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Abstract. The canonical structure of classical non-linear sigma models on Rieman-
nian symmetric spaces, which constitute the most general class of classical non-linear
sigma models known to be integrable, is shown to be governed by a fundamental
Poisson bracket relation that fits into the r — s-matrix formalism for non-ultralocal
integrable models first discussed by Maillet. The matrices r and s are computed ex-
plicitly and, being field dependent, satisfy fundamental Poisson bracket relations of
their own, which can be expressed in terms of a new numerical matrix c. It is proposed
that all these Poisson brackets taken together are representation conditions for a new
kind of algebra which, for this class of models, replaces the classical Yang-Baxter
algebra governing the canonical structure of ultralocal models. The Poisson brackets
for the transition matrices are also computed, and the notorious regularization problem
associated with the definition of the Poisson brackets for the monodromy matrices is
discussed.

1. Introduction

During the last two decades, there has been great progress in understanding the struc-
ture of two-dimensional integrable field theories. Within the Hamiltonian approach [6],
there have emerged new algebraic structures, notably the concept of Yang-Baxter al-
gebras. These algebras appear, e.g., through the commutation relations of monodromy
matrices when solving the models by the inverse scattering method.

At the classical level one begins by rewriting the equations of motion as a zero
curvature condition, i.e., as the compatibility condition for a linear system with spectral
parameter (Lax pair). In the Hamiltonian context one then studies the Poisson brackets
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between L-matrices (the spatial part of the Lax pair). In the most common cases, this
leads to a Lie-Poisson algebra of the form

{L(x, λ)®L(y,μ)} = [r(λ,μ), L(x, λ) ® 1 + 1 ® L(y,μ)]δ(x - y), (1)

with an antisymmetric r-matrix which is numerical, i.e., field independent, and which
obeys the classical Yang-Baxter equation

[r12(λ, μ), r1 3(λ, u)] + [r12(λ, μ), r2 3(μ, v)] + [r13(λ, v), r2 3(μ, vj\ = 0 . (2)

Theories for which the Poisson brackets between L-matrices are of this form are
commonly called ultralocal [6] because the rhs of Eq. (1) contains only the delta
function δ(x - y) but not its derivatives.

An important generalization of the above Lie-Poisson structure to certain non-
ultralocal models, namely those for which the rhs of Eq. (1) contains, apart from the
delta function, its first derivative (i.e., a classical Schwinger term), has been developed
by Maillet [14]. In his r - ^-matrix approach, Eq. (1) is replaced by1

{L(x, λ)®L(2/, μ)} = - [r(x, λ, μ), L(x, λ) 0 1 + 1 ® L(x, μ)] δ(x - y)

+ [s(x, Λ, μ), L(x, λ) 0 1 - 1 0 L(x, μ)] δ(x - y)

- (r(x, \,μ) + s(x, \,μ)-r(y, \,μ) + s(y, \,μ))δ'(x-y), (3)

or equivalently,2

{L(x, \)®L(y, μ)} - r'(x, λ, μ)δ(x - y)

- [r(x, λ, μ), L(x, λ) (g) 1 + 1 <g> L(x, μ)] ί(a: - y)

+ [s(x, λ, μ), L(x, λ) 0 1 - 1 0 L(x, μ)] δ(a; - y)

- (s(x, λ, μ) + s(y, λ, μ)^(x - y), (4)

with an antisymmetric r-matrix and a symmetric s-matrix which, in general, depend
explicitly on the fields of the theory. Some of the most important non-ultralocal
models, such as the O(iV)-sigma model [4,12], the principal chiral model [4,13] and
the complex sine-Gordon model [14], are known to fit into this scheme.

In the present paper, we shall demonstrate that non-linear sigma models defined on
Riemannian symmetric spaces, which constitute the general class of non-linear sigma
models known to be integrable [5,7], provide an explicit realization of this structure,
with simple formulas expressing r and s as functions of the basic fields. In particular,
the results of [12,13] are special cases of the one obtained here.

At first sight, the fundamental Poisson brackets (3) or (4) are not particularly
enlightening. They can however be brought into a more transparent form, which is
also closer to the r-matrix approach used in classical mechanics [2], by passing from
the L-matrix L(x, Λ) to the corresponding Lax operator D(x, Λ), defined as

D(x,λ)=^-+L(x,\). (5)

Namely, the Poisson brackets of the D's are, by definition, the same as the ones for
the L's, but D being a differential operator, the inhomogeneous classical Schwinger
terms on the rhs of Eqs. (3) or (4) can be absorbed into commutators (the commutator

1 Our L corresponds to — L in [14]
2 The equivalence of Eqs. (3) and (4) follows from the identity (6) given below
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of a D with a delta function produces, among other things, the derivative of a delta
function). Concretely, it follows directly from the identity

(fix) ~ f(y))δ'(x -y) = - f\χ)δ(x - y) (6)

that Eq. (3), Eq. (4) and the relation

{D(x, \)®D(y, μ)} = - [r(x, λ, μ)δ(x — y), D(x, λ) (g> 1 -f 1 ® D(y, μ)]

+ [s(x, λ, μ)δ{x - y), D(x, λ) (8) 1 - 1 (8) D(y, μ)] (7)

are mutually equivalent.
Besides the L-matrix L(x, λ) and the Lax operator D(x,λ), another object of

central importance in the theory of integrable systems is the transition matrix
T(x, y, λ), which is simply the corresponding parallel transport operator at fixed time,

dzL(z,\). (8)

v

As argued, e.g., in [14], Eq: (3) or (4) implies the following basic Poisson brackets
between the transition matrices:

= + ε(x-y)χ(z\x,y)

x (T(x, z, λ) <8> T(u, z, μ)) (r + s) (z, λ, μ) (T(z, y, λ) 0 T(z, υ, μ))\z

zZ
u

v

+ ε(w — υ)χ(z;u,υ)

x (T(x, z, λ) 0 T(w, z, μ)) (r - s) (z, λ, μ) (T(z, y, Λ) 0 T(z, v, μ))\z

zZ
x

y . (9)

Here ε is the usual sign function,

{
0 for z = y , (10)

and χ( ;x,y) is the characteristic function of the interval between x and y. These
Poisson brackets are well-defined when considered as distributions in the respective
variables and are continuous functions except at those points where two of their
arguments x, y, u, v coincide: there, they exhibit finite jumps proportional to 5. Due
to these discontinuities, the definition of Poisson brackets between transition matrices
for coinciding or adjacent intervals, and in particular between monodromy matrices,
is not completely straightforward (as would be the case for ultralocal models) but
requires some kind of regularization. As a result, there arises the problem of finding
a regularization scheme such that the fundamental algebraic properties of Poisson
brackets, viz. the derivation rule and the Jacobi identity, remain valid for their
regularized counterparts. A priori, it is not even clear whether such a regularization
scheme exists at all, and indeed it has been suggested in the earlier literature that this
is not the case [4]. Later, a prescription which amounts to a "total symmetrization
over all possibly boundary values" was found to meet these requirements [14], but
it is a multi-step regularization in the sense that regularization of multiple Poisson
brackets with a given number of factors cannot be reduced to repeated regularization
of multiple Poisson brackets with a smaller number of factors.

