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Abstract. We describe a cut-and-paste method for computing Chern-Simons in-
variant of flat G-connections on 3-manifolds decomposed along tori, especially for
G = SU(2) and SL(2,C). We use this method to make computations of 517(2)
Chern-Simons invariants of graph manifolds which generalize Fintushel and Stern's
computations for Seifert-fibered spaces. We also use this technique to give a simple
derivation of a formula of Yoshida relating the flat 5L(2, C) Chern-Simons invariant
of the holonomy representation to the volume and the metric Chern-Simons invariant
for cusped hyperbolic 3-manifolds.

1. Introduction

This paper is a continuation of [KK2]. In that paper we described a method for
computing the Chern-Simons invariants of SU(2) representations of a 3-manifold
obtained by surgery on a knot K in a closed manifold M in terms of the image of the
restriction R(M — K) —> R(T), where R(X) denotes the space of conjugacy classes
of representations of the fundamental group of X in SU{2) and T is the boundary
torus of M — K. The main purpose of this paper is to show how to compute Chern-
Simons invariants of a closed manifold in terms of an arbitrary decomposition of the
manifold along tori. Cutting a 3-manifold along tori is a useful procedure in 3-manifold
theory. In addition to surgery on knots and links, this includes also decompositions
along incompressible tori in the sense of Jaco-Shalen and Johannson [J]. This cuts
a 3-manifold into simpler pieces, namely Seifert-fibered 3-manifolds and complete
hyperbolic 3-manifolds. The basic idea is to define Chern-Simons invariants for a
manifold whose boundary consists entirely of tori. We then show how to use these
methods to explicitly compute Chern-Simons invariants of various representations
of 3-manifolds with toral boundaries, including many Seifert-fibered and hyperbolic
manifolds.
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The outline of the paper is as follows. In Sect. 1 we construct explicitly an Sι

bundle E(T) over R(T) when T is a torus or a union of tori and prove (see Sect. 2
for the precise formulation):

Theorem 2.1. If X is a 3-manifold with dX = T, then the Chern-Simons invariant
defines a lifting cx : R(X) -> E(T) of the restriction R(X) -> R(T). Moreover,
there is an inner product (): E(T) x E(—T) —> Sι so that if Z is a closed manifold
decomposed along T, Z = X U τ Y, then cz(ρ) = (cx(ρ), cγ(ρ)).

Although the existence of such a bundle was known (see [RSW]), the point of
this result is that the construction we give of E(T) is totally explicit and makes
computations very easy. This is especially true when combined with Theorem 2.7,
which shows how to compute the difference between the Chern-Simons invariants of
two representations which lie on a path of representations.

Theorem 2.7. Let X be an oriented 3 -manifold with toral boundary dX = Tx U UTn

and let ρ(t) : πλX —> SU(2), t e [0,1] be a path of representations. Let
(ax(t), βλ(t),... ,α n ( ί ) , βn(t)) be a lift of ρ(t) \dx to R2n. Suppose

Cχto(ί)) = [α1(ί) J βι(t),...,an(t), βn(t);z(t)]

for all t e I. Then

In particular, if ρ(l) is the trivial representation (so that z(l) = 1 by Corollary 2.6)
then

cx(ρ(0)) = α^O.^ίO),..., αn(0), /?n(0);

We refer to Sect. 2 for definitions of [α^O), ^ ( 0 ) , . . . ,α n (0), βn(0);z]. (The
bundle E(T) is a quotient of the trivial bundle R2n x 5 1 by a discrete group.) Theorem
2.7 implies that the lift cx is parallel with respect to the connection J ] akdβk—βkdak

on E(T) (Corollary 2.8). Stated this way, this corresponds to the facts in [RSW] that
there is a natural connection on E(T) whose curvature is the symplectic form and
that the image R(X) —> R(T) is Lagrangian. The explicit formula for this connection
makes computations easy.

We then extend the results to 5L(2, C) representations. A/C* bundle EC(T) over
the character variety of the torus RC(T) is constructed and the analogues of Theorems
2.1 and 2.7 are proven. The arguments for SU{2) do not carry over immediately to
5L(2, C) because of the presence of non-diagonalizable reducible connections, and
so the we carry out the necessary analysis to extend the results to the character
varieties. We also make some comments about how to extend these results to SO(3)
and P5L(2, C) representations.

In Sect. 4 we then carry out explicit computations of the Chern-Simons invariants
for several different types of representations of 3-manifolds with toral boundary.
Theorem 4.1 computes the Chern-Simons invariants for abelian representations of X
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when Hι(X; Z) is free abelian. We then compute the representation spaces and Chern-
Simons invariants for FxS1, where F is a punctured surface. Then we show how the
results of Auckly [A] can be used to compute the Chern-Simons invariants of certain
binary dihedral representations (the special representations of [KK2]) of punctured
surface bundles over the circle. We also compute the Chern-Simons invariants of
certain Seifert-fibered spaces, namely the complements of regular fibers in Seifert-
fibered homology spheres (Proposition 4.4). (The method works with no substantial
changes for any Seifert-fibered 3 manifold with boundary but the formulas are
messier.) These computations can then be used to understand Chern-Simons invariants
of closed 3-manifolds obtained by glueing together manifolds along tori by using the
inner product of Theorem 2.1.

We then use these computations and Theorem 2.1 to compute the Chern-Simons
invariants of certain closed 3-manifolds. First we consider circle bundles over closed
surfaces; these manifolds arise as boundaries of the complements of surfaces in 4-
manifolds. We prove:

Theorem 4.3. Let ρ : πιM(n) —» SU(2) be a representation of the circle bundle over
a closed, oriented surface F with Euler class n. Conjugate ρ so that the fiber is sent

k k2 1
to e2πιβ. Then either β — —,in which case cs(ρ) = , or else n is odd and β = - ,

n n 2
77

in which case cs{ρ) = .
We then compute the Chern-Simons invariants of certain graph manifolds, namely

the manifolds Z = X UY, where X and Y are Seifert-fibered but the identification
dX —> dY is not fiber preserving. This is the application which motivated the
investigations of this paper. In an earlier paper [KKR] we showed how to compute
the Floer Homology grading ([F]) of a representation of these manifolds in terms of
Atiyah, Patodi, and Singer ρa invariants and the Chern-Simons invariants. To finish
the computation we needed to compute their Chern-Simons invariants. This is supplied
by:

Theorem 4.5. Let ρ : π1 Zφ —> SU(2) be a representation whose restriction to X and
Y is non-abelian. The Chern-Simons invariant of ρ is

The reader familiar with Fintushel and Stern's computations for Seifert-fibered
homology spheres [FS1, FS2] will recognize the first two terms. They are "internal,"
depending only on the geometry of X (resp. Y) and the restriction of ρ to X (resp.
Y). The other two terms are "external" in the sense that they depend only on the
gluing map dX —> dY and the restriction of ρ to this torus.

We finish Sect. 4 with a computation which shows how to interpret Yoshida's
formula [Y] relating the volume and metric Chern-Simons invariants on a hyperbolic
3-manifold obtained by hyperbolic Dehn surgery in terms of Theorem 2.1.

2. Manifolds with Boundary

Chern-Simons invariants of connections on manifolds with boundary are not gauge
invariant, and there is a useful formalism described in [RSW] for dealing with them.
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In that paper a certain complex line bundle over the space of flat connections on
a surface F is constructed. We recall the definition of their bundle: Let F be an
oriented closed surface and let P = F x SU(2) be the trivialized principal SU(2)
bundle over F. Let ̂ S(F) be the space of connections on F and &(F) the group of
gauge transformations. The trivialization determines isomorphisms:

Ωι

F® su(2) and &>(F) ̂  Maps(F, SU(2)).

If X is a 3 manifold and A e Ωι

x®su{2) a lie-algebra valued 1-form on X define
its Chern-Simons invariant to be:

csx(A) = —r / Ίr(dA A A + \λ A A A A).
8π2 J 5

x

Now let A G ̂ (F) and g 6 S?(F). Extend A to A over some 3-manifold and
extend g to g over X. Then define:

Θ(A g) = β^iicsxig Ά)-csχ{A))

where g acts on A in the usual way; so as 1-forms g A = gΆg~ι — dgg~ι. Then
θ{A,g) is well defined; this follows from the fact that on a closed manifold the
Chern-Simons invariant is well defined modZ.

Let ^(F) act on the trivial circle bundle over ^4(F) by:

g.(A,z) = (g A,θ(A,g)z).

To see that this defines a (topological) quotient bundle E(F) over
,Λ{F)jW{F) one checks that if g A = A, then θ(A,g) = 1, i.e. that the fiber
over fixed points is itself fixed.

Let ^4(X) denote the connections on a 3-manifold X and let J$(X) denote the
orbit space of ̂ S{X) under action of the gauge transformations. If dX = F, then
it is a tautology that the map A H-> e

2 π ΐ C s ( Λ ) defines a lifting of the restriction map
JB(X) -> J?(F) to the total space of E(F).

We will construct this bundle explicitly over the space of flat connections modulo
gauge transformations on a torus T by considering a 2-dimensional subspace of
^β(F) which maps onto the flat connections modulo gauge equivalence, and which
is invariant under a certain discrete subgroup of ̂ . The bundle we construct will be
explicitly defined, and so after we define it we will have to prove that it is indeed
E(T).

Let T be an oriented torus, and let R(T) denote the space of conjugacy classes
of SU(2) representations of πλT into SU(2). As is well known, the holonomy
defines a homeomorphism (in fact an analytic isomorphism) from the space of gauge
equivalence classes of flat SU(2) connections on T to R(T). As a space R(T) is
homeomorphic to 5 2 ; as a variety it has 4 singular points.

Let V(T) be the two dimensional vector space

Then the map V(T) -> R(T) defined by

is a branched cover. (Here we are identifying SU(2) with the unit quaternions. In
what follows we will always use this notation, as well as identifying the lie algebra
of SU(2) with the pure quartenions Ri Θ Cj.)
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The covering group is isomorphic to a semi-direct product of Z Θ Z and Z/2. To
see this, fix an oriented basis μ, X for πλT. Give G the presentation:

G = (x,y,b I [x,y] = bxbx = fry&y = b2 — 1).

