (in some sense) the charges
generating (half of) the quantum group symmetry in the free field representation in
conformal field theory are given by integrals over screening operators [15-18]. In
a previous paper [2], we have shown the existence of an action of Uq(sl2) on certain
relative locally finite homology groups on configuration spaces on the sphere. In
this case, the local system is given by the integrand of the free field representation of
conformal blocks of the SU(2) WZW models or minimal models.

In this paper, we consider the situation of the torus, for which one knows
explicit integral representations [19-21]. We restrict our attention to the case of
minimal models, which is the simplest. The main difference is that the local system
is not given by a line bundle as in the case of the sphere, but rather a vector bundle.
From the point of view of free fields, this follows from the fact that the space of free
field conformal blocks on the torus is higher dimensional.
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We find again an action of the quantum enveloping algebra of s/2(C) on relative
cycles, in such a way that absolute cycles are identified with singular vectors, as in
the case of the sphere. The resulting representation is a tensor product of Verma
modules with Uq{sl2) with the adjoint action.

We hope that this work will lead to a clearer understanding of the role of
quantum groups for higher genus Riemann surfaces.

2. Generalized Hypergeometric Functions on the Torus

In the free field representation of minimal models with central charge
c = 1 — 6(p' — p)2/ppf on the torus (C/Z + τZ one is led to consider integrals of the
form

Gc(zu . . . ,z s |τ)

2p'p-l

= Σ K \ Δμ(W\τ) Π E(zuZj\τrajdzs+1 Λ • Λ dzs+r+r, , (2.1)
μ = 0 Cμ l^i<j^s + r + r'

where

α - 1 , 1 , s + r + l f g

- m)V' - (1 - m')p

parametrize the exponents, α ± = ot±i,+i belonging to the integrated screening
variables, and

η(τ) (2pp

(2.3)

with

niτ °o

η(τ) = eϊ2 γi i
n = l
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the Dedekind eta function and the Jacobi theta functions. The values of the
exponents are constrained to satisfy

Σ (1 - nt) + 2r = xp, £ (1 - n\) + 2r' = xp* , (2.5)

for some integer x, reflecting charge conservation. In the following we restrict our
attention to the case when r' = 0 and n\ = . . . = ris = 1, admitting α + screening
charges only. That is, we assume that

(2.6)

s + 1 < i < s + r ,
/2p'p

with the neutrality condition

fα, = 0. (2.7)

When studying integrals of this form, one is entering the following kind of
problems. To begin with, assume that oc1 = = αn i, αΠl + 1 = = α n i + M 2 , . . . ,
««! + •• +nk-i + i = = αni + ... + n k, for some fc and (n l 9 . . . ,n k )e{l,2, . . .}*, such
that nx + + nk- λ = s and nk = r. Let Σ = C/Z -h τZ be the torus with modular
parameter τ. Then we have a vector of multivalued forms with components

ωμ(zu . . . ,zs\zs+ί9 . . . ,zs+r\τ)

= Δμ{W\τ) Π E(zi9zj\τ)ai*>dza+ί Λ Λ dzs+r , (2.8)

on the configuration space

* „ = <

Since Aμ + 2p'p(W\τ) = Δμ(W\τ), we can restrict μ to the range 0 ^ μ ^ 2p'p — 1.
Other properties of Jμ(PF|τ) are summarized in Appendix A.

We will often use the identification μ i—> (m, m'), μ = m'p — mp', oϊZ/lpp'Έ with
Z2/Λ, where /I is the lattice generated by (p, p') and (2p, 0).

Let ή = (nu . . . , nk_i) and

X ' * X S n k - i ( 2 1 0 )

The projection p: Xn -• Xn' on the first 5 variables is a fibration with fibers

Xr{zu...,za) = p - \ z u . . . 9 z s ) . (2.11)

These are configuration spaces of r indistinguishable particles on the punctured
torus Γ\{z l 5 . . . ,zs}. Fix τ and (zu . . . ,zs)eXn' to obtain a vector (2.8) of
multi-valued r-forms on (2.11). The positions z l 5 . . . , zs, which are presently kept
fixed, should not be confused with the positions of the screening charges
z s + 1 , . . . , z s + r . Let us suppress the dependence on the former and the modular
parameter in our notation.
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The r-forms (2.8) are multivalued on Xn single valued on the universal covering
space Xr(*) with base point *, and define a 2p'p-dimensional representation p of
itι(Xr, *) through

2p'p-l

Φί(ojμ) = £ ωvρvμ(σ), σ e^(X r , * ) , (2.12)
v = 0

with φσ(x) = xσ the right action of the fundamental group on the universal
covering space. The representation matrices can be computed explicitly by analytic
continuation. Let cμ, μ = 0, . . . , 2p'p — 1 be singular r-chains in the universal
covering space. The equivalence relation φσ{cμ) ~ Σvpμvcv is compatible with the
pairing

2p'p-l

<ω,c> = Σ J<*V ( 2 1 3 )
μ = O Cμ

In other words we can view c as a singular r-chain with coefficients in the space of
local horizontal sections of the vector bundle of rank 2p'p,

(xσ, ι?)~(x,p(φ). (2.14)

We thus need to examine the singular homology group Hf(Xr, Lr) with coefficients
in the local system associated to the representation p of %χ{Xri *). As a support
condition we will require that the chains are locally finite (If), possibly infinite linear
combinations of simplices, [23] on X\ — {(wl5 . . . , wr) e Xr \ | wf — Zj\ ̂  ε}. Ele-
ments oΐH?(Xr9 Lr) produce, when paired with (2.8) a generalized hypergeometric
function on the torus (provided the integral is convergent).