We conclude this introduction with a brief description of the contents of this paper.
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In Sect. 2 we briefly review the current algebra of integrable non-linear sigma
models which has been derived in a previous paper [8] and further analysed in [11].
There it has been shown that the algebra closes provided that, in addition to the
components j μ of the Noether current, a new composite field j is introduced.

In Sect. 3, we use this result to prove that the Poisson brackets between the L-
matrices are indeed of the form (3), with matrices r and s which we determine
explicitly as functions of the new field j . We also show how the Poisson brackets
(9) for the transition matrices can be derived from the Poisson brackets (3) or
(4) for the L-matrices, and we comment on the possibility of defining regularized
Poisson brackets between transition matrices for coinciding or adjacent intervals, and
in particular between monodromy matrices, by interpreting (9) as an equation for
functions rather than distributions, which requires assigning specific values to the
characteristic function χ at its points of discontinuity.

In Sect. 4, we complete our analysis by computing the Poisson brackets of the
L-matrices with the matrices r and s, which are non-trivial because r and s are field
dependent. As it turns out, the Poisson brackets can all be expressed with the help of a
new matrix c which is numerical, i.e., field independent. In fact, the Lax operators D
and an appropriate linear combination d of r and s close to a "quadratic algebra," i.e.,
their Poisson brackets are linear combinations of terms which are at most quadratic in
D and d. Similarly, the transition matrices T and the same linear combination d of r
and s close to an algebra - at least when all expressions are considered as distributions
in the respective variables. Finally, we return to the regularization procedure already
discussed in the previous section, which is based on interpreting the basic Poisson
brackets between the T's and ef s as equations for functions rather than distributions
and assigning specific values to the characteristic functions χ appearing there at their
points of discontinuity - values that are assumed to be field independent but are
allowed to depend in an arbitrary way on the spectral parameters involved. We find
that a one-step regularization, which reduces the computation of regularized multiple
Poisson brackets to a repeated application of the formula for the regularized basic
Poisson brackets and the derivation rule, fails to satisfy the Jacobi identity.

In an appendix, we give, following [1], an explicit proof of a theorem on the
classification of a class of asymmetric solutions to the classical Yang-Baxter equation,
related to involutive automorphisms of semisimple Lie algebras.

Finally, we would like to mention a recent mathematical preprint [3] where
"sufficiently generic" harmonic maps from the two-torus into Riemannian symmetric
spaces are classified. The r-matrix arising there is however field independent and
seems to play a different role than the r-matrix here.

2. Current Algebra for Integrable Non-Linear Sigma Models

We begin by briefly reviewing the results on the current algebra structure of general
non-linear sigma models derived in a previous paper [8]. For simplicity, we restrict
ourselves to the class of integrable non-linear sigma models, which are precisely those
defined on Riemannian symmetric spaces M — G/H, and we shall use the gauge
dependent formulation developed in [5,7] where the basic field φ with values in M
is (at least locally) represented in terms of a field g with values in G, determined
modulo a field h with values in H by the condition that φ — gH. Technically, we
require that M is the quotient space of some (connected) Lie group G, with Lie
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algebra g, modulo some compact subgroup H C G, with Lie algebra h c g , and that
there exists an Ad(i7)-invariant subspace m of g, with commutation relations

[ h , h ] C h , [ h , m ] c m , [ m , m ] c h , (11)

such that g is the (vector space) direct sum of h and m:

g = h 0 m . (12)

The corresponding projections from g onto h along m and from g onto m along
h will be denoted by τrh and τrm, respectively. Moreover, we suppose that the
Ad(i7)-invariant positive definite inner product ( , ) on m, corresponding to the
given G-invariant Riemannian metric on M, is induced from an Ad(G)-invariant
non-degenerate inner product ( , ) on g, corresponding to a G-biinvariant pseudo-
Riemannian metric on G, so that the direct decomposition (12) is orthogonal. (For
symmetric spaces of the compact or non-compact type, this hypothesis involves no
loss of generality.) Then defining the covariant derivative Dμg of g to be

Dμg = gπm(g-1dμ9), (13)

the action of the non-linear sigma model on M = G/H can be written as

S = l - J S x (&*φ, dμφ) = I J d2x (D»g, Dμg) . (14)

The global G-invariance of this action leads to a Noether current j taking values
in g:

jμ = -Dμgg-ί. (15)

As usual, the equations of motion imply (and in the models considered here are in
fact equivalent to) current conservation

0 % = O. (16)

In addition, the commutation relations (11) guarantee that 2jμ also satisfies the zero
curvature condition, i.e.,

dltju-djμ + 2\jμ,jv]=θ. (17)

The other composite field which will be of central importance for all that follows is
the scalar field j taking values in the space L(g) = g ® g* of linear transformations
on g defined as

j = Ad(g)πmAd(gΓι. (18)

It should be noted that the fields j μ and j are not independent. Thus for example, we
have the algebraic identity

= ϋ> adθμ)]+ = 3 a d 0 μ ) + adθ μ )3 , (19)

as well as an identity expressing the derivatives of j in terms of j and j :

dμj - [j, adθ μ)] - j adθ μ ) - ad(^) j . (20)

The main motivation for introducing the field j is that it is precisely the additional
ingredient needed to write down the current algebra in closed form. To do so, it is
convenient to introduce a basis (Tα) of g, with structure constants f£b defined by
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[Ta,Tb] = jc

ahTc and metric coefficients ηab defined by (Ta,Tb) = ηab, together with
* μ

 3
ηab y ( a , b ) ηab, g

the corresponding dual basis (Tα) of g*, and to expand j μ and j into components:3

A A ηΠa A A T& fa T^> (ΊΛΛ
Jμ-Jμ^a1 > J -Jab1 ^ l ' \Zl)

With this notation, the current algebra (at fixed time t) takes the form [8]

- y), (22)

i , a ι , b Qi (24)

{jo,afr)>3bc(y)} - - (fabJcdW + fthdWWx ~ y) > (25)

0, (26)

0. (27)

3. Fundamental Poisson Brackets

Our goal in this section is to compute, for the models under consideration, Poisson
brackets between various quantities which play a central role in the theory of two-
dimensional integrable field theories, such as the L-matrix L(x, λ) or the transition
matrix Γ(x, y, λ) and the monodromy matrix T(λ). Our starting point will of course be
the current algebra (22)-(27), which governs the canonical structure of these models.