Then via the isomorphism V(T) —* R2 defined by υ ι—> (i> (μ), v(λ)) the action of (7
on V(T) = M2 is

x(α, /?) = (α + 1, /?), 2/(α, β) = (α, /? + 1), 6(α, /?) - (-α, -/?).

Let G act on the trivial Sι bundle over V(T) in the following way, still using μ
and λ to identify V(T) with R2 as above. Then let G act by:

It is easy to see that this defines an action extending the action of G on R2. For
example, [x, y](a, β\ z) = (a, β\ ze47Γl) = (α, β\ z).

If g G G fixes (α,/3) G M2 then p = x r y s 6 for some integers r, s and

r , - y

So g also fixes the fiber over (α, β).
Thus the quotient circle bundle E(T) over R(T) is defined:

Although we have written down the action of G on V(T) x 5 1 in coordinates
determined by the choice of μ and λ, the bundle E(T) depends only on the orientation
of T. To see this, suppose m — pμ + qλ and I = rμ + sλ is another choice
of basis for π{T, where p, q, r and s are integers satisfying ps — qr = 1. Then
xayb(υ(m), v(l)) = (υ(m) + pa + qb, v(l) + ra + sb). One then checks that

e2πi(v(l)(pa+qb)-v(m)(ra+sb)) _ 2πi(v(\)a—v(μ)b)

We will fix a basis μ, X for πj T for most of this section and just write elements
of E(T) as [α, /?; 0], where the square brackets indicate the orbit of G.

Notice that if the orientation of T is reversed, then E(T) is replaced by the inverse
line bundle. As a smooth object this should be thought of as an orbifold bundle, double
covered by an "honest" bundle over the torus V(T)/Z Θ Z.

We can define a natural bundle map from E(T) x E(—T) to {pt} x 5 1 , the trivial
bundle over a point, (which we view as a bundle over R(φ) given by taking the pair
([α, β\ z\ [a, β; w]) to zweS1.

The definition generalizes easily to the case of a union T{ U U Tn of tori. Then
R(T{ U U Tn) = R(Tγ) x x R(Tn) and we take the bundle E(TX U U T J
to be the "tensor product" of the EfT^. More precisely the product action of Gn on
(R2)n extends to an action of Gn on (E 2 ) n x Sι using the same formula as above,
so that for example



526 P. Kirk and E. Klassen

We denote the quotient bundle by E(TX U UTn). Again we have a natural "partial"
inner product map

( , ) : ^ U U TJ x E(-Tλ U U - Γ m ) -> £ ( T m + 1 U U T J .

Given a 3-manifold X with dX a union of tori, let ^$F(X) denote the SU{1)-
connections on X which are flat near the boundary. The gauge group acts on these
connections and we let JffF(X) denote the orbit space. Notice that there is a restriction
map

JSF{X) -> RφX)

given by taking the holonomy of the flat connection on the boundary. Although the
Chern-Simons invariant is not well-defined on JSF(X) as an element of R/Z, the
following result shows that we can define it as a section of this circle bundle. It is
convenient to introduce the notation:

Cχ(A) = e2πicsχ(A)

for A e Ωx (g) su(2). So cx(A) is just a different way to express the Chern-Simons
invariant.

2.1. Theorem. 1. The map A \—> cx{A) defines a lifting of the restriction map
> R(dX) to E(dX):

EφX)

> R(dX).

2. Let X, Y be oriented 3-manifolds with toral boundaries, and let C — TXVJ UΓ n

be a collection of tori. Suppose that we are given a diffeomorphism hx of C with a
part of the boundary of X and a diffeomorphism hγ of —C with part of the boundary
ofY. Let Z = X Uh oh-\ Y. If A is a connection on Z which is flat near C, then

cz(A) = (c xCA|X), cγ(A{γ)).

3. The bundle E(T) —> R(T) has Euler class equal to — 1. More generally if
C = T\ U U T n is a union of tori, then R(C) = xkR(Tk), so that H2(R(C)) =
®kH

2(R(Tk)). In this case the Euler class is ( -1 , - 1 , . . . , -1)

We will prove this later in this section. We first develop some of the ideas we will
need.

Let X be a compact, oriented 3-manifold with toral boundary dX = T1U UΓ n .
For each k, choose an identification of Tk with Sι x Sι. This identifies R2 with

the universal cover of Tk via the covering map given by (x,y) »-> (eιx',eιy). It
also determines a symplectic basis μk,λk € ^(T^) by letting μ be the image of a
horizontal line and λ the image of a vertical line in R2 under the covering map. Also
the forms dx and dy in R2 factor through to give us corresponding forms in Ωι(Tk),
which we will still denote by dx and dy. Let Tk x [0,1] C X be a collar with Tk

identified with Tk x 1. This allows us to define 1-forms {dx, dy, dr} on X near Tk.
We assume the orientation of Tk as the boundary of X agrees with the orientation
inherited from the cover R2 —» Tk, so that {dx, dy, dr} is an oriented basis of 1-forms
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on X. Thus we orient dX with "outward normal last" convention. Stokes' theorem
says J dω = f ω on a 3-manifold X with this convention.

x ox
With respect to the trivialization of the SU(2) bundle over X any connection A

can be written as

A = a dx + β dy + 7 dr

in a neighborhood of Tk, where

a,β,j:Tk x I-+su(2).

We will focus on the connections for which a and β are constants and 7 is zero:

2.2. Definition. We say A is a normal form if for each ft there exist ak,βk eR so
that in a neighborhood of Tk,

A = iak dx + iβk dy.

Similarly, if A(t) is a path of connections on X we say that the path is in normal
form if each At is; in other words there exist functions α fc, βk : I —• R so that

A(ί) = iα fc(t) dx + i/?fc(t) dy.

Using the local definition of the curvature FA = dA + A Λ A it is easy to see that
if A = iak dx + iβk dy near Tα, then A is flat near Tfe. Furthermore, the holonomy
representation of πxTk (with respect to a base point near Tk) is given by

This can be computed directly from the definition of holonomy. Alternatively one
es developing maps as explaine 2

,y) (-> e-
2™(°tx+Pv') is a develop

Notice that the representations

p y y y
uses developing maps as explained in [KK2]. The map D : R2 —• SU(2) given by
(x,y) (-> e-

2™(°tx+Pv') is a developing map for this holonomy and A = —dDD~ι

and

are conjugate in SU(2) if and only if there exist integers m, n and ε E {±1} such

that α = εz(α + m) and ^ = εi(/3 + n). Since gauge-equivalent flat connections have

conjugate holonomy it follows that if iak dx + iβk dy and iά f c dx + i/3fc φ are gauge

equivalent then α, α and /?, ^ are related as above.

2.3 Proposition. 1. Let A be a connection on X which is flat in a neighborhood of
dX. Then there exists a gauge transformation g so that g A is in normal form.
2. Let A(t) be a path of connections on X so that A(t) is flat near dX for each t. Then
there exists a path of gauge transformations g(t) so that g(t) A(t) is in normal form
for each t. Furthermore, if A(0) is already in normal form we can choose g(0) = Id.
3. Let A be any connection on X which is flat near dX. Then for any choice of
α f c , / ? f c G R , f c = l Γ . . , n such that (up to conjugation)
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(where ρA denotes the holonomy representation near dX) there exists a gauge
transformation g supported near dX so that

g A — iak dx -f iβk dy

near Tk.

Proof. 1. First observe that this is a local question since if we can find a gauge
transformation g near dX the obstructions to extending g over X lie in Hι{X,dX\
πi_ι(SU(2))) and these groups are all zero. So it suffices to show that any flat
connection on T 2 x / can be gauge transformed to this form. But this follows from
the fact that the holonomy gives a homeomorphism between the set of flat connections
modulo gauge equivalence and the space of conjugacy classes of representations of
the fundamental group.

2. If g(t) is a path of gauge transformations defined in a neighborhood of dX, then
g(t) can be extended to a path on X since H\X xI,dXx I; πi_x SU{2)) = 0. If A(0)
is already in normal form, we can take g(0) to be the identity since the obstructions
then lie in H\X x I , 9 I x / U l x O ; π i _ x S U ( 2 ) ) = 0.

Notice that we cannot in general gauge transform a path into normal form leaving
both endpoints A(0) and A(l) fixed. The obstruction to doing this is usually non-zero.
3. Using the first part of this proposition we may put A in normal form by a gauge
transformation. Suppose that A — iθίdxΛ-iβ dy near Tx. We will show that there are
gauge transformations gx, gy and gb equal to the identity outside a neighborhood of
Tx so that

gx - A = i(a + 1) dx + iβdy,

gy - A = ia dx + i(β + l)dy,

and
gb - A — —ia dx — iβ dy.

By composing these gauge transformations we can get any normal form on Tx, and
similarly near the entire collection of tori dX.

Let h : 5 1 -> Sι c SU(2) be the map eix *-> e~ix. As a map into SU{2\
h is nullhomotopic. Let ftt, t G [0,1] be a nullhomotopy which is constant for t
near 0 or 1, with h0 constant at 1 G 517(2) and hx = h. Use ht to define a map
/ : 5 1 x [0,1] —> SU(2) which equals h near 5 1 x 1 and is equal to 1 near 5 1 x 0.
The map gx is then defined in a collar of Tλ to be the composition of the projection
Tγ = Sι x 5 1 -> 5 1 onto the first factor with the map /. Then extend gx to be 1
outside this collar. Notice that dgxg~ι = —idx near T{ x 1.

If we let B = gx A, then near T\:

B = gA~ι - dgg~ι = A + idx.

We construct gy in the same way, taking the projection Tx —> 5 1 onto the second
factor.

To construct gb, repeat the construction starting with the map h : Tx —> SU(2)
which is the constant map at j . It will be convenient in what follows to assume that
the extension to Tx x I factors through the projection Tx x I —> /.

Since jij~x = —i, this has the effect of reversing the sign of a and β. D

Remark. We will use the gauge transformations gx, gy and gb later. We note here that

d9χ _ n d ^ _ n dQh - o d ^ - o— — u, ~— — υ, — — u — — u.
dy dx dx dy
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The following result shows that gauge equivalent connections in normal form have
the same Chern-Simons invariants if they agree near the boundary.