3. Local Systems over Configuration Spaces on the Torus

3.1. Braid Group on the Torus. Let Γ = S 1 x S 1 , n e {1, 2, . . .}, and define

K(T) = (Tn\[ji<j{xi = xj})/Sn, (3.1)

the configuration space of n indistinguishable particles on the torus. Here Sn

denotes the symmetric group acting as π(xl9 . . . , xn) = (xπ-i(i), . . . , xπ-!(„)). Let

(3.2)

be the braid group on the torus. A convenient choice of base point is

for some N > n. For 1 ̂  i ̂  n, define elements ah βt e Bn{T, *) as represented by
the paths [0,1] -> <g{T\

(3 4 )
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moving the particles in position i along an A- and β-cycle, respectively. For
1 ^ i ^ n — 1, define elements σ^ e Bn(T, *) as represented by

Δ(t) = (cosίlπt - ϊ \ sinί2πί - | j j , (3.5)

implementing a counterclockwise exchange of the particle in position i with that in
position i + 1. It is convenient to introduce the abbreviations

oc = σi- σn-1ccn, β = βn, (3.6)

in terms of which

α» = σϊ~-\ ' ' ' v ϊ 1 <*•<*„-! - σ i 9

(3.7)

The group £n(Γ, *) is generated by α, j8, and σi91 ^ i ^ n — 1. A detailed investiga-
tion of £n(Γ, *) can be found in [24].

3.2. Coloured Braid Groupoid and Local System. Let n = (nί9 . . . , nk) e {1, 2, . . .}fc,
|n| = Πi 4- + nfc, and define

* n ( Γ ) = ( Γ ^ M J i ^ ί x i = Xj})/Sni x x S n k , (3.8)

the configuration space of particles with colours {1, . . . , fe}5 identically coloured
particles being indistinguishable. Let * e %>n(T) be the base point (3.3). The orbit
of * under the action of S\n\ can be identified with the right coset space /„ =
S|n|/SΠl x x SHk. An element [π] eln can in turn be described by a colour map
π: {1, . . . , \n\} -• {1, . . . , k). For [π], [σ] e/„, let J5f̂ ,π(7; *) be the space of paths
starting in π* and ending in σ*, up to homotopies preserving the endpoints. Define

Bn(T, *) = Uw.w6/nBf»f(ϊ; * ) , (3.9)

the coloured braid groupoid on the torus. Multiplication is composition of paths.
In particular, Bfn]

U(T, *) = π^^T), *). The coloured braid groupoid Bn(T9 *) can
be described in terms of the braid group B\n\(T, *). Let φ: B\n\(T9 *) -> S\n\ be the
canonical homomorphism. There exist one-to-one maps

(T9 * ) | [σ] = [^(^π]} ->5fnf(Γ, *) , (3.10)

having the property

Φv,σ(gΊΦσ,π(g) = ΦVAQ'Q) - (3.Π)
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Using this, we can write down generators for Bn(T, *). The generators are

α M = φ - _(α),

σ^] = φ--(σi), l g i ^ | n | - l . (3.12)

ε is the cyclic permutation ε(i) = ί + lmod|rc| and τ£ is the i th transposition.
A representation of Bn(T, *) on a family of finite dimensional vector spaces
F^ indexed by [π] e /„, is a family of maps

pσ- π-: Bftf(Γ, *) - Hom*(Fπ-, Fσ-), (3.13)

from βn(Γ, *) to U[π],[σ]e/n Hom*(Fπ, V?), the groupoid of invertible linear map-
pings between the vector spaces F^, satisfying the representation property1

Pv,σ(dΊpσ,π(g) = Pv, aid'θ) (3-14)

The dimension of a representation p is d = dim(F^). A d-dimensional representa-
tion p of Bn(T9 *) defines a flat rank d vector bundle over %ln{T) with distinguished
trivializations over the points π*, [π]e/ w .

The representation p restricted to πx^€n(T\ *) gives a flat vector bundle
L = ^n(T) x π i F^. It comes with an identification of the fiber over * with Vw The
identification of the fiber over π* with F^is uniquely given by the condition that
the parallel transport along any path η from * to π* is p ^ -(η).

To do explicit calculations, it is convenient to introduce local trivializations of
L. Define cells labeled by elements of /„:

«nAT) = {[*i> •••> X|»|] e* Λ (Γ) |0 < xί ( 1 ) < < x ί ( | n | ) < 1, 0 < xf < 1} .

(3.15)

The union of the closures of these cells is ^n(T\ and every cell contains precisely
one of the points in the S\n\ orbit of *. Since cells are contractible, we have an
identification of the restriction of L to ^n^(T) with the trivial flat bundle
^n,π(T) x Fπ This trivialization will be used often below.