According to the commonly accepted point of view (see, e.g., [6]), integrability of
a classical two-dimensional field theory is expressed through the possibility to rewrite
its equations of motion as a zero curvature condition

or f) T _ i _ Γ Γ T Λ Π (ORΛ

or equivalently, as the condition of commutativity

[Dμ,DJ=0 (29)

for the covariant derivatives

Dμ = dμ + Lμ. (30)

This is the compatibility condition for the linear system (Lax pair)

9μU = ULμ. (31)

Here U and Lμ are functions on two-dimensional space-time taking values in an
appropriate Lie group G and in the corresponding Lie algebra g, respectively, and
depending on an additional spectral parameter λ. In the present case, Lμ is simply

3 According to the original definition, valid for arbitrary Riemannian manifolds, j should be
considered as taking its values in the dual space g* of g while j should be considered as taking
its values in the symmetric tensor product of g* with itself. The point of view taken above only
emerges after identifying g with g* by means of the invariant scalar product ( , •) on g, or in
component language, by using the corresponding metric coefficients to pull up and down Lie algebra
indices
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an appropriate λ-dependent linear combination of the current j μ and its (Hodge) dual

εμuj
v, namely4

Indeed, with this choice, the λ-dependent zero curvature condition (28) is equivalent
to both current conservation (16) and the λ-independent zero curvature condition (17).

Next, recall that the L-matrix L is defined to be the spatial component of the flat
vector potential L ,

L{x, λ) = — ^ (jx(x) + λjo(x)), (33)

while the transition matrix T(x,y,λ) is simply the parallel transport operator from
y to x (at fixed time t) associated with the flat vector potential L , so in terms of
solutions U of the linear system (31), it is given by

). (34)

Therefore it obeys the differential equations

— Γ(x, y, λ) = - L(x, λ) Γ(x, y, λ) (35)

and

ζ- T(x, y, A) = + T(x, y, A) L{y, λ) (36)
dy

with initial condition

T(x,y,\)\x=y = l, (37)

as well as the composition rule

T(x, y, λ)T(2/, z, λ) = T(s, z, λ), (38)

which, together with (37), leads to the inversion formula

^ (39)

Moreover, under standard boundary conditions on the fields at spatial infinity (φ
approaches a given point in M and all of its derivatives vanish sufficiently rapidly),
the limit

T ( λ ) = lim T(x,y,λ) (40)
X—+ + OO
y-^-oo

exists: this is the monodromy matrix.
Turning to the actual calculation of Poisson brackets, we first expand L into

components

L = LaT
a, (41)

4 Our convention for the spectral parameter follows that of [6, p. 312] and [12]; it is related to the
spectral parameter used in [4] and [14] by the inversion λ —>• λ " 1 and to the spectral parameter 7
employed in [5,7] by the Mobius transformation λ —»• 7 = (λ — l)/(λ + 1). Our convention for the
ε-tensor is εoι = — 1
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cf. (21). In these terms, the result follows directly from combining the current algebra
(22)-(27) with the definition (33) of L:

a(x, λ), Lb(y, μ)} = | ^ {jZTfi L ^ λ ) ~ T ^ L ^ μ)) δ(x ~ y)

'αbW + *3ab(y))S'& - y)> ( 4 2 )
— μ

d{LJx, λ), jbc(y)} = - j ^ Ud

ab jcd(x) + ft Jbd(x))δ(x - V) • (43)

o- (44)

The next step will be to rewrite the first of these equations in terms of the usual
tensor notation [6] and to show that it can in fact be cast into the form (3) or (4)
given by Maillet [14]. To do so, we embed g into its universal enveloping algebra
ί/(g) and consider the fields L and j as taking values in ί/(g) and in !7(g) 0 t/(g),
respectively. Similarly, the Casimir tensor C, defined by

C = ηabTa®Tb, (45)

is viewed as an element of U(g) 0 U(g). Then we have, for example,

[C, Tc <g> 1] = + f%b Ta 0 Th , [C, 1 0 Tc] = - /c

α5 Ta®Tb, (46)

while

[ j , T c ® l ] = - / c

o

d j M T α ® T f c , ! j , l ® T c ] = - ώ f d T t t ® T 6 l (47)

so that the identities (19) and (20) become

[CJμ 0 1] = - [C, 1 0 jμ] = [jjμ 0 1 - 1 0 j μ ] , (48)

and

Q j = [j5 j 0 1 + 1 0 j ] , (49)

respectively; they can be combined into one identity involving L instead of the j :

2(λ - μ)

C - 2j(x), -^-j L(x, λ) ® 1 - y - ^ 2 1 ® L ( ^ - M) (50)

Therefore, we can rewrite the Poisson bracket relation (42) in the form

2C u2 λ2

L{x\)®\+ l®L(x- μΔ 1 - λz

""^O'W-Jίϊ/))^-?/)
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Using the identities (6), (50) and collecting the terms gives

C, ^ L ( x , A ) ® l + ^l®L(x
λ — μ 1 - μλ 1 - λ 2

- \2j(x), - ~ L f e A ) 0 l - — ~ l®L(x,μ)\δ(x-y)
L 1 — μ 1 — Λ J

Comparing this with the rhs of Eq. (4) suggests the following Ansatz for r and s:

r(z, λ, μ) = α(λ, μ) C + 6(λ, μ) j(z),

with coefficients α(λ,μ) and 6(λ, μ) to be determined, and

, Λ Λ 2(Λ + μ)

Then applying the identity (50) again, Eq. (4) becomes, after a short calculation

{L(x,\)®L(y,μ)}

= - (a(λ, μ) - b(λ, μ) ^ ( 1 ~ Λ A [C, L(x, λ) ® l]δ(x - j/)