2.4. Theorem. Suppose that X is a 3-manifold whose boundary components are tori:
dX = Tx U . . . U Tn. Let A and B be connections on X in normal form with respect
to dX and suppose that
1. A and B are equal near the boundary.
2. A and B are gauge equivalent. Then cs(A) and cs(B) coincide Mod Z.

Proof. Let g be a gauge transformation such that g A — B. We first assume that g
is trivial near dX. In this case, the connections A U A and AU B on (-X) U X are
gauge equivalent by the gauge transformation 1 U g. Since cs is additive over unions,
we may cancel cs_x(A) to conclude that csx(A) = csx(B).

Now drop the assumption that g is trivial near dX. Since A — B near dX, we
know that

iak dx + iβk dy = g(iak dx + iβk dy)g~ι — dgg~ι

near each Tk. We conclude that — = 0. This implies that g is constant in the r

direction, and fixes A as a connection on Tk. The group of those gauge transformations
on Tk which fix A\Tk is isomoφhic to the centralizer in SU{2) of the image of the

holonomy of A^. Because πx(Tk) is abelian, this centralizer is either Sι C SU(2)
or all of SU(2). In any case, it is connected. Hence for each k we may choose a path
gk{t) of gauge transformations on Tk from gkφ) = 1 to gk{\) = g\Tk such that for all
t, gk(t) fixes A\τ . (Assume each path is constant near each end.) View each gk as a
gauge transformation on Tk x /, where Tk x I is a collar of Tk on which A and B
are in normal form. Define a gauge transformation g on X by setting g — g outside
of the collars Tk x I and g = gk(t) on Tk x {£}, for t e I. Let C = g A. By the
first paragraph of this proof, we know that cs(C) = cs(A). We will now show that
cs{C) = cs(B).

Note that on the complement of the collars the two connections are identical, so
we need only consider their Chern-Simons integrals over the collars. For each s € / ,
define a gauge transformation hs on Tk x I x {s} by setting hs = gk{\ — s + si) on
Tk x {t} x {s}. Consider the flat connection As = hs A on Tk x / x {s}. Define a
connection A on Tk x / x / to be the union of the As. Since A is actually a path of
flat connections on Tk x / , it follows that

0 - / Tr(FA Λ FA).

Tkxlxl

By Stokes' theorem, however, this integral is equal to the sum of a Chern-Simons
integral over Tk x dl x / and one over Tk x I x dl. The former integral vanishes
(because it is a constant path of connections over Tk), while the latter is equal to

/ Tr (dA Λ A + IA Λ A Λ A) - ί Tr (dC Λ C + f C Λ C A C)

τkxi τkxi

which proves these latter two integrals are equal and completes the proof of the
theorem. D
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The next result shows how the Chern-Simons invariant changes when a flat
connection is altered near the boundary. A consequence of this theorem is that the
bundle E(T) is the same as the bundle constructed in [RWS].

2.5 Theorem. Let X be a manifold whose boundary is a union of tori dX =
T\ U U Tn and let A and B be gauge-equivalent connections in normal form.
Suppose that near Tk,

A = iak dx + iβk dy

and
B = εk(i(ak + mk) dx + i(βk + nk)dy)

for some collection of integers mk,nk,k=l,...,n and signs εk G {±1}. Then

cs(B) — cs(A) = > πiuβu — nkah

Proof Suppose g is a gauge transformation so that g A agrees with B near the
boundary. Then we have seen that cs(g A) = cs(B).

The proof therefore reduces to showing that cs(gx A) = cs(A) + βv cs(gy A) =
cs(A) — av and cs(gb A) = cs(A), where gx, gy, gb are the gauge transformations
constructed in the proof of Proposition 2.3.

The difference cs(gx A) — cs(A) is the integral of a function supported in
Sι x Sι x /, since gx is the identity outside a collar. Moreover, the Chern-Simons
integrand vanishes for A on Sι x Sι x / since dA = 0 and AΛAΛA = 0. Thus we
must show that if C = gx A on Sι x Sι x I, then

/

SιxSιxI

We do this computation directly. This is similar to the argument in the proof of
Theorem 4.2 of [KK]. Write g = gx. First notice that g A is flat on Sι x Sι x / so
that

Tr (dC Λ C + \C Λ C Λ C) = -\ Tr(C AC AC).

Using the remark after the proof of Proposition 2.3,

ι - dgg~ι

A bit of manipulation yields:

We can now integrate out the y variable since the form is constant in the y direction
and since we are integrating over a product manifold. So

± J
S'1xS'1x/
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Let ω = Tr(ίg~λdg). Then

dω — Tr
,dg

~d~r
i\drdx

on Sι x /.
So we need to compute J dω, which by Stokes' theorem equals f ω— J ω.

Sιxl Sιxl Slx0

(A bit of care must be taken to see that the signs are correct.) Since g is the constant
map at 1 G SU{2) near Sι x 0, / ω is zero. Near S 1 x 1, g(eιx) = e~ix and so

Slx0

Ίr(ig-[dg) = 2Re(ieix(-i)e~ixdx) = 2dx.

(For v,w G six(2), Tr(ι iί ) = 2Re(υw) when viewed as unit quarternions.) Therefore,
the integral of ω over Sι x 1 is 4ττ. Hence:

Tr (dC Λ C + | C Λ C Λ C) = /?!•

A similar argument applies to gy. The opposite sign arises from orientation

considerations. The argument involving gb is simpler. Since -^ vanishes, equation

(*) shows that the Chern-Simons integral vanishes on the collar, completing the proof.
D

We have the following corollary:

2.6 Corollary. Let X be a compact, oriented 3-manifold whose boundary is a union
of tori. Suppose A is aflat connection in normal form with respect to dX so that the
holonomy representation of A is trivial. Then

csx(A) e Z.

Proof The connection A is gauge-equivalent to the trivial connection, whose Chern-
Simons invariant is 0. Thus

cs(A) = Σ mkPk ~ nkak ModZ.
k

but the ak and βk are integers, since the holonomy representation is trivial. D

We can now prove Theorem 2.1.

Proof of Theorem 2.1. Given [A] G j$F(X), choose a representative A in normal
form. If A = iak dx + iβk dy near Tk let

cx([A\) = [<*!,&,... , α n , / 3 n ; e 2 — * ( A ) ] .

Theorem 2.5 shows that cx([A]) transforms properly.
The second assertion of the theorem is now obvious.
To prove the third assertion, observe that the region [0, π] x [0,2τr] is a fundamental

region for the action of G on R2. The identifications of the boundary are indicated
in the next figure. Split the region into two pieces: A = [0, π] x [O,ττ] and
B = [0, TΓ] x [π, 2π]. The space R(T) is homeomorphic to S2 and A and B map to
hemispheres. The trivial Sι bundle over R2 restricts to trivializations over A and B.
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(0.2π)

Fig. 1
(0,0) π.0)

Thus we need to compute the degree of the clutching function dA —> Sι. Using the
figure one can see that this degree is —1. D

The invariant cx(ρ) is an invariant of rel boundary flat cobordism. More precisely,
if M is a 4-manifold with boundary Xo U dX0 x / U -Xγ and ρ : πxM -» SU(2)
is a representation then CXQ(Q) = cx (ρ). This can be seen as follows. Choose a flat
connection A on M with holonomy ρ and in normal form near dX0 x I. Then the
identity

Tr(FA Λ FA) = dΊτ (dA A A + \A A A A A).

Stokes' theorem, and the observation that Tr (dA A A-\- ^ A A A A A) vanishes when

A = ia dx + iβ dy imply that

0 = ά / Tr(i?A Λ F A ) = csχ«{A) - csχM^
Xxl

We turn now to our main tool for computing the Chern-Simons invariants. This
result generalizes the main theorem of [KK2]. It should also be viewed as an extension
of the observation of the previous paragraph. Rather than considering a flat connection
on X x /, we consider a path of flat connections on X which we view as a connection
on X x / which is "flat except in the t direction."

2.7 Theorem. Let X be an oriented 3-manifold with toral boundary dX = Tλ U
• U Tn and let ρ(t) : πxX -> SU(2), t G [0,1] be a path of representations. Let
(<*!(*), βx{t\ . . . , α n (ί), βn{t)) be a lift of ρ{t) to R2n. Suppose

c(ρ(t)) = ), βn(t); z(t)]

for all t e I. Then
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In particular, if ρ(l) is the trivial representation (so that z{\) — 1 by Corollary 2.6)
then

c(ρ(0)) = ) , . . . , α n ( 0 ) , /3n(0);

exp[ - Ma dt

Proof. Choose a path A(t) of flat connections on X in normal form so that near Tα,

such that the holonomy of A(t) is ρ(ί). Orient X x I near ΘX x / by taking
{dt, dx, dy, dr} to be an oriented basis. The path A(t) determines a connection
A over X x I which satisfies Tr(FA Λ F A ) = 0, since FA has only a dt component.

As explained in the paragraph preceding this theorem:

0 = cs(A(l)) - cs(A(0)) - -Xr ί Ύr(dC ΛC+-C AC AC),

8πz J \ 3 )dXxI

where C is the 1-form over dX x / given by C(x, y,t) — A(t).
On dX x I, C A C A C = 0 and

Therefore:

cs(A(l)) - cs(A(0)) = - ^ / Tr (dC AC+-C AC AC)
8 π 2 J V 3 /

k dt k dt

Since e27ricS(Λ1)e-2πΐcS(Λ0) = ^(1)^(0)-! , the theorem follows. D

We next give a more abstract restatement of the previous theorem, together with
some additional differential geometric information about E(T).

2.8 Corollary. 1. The connection l-form

on the principal U(l) bundle R2n x U(l) descends to give an orbifold connection on
E(T) = R2n x U(l)/Gn. Given a 3-manifold X with boundary a union of tori, the lift
cx : R(X) —> E(T) of the restriction map is parallel with respect to the connection
A.
2. The curvature of A is FΛ = —4πi ^ dak A dβk. This is a real multiple of the

k

symplectic form on the symplectic orbifold R(T). D
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Observe that by Chern-Weil theory the Euler class is —iγ^dakdβk. Restricting
k

to each factor R(Tk) c R(dX) we get —2dakdβk. Finally integrating over the

fundamental domain for the action [0, | ] x [0,1] we see that the Euler number is -1.
So this gives an alternative argument for the 3 r d part of Theorem 2.1.