33. Torus with Punctures. Let n' = (n l 5 . . . , n fe-i), s = \rί\, and r = nk. The pro-
jection p: ^n(T) -> ̂ n'(T) on the first s variables is a fibration with fibres

Vr(T\{xu...,xa}) = p-1(xl9...9xa). (3.16)

Note that ^r(T\{xu . . . ,xs}) is the configuration space of r indistinguishable
particles on Γ\{x l5 . . . ,x s}, the punctured torus. Choose a base point *
= [xu . . . ,Xs]e^n j^{T) and let * = [x s+i, . . . , x s + r ] be the base point of

« r ( A {*!,.. , x Λ Γ Then Bn.tr(T9*) = π1(Vr(T\{xi,...,Xs}),*) ™ a sub-
groupoid oϊBn(T, *), and we have a homomorphism Bn>r(T, *) -• ^ ( T , *). The flat
vector bundle corresponding to the pull back of a representation p is just the
restriction to %>r(T\{xu . . . , xs}) of the flat vector bundle over ^ ( Γ ) associated
to p.

1 In the language of categories, Bn(T, *) is the set of morphisms of a category whose objects are
elements of/„. A representation is a functor to the category of finite dimensional vector spaces
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4. Topological Representations of Uq(sl2)

4.1. Local System from Multivalued Forms. The multipliers of the multivalued
r-forms upon analytic continuation define a particular representation of the col-
oured braid groupoid. This representation defines in turn a local system over the
configuration space. The singular homology groups we investigate have coefficients
in this local system.

Recall the basic data which we start from: n = (nu . . . , nk)e{ί, 2, . . .}k,
\n\ = s + r, nk = r, and (α(l), . . . , α(fc))eQk, α(fc) = oc+ such that £ j = 1 nkoc(k) = 0.
Then cLi = α(id(/)). Remember that π: {1, . . . , s + r} -> {1, . . . , k) denotes the
colour map associated with [π] e/„. Given these data, we consider

ff(zu . . . , = Λ E{zi9zjraj, (4.1)

0 ^ μ ^ 2p'p — 1. Fix the modular parameter τ. Then / z = (ff)o^μ^2P'P-i is
a multivalued analytic function on the configuration space ^n(Σ) with values in
<C2p'p

Let φ: Γ-^Γ, ^(x1, x2) = x1 + τx2, to obtain a diffeomorphism φ: <gn(T)
-*<#n(Σ). Define/ 7 = φ*fΣ. Fix a base point * = [χ l 9 . . L , x s + Γ ] in 7 n := ^ n (Γ)

such that 0 < x{ < < x*+r < 1. For [π]e/ π , let / Γ ' π be the single-valued
function on the universal covering space ΓM(π*) with values in <£2p'p, defined as the
analytic continuation of fτ from the base point π*, where it takes the value
fτ>*(π*) = / Γ ' ϊ 3 ( * ) . An element g e Bftf(T, *) induces a map Λ,: fΠ(π*) -> Ϋn(σ*)
through λg(x) = xg. xg is represented by a path from π* to σ*, composed with
a path from σ* to p(x)9 p: Fn(π*) -• Yn being the covering projection. Then

v = 0

defines a 2//p dimensional representation of
calculation by analytic continuation yields

' ξig) (4.2)

Γ, *) on V^= C2pp. An explicit

[π]\ _
2πι

.α(π(s

(43)

If α(π(s + r)) = α + is a screening charge, it follows that
μ

2 "

(4.4)

These matrices deserve an abbreviation since they will occur frequently below. Let
q = Qxp(πίp'/p) and

(4.5)
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with the convention q1/p' = exp(τri/p). If α(π(i)) = (1 - n(π(ί)))pf/^/2p'p and
α(π(i + 1)) = α+, it follows that

Mfy(σι*]) = δy,μq
1-nm)) . (4.6)

If α(π(0) = α(π(f + 1)) = α+, this representation matrix takes the form

Mfy(σ™) = δv,μq\ (4.7)

completing the description of the representation of Bn(T, *) associated with the
multipliers of/Γ.

Recall that ri = (nu . . . , nk- 0, |W| = 5, p: ^ ( Γ ) -> ̂ ( Γ ) , and %r(T\{xu . . , xs})
= p 1(x 1, . . . , xs). In the following, [x l 5 . . . , x s] will be fixed as above.
Pulling back the above representation of Bn(T, *) with the homomorphism
Bn>r(T, *) -» Bn(T, *), we obtain a representation of Bn'r(T, *). We take the tensor
product of this representation with the pull-back of the totally antisymmetric
representation of Sr by the canonical homomorphism Bn>r(T, *) -> Sr. The result
is the representation, denoted by p9 associated with the multi-valued r-forms
(2.8). This representation induces a local system (flat vector bundle)

{ }
Let ε > 0 be a small number, D the open disc of radius ε centered at

xi9 i = 1, . . . , 5, Yε = T - {Js

i=1Di. Denote by Y\ the configuration space ^r(Yε) of
r indistinguishable points on Yε. Thus elements of Yε

r are subsets Z c Yε of
cardinality r. Fix points y-,y+edD\ such that y\ < x1 < yi9 and define
Yε± = {Ze Yr\y± eZ}. The bijections

φ±: Y^Y^^Ylin

(4.8)

lift to isomorphisms φ±: Lr\ 7 ^ 7 ^ - > L r + 1 | Yε

r+i- The lift is of course not
unique. To fix it, it is sufficient to define the isomorphism from the fiber of the base
point to the fiber of its image. We define it to be the identity map in the
distinguished trivialization introduced above.