- f o(λ, μ) + 6(λ, μ) y / μ . Λ [C, \®L(x, μ)] δ(x - y)
\ 2(λ -μ) J

Comparing once more, we arrive at the following solution:

f\ Λ 2Λμ 2(l
α(λ, μ) = - γΛ ^-r-λ r , b(λ, μ) = - ( l - λ μ ) ( l - λ 2 ) ( l - μ 2 )

Thus we infer that the Poisson brackets between the L-matrices can indeed be brought
into the form (3), (4) if we choose r and s to be given by

2(l+λμ)(λ-μ)

For later use, we also define <i to be the difference 5 — r,

^ ^ ) (53)
— λμ \ λ — μ
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and set

c(z,λ,μ)= γzΓj^C ( 5 4 )

Moreover, the functions r, 5, d, and c of one spatial argument are extended to
distributions in two spatial arguments, again denoted by r, 5, d, and c, respectively,
by multiplying them with a delta function in the difference of the arguments:

r(x, λ; y, μ) = r(x, λ, μ)δ(x ~ y), s(x, λ; y, μ) = s(x, A, μ)δ(x - y),

d(s, A; y, μ) = d(#, λ, μ) <S(x - y), c(x, λ; y, μ) = c(x, λ, μ) δ(x - y).

We conclude this section with some remarks on the calculation of Poisson brackets
for transition matrices and monodromy matrices. Our discussion essentially follows
[14], to which we refer for further reading.

The Poisson brackets between transition matrices can be obtained from those
between Z-matrices by making use of a well-known formula for the variation of
the T's induced by a variation of the L's (cf. [6, pp. 191/192]):5

δT(x, y} A) = j dzε(x ~ y)χ(z; x, y)T(x, z, λ)δL(z, X)T(z, y, λ). (56)

Here ε is the usual sign function [cf. (10)], while χ( ;x,y)is the characteristic function
of the interval between x and y: 6

a for z = min{x, y}

β for z — max{x,y}

. 0 otherwise

Note that

{ ) (fc > χi V) = £(χ - V) tf(z - min{x, y}) - δ(z - max{x, y}))

= δ(z -y)- δ{z - x). (58)

Now by the chain rule (applied to the functional derivatives involved in the definition
of the Poisson bracket), we have (cf. [6, p. 192])

f
= / dzdw ε{x — y)ε(u —

x (T(x, z, Λ) 0 T(u, w, μ)) {L(z, Λ) ® L(w, μ)} (T(z, y, A) 0 T(w, υ, μ)) . (59)

Similarly,

{T(x, y, λ) ® L{z, μ)} = / dz1 ε(x - y)χ{z'\ x, y) (T(x, z\ λ) 0 1)

x {Liz1, λ) ® Liz, μ)} iTizf, y, A) ® 1). (60)

5 In the proof, the case x < y can be reduced to the case x > y discussed in [6] by means of the
inversion formula (39), and of course (56) is trivially satisfied if x = y
6 The values a and β of χ(z;x,y) at the points of discontinuity, z — x and z = y, are of course
irrelevant at this stage: they do however play a role in the regularization procedure needed to define
Poisson brackets of transition matrices at coinciding points, as will be explained in more detail below
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Inserting the Poisson bracket relation (4), transforming the <5'-term into a <5-term by
partial integration and using the differential equations (35), (36) together with Eq.
(58), we can perform the integral over z', with the result

{T(x,y,λ)®L(z,μ)}

= - 2(δ(z -x)- δ(z - y)) (T(x, z, λ) ® l)s(z, λ, μ) (T(z, y, λ) <g> 1)

+ ε(x-y)χ(z;x,y)(T(x,z,\)®l)

x {(r + s)' (z, λ, μ) - [(r + s) (z, λ, μ), L(z, λ) ® 1 + 1 ® L(z, μ)]}

x(T(z,y,λ)®l). (61)

Finally,

{T(x,y,λ)®T(u,v,μ)}= ί dzε(u - υ)χ(z;u,v)(\ ®T(u, z,μ))

x {T(x, y, λ) ® £(.*, μ)} (1 ® T(z, w, μ)). (62)

Inserting the Poisson bracket relation (61) just obtained and using the differential
equations (35), (36), we arrive at

{T(x,y,λ)®T(u,υ,μ)}

= — 2ε(u — v)χ(z; u, υ)

x (T(x, z, A) ® T(u, z, μ))s(z, λ, μ)(T(z, y, λ) ® Γ(«, v,

/

x — ((T(x, z, λ) ® Γ(tt, z, μ)) (r + s) (z, λ, μ) (T(z, j/, λ) ® Γ(«, v, μ))), (63)

where the integral over z can be performed using Eq. (58): the result is Eq. (9).
The Poisson brackets between monodromy matrices are usually derived by

specializing the Poisson brackets between transition matrices to the case of coinciding
intervals and then sending the boundaries of the interval to infinity - a procedure
which is known to work well in the ultralocal case. In general, however, expressions
such as {L(x,λ)®L(y,μ)}: {T(x, y, λ) f L{z, μ)} and {T(s,2/,λ)®Γ(u,v,μ)} are
distributions in the respective variables, with singular support on the set of points
where (at least) two of their arguments coincide (a set which, geometrically, is a union
of hyperplanes). Therefore, defining Poisson brackets between transition matrices
for coinciding intervals or for adjacent intervals will normally require some kind of
regularization. Now in the ultralocal case, {L(x, λ) f5 L(y, μ)} has only a ^-singularity
at y = x and hence7 {T(x,y,X)®T(u,v,μ)} is a continuous function everywhere,
so that no regularization is needed. But in the situation under consideration here,
{L(x, λ) f L(y, μ)} has a ^-singularity at y = x and hence7 {T(x, y, λ) ® T(w, v, μ)}
is discontinuous, with a finite jump proportional to the relevant value of s, whenever
u = x or u = y or v = x or v = y. The simplest possibility to regularize this
expression at the points of discontinuity is to just take the average over all possible
boundary values: this "total symmetrization rule" is the prescription employed by
Maillet [14]. It leads to

{T(x, 2/, λ) ® Γ(x, y, μ)} = ε(x - y) (r(x, λ, μ) (T(x, y, λ) 0 T(x, y, μ))

- (T(x, y, λ) ® T(x, y, μ))r(y, λ, μ)), (64)
7 Roughly speaking, the Poisson brackets between the T's are obtained from those between the L's
by a twofold integration: this is reflected in the nature of the singularities
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and to