Consider the following situation. We are given a closed oriented 3-manifold Z and
a collection or tori: T{U UTn c Z. Let ρ : πλZ —> SU(2) be a representation so that
if X1 U U X m denotes the components of Z cut along C, the restrictions ρτ = ριX

lie on a piece wise smooth path of representations ρτ(t) to the trivial representation.
(Notice that each torus appears twice in the boundary of U^JQ.) Then, making use of
Theorems 2.1 and 2.7 we can compute the Chern-Simons invariant of ρ. Theorem 2.7
is used to compute the Chern-Simons invariants of the pieces, and Theorem 2.1 to
compute the effect of gluing the pieces together. In Sect. 4 we will describe how to
compute the representations and Chern-Simons invariant for a number of 3 manifolds.

One last remark is needed for computations: For a given representation of a 3-
manifold X there is usually a convenient choice of basis of π{dX determined by the
topology of X and the representation. (For example, if ρ is an abelian representation
and dX = T2 it is convenient to take λ to be the generator of Keri2\T —> HXX
since then λ is sent to 1 along any path of abelian representations. For this choice,
then, β(t) can be taken to be the constant path at 0.) However, in glueing X to
Y along T we must choose the same normal forms for A\x and A\Y to compute
(c(τ4|X), c(A\Y)). Any linear change of coordinates of T takes connections in normal
form to connections in normal form. More precisely, if

M = ( r

then M determines a change of basis of the 1-forms

dX = pdx + r dy, dY = qdx + s dy,

and so if A is in normal form with respect to dx, dy it remains in normal form with
respect to dX, dY. Of course, the Chern-Simons invariant does not depend on the
choice of local coordinates. The point is that the vector space V(T) is intrinsic, but
to do explicit computations requires fixing a choice of basis for πλT.

We can now outline the "algorithm" we will use to compute Chern-Simons
invariants in the simplest case of a decomposition Z — X \JY along one torus.
If ρ : ΈγZ —» SU(2) is a representation then let ρx and ργ denote the restrictions
to X and Y. Choose convenient bases {μXiλx} for π^dX) (resp. { μ y , λ y } for
πλ(dY)). Suppose there exist paths ρx(t) and ργ(t) of the restrictions to the trivial
representation. Then with respect to the bases we obtain paths ax(t), βx(t) and
aγ(t), βγ(t). We now compute the expression of Theorem 2.7 to get

.) = [αx(0), βx(O);cx]

and
c(,4 |y) = [αy(0), /^y(0);cy].

Next we express {μy, λ y } in terms of {μχi λx} using a matrix

M=(P q

\r s
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Since the representations ρx and ργ agree on the boundary, it follows that there are
integers ra, n such that

Now Theorem 2.1 can be used to adjust c(A\Y) to get

c(A{γ) = [αy(0),/3y(0),cy] = [ax(0lβx(0);c

so that

3. SL(2, C)-Representations

The results for SU{2) generalize to the larger group SX(2,C). Even for some
SU(2) computations it is convenient to consider SX(2, C) representations since
Hom(π,5L(2,C)) is an algebraic variety containing the real subvariety
Hom(π, SU{2)). In particular, a given SU(2) representation may not lie on a path
of SU(2) representations to the trivial representation, but there may nevertheless be
a path to the trivial representation in the space of SX(2, C) representations. There
are some subtleties which arise in going to the SX(2, C) representations which we
describe in this section. The essential point is that all the results of the previous sec-
tion extend to SX(2, C) representations provided we work with the character varieties
instead of the representation spaces.

Consider a (trivial) principal 5L(2, C) bundle P = XxSL{2, C) over a 3 manifold
X. As before the trivialization allows us to identify the space of all connections in
this bundle with the sl(2, C)-valued 1 forms on X. The Chern-Simons invariant of
A £ Ωx <S> sl(2, C) is defined as before, but notice that this time the expression
Tr (dA Λ ^ 4 + | ^ 4 Λ T 4 Λ ; 4 ) is a complex-valued 3-form on X. Hence

2
csx(A) = ^ 2 I Tr[dAΛA+-AΛAΛA

x

is in general a complex number. Changing A by a gauge transformation preserves
csx(A)modZ when X is closed. We will construct a C* bundle over the space of
SX(2, C) representations of a surface mod conjugacy in the same way as the SU(2)
case.

Notice that SX(2, C) is a non-compact group, and the space

Hom(τr, SL(2y C))/conjugation

is often badly behaved, e.g. non-Hausdorff. There is, however, a natural further
quotient of Hom(π, SX(2, C)), the character variety, which is an algebraic variety.
Our immediate task is to show that the results for SU(2) representations of Sect. 2
extend to these character varieties. A good reference for these varieties is [CS].

Recall that the character variety of a finitely presented group π into 5Z/(2, C) is
the variety whose ring of functions is the functions on Hom(τr, 5X(2, C)) which are
invariant under the conjugation action of 5L(2, C). It can be explicitly realized as
follows. There is a finite set ηx,..., 7 m of elements of π so that the functions

r :Hom(π,SL(2,C))->C



536 P. Kirk and E. Klassen

defined by

generate the ring of invariant functions. Then the image of the map

t : Hom(π, SX(2, Q ) -> C m

taking ρ to the n-tuple (ρi^),..., ρ(jm)) is closed, and is the character variety. We
denote this variety by Rc(π) or RC(X) when π = πxX. Two representations ρx and
ρ2 have the same image in the character variety if and only if Tr(^1(7)) = Tr(ρ2(7))
for all 7 G 7Γ. In particular conjugate representations have the same character.

An 5L(2,C) representation is irreducible if the natural action on C 2 has no
invariant subspaces. If ρλ and ρ2 have the same character and ρλ is irreducible,
then ρλ and ρ2 are conjugate (see, for example [CS], Proposition 1.5.2). Thus Rc(π)
is a quotient of the space of conjugacy classes of representations in which certain
(non-conjugate) reducible representations are identified.

Suppose ρ0 and ρx are representations with the same character on a closed 3-
manifold. If one of them is irreducible, then they are conjugate and so their Chern-
Simons invariants coincide Mod Z. Suppose they are both reducible and ρλ is diagonal.
By conjugating we may assume ρ0 is upper triangular. Define a path ρt by the formula

, . fa (l-t)b\ fa b
ρ < ( Ί ) = { θ a " 1 J WheneVeΓ « ™ {

It is easy to check that this gives a path of representations from ρ0 to ρv Thus
the Chern-Simons invariant of an SX(2?C) representation on a closed 3-manifold
depends only on the character of the representation. It therefore makes sense to try
to extend the results of the previous sections to the case of SL(2, C) representations,
substituting character varieties for the spaces of conjugacy classes of representations.
We first construct the bundle where the Chern-Simons invariants take their values.

3.1 Lemma. The map C 2 —> RC(T) taking the pair (α,/3) to the character of the
representation defined by

is the composition of an analytic branched cover with covering group G and a 1-1 and
onto algebraic map.

Proof. Any representation ρ:Z®Z-^ SL(2,C) is reducible since Z Θ Z is abelian.
Let L c C 2 be the invariant line. By conjugation we may assume L = {(z,0)} so
that ρ(η) is upper triangular for all 7.

But then the map ρ' Z φ Z ^ SX(2, C) defined by

whenever

is a representation with the same character as ρ. Thus the map is onto.

a
0

a

0

0
a

b

a
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The map t : RC(T) -> C3 given by ρ ι-> (Tr(ρ(μ)), Tr(ρ(λ)), Tr(ρ(μλ))) is an
algebraic embedding of RC(T). The composite

C 2 -> Hom(Z Θ Z, SX(2, C)) Λ RC(T) c C 3

is given by
(α,/3)ι->(2cos(2πα), 2cos(2π/3), 2 cos(2π(α +/?))

which is analytic. It is easy to see that the action of G (extending the action on R2

defined in Sect. 2) is analytic and has quotient homeomorphic to RC(T). However,
C2/G and -RC(T) are not isomorphic as analytic varieties. This may be seen by
comparing the dimensions of their Zariski tangent spaces at the singular points
corresponding to central representations. The map C 2/G —*• -RC(T) is algebraic, 1-1
and onto. D

Construct the bundle EC(T) over RC(T) by the same formulas as the definition
of E(T). This extends to the case when T is a union of tori. We also get an inner
product

( , ) : E c ( Γ ) x J 5 c ( - Γ ) - > C *

defined in the same way, and a partial inner product E(T U S) x E(—S) —• E(T)
when S and T are collection of tori.

3.2 Theorem. The Chern-Simons invariant defines a lifting cx : RC(X) —» Ec(d(X))
of the restriction map from the character variety of X to the character variety ofdX:

Ec(dX)

RC(X) > Rc(dX)

such that ifχ£ RC(Y), Y = Xλ U X2, and χi denotes the restriction ofχ to χ%t then

exp(2πic5y(χ)) = (c(χ1),c(χ2)).

Furthermore, the statement of Theorem 2.7 continues to hold with C 2 n replacing R2n.

The proof will occupy the rest of this section. Our first task is to extend the notion
of normal form to an SX(2, C) connection. Since TΓ^T 2) is abelian, any representation
ρ : 7τλ(T2) —> SX(2,C) is conjugate to an upper triangular representation, and
furthermore it is conjugate to a diagonal representation unless ρ is non-central and
Tr(ρ(7)) = ±2 for all 7 G π^T). Now let ρ : πλ(X) -> SX(2, C) be a representation.
We consider the two cases when ρ is or is not diagonalizable on the boundary. Let
μ, λ be a fixed basis for πxT.
Case 1. If

e2<πia 0 \ / e2πiβ Q

0 e- 2 -J a n d ρiλ)={ 0 e-^
for complex numbers α, β, then as before we define a flat connection A with holonomy
conjugate to ρ to be in normal form if

n ) d x + n Λ0 -zαy \ 0 — iβ
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near the boundary. In this case, we define

where A is in normal form.
Case 2. If Tr(ρ(7)) = ±2 for all 7 e π{(T), then

and ρ(λ) = (-If (J \

for some complex numbers α, 6 and integers w, v. We find a connection with this
holonomy using developing maps, as in [KK2]. The map D : R2 —» SX(2, C) defined
by:

{ax + by)

υ exp

satisfies
D(x -f 2πm, y -f- 2πn) =

From Proposition 2.1 of [KK2] it follows that A = —dDD~x is a connection 1-form
with holonomy ρ. One computes:

i u a /•/ . v Λ / iv b
- — — exp(ι(ux -f- t?y)) \ I — — — exp(z(it£ + vy))

0 —

We will say that a flat connection on T is in normal form if it is in the above
form for some u, v, α, b. Notice that (as in the case of diagonal representations) the
condition of being in normal form is independent of the choice of basis μ, λ for
π{(T) (although the specific normal form does depend on the basis). A connection
on a 3-manifold X with toral boundary will be said to be in normal form if it is in
normal form near each boundary component. Write

A = B(u, v, a)dx + C(u, υ, b)dy.

