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Abstract. We investigate the compatibility of symplectic Kirillov-Kostant-
Souriau structure and Poisson-Lie structure on coadjoint orbits of semisimple Lie
group. We prove that they are compatible for an orbit compact Lie group iff the
orbit is hermitian symmetric space. We prove also the compatibility statement for
non-compact hermitian symmetric space. As an example we describe a structure of
symplectic leaves on CP" for this family. These leaves may be considered as a
perturbation of Schubert cells. Possible applications to infinite-dimensional
examples are discussed.

1. Introduction

It became clear recently that quantum groups play a fundamental role in modern
field-theoretical models. An interpretation of quantum groups as new symmetries
of chiral conformal field theory was discussed in [AGS] and [FG]. A
quasiclassical counterpart of quantum groups, Poisson-Lie groups was identified
with classical symmetries of classical chiral theory [F, F-G].

By a well-known prescription of Kirillov-Kostant-Souriau coadjoint orbits Θ
of a compact semisimple Lie group G have a natural symplectic structure and
hence are Poisson manifolds. The developments of the Poisson-Lie group theory
[ST, W] make it possible to introduce another Poisson structure on Θ which is
induced from the Poisson-Lie structure on the compact semisimple Lie group G.
We denote these structures by π κ i r and πP_L, respectively. The main result of this
paper is to show that π K i r and πP_L are compatible on the orbit Θ iff G is a hermitian
compact symmetric space (h.c.s.s.) occurring in the Cartan list.

On the other side, using the duality between compact and non-compact
symmetric spaces, we can show that πP_L and an imaginary part of the canonical
hermitian form are compatible for non-compact hermitian symmetric spaces. The
consideration of symplectic leaves of the family π K i r + πP_L in CPn provides an
interesting example of the deformation of the Schubert cells (see Sect. 7).
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The infinite-dimensional analogues of π K i r and πP_L are so-called first and
second Gelfand-Dikii Hamiltonian structures on the affine space of differential
operators <£n = {L = dn + un _ ί d

n ~1 + . . . + u0}. We briefly discuss the Manin triple,
connected with the Lie algebra of symbols of pseudodifferential operators. It
endows Lie algebras of differential operators (DOP) and symbols of integral
Volterra operators (IO) with Lie bialgebra structures. Action of DOP on <£n with
second Gelfand-Dikii structure is the action of the Lie bialgebra on Poisson
manifold [R]. Lie bialgebra structure on DOP is supposed to be coboundary after
some extension. On the other hand, we show that the Lie bialgebra structure for IO
is not coboundary one. The analogous result holds for Borel subgroup in the finite-
dimensional case.

We feel it would be interesting to find more deep connections between
hermitian symmetric spaces and their infinite-dimensional counterparts in context
of differential operators. Another way to treat the second Gelfand-Dikii structure
in terms of Poisson-Lie group theory are [STS] and [Z]. Preliminary version of
[Z] was quite suggestive for us in doing the present work.

2. Poisson-Lie Groups. Generalities

2.1. We start with a description of some basic facts about Poisson-Lie groups.
Most of this material may be found in [D, ST, LW]. We follow notations of [LW].

Let π be a Poisson structure on a manifold M. This means that π is a bivector
field, πεΛ2TM such that corresponding Poisson bracket

for all

endows Fun(M) with Lie algebra structure. The pair (M,π) is called a Poisson
manifold.

2.2. Lie group G is called Poisson-Lie group if it is a Poisson manifold such that the
multiplication m.GxG->G is a morphism of Poisson manifolds [the Poisson
structure on G x G is the product of Poisson structures on factors and a map
f:M-+N between two Poisson manifolds is Poisson morphism if {f*g,f*h}M

=f*{g,h}N, for arbitrary functions g,/ieC°°(JV)].

2.3. Let g be Lie algebra, g* be dual vector space to g. We say that g is a Lie
bialgebra if there is a Lie algebra structure [ , ]„. on g* such that the map δ: g->Λ2g
(called the co-bracket), dual to the bracket [, ]„, :Λ2g*->g* is a 1-cocycle with
respect to the adjoint action of g on Λ2g.

2.4. Let G be connected and a simply connected Lie group, and let g be its Lie
algebra. Then [D] there is one-to-one correspondence between Poisson-Lie group
structures on G and Lie bialgebra structures on g.

As V. Drinfeld showed every Poisson-Lie structure on a semisimple connected
G has the following form:

π(g) = U r ) - U r ) , (1)

where lgt and rg% denote tangent maps of left and right translations by g e G. The
element reΛ2g satisfies the following condition:

, (2)

where the r.h.s. is invariant under the adjoint action of g.
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This condition is called a modified Yang-Baxter equation and the bracket
[ [ , ] ] : A2g®Λ2g^Λ3g is a Schouten-Nijenhuis bracket. Here r1 2, e.g., denotes an
element r 1 2 = r(x)l3e(g(x)fe)®3 (fc = R,C); r is called a classical r-matrix.