{T(x, y, λ) ® T(y, z, μ)} = ε(x - z) (Γ(x, y, λ) 0 1) s(y, λ, μ) (1 0 Γ(s/, z, μ)). (65)

Obviously, Eq. (64) implies

{T(λ) ® Γ(μ)} - r+(λ, μ) (T(λ) 0 T(μ)) - (T(λ) 0 T(μ))r__(λ, μ) (66)

with

r ± (λ, μ) = z ^ o Q

 r(z, λ, M) (67)

A slightly more general regularization procedure would be to consider (9) not as an
equation between distributions but rather as one between functions, i.e., to postulate
its validity even at the points of discontinuity. In this way, the (so far irrelevant)
parameters a and β introduced in Eq. (57) acquire a definite meaning. They are
however not independent, because requiring the derivation rule

{T(x,y,X)T(y,z,\)®A}

= {T(x, i/, λ) f A} (T(y, z, λ) 0 1) + (T(x, y, λ) 0 1) {T(y, z, λ) ® A} (68)

to be valid, e.g., with A = L(w,μ), not only in the sense of distributions but also
in the sense of functions, i.e., even at w — y, forces them to satisfy the constraint
a + β = 1. In particular, this constraint holds for the "total symmetrization rule"
referred to above, which corresponds to the simplest choice a = •= and β = -, giving

χ(z; x, y) = θ(z - min{x, ^/})<9(max{x, y} - z)

with #(0) = | . More general prescriptions will be discussed in the next section.

The main difficulty with the above derivation of a priori ill-defined Poisson
brackets is the one associated with any regularization procedure: one cannot be sure
that algebraic relations between the unregularized quantities remain valid for the
regularized expressions. This is a well-known and fundamental problem in quantum
field theory, being the origin, e.g., for the occurrence of anomalies. In the present
case, the algebraic relation in question is the Jacobi identity. In particular, we
have seen that the monodromy matrices are subject to the standard Poisson bracket
relations (66) of the r-matrix approach [6], but with asymptotic r-matrices r + and
r_ which - according to the classification theorem given in the appendix - do
not satisfy the classical Yang-Baxter equation, i.e., the relation normally imposed
in order to guarantee that the Jacobi identity holds. This apparent paradox can be
resolved by remembering that the lhs of Eq. (66) is a regularized Poisson bracket
and noting that of course the corresponding Jacobi identity must be regularized as
well. In fact, the regularized Jacobi identity will involve regularized double Poisson
brackets which are not identical with the double Poisson brackets one would normally
obtain from a naive twofold application of Eq. (66), and hence its validity will
be governed by an equation which is not identical with the classical Yang-Baxter
equation. To derive it, one must go back to the definitions and must compute
double Poisson brackets between transition matrices, which necessarily involve simple
Poisson brackets between transition matrices and the matrices r ± s: their calculation
will be one of our goals in the next section.

Before proceeding, we would like to point out that an alternative and more direct
method for deriving Poisson brackets between transition matrices at coinciding points,
without recourse to an explicit regularization, has been proposed in the recent literature
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[9]. It is based on expressing the L-matrix as a gauge transform of some other
matrix in such a way that both this other matrix and the gauge transformation itself
satisfy Poisson bracket relations of ultralocal type. This approach does work for
the principal chiral models, in which the coefficient of the classical Schwinger term
is both field independent and central - at least as long as one considers only left
currents or only right currents. But it is not clear at all whether the technique can be
extended to the situation of interest here, which is substantially more general. This
is certainly an interesting question but also quite a difficult one, which warrants a
separate investigation. For the time being, we have preferred to stick to the more
traditional method.

4. The Lie-Poisson Structure

In the preceding section, we have rewritten the fundamental Poisson brackets between
L-matrices in tensor notation and have discussed some consequences that can be
drawn, such as the calculation of the fundamental Poisson brackets between transition
matrices and monodromy matrices. Our goal now is to exhibit the full Lie-Poisson
structure of the theory - which in terms of components is contained in Eqs. (42)-(44)
- and to discuss the algebraic constraints resulting from the Jacobi identity for Poisson
brackets. This requires, first of all, a slight modification of the tensor notation used
previously, adapted to deal not only with the tensor product U(g) 0 U(g) of U(g)
with itself but with its tensor powers U(g)Θn of arbitrary order and with the various
ways in which these can be embedded into each other. For example, note that U(g)
and U(g) ® U(g) can be embedded into U(g)®n according to

U(g) -> U(g)®n , z/ι->ϊzfe = l®...<g>u®...<g>l

(with u appearing in the kth place, 1 < k < ή) and to

U(g) ® U(g) -> U(g)®n , u <g> v \-+ (u <g) v)kl = l ® . . . ® ' a ® . . . < 8 ) i ; ® . . . ® l

(with u appearing in the kth place and υ appearing in the /th place, 1 < fc, I < n),
respectively. Moreover, we shall find it convenient to introduce, besides the composite
field j used so far, a new composite field σ, the two being related by σ = 1 — 2j
when both are considered as taking values in the space L(g) = g ® g* of linear
transformations on g (with 1 denoting the identity on g), or equivalently, by σ = C—2j
when both are considered as taking values in U(g)<g>U(g). Then, for &, /, m all distinct,
we have

[Cfcί. σkm] = ff°dc(Ta)k (Γ6), (Γ c ) m ,

[σ ω , σfcTO] = / > d V c ( T α ) f c (Tb\ (Tc)m = fd

cσd\Ta)k (T6), (Tc)m ,

where the second equality in the last equation is based on the fact that we are dealing
with a symmetric space, so that σ is a (field dependent) involutive automorphism of
g. In particular, we have, for k, I, m, n all distinct, the following algebraic identities:

[Ckl,Ckm] = -[Ckι,Clm], (69)

lCkι,σkm] = -[Ckl,σlm], (70)

\Pki. C m J = [C«. σ m J = ίσkl, σmn] = 0. (72)
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In this notation, the Poisson brackets for the L's and j ' s given by Eqs. (42)-(44)
read

λ 2 λ2

' ~ xι)» (73)

- Xl) ^ ( 7 4 )

- Λ 2 ) ( λ ι J k l

2λ

~ λk

(75)

Observe that due to the identity (69), Eq. (74) continues to hold when j is replaced
by σ or by any other linear combination of C and j , such as r, 5, or d. Therefore,
the Poisson brackets for the D's and d's [cf. (5), (7), (53)-(55)] take the following,
much more transparent form:

Ki^feΛfc; a?z, λz), ^ m n ( x m , λ m ; x n , λn)} = 0, (78)

where, as elements of £/(g)®n, dlk = dkl and qfc = ckl, because the tensors C and
j are symmetric. Obviously, these formulas can be further simplified by letting the
indices k,l,m refer not only to the position inside the tensor product but also to the
spatial variable and to the spectral parameter, so fc, I and m now stand for (fc, xfc, λfe),
(l.x^X^ and (m, x m , λ m ) , respectively. In these composite indices, d and c are of
course no longer symmetric, dlk φ dkl, clk φ ckι, but (76)-(78) reduce to

{Dk,Dι} = [dkl,Dk]-[dlk,Dι], (79)

{Dk,dιm} = [Ckl + ckm,dlm\, (80)

K , , d m n } = 0. (81)

The first of these equations has appeared in the literature before [2], but the others
seem to be new. Together, they show that the D's and d's generate an algebra which
closes under Poisson brackets, because c is a numerical (i.e., field independent) matrix
[cf. (54)]. In the theory of non-ultralocal integrable models of the type considered
here, this algebra plays a central role: it is the analogue of the classical Yang-
Baxter algebra which is relevant to ultralocal integrable models such as, e.g., the
non-linear Schrδdinger equation [6]. But in order to give a mathematically more
precise interpretation, one must make a clear-cut distinction between the abstract
algebra and its concrete representations. For the classical Yang-Baxter algebras, this
distinction is well understood: the structure of the abstract algebra is reflected in the
r-matrix, which satisfies the classical Yang-Baxter equation (2), while the L's define a
concrete representation of that algebra by functionals on the phase space of the theory,
according to Eq. (1). Here, the structure of the abstract algebra is (at least partially)
reflected in the c-matrix, while the D's and d's define a concrete representation of that
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algebra by functionals on the phase space of the theory, according to Eqs. (76)-(78)
or (79)—(81). In particular, the r-matrix - which in this context is the antisymmetric
part of the (field dependent) d-matrix - now has a different meaning.

The investigation of the mathematical structures that underlie this new algebra is
still a completely open subject. The first step would be to identify its defining relations,
i.e., the analogue of the Jacobi identity for Lie algebras or the classical Yang-Baxter
equation for classical Yang-Baxter algebras: they should include a structure equation
for the c-matrix which we suspect, once again, to be quadratic. Another problem would
be to develop a representation theory for such algebras, and in particular, study their
representations in Poisson algebras of function(al)s on phase spaces. All of this must
be left to future work. Here, we just want to analyze the consequences of the fact that
Eqs. (76)-(78) or (79)-(81) must be consistent with the Jacobi identity for Poisson
brackets.

In order to do so, we first rewrite the definition (53) of d in terms of C and σ,
rather than C and j :

d(z, λ, μ) = (s- r) (z, λ, μ) = - ^ (-^- + - ^ - ) . (82)
1 - μL \\ — μ 1 - λμj

Moreover, we shall find it convenient to use the following general notation. Given an
arbitrary associative algebra with unit ^?, we extend the tensor notation introduced
above from U(g) to ^4 and define, for t G *Λ 0 ^ and fc, /, m all distinct,

YB(*W = [tkl,tkm] + [tkl,tlm] - [tkm,tml]. (83)

Note the somewhat unusual position of the indices in the last term, which has however
appeared in the literature before [1,2,14]. Of course, for antisymmetric t (and with
{&;,/, ra} = {1,2,3}), this expression reduces to the familiar lhs of the classical
Yang-Baxter equation

YB(t)klm = 0. (84)

In the appendix, we compute YB(t) for t an arbitrary linear combination of C and
σ, with coefficients depending on the spectral parameters, and give a classification of
all solutions to the classical Yang-Baxter equation which are of this type (Theorem
5.1). The result has already been obtained in [1]: essentially, we slightly extend the
proof given there in order to allow for solutions with singularities.

Turning to the verification of the Jacobi identity, we first of all use the derivation
rule for the Poisson bracket {•, •} and the Jacobi identity for the commutator [ , •] to
derive, from Eq. (79), the following relation [2,14]:

{Dk, {Dt, Dm}} + cyclic

= [Dk, YB(d)klm + {A, dfcm} - {Dm, dkl}] + cyclic. (85)

Inserting Eq. (80), this becomes

{Dk,{Dι,Dm}}+ cyclic

= [Dk,YB(d)klm + [clk + clm,dkm] - [cmk + cml,dkl]] + cyclic. (86)

Thus the rhs of this expression must vanish in order for the Jacobi identity to be
satisfied. But actually, more than this is true: namely, we have

m + (AAm) " (AnAJ = 0, (87)
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or equivalently,

YB(d)fcZm + ίClk + Clmi dkm\ " ίCmk + Cmί' °W = ° , ( 8 8 )

as can be checked by an explicit calculation using the definitions (54) and (82)
of c and d, together with the identities (69)-(71) [cf. Eq. (106) in the appendix]:
this confirms, for the class of models under consideration here, the validity of the
"extended dynamical Yang-Baxter relation" postulated by Maillet [14]. [Indeed, if we
write, as in Eq. (2.19) there,

~ Xm)

t l ~ Xm) ,

and recall that our L corresponds to — L there, we see that our Eq. (87), after splitting
off a factor δ(xk—xι)δ(xk—xm)9 becomes identical with Eq. (2.18) there.] Similarly,
using once again the derivation rule for the Poisson bracket {•,•} and the Jacobi
identity for the commutator [ , •], we obtain from Eqs. (80)—(81)

{Dk, {Dt, dmn}} + {Dυ {dmn, Dk}} + {dmn, {Dk, A } }

— [dmn> [°km + Ckw> Clm + Clv\ ~~ \-Ckm + Ckw>dkl^ + tC/m + Clm dlk^ (89)

Again the rhs of this expression must vanish in order for the Jacobi identity to be
satisfied, and again this can be checked by an explicit calculation using the definitions
(54) and (82) of c and d, together with the identities (69)-(72) and

l\Pkm + CknJ σkll Cmn] = [[Clm + Cln) σkll Cmn] = 0, (90)

ttCkm ~ Clm σkl]> σmn\ = ΰ.Ckn ~ Qm» σfcJ» σmJ = ° > ( 9 1 )

the second of which holds because

tiCkrwσkilσmJ = ~ [ K n , σ m j , σkl] = [[Cln, σfez], σmn]. (92)