Then define:

What must be shown is that cx{ρ) is well-defined and depends only on the character
of ρ. We will first show that it depends only on the conjugacy class of ρ. In what
follows we will assume for notational convenience that there is only one component of
the boundary. Everything extends in the obvious way to the case when the boundary
has several components.

When ρ is diagonalizable on the boundary the proof that cx(ρ) depends only on the
conjugacy class of ρ is identical to the arguments given in Sect. 2. We will therefore
consider the second case, when ρ is parabolic on the boundary.

3.3 Lemma. If A and A' are two gauge equivalent connections which are in normal
form and equal near the boundary, then cs(A) = cs(A')ModZ.
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Proof. There is a gauge transformation g which takes A to Af. Suppose first that g is
the identity near the boundary. Then A U — A and A U — g A are connections on the
double of X which are gauge equivalent. However A U — A has zero Chern-Simons
invariant and so A and A! — g A have the same Chern-Simons invariant mod Z.

Since g A = gAg~ι — dgg~ι near the boundary, it follows that — = 0, where
or

r is the inward normal. Thus g^τ is a gauge transformation of T which fixes A. A
computation shows that near T, g must be of the form

rpiiux+υy)

for some complex number c. We may assume the + sign holds since if not, we may
replace g by —g while preserving the fact that g A = A'. It follows (by varying c)
that there is an arc of gauge transformations on T, all fixing A\τ, joining g to 1. The
rest of the proof is exactly like the proof of Theorem 2.4, so we omit it. D

Notice that conjugating an upper triangular matrix by the matrix

has the effect of multiplying the upper right-hand entry by w2. The following lemma
shows that this kind of conjugation does not affect the Chern-Simons invariant:

3.4 Lemma. If A and A! are gauge equivalent connections such that

A = B(u, υ, a)dx + C(u, v, b)dy

and

Ar — B(u, v, w2a)dy + C(u, υ, w2b)dy

near dX then cs(A) = cs(A')modZ.

Proof The outline of this proof is the same as that of 2.4 and 3.4. Let 7 : [0,1] —> C*
be a path from w to 1, constant near the endpoints. Use 7 to define a path of matrices
g given by

_ (lit) 0
9 t ~ \ 0 7-1(

constant near the endpoints. We extend g to be a gauge transformation g : X —>
SL(2, C) by using a collar of the boundary and extending it to be equal to 1 outside
this collar. Now use g to define a path of gauge transformations gs from g0 = the
trivial gauge transformation to gx — g, as indicated in Fig. 2
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Fig. 2

Let As = gs A. Notice that each As is in normal form. Since csiA^ = cs(Af)
by 3.4 and cs(A0) = cs(A), it will suffice to show that cs(A0) = cs(Aλ). Since these
connections agree outside of a collar, we need only to compare their Chern-Simons
integrals on T2 x /. Let A be the connection on T2 x I x I which is the union on
the Aβ. Then

T2xlxl

8π2

dT2x{0,l}x/

It remains to prove that the integral vanishes. Since this is obvious over T 2 x 1 x I,
we concentrate o n Γ 2 x 0 x / = 9 I x / . Since As A As Λ As = 0, we must show
that / Ύv(dAs Λ As) vanishes.

dXxI
Now

As = , v, j2(s)a)dx , υ, η2(s)b)dy

near the boundary. Then As ΛAS ΛAs = 0 and

—C-B—- )dxdyds
OS OS J

= Trί° ^-^Tsh
,0 0

= 0, D

Let gx and gy be the gauge transformations constructed in Sect. 2. Notice that near
the boundary,

, v, a)dx υ, b)dy) = B(u + 2m, v + 2n, a)dx

+ C(iλ + 2m, t; + 2n,
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(Notice that conjugating by

•-( ° l

3~{-l 0

takes an upper triangular matrix to a lower triangular matrix. Perhaps to include the
action of gh it would have been more elegant to consider upper and lower triangular
matrices in the definition of normal form. This makes no difference in the end.)

3.5 Lemma. If A is a flat connection with holonomy ρ in normal form and with

[ u v I
- -,--\z\,then

^(€9y A) = [ - \ + rn, -V- + n;

Proof. One first computes that if A — B(u, υ, a)dx + C(u, υ, b)dy on dX x /, then

gx A = B(u — 2, v, a)dx + C(u — 2, v, b)dy

in a smaller collar of the boundary dX. Since gx is the identity outside the collar
dX x /, just as in the proof of Theorem 2.5 we must show that

J
Ίr(dEΛE+-EΛEΛE ) =v,

V 3 /

where E = ̂  A. Write # = ̂ x , and since E is flat, dEΛE+^EΛEΛE =

-\E Λ E Λ E. Therefore we need to compute -\ JTr(E Λ E Λ E).

Since ϋ? = gAg~ι — dgg~ι, a small calculation shows

where B = B(u, v, α) and C = C(u, v, b). (The fact that —- = 0 is used here.)
dy

We first show that / Tr ί C ί \g~ι ~-, 5 J = 0. The reader can check that since g

is independent of y, Tr ί C

h(x, r) which is independent of y. So

g~ι -^-, B j is the product of e ^ ^ ^ with a function

Sιxl

The other term Tr ( C\ \g~x-Jr,g~x-^- I ), is handled as follows. Write
V Vί ^ dx\JJ

c y) = \g 1—- g 2 —— . We know from the proof of Theorem 2.5 that if
1 ΊT ox\

i=(i °
VO -i
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then
1 f

—-x \ Ύr(Ip(x, y)) dxdydr = 1.
oτr z J

dXxI

Now

\0 0

So

= v Tτ(Ip)dx dy dr + / e™y(some function of x and r)dxdydr

= 8 π V D

This completes the proof that the map c defines a lifting from the conjugacy classes
of representations of X to EC(T). It remains then to show that the result depends
only on the character of the representation. If two representations have the same
character and one is irreducible, then it is shown in [CS] that they are conjugate.
Thus it suffices to consider the case when two reducible representations have the
same character. First notice that two diagonal representations with the same character
are conjugate. Furthermore, if ρ : -κxX —> SX(2, C) is a representation, the path of
representations ρs defined by

a (1 - s)b

0 a'1

whenever

is a path of representations to a diagonal representation. Thus it suffices to show that
for this path, cs(ρ0) = cs(^)ModZ.

Since the upper triangular matrices U form a subgroup of SX(2,C), there is a
developing map D : X —> U with holonomy ρ. But then

a (1 - s)b

0 α" 1

whenever
'α b

is a path of developing maps with holonomy ρs. From this it follows that we have
a path of flat connections As in normal form with As = B(u,υ,(l — s)ά)dx +
C(% υ, (1 - s)b)dy near dX. Thus

0 = cs(A0) — cs(Ax

dXxI

{) - ̂  J Tr(dA8ΛAa + lAaΛAaΛAX
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Clearly As Λ As Λ As = 0. When we compute dAs Λ i s , we find its diagonal entries
and hence its trace to be 0, just as in the proof of 3.4. This completes the proof of
Theorem 4.2. D

The results of Sect. 1 and 2 apply also to SO(3) = PSU{2) and PSL(2, C)
representations with some modifications. We outline one way to do this. It is perhaps
not the most general way to extend the results, but it suffices for our applications.

Let R(T,t) denote the conjugacy classes of PSU(2) = SO(3) representations
of Z 0 Z which have trivial second Stiefel-Whitney class, in other words so that the
associated flat bundle is trivial. Thus R(T, t) is the image of the SU(2) representations
under the map induced by the homomorphism SU{2) —» PSU(2).

Let
H=(X,Y,b\ [X,Y] = XbXb = YbYb = b2 = 1).

So H is isomorphic to G. Think of G as a subgroup of H via the map x ι—» X2,
y »-> Y2, and b ι-> b. (So (H/G = Z/2 Θ Z/2.) The action of G on E2 extends to H
via

X (a,β) = (α+^,/3), Y (a,β)= (α,/?+±), b (α, β) = (-α, -/?).

Extend this action to an action of H on R2 x 5 1 by

X.(a,β;z)=(a + ̂ β ,ze-4*tP), Y (α,/?;s) = (α,/3 + \\ze*«ia).

The quotient bundle £7(T, t) is well defined. If i?(X, t) denotes the PU(2) represen-
tations of a 3-manifold X which have trivial w2 on the boundary, then cx defined
a parallel lift of the restriction map R(X, t) —> R(T, t). We remind the reader that
PSU(2) = SO(3) Chern-Simons invariants are based on the first pontrjagin class, and
the map H4(BSO(3)) -+ H4(BSU(2)) takes p{ to ~4c2, hence the sign difference
on the action of H on R2 x Sι.

Similarly replacing R2 by C 2 in this discussion leads to a C* bundle over the
character variety of PSL(2, C) representations having trivial w2.

Finally suppose we are given a manifold X with toral boundary and an arc ρt of
SX(2, (C)-representations of πx(X), and we wish to calculate the difference between
the Chern Simons invariants of p o ρχ and p o ρQ, where p : SL{2, C) —> PSL{2, C)
is the quotient map. We may calculate this difference using an integral just as in
Theorem 2.7, except that we must introduce a multiplicative factor of —4 because of
the formula relating Pontryagin classes and Chern classes given above.