The condition (2) ensures that the bracket [ , ] * on g*, satisfies the Jacobi
identity. The corresponding Lie bialgebra structure is calculated in the obvious
way: the co-bracket δ is given by

d
δ(x) = deπ(x) = Lxπ(e)

ί = 0

where deπ is the intrinsic derivative of a poly vector field on G with π(e) = 0, x is any
vector field on G with x(e) = x and Lx denotes the Lie derivative [LW].

The Poisson structures of the form (1) are called coboundary or r-matrix
structures. Since for a connected semisimple or a compact Lie group G every
1-cocycle is a coboundary, one has

Proposition 2.1. The Poίsson-Lie structures on a connected semisimple or a compact
Lie group G are in one-to-one correspondence with the solutions reA2g of the
modified Yang-Baxter equation.

2.5. Let g be a Lie bialgebra. There is a unique Lie algebra structure on the vector
space gθg* such that
1) g and g* are Lie subalgebras;
2) the symmetric bilinear form on gθg* given by the relation (X + ξ, Y+h)
= (X,ηy + (Y9η} for all X, Yeg,ξ,ηeg* is invariant.

This structure is given by [X, ζ]= — ad£(£) + ad* (X) for X e g, ξ e g*, where ad*
is the coadjoint action. This Lie algebra is denoted by gxg* and (gxg*, g, g*) is an
example of a Manin triple. In general, a Manin triple is a decomposition of a Lie
algebra g with a non-degenerate invariant scalar product < , > into direct sum of
isotropic with respect to <, > vector spaces, g = g + θ g - such that g+ are Lie
subalgebras of g. It is well-known that there is one-to-one correspondence between
Lie bialgebras and Manin triples.

2.6. Let G be a connected simply connected Poisson-Lie group, g its Lie algebra
and (gxg*, g, g*) the Manin triple. By duality, (g*xg, g*, g) is also a Manin triple.
Then g* is a Lie bialgebra. This enables us to consider a connected and simply
connected Lie group G* with a Poisson-Lie structure π* and with the tangent Lie
bialgebra g*. The Poisson-Lie group (G*,π*) is called dual to (G,π).

There are natural left and right actions of dual Poisson-Lie group G* on G.
These actions are called left (right) dressing transformations. The dressing
transformations are Poisson actions as Semenov-Tyan-Shansky [ST] proved.

3. Poisson-Lie Subgroups and Cosets

Now we pass to Poisson-Lie subgroups. We should like to observe briefly well-
known facts about Poisson-Lie cosets. The main sources of references are [ST]
and [LW].

3.1. A Lie subgroup H of a Poisson-Lie group G is called a Poίsson-Lie subgroup if
it has its own Poisson-Lie structure and the inclusion i HcG is a Poisson map.

Proposition 3.1 [ST]. The following conditions are equivalent:
1) H is a Poisson-Lie subgroup;
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2) (assuming H is connected) h 1Cg* is an ideal (where h is the Lie algebra
ofH);
3) H is invariant under the right (or the left) action of G* on G.

3.2. A coset space G/H with a Poisson structure is called a Poisson coset space of a
Poisson-Lίe group G, if the natural map G-+G/H is a Poisson map.

Clearly, the only possible Poisson structure on G/H making it a Poisson coset
space can be defined as follows. Consider a space ^(G/H) of functions on G/H as
iί-right invariant functions on G. Then take their Poisson bracket. If the result is
ϋ-invariant then we get the desired Poisson bracket on G/H. Hence we have the
following

Proposition 3.2. The following conditions are equivalent:
1) G/H is a Poisson coset space;
2) πι(h) = 0 in Λ2(g/h), heH;
3) πr(h) = 0 in Λ2{φ), heH;
4) (assuming H is connected) h1 is a subalgebra in g*.
Here πhr:G^A\ nι{g) = lg-,π{g\ πr{g) = rg-,π{g) for geG.

Let H1 be a connected subgroup in G* with the Lie algebra h1. Then the
following properties may be extracted easily from [LW]:
1) A natural action G x G/H-> G/H is a Poisson map.
2) (Assuming G* acts on G) symplectic leaves of the Poisson structure on G/H are
the orbits of H1-SLCtion.

Clearly, condition 4) of Proposition 3.2 is weaker than condition 2) of
Proposition 3.1. Hence for a Poisson-Lie subgroup H the space G/H is a Poisson
coset space, but to get a Poisson coset space G/H the subgroup H need not
necessarily be a Poisson-Lie subgroup. In other words the set of Poisson-Lie
subgroups is "smaller" than the set of subgroup-stabilizers for a given Poisson-Lie
group.