4.2. Families of Loops and Operators. Let [xl9 . . . , Xs]^^n',id{TX ε > 0,
Yε

r = ̂ r{Y% and y± edYε be as above. The position of the punctures will be kept
fixed in the following.

A non-intersecting family of loops (see [2] for details) based at j / _ is a family
7o> >7r-i °f smooth homotopically non-trivial embedded loops starting and
ending at y_, with no mutual intersections except at the endpoints. Homotopies of
families of loops are defined. Non-intersecting families of loops can be represented
by embeddings Γ of the open r-cube with open (r — l)-faces Qr into Xr. Let A\ be
the space of linear combinations X ^ Γ [ Γ ] of homotopy classes
[Γ] = [y0, . . . , y r_i] of non-intersecting families of loops, with coefficients λΓ in
the space of horizontal sections of Γ*L r over Qr. Horizontal sections correspond-
ing to homotopic families of loops are canonically identified by parallel transport,
so the definition makes sense. The elements of A\ represent locally finite relative
homology classes in Hf (Yε

n Yε

r~; Lr). We consider a quotient of Aε by a subspace
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which maps to zero in homology. Let A\ = A\j ~ , where the equivalence relation
~ is given by

I. λ[F] ~ ±/*Λ[Γ°/] for any orientation preserving ( + ) or reversing ( — )
isometry of the cube Qr.

II. λlγQ,..., yh ..., yr-1] = λ'[y0,..., y'u - , yr-1] + ^"[>o, . . . , y",. . . , yr-1],
whenever yf is homotopic to the composition /i°y" in such a way that if the
homotopy is denoted by h( , 5), 5e [0,1], yo> > h( , 5), . . . , yr_ x is a non-
intersecting family of loops for all se [0,1]. The sections λ\ λ" are the restric-
tions of λ.

III. λ[y0, . . . , y r -i] ~ 0, whenever at least p loops in the family are in the same
class in πι(Yε,y-).

The identification III is peculiar to the case when q is a root of unity: if n loops, say
?o> J 7n-i in a non-intersecting family yo> , lr-i are homotopic to a loop 7,
then the corresponding locally finite homology class is proportional to the class of
a relative cycle parametrized by t0 < tγ < < tn-1 < tn> . . . , tr-1 eQr as

(tθ, , t r -i) ^ (y(ί0), , j(tn-l\ y(tn), - - - , 7(ίr-l)) (4.9)

The proportionality factor is

n n2J - 1

Π V T (4 1 0 )

and vanishes if n ^ p.
We define now operators E, F9 and X2, acting on the space @™=0A

ε

r and
compute their commutation relations.

The operator £ is a close relative of the boundary operator. Define

E: λΓly0, . . .,?,_!] ^ ' Σ ( - l y ^ I ^ A r o ^ - λΓoerr)ly0, . . . , % . . . ^ . . J ,
i = 0

(4.11)

with ^ ^ [0, I ] ' " 1 -• [0, l ] r the standard face maps. yt denotes the omission^of yt.
Intuitively the ιth particle is moved to y_ and then taken out. The operator F adds
a loop along the boundary of the hole around the first puncture.

F: λly0, . . . ,y r - ! ] >-> λf\y0, . . . ,yr-uyc~] (4.12)

with γc: [0, 1] -• Y\ yc{t) = xt + -^=Δ{t). Here Γ = γθ9 . . . , yΓ-i, 7cand λ' is the
/2

horizontal section of Γ'*Ur+1 with φ + λ = λ'°i, where i is the inclusion
(ί0, . . . , ί r_i,2) This definition makes sense since we can assume that
y0, . . . , y r_! do not intersect 7C except at the endpoints. The operator K2 is simply
defined as

K2\At = q-1-Hίir) (4.13)

Charge neutrality requires that 1 — n^r) = XJ= 2(ni ~ 1) — 2r. Note that both the
construction of E and F make use of the isomorphisms (4.8), relating local systems
over different configuration spaces.
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Theorem 4.1. The operators E, F and K2 satisfy the relations

K2E = q2EK\

[JE,F] = K2 -K~2 . (4.14)

In other words, the operators E, F, K2 and K~2 define a representation ofUq(sl2) on

® °

Proof. The first and the second relation are immediate consequences of the defini-
tion of E, F and K2. The third relation is best proved using an explicit trivialization.
Without loss of generality, we can assume that [x l 9 . . . , xs, yoίiX > TV-1(2)]
e^ntn(T) for some [ π ] e / π . Denote by λ(v) the section with the value v in the
trivialization over ^M π(Γ). We can further assume that [xl9 . . . , xs, 70(2)? >
y_, . . . , y , - i ( i ) ] e ^ σ - . ( Γ ) for some [σ f ]6/ n , (y- in position i). Let ηr be the
paths t \-^ [xl9 . . . , xs, 7o(i), , 7r(έ(l ± OX ? 7,-i(i)] Using