4. Chern-Simons of Manifolds with Toral Boundary

In this section we describe the representation spaces of several 3-manifolds with toral
boundary in enough detail to use the results of the previous sections to compute their
Chern-Simons invariants.

Our first result concerns abelian representations of X when H{X is torsion free.

4.1 Theorem. Let X be a 3-manifold with boundary dX = Tx U U Tn. Assume
HXX is torsion free. Choose symplectic pairs μk, λk for H{Γk. Let xif i — 1,.. ., m
be a basis for HXX and write
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Suppose t h a t ρ : π { X —> S U ( 2 ) is a n a b e l i a n representation a n d let 7 ^ G l w t h a t

Proof. Since the representation is abelian, the formula:

ρ(t){xό) = ei{1-^

defines a path of representations from ρ to the trivial representation. On the boundary
tori this path takes the form:

ρ(t)(μk) = exp (i(l - * ) ( $ > * ; % ) ) ' ^Xλfc> = e x P fa1 ~

So we can choose the paths a(t) and /?(£) to be:

and

But then ockdβk — βkdak = 0. The theorem now follows from Corollary 2.6 and
Theorem 2.7. D

For example, if X is the complement of a knot in a homology sphere, let μ,
λ denote the natural meridian and longitude. If ρ : π1X —> 517(2) is an abelian
representation such that #(μ) = e m then

<*(£) = [α,0;l].

The next examples we consider are 3 manifolds of the form X = F x Sι for a
punctured surface F. By cutting along a torus we can consider the two cases:
1. F is a once-punctured surface of genus n.
2. F is a planar surface.

Consider first the case of a once-punctured surface F. We can describe the
representation space. Write π = πλ(F x Sι) = (x1,y1,...,xn,yn) x (λ). The curves
μ = Πtχϊ> Vi^ a n d λ generate πj(9X). We take the orientation of λ so that μ and λ

i

form an oriented basis. Since the centralizer of any non-abelian subgroup of SU(2)
is {±1}, any non-abelian representation of π must send λ to ± 1 . Moreover, any
representation which restricts to an abelian representation of τxxF is abelian.

Thus if ρ : πxX —> SU(2) is any representation, either
1. ρ is abelian and £(μ) = 1; or,
2. ρ is non-abelian and ρ(X) — ± 1 .

In the first case, let β e R so that ρ(λ) = e27r ί/3. Then from the previous result

The second case is slightly more complicated. First note that a homomor-
phism from a free group to 517(2) is determined by its values on the genera-
tors and so H o m ^ F , 517(2)) can be identified with SU(2)2n via the map ρ ι->
(ρ(xι), ρ(yι),..., £(#n), Q(yn)) This space is path connected so there exists a path

), t € [0,1] from ρ to the trivial representation which fixes λ. We can conjugate
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this path so that ρ(t)(μ) — e

lΊτiθί^)m Along this part of the path β is unchanged. We can

take β to be either 0 or | depending on whether ρ(X) = 1 or — 1. The representation

ρ(\) is abelian, and hence has cx(ρ(l)) = [0,/3,1]. Since ρ(l)(μ) = 1, α(l) is an
integer. Therefore we can re-write

= [0,β, 1] = [a(l),β;e2πiβaW].

The path β(t) is just the constant path at β and so:

at at J at
o o

Using Theorem 2.7 we can compare cx(ρ(0)) and cx(ρ(l)): If cx(ρ(0)) = [a(0), β\ z\
then

e2πiβa(\)z-\ __ e2τri)9(α(0)-α(l))

Write a = α(0). Then

since o (l) is an integer and β G Z [ | ] .

Therefore:

We turn now to the case of a planar surface F crossed with Sι. If F is a planar
surface then its fundamental group is again free. This time we write πx(F x Sι) =
( μ 1 ? . . . , μ n | μ ! . . . μ n = 1) x (λ), where the μk are loops following the kth boundary
component of F. The symplectic pairs μi, λ generate the fundamental group of the
ίth boundary component. Let ρ be a representation. Suppose first that the restriction
of ρ to F is abelian. Then ρ is abelian. Choose ak and β so that ρ(λ) = e2ni@ and
ρ(μk) = e27rιak for k = 1,... ,n — 1. Since μ n = ( μ x . . . μ n _ 1 ) ~ 1 ) , we can take

n - l

^n ~~ 2-j ® k"
1

The generators μ 1 ? . . . , μ n _ i , λ form a basis for iϊ^X and so by Theorem 4.1:

n-l

2 = 1

Consider now the case when ρ is non-abelian. Choose ak,β as before, except
that now ρ(μk) is only conjugate to e2ηvιOLk. Since λ is central, ρ(λ) = ± 1 , and
so /? G Z [ | ] . Since the fundamental group of F is free we can find a path of
representations ρs from g to a representation whose restriction to F is trivial, and so
that λ is fixed along the path. We may also choose continuous functions ak(s) so that
for each s, ρs(μk) is conjugate to e

2 π m ^ ( s ) . For this path,

n

ί-dα f c/?= "
fc=l " fe=l
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Notice that 0^(1) G Z for all k, and ak(0) — ak. Since ^ is abelian, and trivial on
TΓJCF), Theorem 4.1 implies that

(1),/?,..., α n ( l ) , # e x p
V

We now apply Theorem 2.7 to the path ρs. Using the fact that 2αfc(l)/3 is an integer
for each k.

Γ -2πιβΣ,ak]
cx(ρ)= α 1 ? /? , . . . , αn,/3;e

Let F be a k times punctured genus n surface. By decomposing F into
a planar surface and a once punctured surface and applying the inner product
E(T U S ) x E(-S) -> £(T), we obtain the following result:

4.2 Theorem. Let F be a genus n surface with k punctures and let X = F x 5 1 .

ττλF = fe =

G/ve π ^ X ί/ιe Z7α 5̂ μ̂  x * am/ λ = * x 5 1 fp/c^ a path from the base point to
each torus in dX to view these in πxX). Let ρ : πλX —> SU(2) be a representation.
Let aά, β e R be defined by ρ(X) = e2πiβ and ρ(μά) = e2πiaj fi.e. for each torus
Tj C dX there is an element of 517(2) which conjugates ρ to this form on Tj).
Then

βΣj]
cx(ρ)= \auβ,...,ak,β;e ι . D

Another class of examples for which computations are possible are the Chern-
Simons invariants of certain representations of surface bundles over the circle which
we called special representations in [KK]. D. Auckly has computed the Chern-Simons
invariants of special representations of any (closed) surface bundle over Sι in [A],
Using Auckly's computations, Theorem 2.1, and the computations for the solid torus
given by 4.1 one can compute the Chern-Simons invariants of special representations
of surface bundles when the surface has one boundary component. We sketch the
idea, leaving the details to the reader.

Recall that a special representation of a surface bundle is one whose restriction to
a fiber is abelian. Let b : F —> F be a homeomorphism of a once punctured surface
to itself which is the identity on the boundary and let M = F xB Sι be the mapping
torus. The fundamental group of M is πjM = (xι,...^x2n,t \ txfi~l = ^(x^)).
Thus the boundary of M has basis

μ — t

and

Notice that since b is the identity on the boundary, it extends to the closed surface
obtained by capping off the boundary. Moreover, the representation also extends since
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ρ(μ) = 1. Let M denote the closed surface. Then M = MUX, where X = D2 x Sι.
We give the boundary of the solid torus the basis λx = dD2 x {1} = λ and
μχ = {1} x Sι = μ. By Theorem 4.1,

The computation of cs^(ρ) is in [A], We refer to that paper for the precise
formula since it involves some notation which we do not repeat here. Writing
Cjfriρ) = Qxp(2πics^(ρ)) we conclude from the inner product of Theorem 2.1 that

As an example, since j is a 4th root of unity any special representation extends to a
representation of the closed manifold obtained by Dehn filling so that the curve μAk\p

is killed. In particular this gives the Chern-Simons invariants of some representations
Ak

of — surgeries on fibered knots.
V

We next turn to a computation of the Chern-Simons invariants of two types
of closed 3-manifolds. The first are circle bundles over oriented surfaces. These
manifolds are the boundaries of tubular neighborhoods of embedded surfaces in 4-
manifolds. The second type of manifold we consider are graph manifolds obtained by
glueing two Seifert-fibered manifolds together along their boundary tori. This second
application is needed in [KKR] in the computations of the spectral flows between flat
connections on these manifolds. These examples show how to use the inner product
in Theorem 2.1 to compute the Chern-Simons invariants of closed manifolds from
the knowledge of the pieces.

Let F be an oriented surface with one boundary component and let F be the closed
surface obtained by glueing a disc to dF. The circle bundle M(n) over F with Euler
class n is obtained by gluing F x S1 to D2 x Sι using the map φ : dF x Sι —> dD2 x Sι

given by (z, w) ι-» (z, znw), where we have identified dF and dD2. Figure 3 shows
the images of R(F x Sι) and R(D2 x Sι) in R(T). The coordinates are dF x * and
* x Sι.

R(FxS !)

Fig. 3 nodd

(Note that if F = S2, then the only representations of F x Sι lie on the left edge
of R(T) since there are no non-abelian representations of D2 x Sι.)

One concludes from the figure that there are 3 types of representations: the first are
representations which factor through the projection πιM(n) —> τrιF; these have their
image in the lower left corner. The space of such representations is homeomorphic to



548 P. Kirk and E. Klassen

the space of representations of πxF. The second type are the representations whose
restriction to πλF are abelian and non-central. These correspond in the figure to the

\n~
intersections along the left edge of R(T). The space of such representations has —

components; each component is homeomorphic to (Sι)2g/(Z/2), where g is the genus
of F and the generator of Z/2 acts by conjugation in each factor. The third type,
corresponding to either the top left or top right corner in the figure depending on the
parity of n, are representations whose restriction to τxxF send dF to —1; the space
of such representations is homeomorphic to the SO(3) representations of πxF which
have non-trivial second Stiefel-Whitney class.