4. Iwasawa Decomposition, Manin Triples, and Poisson-Lie Structures
for Real Lie Groups

In this section we apply the generalities of Sects. 2 and 3 to real forms of a
semisimple complex Lie group. We recall briefly the Iwasawa decomposition of
complex semisimple Lie group [He].

4.1. Let g be a semisimple Lie algebra over C, g° be the same algebra considered
over R (dimRg° = 2dimcg. Let u C g° be a compact real form of g, hc C u be Cartan
subalgebra of u and h = Chc be a complexification of hc. If we choose the system Δ +

of positive roots of h in g, then we obtain a decomposition

, (3)

where n + = £ gα and ach, a = zhc is a non-compact part of the Cartan

subalgebra h.
Let also G° be a connected Lie group with the Lie algebra g° (G° is a complex

semisimple Lie group) U be its maximal compact subgroup with Lie algebra u, A
and N+ be the connected subgroups of G° with Lie algebras a and n+. Then the
mapping

UxAxN+->G°. (4)
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(u,a,ri)-+uan is a diffeomorphism. This diffeomorphism is a specialization of
general Iwasawa decomposition to a case of complex semisimple Lie groups [He].

4.2. Now we recall the results by Lu-Weinstein on Poisson-Lie structures
generated by this decomposition. Let b = a + n+ and let B be the corresponding
connected Lie subgroup of G°. Then the triple (g°, u, b) is actually a Manin triple.
Indeed, we need only an invariant inner product. Let us assume that u is a fixed
point set of a standard Chevalley antiinvolution σ of g: σ(E±a)= — E+a, σ(Ha)
= —Ha, σ(λX) = lσ(X\ where {Ea,Ha} is a Chevalley basis of g with respect to a
fixed Cartan subalgebra h of g. If K(X, Y) is a Killing form in g, then

0 (5)

and the imaginary part ImK(X, Y) of the Killing form is non-degenerated in g°. By
the relation (5), ImK(X, Y) vanishes on u and on b. Hence (g°, u, b) is a Manin triple
and U and B are dual Poisson-Lie groups. The dressing transformations (4) are
u i—• u\ where u' is solution of the equation

b~1-u = u' b\ u,u'eU, b,b'eB,

for fixed u and b.

4.3. We can generalize this construction to other real forms of a complex
semisimple Lie group. Again we start from the complex semisimple Lie algebra g
and its compact subalgebra u, which is defined by some Chevalley antiinvolution
σ. We may describe other real forms gτ of g by antiinvolutions τ of g, which
commute with σ: gτ = {geg°, τ(g) = g}.

Let θ = στ be Cartan involution and h be 0-stable Cartan subalgebra of g,
generated over C by the Cartan subalgebra hτ of gτ. If we choose the system A + of
positive roots of h in g, then the imaginary part of the Killing form ImK(X, Y)
vanishes in gτ and in b = n + + a, where n + = £ gα, a = i hτ. Indeed, K(ΘX, θY)

OLSΔ +

= K(X, Y) as θ is an automorphism of g and

K(X9 Y) = K(σ(τX), σ{τ Y)) = K(τX, τ Y).

The following proposition describes the Poisson-Lie structures for simple real
Lie groups with a compact Cartan subgroup.

Proposition 4.1. Let hτ be a compact Cartan subalgebra of gτ. Then the triple

(g°,gM>) (6)

is a Manin triple with respect to a pairing Imi£(X, Y).

Proof. We have to prove only that gτnb = 0. Due to the assumption, θ(h) = h for
any h e h, and θ leaves invariant the root spaces of h in g, θ(Ea) = c(α) Ea for some
c(α)eC. So, τ(£α)= - φ ) £ _ α and gτnb = 0.

Remark. More subtle considerations show that the statement of this proposition is
valid for the Lie algebras sl(n,R) and so(2p + l,2q + l) which do not contain
compact Cartan subalgebras, if we start, following [Ga], from the maximally
compact Cartan subalgebra. The only simple Lie algebras, for which our
arguments do not work, are A2 = su*(2n), El and £4 in terms of Cartan
classification [He].
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On the group level we have the pairs of dual Poisson-Lie groups G\ B. Contrary
to the compact case, the dressing transformations for non-compact Lie groups
may be defined only locally, because there is no global analog of Iwasawa
decomposition of G° in this case.

4.4. S. Majid noticed that in the compact case Lie bialgebra structure for u is a real
form of the standard Lie bialgebra structure for g = Cu, described by the Drinfeld-
Jimbo τ-matrix [M, D].