Lyo, . . . , fc, . . . , y r - i ] , (4.15)
ί = O

it follows that

= Σ ( -

+ (- mp^Aηϊ) - PκMiϊ))W)lyo,.. ,7,-

. , 7,-i] , (4.16)

where the primed quantities are defined with r replacing r — 1, proving the third
relation. D

4.3. The Torus with One Puncture. We have proved above that φ r°°= 0^r comes
equipped with the structure of a Uq(sl2) module. A legitimate question to address is
what kind of module this is. In this section we will consider the torus with a single
puncture and find the adjoint representation of Uq(sl2)

To describe Λε

r as a space, we choose a basis as follows. Let yA and yB be loops in
Yε based at y- such that γA winds around an ,4-cycle and γB winds around
a B-cycle. For jAJBe{0, 1, . . .} such that jA+jB = r, let y$\ . . . , yB

JB) be
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homotopic deformations of yB and y{}\ . . . , y{JΛ) homotopic deformations of yA

such that yg} lies on the left of y£ + 1 ) and y{% above y^+1), and y$\ . . . , y[(Λ) is
a non-intersecting family of loops, also denoted by yjg, y^χ. This family of loops is
drawn in Fig. 1. We choose representatives in such a way that
[*i> 7i(iX > yΛhΏ^^n jd(^) We define λ(v) to be the horizontal section over
[yji> 7Ji] which takes the value v in the trivialization over %?n m{T). Let
eμ, 1 Ik μ ίk 2p'P be the standard basis of <E2p'p. Then

® θ b ' (4.17)

In this basis, the operators £, F and K 2 are represented by the following matrices.

Lemma 42. Applying E, F and K2 to the elements of the basis (4.17) of A\ we obtain

(q

3

$>yJβ = q λ{eμ)\jJB>y3β > (4.18)

wiί/ι the convention that [yjj, y^] = 0 ifjB < 0 or j A < 0 .

Proo/ The action of £ is explicitly computed from

• ^ ( — i) ι(/>-. ΐdθ?ϊ+) — P i . i d ^

(4.19)

Fig. 1. I he Uimily of loop-, ,\\'. , ,'
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The paths η* have representation matrices

^-..id(f/Γ) = ( - « - 2 Γ 1 (4.20)

To compute the action of /, we have to deform the added loop to the composition
of two γA and two yB loops. The result is

(4.21)

A transition function is picked up when the cell on which the bundle is trivialized
changes. The paths ηt have braid groupoid representation matrices

= A

ir+1)-ιAB-ίA-1 . (4.22)

The last representation matrix can be simplified using AB = qABA. Finally, the
loops are reordered with the help of an isometry of the unit cube. The action of K2

follows immediately from its definition. D

The matrices acting on the sections are

2μ_

Aeμ = q"'eμ, Beμ = q-2eμ + 2p.. (4.23)

Using these formulae, we conclude that the representation of Uq(sl2) on @A$ can
be split into a direct sum of isomorphic representations.

Define forn = 0,1, 2, . . . , \n\ = q» - q~", [π],! = ίn\[n - 1], • [2],[l]β,
[0],! = 1

Lemma 4.3. (1) Aε decomposes into α direct sum of subspαces
^ ' " ^ Θ ^ o ' Θ L ^ o Vλ(e-n,p+np)Wβ,γ^l0Sn' Sp' -I invariant under
the action ofUq(sl2). (2) The action of E, F and K2 on Aε

r'
n' takes the explicit form

)W» yiβ = M' ' h " % + ' λ ( e )



Generalized Hypergeometric Functions on the Torus 13

n'p \-jAΛq I JA

q-q

K2λ{e-n.p+np)W$, fβ = β - ^ " 2 ^ - 2 l ( e _ B . p + n p - ) [ ? i Ϋβ • (4.24)

Denote ^^ "' = Ar n vlε'"'. Let l/,(s/2) be the Hopf algebra with generators E, F,
K±2, with the relations of Theorem 4.1, and coproduct Δ{E) = E ® K2 + 1 (g) £,
Δ{F) = F®K~2 + 1®F, Δ{K±2) = K±2®K±2 (see Sect. 5). Let Ip be the ideal
generated by the central elements Ep, Fpa.nd (K2)2" - 1, and U°(sl2) = Uq(sl2)/Ip.
Uq(sl2) acts on U°(sl2) by the adjoint action. We define the idempotents

Tn,ω = f Σ (coqTmK2m , ne-,Z, ω = + 1 . (4.25)
2ί> m=o P

As before we set qllP' = exρ(π//p). These idempotents have the following proper-
ties:

*n + p,ω -^n,q

T n + n > p / p > , ω T m + n , p l p > , ω > = δ n % m δ ω i ω . T n + n , p l p , t t o , O ^ n . m ^ p - 1, ή e Z . ( 4 . 2 6 )

For each n'eZ, the elements Tn+n'P/p>,ω, n = 0, . . . , p — 1, ω = ± 1 build a basis
of the subalgebra generated by K2.