From these observations one can already conclude that the representations of
the first type have zero Chern-Simons invariants, since they extend flatly over the
D2 bundle over F. We can also conclude that the representations of the third type
have Chern-Simons invariants in Z[-] since the corresponding SO(3) representations

extend over the D2 bundle over F.
Write X = F x Sι and let Y = D2 x S1 and let μx = dF x *, λ x = * x S1,

μγ = dD2 x *, and λ y = * x Sι. The glueing map is then defined by μx ι-» μγ -\-nλγ

and λx f—> λy.
Let ρ : M(n) —> SU(2) be a representation which satisfies ρ(μx) = 1 and

ρ(\χ) = e vW for some k = 1,... — . Thus ρ is a representation of the second

type, or n is even and ρ is a representation of the third type. In either case we may
assume the restriction to F x Sι is abelian; this already holds for the second type of
representations and for the third type (with n even) there is a path of representations
of πλM(n) from ρ to an abelian representation.

Γ k 1
Then by Theorem 4.2 cx(ρ) = 0, - 1 . Notice that ρ{μγ) = e~2nik = 1 and

L n J

ρ(\γ) = e2πi". Thus cγ(ρ) - Γo, J ; ll - ί - jfe, ί ; e " 2 π t ^ l . The last equality

follows from the definition of the action of G on M2. We can now take the inner

product since we have chosen compatible lifts. Thus cM(jι){ρ) = 1 e n , and
hence the Chern- Simons invariant is

This leaves the representations of type 3 when n is odd. From the discussion of
F x Sι we know

1 ι . =j1

2 ' 2 ' e

27ri
l~n 2πi-

Also, ρ(μγ) —\ — e 2 and ρ(λ y ) = — 1 = e 2 . Thus

, , L 1 1 [ 1 - n 1 2 π ^
c y ( ^ ) = °'2 =

Taking the inner product we get:

1 1 — n n
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We summarize:

4.3 Theorem. Let ρ : πx(M(n)) —» SU(2) be a representation of the circle bundle
over a closed, oriented surface F with Euler class n. Conjugate ρ so that the fiber is

k k2

sent to e2 π z / 3. Then either β = - , in which case cs(ρ) = , or else n is odd and
n n

1 n
β — -y in which case cs(ρ) = . D

We now compute the Chern-Simons invariants of certain graph manifolds. See
[FS1, FS2, and KK1] for background on the representation spaces of Seifert-fibered
manifolds. We consider the following situation: X and Y are two Seifert fibered
manifolds over the disc with HXX = Z = HXY and φ : dX —> dY is a
homeomorphism. For simplicity we will assume that X and Y are the complements
of regular fibers in Seifert-fibered homology spheres or, equivalently, that the Euler
class of the Seifert fibration is equal to 1. This restriction is merely for convenience:
the formulas are easier to write down. (These examples are the examples for which
the Floer homology grading were computed in [KKR].) The general case of a
manifold decomposed along a union of tori into Seifert fibered pieces can be handled
similarly. Glue X to Y using φ to get the closed manifold Zφ. We will describe
the representation spaces and Chern-Simons invariants of X and Y and then apply
Theorem 2.1 to calculate the representation spaces and Chern-Simons invariants of

zψ.
We start first with the computation of cx(ρ) for a non-abelian representation ρ.

Write:
πxX = ( # ! , . . . , # m , h I h central, x^lhb% = 1).

Our hypothesis on the Euler class implies that the integers ai9 bt can be chosen so
that

m ,

2 = 1 %

W r i t e a — ax an.

The pair μx = xx x m and Xx = h forms a basis for πxdX. Assume the
orientation of X is chosen so that this basis is oriented in the induced boundary
orientation. If ρ : πxX —> SU(2) is a non-abelian representation, then since h is
central it must be sent to ± 1 . The relations x^h^ = 1 then force ρ(xr) to be
conjugate to eπτlr^a"r for some integers lr. Conjugate ρ so that ρ(xx xm) = e2πιa

for some α e l .
Consider the free linkage (cf. [KK1]) in SU(2) consisting of the geodesic segments

joining ρ(xx - xr) to ρ(xx- xr+x). So the r t h strut of this linkage has length
cos(π/ r/α r). This linkage determines the representation ρ and moreover the space
of such (free) linkages maps onto R(X) in the obvious way.

Consider the following 1-parameter family of free linkages Lt with Lo correspond-
ing to ρ. As t increases, pull the free endpoint of the linkage along the circle eιs until
the linkage winds around this circle in a monotone way. (That this is possible follows
from the argument on p. 82 of [KK1], namely, that the distance from 1 6 SU(2) is
a Morse function whose only critical points occur when the free linkage lies entirely
on the circle.) Define the path of representations ρ(t) by leaving h fixed along the
path and sending xx xr to the r — 1st endpoint of Lt. Notice that the endpoint ρ(l)
is abelian. Furthermore ρ(t)(μ) is just the free endpoint of Lt. Write e27ΓΪQί(t) for this
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endpoint. Then

α(0) = a

and
m j

«»-Σ£
Along this path, β(t) is constant since h is fixed at ± 1 . Choose β to be 0 or ^

according to whether ρ(h) = 1 or — 1. Thus

\ r=\ rJ

We next need to compute cx(ρ(l)). Since ρ(l) is abelian we can use Theorem 3.1.
Notice that μ generates HXX since (using additive notation)

ciβ = β ) xr = — 7 — b r h = — Λ

r r

and since HxdX —> i ^ X is onto. Using Theorem 3.1 we see that

Write

e = α
α^

We consider first the case when β = 0. Then — a Σ τr~ £ ^ a n ( * so
^ 2

-[έ -j"]-[έ * -"έ

Applying (*) (with β = 0) and Theorem 2.7 we conclude

e 2[
a,0;

Now suppose β—-. Then — oY) — GZ and so
2 r 2αr 2

6 Q!
This time the integral in (*) equals and so by Theorem 2.7,

4a 2
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f e2 \
In either case we can write the exponent as — 2πi —- + βa I. From the covariance

\4a )
of the line bundle and the fact that 2β e Z one can easily show that the equivalence

Γ 2πi(^+βa)]
c l a s s α , β ; e V4α / i s i n d e p e n d e n t of t h e c h o i c e o f a a n d /?, i .e.

-2πi( J
n e

Abelian representations can be handled using Theorem 3.1. Thus:

4.4 Proposition. Let X be the complement of a regular fiber in a Seifert fibered
homology sphere, with

πxX = ( # ! , . . . ,Xm,h I h central,x^ ιhb i = 1)

for integers a%, b% chosen such that Σ — ι = ^ a = aι''' a

m Let ρ : π{X -* SU(2)
ai

be a representation taking x{ xm to e2nιa and λ to e2ni@.

(i) If ρ is non-abelian, (so that β e Z [ | ] ) ,

respect to the basis μ = xι- xrn and λ = hfor π{dX.
(ii) 7/* ρ is abelian, then

cx(ρ) = [α, - α α ; 1]. D

Now let Y be another Seifert-fibered space over D2 with

τrιY = (yι,...,ynik\k central, j/^Λ^ = 1),

cd
and J^ —- = 1 where c = cx cn. We glue X to Y using a diffeomorphism

(/?: dX —> 9 F to obtain Zφ. One remark about orientations is needed: The orientation
of Zφ induces an orientation of X and Y which in turn orient their boundaries dX and
dY. Now it may happen that these orientations are not the same as the orientations
given by the ordered bases {x{ x m , h} and {yx - yn, k}.

So we assume Zφ is given an orientation and that εx and εγ are signs so that

Zφ=εxXUφεγY

We choose the bases (μx, λx) = (xr xm1 hε

x) and (jj,γ, Xγ) = (y{ yn, fef,).
Let (/? : ΘX -* dY be an orientation-reversing homeomoφhism given in these bases
by φ(μx) = wμF + ^ λ F and φ(Xx) = vμγ + zλ y . So uz — υw = —I.

Let £ : π ^ ^ —> SU(2) be a representation. Assume that the restriction of £> to
both X and y is non-abelian. The case when one or both restrictions are abelian is
handled in the same way and is easier.

The restrictions to X and Y define real numbers ax and aγ, half-integers βx

and /3y, and integers ex and eγ as above. Specifically:

x • • • x m ) = e 2 π ί α ^ , ρ ί t / ! •••yn) = e2

ρ(h) = e2πtβχ, and ρ(k) = elπiβγ.
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Taking the signs into account:

and

cεγγ(Q) — \uγ,£γβγ',e>
L

According to Theorem 2.1 e

2 π 2 c s ( ρ ) is the inner product of these two. We need to
evaluate this inner product. This requires fixing compatible lifts to E 2 .

Fix lifts aγ and βγ. Then

ax — uaγ + εγwβγ (*)

and
εχβχ = vaY + εγzβγ (**)

are compatible lifts.
This has the consequences:

1. To decide whether or not there is a representation of πι Zφ which restricts to some
given representations of X and Y one first checks that the (*) and (**) hold modulo
the action of G on R2. Since βx and βγ lie in Z [ i ] . It follows that ax and aγ are
rational numbers with denominator 2υ. (If υ = 0 then Zφ is Seifert fibered and the
computations are easier. We will assume v Φ 0.)
2.

/A

uaγ + εγwβγ,υaγ + εγzβγ;

-2-πiεχ[^--\-εχ(uaγ+εγwβγ)(vaγ+εγzβγ))

Write
c* - P

for some integers p and K. Then

β -
γ ~ 2

We can now take the inner product:

• εγwβγ)(vaγ + εγzβγ) ) -
e 2 \ / e 2

^ + ( + β ) ( + β ) J ^
2 e

— εγ— — α y / 3 y ( ε y ( l + ttz + t tϋ)) — α y t t υ — βγwz
C

e e
^ α / 3 ( ε ( l + ttz + t tϋ)) α t t υ β

e2

x eγ p2u wk2

Ad Ac Av A
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Notice that 2£γP — ^ M o d Z . We have shown that first part of:

4.5 Theorem. Let ρ : πιZφ —> SU{2) be a representation.
1. If the restriction of ρ to X and Y is non-abelian, then the Chern-Simons invariant
of ρ is

e\ e l p2u wk2

 n

^ 4a * 4c 4υ 4

2. If the restriction of ρ to X is abelian, and the restriction to Y is non-abelian, then
suppose ρ(μx) = e2πιaχ, ρ(λx) = e2πι^x. Then the Chern-Simons invariant of ρ is

e2

—εγ — + o?χ{zv — εxά) — 2εxvwaxβx — β2

xwu.