This structure is given by the following Manin triple (u c xb c , uc, bc)
= (gθg,gi,g2), where gx = {(X9 Y)eg®g\X=Y}^g, g2 = h c 0 n c and
hc = {(X,-X)\Xeh},nc = {(X, Y)\ Xen_,Yen+}. The inner product of (Xl9Yx)
and (X2, Y2) is %(K(Xx,X2)-K{Yί9 Y2)) and identifies g2 = h c 0 n c with g? = u£.

In terms of the Drinfeld-Jimbo r-matrix

Majid's statement may be explained as a formula for the cobracket

a(JSO = [ Z ® l + l®Jr , r 0 ] , ^ e u , (7)

where r0eA2u is a real form of /r:

ro = i Σ KΛWa (8)

a n d α , ς , α α α , a ( a J
An analogous statement holds for non-compact real Lie algebras with a

compact Cartan subalgebra. The cobrackets for the Lie bialgebra structure (6) may
be described up to the constant coefficients by the formulas (7) and (8), where

4.5. A non-compact real Lie group may be equipped with different Poisson-Lie
structures. The first reason is the existence of different conjugacy classes of Cartan
subgroups. For example, we may consider sl(n9 R) as a split real form of sl(n, C). We
see that the standard Manin triple for sl(n9 C) from 4.4 is defined over R and thus
defines the bialgebra structure for s/(n,R). This bialgebra structure cannot be
isomorphic to that from Proposition 4.1, because the kernels of the cobrackets in
these two cases are non-conjugated Cartan subalgebras.

On the other hand, let us consider the Manin triple (6) for the case gτ = su(p9 q). It
looks like

(sl(n, C), su(p, q),b),

where

b=(λl.

and λl9λ2, ...,AπeR + , bitjeC, i<j.
The algebra b does not depend on p and q, but for different p and q we obtain

non-isomorphic cobrackets for b, that dualize the brackets from su(p, q).
A classification of Poisson-Lie structures, associated with the Drinfeld-Jimbo

r-matrix in the case of simple real Lie groups was given in [CGO].

4.6. Let P be a parabolic subgroup in G°. Every coadjoint orbit Θ of a compact
simple group U for a fixed point / is naturally isomorphic to a coset U/Pu9 where
Pu=UnP.
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Proposition 4.2 (Lu-Weinstein). UnP is a Poisson-Lie subgroup of the Poisson-Lie
group U.

Hence every coadjoint orbit 0 of the compact semisimple Poisson-Lie group U
has the natural Poisson structure π converting 0 into a Poisson-Lie coset space.
The symplectic leaves of this induced Poisson structure on Θ are precisely the
β-orbits on G°/P~U/UnP or Bruhat cells. We prefer to call this Poisson
structure a Poisson-Lie structure to indicate its Poisson-Lie group origins.

Analogously, let Gτ be a real form of G° with a compact Cartan subgroup and
let the parabolic subalgebra p contains compact Cartan subalgebra hc. Then it is
not difficult to see that the Poisson-Lie structure is well-defined on a coset space
Gτ/PnG\

4.7. We should like to point out that this situation is specific for compact groups
and may be false for other Poisson-Lie groups.

Let us consider the dual Poisson-Lie group U* = B for instance. Consider
U=SU(ή) and the element λ =

A=

0 - 1

1 0 - 1

1

0

1

0 1 0

We compute the stabilizer of A in b

e u at su(ή).

Stab (A) =

0 cu
0

, μ,.eR, CyeC.

Clearly,

(Stab (A))1 =

-V l α 2

0 — v π _ ,

V:eR, Y .
i = l

and (Stab((/I))1 is not a subalgebra in SU(n). Hence Θλ is not a Poisson-Lie coset
space.

This example helps one to prove

Proposition 4.3. The Poisson-Lie structure on B is not a coboundary structure.

If it were a coboundary structure then it would be πz(s) = r - Ads-1 (r) for some
SES, where S is the stabilizer of λ in b. However, this stabilizer acts trivially on
b/Stab(Λ) and hence π^s) would be zero in Λ2(b/Stab(λ)) and due to Proposition 3.2
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we conclude that (Stab (λ))1- would be a subalgebra in b* = u but it is not. This
provides the desired contradiction.

We shall indicate an analogue of this example in the infinite-dimensional
situation in Sect. 8.

5. Poisson Structures on Hermitian Symmetric Spaces

We want to discuss whether the pair of Poisson (πκir,πP_L) structures for a
coadjoint orbit G are compatible. Here πK i r is symplectic Kirillov structure and
πP_L is the Poisson-Lie structure induced by the coboundary Poisson-Lie struc-
ture on U. We investigate also the compatibility of the pair of Poisson struc-
tures (πHer, πP.L) for non-compact hermitian symmetric spaces, where πH e r is an
imaginary part of the canonical invariant hermitian form.