Definition 4.4. For 0 ^ n' ^ p' — 1, define linear maps <£„/: ̂ 4ε'"' -• Uq(sl2) as fol-
lows:

(427)

Having introduced the maps φn>, we are ready to state the main result of this
section.
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Theorem 4.5. (1) For Xe Uq(sl2), and ri = 0, . . . , p' — 1, the diagram

x

ΦΛ aάχ ΪΦ, (4.28)

U°q(sl2) *-+ U°q(sl2)

commutes. That is, φn> is a homomorphismfrom Aε'n' to the module Uq(sl2) with the
adjoint action. (2) If p' is odd, φn> is an isomorphism. If p' is even, φn> is two-to-one,
with image the submodule {XeU°q(sl2)\K2pX = ( - l)n'X}.

Proof (1) is checked by an explicit calculation using Lemma 4.3 and Lemma 4.2.
To prove (2), we notice that FjEιTn,ω,j, I, n = 0, . . . , p - 1, ω = ± 1 , build
a basis of Uq(sl2). For p' odd, we see from Definition 4.4 using the third of (4.26),
that φn> is bijective. If p' is even, the image is the subspace spanned by the basis
vectors with ω = ( — 1)"'. D

Let us work out the interplay between topological and algebraic objects a little
further. We have introduced F: A\ -» Aε

r+1 as the operator which adds a yc-loop
and identifies the section as described above, using the point y+. With any loop
y: [0, 1] -* Yε based at y- such that y(i) = y+, we can associate an operator
L{y): Aε

r-+Aε

r±1, λ[y0, . . . ,yr-{] ^ λ'[y0, . . . ,>-i,}>], such that φ + λ = λ'°i,
generalizing F = L(yc). Two special cases are FL = L(yA) and FR = L(yD). See
Fig. 2 for a graphical representation.

Theorem 4.6. (1) For O ^ n ' ^ ' - l , FUR maps A\*n' to Aε

r>?\ and
F = FL — FR. (2) The diagrams

FL

Λε,ri Aε'n>

S\γ * Sly

ΦA X^FXK, IΦ, (4.29)

U°q(sl2) > U°q(sl2)

and

Aε,ri Aε>n'

Φn

U°q(sl2) * U°q(sl2)

commute.

Proof (1) yc is homotopic to the composition (yE1)°yA> Using the equivalence
relations imposed on Ap+Ί it follows that

^[7o? J ?r-i j yc] = ^[70? j 7r-i5 JA\ + ^"[?05 ? lr-u 7 D ] > (4-31)

the sections being identified as above. (2) The counterpart of FL on Uq(sl2) follows
from

using the explicit form (4.27) of φn>. The action of FR on Uq(sl2) is computed with
F = FL- FR, and adF(X) = FXK2 - XFK2. D

ΦA X^XFK2 IΦ, (4.30)
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Fig. 2. The loops γAi . . . , yD

4.4. The Torus with Many Punctures. Combining the above results with previous
work on topological representations of Uq(sl2) on the disc, the representation on
ζ\)™=0A

ε

r can be identified. The result is a tensor product of U%(sl2) Verma
modules, one for every additional puncture, with the algebra itself. The latter is
understood as the representation space for the adjoint action.

The starting point is again an explicit description of A\ as a space in terms of
a basis. Fix a non-intersecting family of loops

\y%\ . . . , y[h\ . . . , y[ι\ . . . , y<H y<£\ . . . , y<£>W}\ . . . , y£>] . (4.33)

It is understood that yf\ 2 :§ i g s and 1 ̂  k Sjh are homotopic deformations of
yt such that yf+1) lies inside yf\ See Fig. 3.

Let this family be parametrized such that

[xl9 . . .,xs,yψ{h\ . J ^ ( i ) ] e * ( # ) . (4.34)

Define a horizontal section over this family, denoted by λ(v) giving it the value v in
the distinguished trivialization over %>n—{T). Then

2p'p

Aε

r=® 0 <ελ(eμ)ίy{\ . . . , yf, γ% fβ . (4.35)

Generalizing the case with one puncture, we define the following map.

Definition 4.7. For 0 g ri ^ p' - 1, define maps <££?: y4ε'"' -• F(n2) ® ' ' '
® V(ns) ® 1/J(5/2) as follows:

^^(λίe-π'p+npOCyi2, , r h yj£, yjβ)

j ^ i V ^ J ( 4 . 3 6 )
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Fig. 3. The family of loops of Eq. (4.33)

where φ{

nl
] denotes the map of Definition 4.4 for the torus with one puncture. V(h) is

the Uq(sl2) Verma module generated from a singular vector vo(h) with Eυo(h) = 0
2(h) h 1 ( h )

Theorem 4.8. (1) For 0 ^ n' ^ p' - 1, the maps φtf: A^n> -> V(n2) <g> <g>
V(ns)® Uq(sl2) are one-to-one and onto if p' is odd, and two-to-one if p' is even.
(2) ForXeU°q(sl2)let

Then the diagram

Λε,n'

•« . (4.37)

A ε "'

1 ΦV (4.38)

V(nj)®U°q(sl2)

commutes. That is, the topologίcal action ofUq(sl2) on AEytl' is given by the coproduct
on the tensor product of Verma modules with the algebra ίtslef

Proof We will give an explicit proof for s = 2. The generalization to 5 > 2 is
obvious and will be omitted. Since

j B

/5

Λ-a~JA~2JB + 1 ^
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it follows that