Finally, in the remaining combinations

{ ^ K f , dm n}} + {dfei, {^mn, Dt}} + {dmn) {Dt, dkι}}

and

each term vanishes separately.
Using the c's and d's, we can write down a closed algebra not only for the Lax

operators D(x,λ) but also for the transition matrices T(x,y,λ) - at least when the
relations involved are viewed as equations between distributions in all spatial variables
that appear, so that no regularization is required. To this end, we continue to use
the tensor notation introduced above, which - in view of the fact that the transition
matrices take values in the Lie group G - we can do provided we replace the universal
enveloping algebra U(g) by a "complete" algebra U(g) which incorporates both U(g)
and G: this can be achieved by representing U(g) as the algebra of left invariant
differential operators [10, p. 108] and G as the group of left translation operators on
the space C°°(G) of real-valued smooth functions on G: U(g) can then be defined
as the subalgebra of linear operators on C°°(G) generated by U(g) and G. With this
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notation, the Poisson bracket relation (74) between the L's and the j ' s gives rise to
a Poisson bracket relation between the T ' s and the j ' s , according to

{Tk(x,y,X),jlm(z)}

= f dz' ε(x -y)χ{z';x,y)Tk(x,z',X){Lk(z',X),jlm(z)}Tk(z',y,X), (93)

[cf. Eqs. (59), (60), (62)], namely

{Tk(x,y,X),jlm(z)}

( ) ( ) T ( X ) l C C j ( ) ] T ( Λ ) . (94)

Observe again that due to the identity (69), this equation continues to hold when j
is replaced by σ or by any other linear combination of C and j , such as r, s, or d.
Therefore, the basic Poisson brackets for the T's and cf s [cf. (9), (53), (54)] take the
following form:

^+ε(xk~yk)χkl(z;xk,yk)

x Tk(xk,z, \k)T,{x,,z, Xt)dlk(z, X,,Xk)Tk(z,yk,Xk)Tt(z,

y^X^lz^ , (95)

{Tk(x, y, Xk), dlm(z, λ;, λ m )} = ε(x - y)χklm(z; x, y)Tk(x, z, Xk) \ckl(z, Xk, Xt)

+ ckm(z, Xk,Xm), dlm(z, λ ; j Xm)]Tk(z, y, Xk). (96)

As before, the χ's are characteristic functions of the respective intervals, their values
at the points of discontinuity being allowed to depend on the spectral parameters
involved (but not on the field φ):

otherwise

As mentioned in the previous section, the values of the α's and /3's are irrelevant
as long as (95) and (96) are interpreted as equations between distributions. More-
over, we can use the same reasoning as in [14J to conclude from Eqs. (95) and
(96) that the Jacobi identity holds, in the sense of distributions, for the algebra gen-
erated by the T's and cf s: in particular, it is valid for multiple Poisson brackets

On the other hand, we recall from the previous section that fixing the values of the
α's and β's in Eqs. (97), (98) amounts to a specific choice of regularization for the
Poisson brackets in the equal points limit [xι = xk or xι = yk or yι = xk or yι = yk

in (95), z = x or z = y in (96)J, which is required to define Poisson brackets between
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transition matrices for coinciding or adjacent intervals, and in particular between
monodromy matrices. Their choice is constrained by the derivation rule (68), which
leads to

akl + Afei = * > aklm + βklm = 1 (")

Now since the regularized basic Poisson brackets between T's and d's are given by
products of Γ's and d's, we are able to compute their multiple Poisson brackets from
repeated application of the derivation rule and the regularized basic Poisson brackets.
We shall refer to such a procedure as a one-step regularization - in contrast, e.g., to
Maillet's "total symmetrization rule" [14] which is a multi-step regularization insofar
as each multiple Poisson bracket requires a separate regularization that cannot be
reduced to the regularization of multiple Poisson brackets with a smaller number of
factors.

In order to see whether the above one-step regularization works, we compute the
lhs of the Jacobi identity for three transition matrices on coinciding intervals. To begin
with, we write down the regularized Poisson bracket of two transition matrices on
coinciding intervals, assuming for simplicity that x > y:

{Tk(x, y, λfc), Γz(x, y, λt)} = bkl(x, λfc, λ,)Γfc(x, y, λfc)Γz(x, y, λz)

- Tk(x, y, λfc)T,0s, y, \)akl{y, \k,\t), (100)

with

, λfc, λz) + ( α w - alk)skι(y, λfc,

&feZ(z, λfeί λz) - (/?fcZ + βιk)rkl{x, λfe, λz) + ( ^ - βik)skl(x, λfe, \ ) .

[Note that in the special case αfcZ = /3fc/ = | , which corresponds to Mailet's
"total symmetrization rule", Eq. (100) with Eq. (101) reduces to Eq. (64).] Now
straightforward calculation gives

{Tk(x, y, λfc), {Tz(£, y, λz), Tm(x, y, λm)}} + cyclic

x, y, λfc)Tz(x, y, λ^)Tm(x, y, λ m )

x |γB(α(3/))felm + ί j — ^ [Cfc! + Ckm, aklmalm(y, λ,, λm)] + cyclicj I

«"»~ ( r o ? [ C f e i + Cfcm' β^bim^ λ « ' λ - ) ] + c y c l i c ) }
, λ z)Tm(x, y, λ m ) . (102)

It is hard to see how the rhs of this equation can be zero, identically in x,y,φ, and
φ9 unless the terms in curly brackets vanish separately. This, however, is excluded
by the following no-go theorem:

Theorem 4.1. With the above notation, there is no choice for the functions akl, aklrn

and βkl, βkιm, subject to the condition (99), such that the two terms in curly brackets
of Eq. (102) vanish separately.

A proof of this theorem will be given in the appendix.
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5. Appendix

Our purpose in this appendix is to formulate and prove the classification theorem
mentioned in Sect. 4 and to present a proof of the no-go-theorem given at the end of
Sect. 4.

5.7. Classification Theorem

The classification theorem concerns solutions t of the classical Yang-Baxter equa-
tion8

= 0, (103)

where, by definition,

YB(*)*im - [tkι,tkm] + [tkl,tlm] - [tkm,tml], (104)

and where t is supposed to be a linear combination of the Casimir tensor C for g and
some fixed involutive automorphism σ of g,

t^aC + bσ. (105)

Note that, due to the identities (69)-(71), we have

ΎB(t)klm = (aklakm - aklalm ~ akmamΰ [Ckl>Ckml

+ (aklbkm ~ aklblm ~ bkmbm0 ^kUσkm}

~ (akmbkl ~ akmbml ~ bklhlm) lCkm> σkl~\

~ ialmbkl + amlbkm ~ bklbkm) lClmiσkll ' ( 1 0 6 )

As a further input, we must specify what kind of functions of the spectral parameters
we admit for the coefficients a and b in Eq. (105).