5.1. Recall that two Poisson structures (π1? π2) are called compatible if every linear
combination λiπί +λ2π2 is again a Poisson structure. To verify the compatibility
of πι and π2 we need to verify that Schouten-Nijenhuis bracket [[π1 ? π2]] is equal
to zero whence [[π 1,π 2]] = [[π 2 ,π 2 ]]=0.

5.2. Let U be a compact real form of a simple complex Lie group G. Let P be a
parabolic subgroup in G, Pv = Pn U, p and pu be Lie algebras of P and Pv. Denote
by AP the following subset of positive roots ΔP = {α e A +, E_α φ p}. Let Θι ~ U/Pu
be a coadjoint orbit for U with a fixed point /.

Theorem 5.1. The Kirillov structure π K i r on Θι is compatible with the Poisson-Lie
structure πP_L if and only if this orbit Θι is a compact hermitian symmetric space.

53. Remarks. 1) It is evident that U/Pv is a compact complex manifold (a flag
manifold). One needs to verify the condition that U/PΌ is a symmetric space.
2) If U/PJJ is a symmetric space then P is the maximal parabolic subgroup (that is
only one simple root a belongs to AP). The root α is arbitrary for Λn and is marked
by arrows for other Dynkin diagrams:

-o—

-o—
o

for£>n

ίoτBn

-α—

A
-O-

A
-o
I

ίoτCn

for E6

for E7
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5.4. Proof of Theorem 5.1. We need to calculate the Schouten-Nijenhuis bracket
[[π κ i r , πP_L]] on U/Pv. Consider functions on U/Pv as Pv invariant functions on U
and compute the Schouten-Nijenhuis bracket for some bivector fields π£ i r and πp_L

on U (π£ ir and πp_L coincide with π K i r and πP_L on P^-invariant functions). Then we
aPPly [[πκiπ πp-iJ] t o Pc/-invariant functions and get the bracket [[π K i r , πP .L]]
on U/PΌ.

Let us consider the standard decomposition

u = h + Σ RVaφRWa9 (9)

where Va = Ea-E_a,Wa = ί(Ea + E_a). We assume that hC Stab(/) for a fixed point /
of U/Pv and identify / with some heh using the Killing form K. Then α e Λ P iff
h(oc) = 0 and one can take

2 Δ
ΊLV.ΛW.

and

Furthermore, π?"L(g) = /βt(r0)—rβ,(r0), where geU and

aeΔ +

Lemma 5.1.

Proof of Lemma 5.1. Indeed, n^iτ(g) = lgjjp) is composed from infinitesimal right
shifts and r^(r0) is a right-invariant bivector. On the other hand, rff j(r0) is composed
from infinitesimal left shifts and lgSrP) is left-invariant.

Lemma 5.2.

g), Wr0)]] = 2[rP

3, r j 2 ] + 2[rP

2, rj3] + cycl(l, 2,3), (10)

Proof of Lemma 5.2. A direct computation.
Now we get a purely algebraic problem: does the r.h.s. of (10) equal to zero in

Λ3(u/pu)? Instead of u one can consider g = u(χ)C and p = pM®C. Then VaΛWa

= 2ίEa A £ _ α . We assume that Eα are normalized [K(Eα,E_/?) = <5α β~\ with respect
to the Killing form K and we denote by Natβ the corresponding structure
constants:

lEvEp ] = NatβEa+β. (11)

We need also well known identities for the structure constants ΛΓα β (see [He]),
which are direct consequences of an invariance of a Killing form

Lemma 5.3.
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Proof. Straightforward calculation.

Lemma 5.4. Consider two bivectors τc= £ c(a)E(X/\E_gL and τd= £ d(β)

xEβΛE_β. Then Ea+β®E-(κ®E_β enters in ([r c

1 3 ,r] 2 ] + [ r ] 3 , r c

1 2 ] + r 1 2 3 ) with
a coefficient

N*. βίΦ)d(β) - c(a + β)d(a) - c(β)d(oι + j8)]

+ Naβίd(a)c(β)- d(a + β)c{a) - d(β)c(a + j?)] .