{λ(e.n/p+np)ly{\ y% fβ) . (4.40)

Where we identify the coproduct A(E) = E ® 1 + K2 ® E. To compute the action
of F, the added loop has to be homotopically deformed and split into a composi-
tion of loops y2, JB> a nd y^. By a deformation procedure it is shown that

p+np/)lyi\y%y^^ . (4.41)

As a consequence

(λ(e-n,p+np,)tyi\yJβ,yJβ), (4.42)

where A(F) = F ® K~2 + 1 ® F. Finally

K2λ{e^p + np){_y{\y%yβ

= qn2-1-2jxq-2j*-2j°-2λ(e-n,p+np,)lyj

2\y%yβ . (4.43)

So that

= K2® K2φ^{λ{e^p+np)iy{\ y% γ*β) (4.44)

proves the assertion since Δ(K2) = K2 ® K2. The "right" action of K2 is a conse-
quence of the charge neutrality condition. D

Thus we have proved that the topological action of Uq(sl2) on the torus with
many punctures algebraically reproduces the coproduct.

5. On the Adjoint Representation

Let q = exρ(iπpVp), where p and p' are relative prime integers with p ^ 2.
Uq(sl2(<E)) is defined as the unital algebra over (C generated by E, F and K±2

subject to the relations

2 = l K2E = q2EK2,

K2F = q~2FK2, [ £ , F ] = K2 - K~2 . (5.1)
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In the following, we will consider the quotient (7 °(s/2(C)) = Uq(sl2(<E))/Ip obtained
by dividing by the ideal Ip generated by the central elements (K2)2p — 1, Ep and Fp.
From Uq(sl2((C)) it inherits the coproduct

E®\ +K2®E,

F®K-2 + l(g)F , (5.2)

and the antipode

S ( £ ) = -K~2E,

S(F) = - FK2 ,

S(K±2) = KT2 . (5.3)

Theorem 5.1. The monomials FjEιK2n, 0 ^ , / ̂  p - 1, 0 ^ n ^ 2p - 1, /orm

Using the notation zl(X) = ^.XJ ® X ', the adjoint representation of
Uq(sl2(<L)) acting on t/J(s/2(C)) is given by

ad x (F) = Σ z ; Γ 5 ( X Π . (5.4)
i

In particular, the action of the generators E, F and K±2 is

ad£(X) = £X - K2XK~2E ,

2 - XFK2 ,

T 2 . (5.5)

In order to identify the C/β(s/2(C))-modules Aε>n\ 0 ^ n' ^ pf - 1, with C/J(
we introduce for each rc; the new basis FjEιT n v , 0 ^ j , /, n^p — 1, ω = ± 1 .

In addition to (4.26), the idempotents THt ω have the properties

ETni(o — Tn + 2,ωE, FTnω = Tn-2,ωF , (5.6)

which, together with

(5.7)

q — q

2 n-n+ί jζ -2

and (5.1), allow us to compute explicitly the action of the generators. The result is
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Lemma 5.2. Let 0 ^ n' ^ p' — 1. The action of £, F and K2 on the basis
FjEιT n'p 0 g/', /, n ^ p — 1, ω = ± 1 , is given explicitly by

n + 7 ' ω

aάE{FjEιT n'p ) = FjEH

-ω

ϊ-f + 2tω>

= q2il~j)FjEιT wv . (5.8)

6. Conjecture on Locally Finite Homology

We conclude by stating a conjecture on the locally finite middle-dimensional
homology groups with coefficients in the local systems Lr. Let as before q be a root
of unity, and p be the smallest positive integer such that q2p = 1. Define quantum
binomial coefficients as

= l i m - [ " ] «; ! «. = € ( l + ε). (6.1)

Let ^ be the associative Z-graded algebra with unit, generated by K2,K'2 of
degree zero, E of degree — 1, and Fn of degree n, n = 0, 1, . . . , with relations

EFn - FnE = Fn.ί{q-"^K2 - ί " " 1 * " 2 ) , n ^

F [ ] F +
nL m x n + m ?

L m J"T2 v±2K±2 = Fo = 1 . (6.2)

This is "half" of Lusztig's construction of the quantum group at root of unity. It is
obtained by formally setting Fn = F"[ l ] ? /[n] ? ! , for q generic, and taking the limit
when q goes to a root of unity.

There is a homomorphism i: Uq(sl2) -> ̂ 4 given by E \-+ £, K ± 2 h^ K±2, and
F K F J . Thus Uq(sl2) acts on 4̂ via the adjoint action Uq(sl2) x 4̂ -> 4̂,
(x, α) h-> Xj iίXjJα^Sίx}')), where zl(x) = ^x} ® xj. The Uq(sl2) module A is
TL graded for the grading of Uq(sl2) defined by deg(£) = - 1 , d e g ( F ) = l ,
deg(K± 2) = 0.
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Let AN be the quotient of A by the ideal generated by the central element ENp,
N = 1,2, . . . . The algebra Uq(sl2) actrs on AN since ENp commutes with the action
on A. Multiplication by Ep defines embeddings of Uq(sl2) modules

• c>ANc>AN+1c>' . (6.3)

These maps are of degree zero for the shifted degree on AN deg(x) = deg(x) + Np.
Define the graded Uq(sl2) module A^ to be the direct limit of the modules AN with
the shifted degree. A basis of A^ is given by the classes of

-iTn-UωeAN, 7,/= 0 , 1 , . . . , n = 0,1, . . . 9p - 1,

ω = ± 1 . (6.4)

In this expression N is any number such that Np — I — 1 ^ 0. The degree of (6.4) is
j + I — I. Denote by Aά^ the subspace of homogeneous elements of degree d.