3. If the restriction of both X and Y is abelian, then suppose ρ(μγ) = e 2 π m y ,
ρ(Xγ) — e27Γΐ^r j n e Chern-Simons invariant of ρ is

-aγ(εγcaγ + εxβγ).

The proof for the second and third cases are similar to the proof of the first, using
Proposition 4.4. G

The methods of Proposition 4.4 and Theorem 4.5 apply to any Seifert-fibered
spaces or graph manifolds with few modifications. In light of standard results in
3-manifold theory, in particular the torus decomposition theorem, in addition to
computations for Seifert-fibered 3-manifolds it would be useful to understand the
representation spaces and Chern-Simons invariants of hyperbolic 3-manifolds. In the
examples outlined above, the images R(X) —» R(T) are lines (more precisely their
preimages in R2 are straight line segments) but for a general 3-manifold, in particular
for a hyperbolic 3-manifold with toral boundary, the image of the restriction map
R(X) -> R(T) can be a quite complicated curve. The polynomials of [CCGLS]
are essentially the defining polynomials for the variety lm(Rc(X) —• RC(T)) for
a knot complement X. In principle one can use their polynomials to parametrize
the image RC(X) —>• RC(T) and then apply Theorem 3.2 to compute Chern-Simons
invariants. To get started one needs to understand what happens at one representation
and then one can apply Theorem 3.2 to see what happens at other representations.
There is a natural representation on a hyperbolic 3-manifold, namely the holonomy
representation of the complete hyperbolic structure.

We will show how a formula of Yoshida [Y] (see also [NZ] and [H]) relating
the volume and Chern-Simons invariant of the metric connection on a hyperbolic
3-manifold relates to our cut-and-paste approach for Chern-Simons invariants of
5L(2, C) representations. From this formula and a knowledge of the Dehn-surgery
space for a cusped hyperbolic 3-manifold X one can obtain information about the
Chern-Simons invariants of flat connections which lie on the path component in
RC(X) which contains the holonomy of the complete hyperbolic structure. This can
be useful even in computing SU(2) Chern-Simons invariants since there might be
paths joining SU(2) representations in 5L(2,C) but not in SU(2).

Let X be a complete hyperbolic 3-manifold, and let ρ0 : πλX —> PSL(2,C) be
the holonomy representation. In general, given a representation ρ : πιX —» G let
P(ρ) denote the associated flat G bundle P(ρ) = X xπ x G\ its flat connection is

induced from the trivial connection on X x G. (Here X denotes the universal cover
of X.)
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We construct a map from the oriented orthonormal frame bundle of X to P(ρ0)
as follows. Fixing a frame over a point in hyperbolic 3-space M identifies the frame
bundle of IE with PSX(2, C). Let p : PSL(2, C) -» M denote the projection. Then
the map

pxid: PSL(2,Q-^Ix PSX(2,C)

is equivariant with respect to the action of π{X and descends to give a map of
principal bundles q : F(X) —•» P(£o) covering, the identity map of X. (In particular,
P(ρ0) is trivial since F(X) is and if 5 is a section of F(X), q o s is a section of

Let M be a closed hyperbolic 3-manifold. Let Vol(M) denote the volume of M
and cs(M) the Chern-Simons invariant of the Levi-Civita connection on M. Then it
follows essentially from Lemma 3.1 of [Y] that

csM(ρ0) = cs(M) - -^ Vol(M).

Although Yoshida does not state it exactly this way, he defines a complex valued
3-form C on PSX(2, C) with

C = —rdvol-Hcs + d7,

where d vol is the pullback of the volume element on M, cs is the Chern-Simons form
for the Levi-Civita connection on PSL(2, C) = F(H) and dη is some exact form. To
obtain the formula above, one takes the projection r : HI x PSX(2, C) —> PSL(2, C)
and computes that r*(C) is just i times the Chern-Simons form for the trivial (flat)
connection in the principal bundle M x PSL(2, C) —> M. The form C is invariant with
respect to translation in PSL(2,C). Thus, if s e Γ(F(M)), and s = qos £ Γ(p(ρ0)),
then s*r*(C) = s*(C), so that:

C 5(ρ 0) = -i / s * r * ( C ) = -z / s*(C) = cs(M) - -^ Vol(M).

M M

Now suppose X is a cusped (complete, finite volume) hyperbolic 3-manifold,
and let D denote the Dehn surgery space - the space of deformations of hyperbolic
structures on X (see [Th]). Let d0 e D be the complete hyperbolic structure. For
d G D let ρd denote the holonomy representation of the (incomplete) hyperbolic
structure d. Yoshida shows that there is an analytic function / : D —• C so that if
d G D corresponds to an incomplete hyperbolic structure which completes to give a
closed hyperbolic manifold M(d) then

(2 \
f(d) = exp ί - Vol(Af(d)) + 2πics(M(d))) J|exp(length(7fc) + i torsion^)),

^ π ' k

where ηk are the geodesies added to X to complete the A:th cusp.
We claim that f(d) is just cx(ρd) (up to a constant) and that this formula is

equivalent to the formula of Theorem 2.1,



Chern-Simons Invariants of 3-Manifolds 555

To see this, first of all fix a meridian and longitude pair μk, λk, k = 1,.. ., n for
each cusp. There are coordinates a : D c-^ C n such that a(d0) = 0 and if d is an
incomplete structure, p^O^) is conjugate to

' e2ττiak(d)

e-2πιoιk(d)

where ak(d) is the kth coordinate of a(d). (See [Th] and [NZ] for details.) The
image of a is the intersection of an analytic variety with a neighborhood of 0. Let
β(d) = (ftίd),.. -, βn(d)) be defined by

e2<πiβk(d)

-2mβk(d)

together with the stipulation that βk(d0) — 0 for all k. Then βk is the product of ak and
some analytic function τk : D —» C. The map taking d G D to the character of ρd is
an analytic embedding D <-> #(X, P5L(2, C)). So we can think of (α, β): D-* C2n

as a lift of the restriction map Λ(X, PSL(2, C)) -^ i?(δX, ^ 5 ^ ( 2 , Q ) , where
C 2 n -> Λ(aX, PSL(2,0) is the map defined in Sect. 3. (See also the remark at
the end of Sect. 3.) Since we have this lift, we can define a function z : D —> C* by
the formula

c x ( ρ d ) = [...,α f c(d), /5fc(ci),...;z(d)].

Keep in mind that this is the PSX(2, C) Chern-Simons invariant, defined using the
first pontryagin class.

Let g : D —> C be the map

exp — 8πi ̂  / akdβk — dakβk

where the integral is taken over any path from d0 to d. Since ak and /?fc are analytic,
g is analytic. Moreover, by Theorems 2.7 and 3.2, if d, d' G D then

z{d) g(d) '

since ^(d0) = 1, and z(d) — z(do)g(d).
A point d £ D corresponds to a closed hyperbolic dehn filling if there are relatively

prime integers (pk,qk) for each k so that pkθίk + Qk^k = 2*
Suppose this is the case, and let rk, sk be integers so that pksk — qkrk = 1.

Let M(d) denote the closed manifold, so M(d) = X U f\J(D2 x S ^ Λ , where

the meridian is d(D2 x *) f c = μ^λ^ and the longitude is (* x Sι)k = μr

kλk. The
representation ρd is abelian and diagonalizable on each solid torus so by Theorem
4.1,

= [ >0,rkak + 5fe/3fc,... 1]

with respect to the meridians and longitudes. This in turn is equal to

s^> - - ; e x p ( "

using the covariance of the bundle.



556 P. Kirk and E. Klassen

Taking the inner product we have:

cM(d)(θd) = z(d)exp ί - Am Y^(rkak + skβk)\
V k )

We know the left side is equal to exp 2πi cs(M(d)) =• Vol(M(d)) .So

V V π //
z(do)g(d) = exp 2πi( cs(M(d)) =• Vol(M(d)) TTexp(4πi(r, ak + S L A ) ) .

The representation on the kιh solid torus takes the core geodesic ηk to

' e2πi(rkak+skβk) Q \

Q e-2πi(rkak+skβk) J '

This isometry of hyperbolic 3-space leaves the geodesic through 0 and oo invariant
(in the upper-half space model) and computing with the hyperbolic metric one sees
that the translation length is lk = Re(4πi(rfcαfc + skβk)) and the rotation angle is
θk = lm(4πi(rkak + skβk)). Therefore:

e4πi(rkak+skβk) _ e(lk+iθk)

We then get the following version of Yoshida's formula (see also Hodgson's thesis
[H]):

( - 8 π i Σ akd^k ~ βkdak )

V k

= exp (2πi(cs(M(d)) - -^ Vol(M(d)) ) ) Π e x P ( ^

V V π / / V
(2 \

Moreover, z(d0) = exp — Vol(X) + 2πics(X) , where cs(X) is defined by Meyer-
\π )

(2 \
hoff [Me]. (This is seen as follows: first, \z(do)g(d)\ = exp - Vol(M(d)) Π e xPθfc)

\π ) k

for d e D a surgery point. As d -> d0, Vol(M(d)) -> Vol(X) and /fc -> 0 [Th].
/ 2 λ

Thus \z(do)g(d)\ -^ exp I — Vol(X) J as d —> d0. However, ^(d0) = 1, so |^(do)| =
(2 \

exp - Vol(X) . Also, Meyerhoff shows that 2πcs(M(d)) + Σθκ ~^ 2πcs(X).)
\π J

Plugging this in and taking the log of both sides gives us:

- 8 π i ] Γ ί akdβk - βkdaκ = -(Vol(M(d)) - Vol(X))
k J π

+ Σ ι κ + i(2ττ(cs(M(d)) - cs(X)) + ̂ 6 > Λ mod2πiZ.
fc \ fe /

To compare this with Theorem 5.7 of Hodgson's thesis, we need to note that instead
of a and β he uses u = 4πia and v = 4πiβ. (There is a slight error in constants in
[H]; the observant reader will notice that the coefficient of the integral on the left in
[H] differs from ours by a factor of i, and the coefficient of the Chern-Simons term
in [H] differs from ours by a factor of 2.)
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