Proof of Lemma 5.4. One needs to collect carefully similar terms. The non-zero
coefficient before £α+«(χ)£_α(x)£_^ occurs three times only:

(n) in Γ F ( 1 )
 Λ F ( 3 ) /7 ( 2 )

 Λ F ( 3 ) "1 •
ίiii"! ίγ\ ΓE^^ Λ E E A E ~\

To complete the proof of the theorem we consider

•717' if Λ(«)Φ0,

, otherwise,

and do(a) = ί. Then (11) gives that the coefficient before Ea+β®E_a®E_β in
'β ί>l>κίr,<-s]is

-2JVβi/,c»(α + /ϊ). (12)

If φ ) φ θ and ch()β)φ0 then using equation

we conclude that ch(oc 4- j8) φ 0.
If π K i r and πP_L are compatible then from (12) we get the following condition:

(x,βeAP implies Natβ = 0 or oc + βφAP. (13)

Evidently, the condition (13) is equivalent to the following: u admits the
decomposition u = pM®p 1 ? where p t = Σ RT^®Rΐ^; and, in fact, u is the

oceAp

orthogonal symmetric Lie algebra [He, Chap. 5, Sect. 1]. That is, U/PΌ is a
symmetric space.

Conversely, let U/Pv be a symmetric space. Then (12) is verified, hence
every commutator of [ f £ υ Λ ES1\9 E

(

β

i} A £(f ̂ ] type is zero in Λ3(g/pu(χ)C). Hence
the result.

5.5. Corollary. Consider a family πλ of Poisson structures on the orbit Oι = U/Pv

which is a compact hermitίan symmetric space, πA = πP_L-b/lπKir, λeR. Then the
Poisson-Lie group U acts on this Poisson manifold (Θh π) in a Poisson way.

5.6. Let us recall that for a compact symmetric space which looks like U/Pv we can
realize the dual non-compact symmetric space U/P^ in such a way that the Lie
algebra u = gτ C g is presented as

u=hce Σ
αe A +

where Fα = £ α + τ(£α), W^= i(Ea-τ(£J), and, more concretely, Va=Va, Wa=Wa if
ocφΔp and Va = iVa, Wa = iWa if aeΛP. Here, as usually, Fα = £ α - £ _ α ,
Wa = i(EΛ + E-Λ). The real form u has the same compact Cartan subalgebra hc and
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fj is a Poisson-Lie coset space (see Sect. 4.4) with respect to Poisson-Lie
structure

ro = i Σ ^ i
The homogeneous space U/Pv can be also realized as an orbit of ϋ in u* and

the Kirillov bivector field π K i r coincides in this case with bivector field π H e r m

corresponding to imaginary part of invariant hermitian form

πKir = πHerm = Igjjp) >

where

A n(CC)

The computations from the previous sections prove the following

Proposition 5.1. Poisson structures π H e r m and πP_L are compatible for non-compact
hermitian symmetric spaces.

Hence we have

Theorem 5.2. For any hermitian symmetric space Poisson structures π K i r and πP_L are
compatible.

6. Examples

The most popular examples of compact hermitian symmetric spaces are grass-
mannians Gk

n of λ -dimensional subspaces in ^-dimensional complex vector
space. We give here the explicit expressions of πP_L and π κ i r for the projective
spaces CPn = G}ι + ί and discuss the structure of symplectic leaves of πP_L + λπKiτ.

The direct calculations show that in affine part C" C CPn we have the following
expressions for πP_L and for π κ i r :

\zk\
2-Σfo

— — V (ZiZsd-. Λ dz. — Z:Z:d=, /
>") L-i \ I J Zι Zj I J Zt

and

πKir = - \ (l + Σ N 2 ) (Σ. (z^Λ Λ **) +1 (i+k

Zi / Z i Z i /Zι

In the simplest case of CP1,

This bivector defines a symplectic structure if λ does not belong to a segment
[ — 2,0]. If λ = 0 or λ= — 2 then there is one point as degenerated symplectic leaf
(z = 0 for λ = 0 and z=oo for λ= — 2); and for λe( — 2,0) the collection of
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symplectic points on a circle \z\2= — -—- may be considered as a deformation of a
Schubert cell z = 0. λ + 2

These Poisson structures appear in the phase space with Poisson-Lie symme-
tries of the classical WZW model. The formulas for the corresponding singular
symplectic structure [FG] coincide with them (in [FG] a parameter λ is discrete
valued).

In the case of CPn we can prove the very nice formula for the determinant

ln+l (* + 2)

π
where xί:x2: ...:xn + ί are homogeneous coordinates in C P " :

Hence for the values of parameter λ outside the segment [ — 2,0] we have the
symplectic structure on CP", for the values λ = 0 or λ= — 2 we obtain two
opposite stratifications of CP" by Schubert cells:

CP°CCP1C ... CCP".

Here the stratum CPk is defined by the equations

l * i l 2 H * 2 l 2 = . . . H * n - * l 2 = o , if λ=o

and

K + 2l 2 = K + 3 l 2 = - = K + 1 l 2 = o , if λ=-2.