An alternative description of the Uq(sl2) module A^ was essentially suggested
to us by D. Kazhdan: Let Z be the subalgebra of the center of Uq(sl2) generated by
Ep. Then A^ = A ® z C [ ί ] , with adjoint action of Uq(sl2), where Ep acts on A by
multiplication and on C [ί] as d/dt. The isomorphism relating the two definitions
is d(xeAN) κ+ x (x) ί"" 1/^ - 1)!.

For simplicity, we state our conjecture in the case of p' odd.

Conjecture 6.1. Suppose that p' is odd.

(i) The action of Uq(sl2) on families of loop extends to an action on
Hlr(Xr, X~;Lr) and there is a degree zero isomorphism of graded Uq(sl2)
modules

Hl*(Xr,X-;Lr)^P® A'-1 .
n' = 0

(ii) There is a degree zero isomorphism of graded vector spaces

Hls(Xr) cz 0 Ker(£: Λ - 1 - A'~2).

This conjecture is parallel to the one formulated in [2] for the case of the sphere.
To prove it one should understand better locally finite homology. In the remaining
of this section we describe these isomorphisms. Let, as in 4.3, yA, yB: [0, 1] -• X be
A and B loops on the one-holed torus X based at a point y~ on the boundary of the
hole. Consider the locally compact cells in Xr,

Cι,r = {(yB(h)> , yB(tιl γA(tι+i),. . . , yΛ(tr))eXr\

0 < *! < < tι < 1,0 < tι + 1 < - - - < tr < 1}" , (6.5)

where ~ denotes closure in Xr. We orient CiY using the standard orientation of the
parameter space IR/* 9 ί, and choose as section over it the section taking the value eμ

over a point in one of the cells defined in 3.2, where a trivialization is fixed. The
class in HιJ{Xr, X~\ Lr) represented by CUr with this section will be denoted by
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CμJfr. The Uq(sl2) module φ^Loϋ}. f(X r, X~; Lr) is a direct sum of submodules
labeled by ή = 0? . . . , p' — 1, spanned by Cμ,ι,r with μ = — n'p + np',
n = 0, . . . , 2p — 1, / = 0,1, . . . Each of these submodules is isomorphic to A^.
The isomorphism is

ζ~* i y γιp1 lT*1 p T i (o π l

for some root of unity η depending on the choice of trivialization. The isomorphism
in (ii) is obtained through the identification of Ker(£) with Ker(δ#).

The space of cycles obtained here is bigger than the space of cycles relevant for
conformal field theory. The cycles for conformal field theory should be computed
using the cohomological methods of [25], but the details remain to be understood.

By construction, there is a projective action of the mapping class group
PSL(2, Έ) on relative homology, which commutes with the action of the quantum
group. We hope to describe this action elsewhere.

Appendix A. Properties

Define

Aμ(W\τ)

W

oiAμ(W\τ)

ni

T—— μ(2W + τμ)

e
η(τ)

1 °° 2πίW

ΐj{r) z^

s

:= p' £ (1 - nt)

A straightforward computation yields

Aμ(W
πi

+ lp'\τ) = eΊμlΔ

Θ3(W +

zt + 2p'

ΛW\τ),

τμ\2p'pτ)

s + r

, - ? + 1

Z i (A.I)

(A.2)

and

Δμ[ W
llpp

-ΞLX

r2p/p ep'p Δ2p.p-v(Wτ\τ) . (A3)

To verify the last identity, note that

2p'p-i z™μv 1 fW—V

η(τ) \ 2p'p 2p'pJ '

2p'p y% η(τ) ό\ 2p'p 2p'p
X ' , (A.4)
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and

τ

- 1
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= J - iτη(τ) ,

= J-ίτe^τθ3(zτ\τ) (A.5)

Appendix B. Properties of

Following Jacobi one defines

In terms of an infinite product

niτ oo

0i(z|τ) = 2e 6 η(τ) sinπz f ] (1 - 2e2πίτ" cos2πz
ι i = l

It satisfies the following identities

(B.I)

(B.2)

- 1
= Jίτeπiz2τθί(zτ\τ) (B.3)

It has simple zeros on the lattice Έ®Έτ and no others. Consider the fractional
power #i(z|τ)α, αeQ\Z, a multi-valued function on (£\Z®Zτ. Upon analytic
continuation along straight paths from z to z + 1 and z + x respectively, it has the
property that

= e2πioίφAz)θ1(z\τ)\

(B.4)

with

φA(z) = - n - \ ,

φB(z) = m + i ,

< x < m + l , n < } / < n + l } , (B.5)

as follows from an explicit calculation. Note that φ#(z) is constant on every
translated fundamental domain.
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