If λ 6 (—2,0) then degenerated symplectic leaves lie in the union of n complex
hypersurfaces V{.

Vfi μ + 2 ) Σ M2+λ Σ W 2 = o , i=i , . . . ,n ,

which provide the deformation of the Schubert cell's stratification.
An analogous picture is valid for the non-compact case. For example, for the

Poincare unit ball \z\ < 1 which may be considered as a symmetric space

we have

πP_L + λπHerm=^(\-\z\2)(-λ + (λ + 2)\z\2)dzΛd-z. (14)

The symplectic leaves are described by the equation

λ
\z\2 =

λ + 2'

For λ<0 this structure is symplectic, for λ = 0 the origin z = 0 is a unique
degenerated symplectic leaf and for λ>0 we have a circle of degenerated
symplectic points that tend to a border \z\ = 1 while λ tends to infinity.
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The two brackets from the family πp.L + λπHerm have distinguished structures of
symplectic leaves in CPn. The first one is πp.L = lgjr) - rgjj) (λ = 0) and the second is
π+ = — Igjr) — rgjj) (λ= —2). Corresponding symplectic leaves are Schubert cells
with respect to opposite Borel subgroups. For — 2 < 2 < 0 the leaves "interpolate"
between the Schubert cells.

7. Infinite-Dimensional Remarks

In this section we discuss infinite-dimensional examples of the manifolds with a
pair of compatible Poisson brackets, arising in the geometry of differential
operators on a circle. In fact, these examples stimulated our finite-dimensional
considerations.

On the other hand, our results are in good correspondence with Mulase's thesis
[Mu] that "the space of solutions of an integrable system always looks like a factor
of some general linear group over maximal parabolic subgroup." An appearance
of the grassmannians or other hermitian symmetric spaces is very natural from this
point of view and our results may be useful in an infinite-dimensional context as
well. Infinite-dimensional analogues of symmetric spaces equipped with (pseudo)
Kahler and Poisson-Lie structures seem to be useful objects for a geometric and
deformation quantization of classical W-algebras.

We are grateful to Prof. A. Rosly for an enlightening discussion on the subject of
this section.

7.1. We shall work within the framework of Gelfand formal variational calculus.
The notations are taken from [R].

Let £?

n=-{L = dn

x + un_ίd
n

χ-
1 + ...+u0 I M WeC^S 1 )} be an affine infinite-

dimensional space of the nth order differential operators on a circle S1. A tangent
space to i?M is identified with a set of differential operators of the («- l ) t h

order.
Lei ̂ (^n) be a space of functions on £Pn. The element F e ^(^n) ("function") is

a functional

s1

where u^^d^ is a polynomial with C°°(S ̂ -coefficients.
To define a Poisson bracket of two functions we need, as usual, a Hamiltonian

map V: T*£>n^TJ?n such that {f,g} = V(df){g)9 where f,ge&m, df=δf is
a variation of /.

7.2. Let CLN(S)= \a(x,ξ) = £ afay? | a^eC^S1)} be a space of pseudo-
l ί=-oo J

differential symbols of the IVth order. We equip the set CL(S1)= (J CL^S1) with a
symbolic multiplication N

a(x,ξ)ob(x,ξ)= Σ ~8n

ξa-en

xb.
n^o n\

This converts CLiS1) into an associative algebra. Let a+ be a "differential" part
of a e CLiS1) and a _ = a - a + be an "integral" part of a. Denote by Tr: ^
(fc = R,C) the Adler trace

Tr= J res,
s1
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Hence CLfi1) is a metrizable Lie algebra with a bracket [α, £] = α ° ft — & ° α and
inner product

(a,b} = Tr{aob). (15)

Subalgebras DOP^ 1 ) and CL^^S1) are isotropic with respect to (15) hence we
have

Proposition 7.1. The data (CL(S1),DOP(S1),CL_1(S'1)) is a Manin triple.

We are interested now in Poisson actions of this bialgebra.

7.3. We identify a cotangent space T*g>m to JS?m with the quotient CL^^S1)/
CL.^S1) via the pairing Γ*ifw x T*2m-+f(&^ <Z, V} = TT(X<> V).

Theorem 7.1 (Gelfand-Dikii). The map V: T^

V(X)=VX = L(XL)+-(LX)+L,

is Hamiltonian.

The corresponding Poisson bracket {F, G} = V(dF){G) is called the second
Gelfand-Dikii Poisson structure. A Lie algebra of covector fields on Jδfn with the
second Gelfand-Dikii structure:

{X, Y} = [(AX)+ Y + (YL)_X-X(LY)_ - Y(LX)+ + VX{Y)~

will be called Gelfand-Dikii algebra GDn.

7.4. Let us define a map E-+ WE, where £ e DOP^S1), WE e Vect(JS?J is a vector field
on JS?M, by the following formula

WE: = LE-(LEL-1)+L = (LEL-1)_L. (16)

The first equation means that WE is a differential operator and the second that

Theorem 7.2 [R]. T/ie map E^WE is a homomorphism of Lie algebras.

Actually, WE=V{E^i)_ and WE defines the map DOP(S 1)^GD n which is a Lie
algebra homomorphism.

7.5. Recall the definition of a Poisson-Lie action of a Lie algebra g on a Poisson
manifold {Ji, { }). Let g be a Lie bialgebra. Then a Poisson-Lie action of g on a
Poisson manifold (Jί9 { }) is an action φ:g->Vect(M), φ(X)=Vx such that

Vx{f, g](m) = {Vxf, g](m) + {/, Vxg](m)- <X, ίφ*df(m)9 φ*dg{m)\>, (17)

where φ*d/(m)eg* and <X, φ*rf/(m)> = 7x/(m).

Theorem 7.3 [R]. Γ/ẑ  Lie algebra DOP(5X) αcίs on the Poisson manifold ̂ n with
the second Gelfand-Dikii structure in a Poisson-Lie way.

We are interested now in a behaviour of the first Gelfand-Dikii bracket with
respect to the described action of D O P ^ 1 ) on S£n. This bracket is associated with
the Hamiltonian map
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which may be obtained from that for the second bracket as a cocycle by a well
known procedure

VX(L +1)= VX(L) + [L,X]+ = VX(L)+VXV. (18)

It is well known [GD, DS] that the first and the second Gelfand-Dikii brackets
are compatible in S£n. It would be desirable to prolong the analogy between S£n and
finite-dimensional hermitian symmetric spaces and to find that the first Gelfand-
Dikii structure is invariant with respect to the action of DOP^ 1 ), but it is not
invariant. It is known only [LM] that the first Gelfand-Dikii bracket is invariant
under the coadjoint action of integral operators CL-^S1).

λ^A. Rosly suggested to make the analogy more close by describing the action of
DOPίS1) on <£n in terms of dressing action. It may be done if we use the central
extension DOP^ 1 ) of DOPES'1) by means of logarithmic cocycle [KK, R]:

φ , 6) = J res([α, log3] o 6) = Tr([α, logδ] ° 6),

where log<9 is an exterior derivation of the Lie algebra CL(S1) which can be written
in coordinates as

To compose the extended Manin triple (CL, DOP^ 1 ), CL_ x) we have to add
the central element c to DOPίS1) and the dual cocentral element log 3 to CL_1.

Let us consider a formal Volt err a group of integral operators

and a formal exponential G* of the extended Lie algebra CL_ί. An element of G*
is a formal expression

αeC.

Choosing α to be a positive integer α = nwe may consider <£n as a submanifold
inG*.

Proposition 7.2* (A. Rosly) (cf. [STS]). The restriction of the dressing action of
the Lie algebra DOP^1) on G* to $£n coincides with (16).

7.7. On the other hand, the formal groups G* and G* have the properties
analogous to the properties of the Borel subgroup in finite-dimensional
situation.

Proposition 7.3. Coadjoint orbits of G* in DOP^1) are not Poίsson-Lίe cosets for
thebialgebra CL.^S1).

Example. Let L = d% + u2d
2

x + uγdx + u0.Xe StabL iff [L,X] + = 0. Then (StabL)1

= {set of diff. operators M = [L,Γ\ + 9 YeCL_}. Indeed, <JT, M> = <X, [L, 7] + >

1 When our article was finished I. Zakharevich and B. Khesin informed us of their forthcoming
text on the same subject
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And it is easy to see that (StabL)1 is not a subalgebra in DOP^ 1 ) (just as in
the finite-dimensional case).

8. Concluding Remarks

The natural problem of a quantization of the family πλ arises. It is treated in [Ra].
Similar questions were considered in [GRZ, DGM]. It would be interesting to
investigate the relations of quantization of our results with the construction of
quantum flags by Soibelman [S] and quantum Schubert schemes by [LR]. We
are going to discuss corresponding families of (pseudo) hermitian metrics, and
Kahler geometry elsewhere. We will consider in our forthcoming papers integrable
systems associated with the family of Poisson brackets (see [Ma] for the idea
applied to the KdV equation), KP hierarchy and Poisson-Lie structures on
infinite-dimensional Sato grassmannian [SW].

Acknowledgements. We are grateful to D. Gurevich for discussions at early stages of this work.
V. Rubtsov thanks M. Semenov-Tyan-Shansky who explained his viewpoint on the geometry of
infinite-dimensional Poisson brackets and also thanks IHES for hospitality.
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