To this end, we first of all set .%§ — K (the ground field K. will for simplicity be
supposed to be either R or C) and, for any integer n > 1, we let Mn denote the ring
of K-valued functions / defined on open, dense domains Dj in K7\ i.e.,

Mn = {(/,D f) I Df is open and dense in KnJ:Df -> K} .

Of course, addition and multiplication in Mn are defined as usual, i.e., pointwise,

(/, Dj) + (s, Dg) = (f\DfΠDg + g\DfΠDg,Df Π Dg),

(/, D}) • (g, Dg) = (f\DfnDg • g\DfnDg, Df n Dg),

which makes sense because, in any topological space, the intersection of two open

dense subsets is again open and dense. Next, let (Rn)n>0 be a family of subrings Rn of
Mn containing the constant functions, with Ro = K, which is closed under division
as well as under extension and restriction of variables, i.e., satisfies the following
conditions:
(a) Each Rn is a division ring, i.e., every non-zero element (/, Df) in Rn has an

inverse (f~ι,Df-ι) in Rn. Explicitly, this means that for every non-zero (f,Dj) e
Rn,
(at) Df-\ = {λe Df I /(λ) φ 0} is open and dense in Kn,
(a2) tf-\Df-χ)eRn.

We continue to use the tensor notation introduced in Sect. 4
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(b) For (/, Df) in Rn and 1 < k < n, the extension (/(/c), Djk ), defined by

is in # n + 1 ; more precisely, this is the extension which is constant in the kth variable

(c) For (f >Dj) in Rn and 1 < k < n - 1 and for any number ζ in iprk(Dj ) C ϊ

(prk denotes the kih projection from Kn to K: pr^ίλj, . . . , λ n ) = λfc), the restrictioi

(ήk\D ik)), defined by

^ ) - {(λ,,..., xn_o G r - 1 1 (λ,,..., λfc_1? c, λ fe+1,..., λn_!) G 2^},

Jc ^Λl3 . . . , Λn_ι) — J{ΛV . . . , A/c_1,ς,Λ f c+1, . . . , An_ ly) ,

is in Rn_{, in particular, this requires DM to be open and dense in Kn ι. It shouL

also be noted that the set pr fc(Dj) of admissible ζ"'s is itself open and dense in IK
because pr̂ , is continuous, open, and onto.

Important examples for such families are rings of rational functions and rings o
meromorphic functions in several complex variables.

Note that repeated application of the extension property (b) above leads to variou
embeddings of Rm into Rn, as soon as m < n. In particular, we have the embedding

for 1 < k < n and

K2 " ^ Kn ί / ••"* Jkl (hΛλV ' ' » λn) ~

for 1 < k, I < n. With this notation (which is analogous to that introduced at th
beginning of Sect. 4), we are ready to formulate the classifcation theorem:

Theorem 5.1. Let (Rn)n>0 be a family of function rings satisfying the conditions give\
above. Let a and b be in R2. Then t — aC + bσ satisfies the classical Yang-Baxte
equation (103) if and only if there exist a function g G R{ and a non-constant function
f G R{ such that t takes one of the following forms:

ί) tki = 9ι 7 T 5

f _ a

 Cki + σki
τki — 9ι -

m ') hi = 9ι

fk ~ fl
Ckl σkl

, fk fl fk + fl .

If in addition t is antisymmetric, it is of the form i) or ii), with g constant.

Proof Looking at Eq. (104) we see that if tkι is a solution of the classical Yang-Baxte
equation (103), then so is any multiple gιtkl. Hence using the identities (69)-(71), i
is easily verified that the formulas given above do provide solutions of Eq. (103).
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Conversely, suppose now that t satisfies the classical Yang-Baxter equation (103).
As the four commutators appearing in Eq. (106) are linearly independent, we obtain
four equations on the coefficients a and b:

aklakm ~ aklalm - akmaml = ° > ( 1 0 7 )

^ m -Λ-U,r0, (108)
akmbkl ~ akmbml ~ bklblm = ° > ( 1 0 9 )
almbkl + amlbkm ~ bklbkm = ° (l 1 0 )

Now if a = 0, Eqs. (108)—(110) imply bkιbkπι = bklblm = bkmbmi = ® a n c * n e n c e

b = 0, because Rn, being a division ring, has no zero divisors. Thus we get only the
trivial solution t = 0, contained in any of the above cases (g — 0). We may therefore
assume without loss of generality that a φ 0 and divide Eq. (107) by θLkιakrnalτn to
obtain

i i

IΛJ I I V till bill ΓVb

The lhs of this equation does not depend on λz. Hence choosing a fixed number ζ in
pr 1 (D α )Πpr 2 (ί) α ) (a set which, as noted in condition (c) above, is the intersection of
two open dense subsets of K and hence is again open and dense in K) and setting

= α(C, λ), s(λ) = - °777^) ? / ( Λ ) =

1

α(C,λ)' J V ' α(λ,C)

we obtain

m/ f c and _ L = r Γ i + S ί / f c . (112)
akm akl

Insert ing this into Eq. ( I l l ) w e infer that

almrm +amlrΓl ~ l = ~ (almSm + amlS0 fk ' ( 1 1 3 )

Suppose now that almsm-\-amlsι φ 0. Then dividing Eq. (113) by ^ m 5 m + α m ί 5 z , we
would conclude that / must be constant. But / cannot be constant, because otherwise
akl would depend on its second argument λ̂  only, i.e., akl = rι with r G Rl9 and as
a result, Eq. (107) would read

0 = Tχrm - rιrm - rΎnτι - - rmrι,

implying, be the same argument as before (absence of zero divisors), that a would
have to vanish, contrary to the assumption. Hence alrnsm + amlsι = 0, which means
that the rescaled coefficients alrn = alrnsm are antisymmetric: άml = —dlm.

To summarize, we have shown that from the original solution t of the classical
Yang-Baxter equation (103) of the form (105), we obtian a new solution of that form,
namely

hi = tkisι i "hi = ausi > bki = hιsι > (ι 1 4 )

with the additional bonus that this new solution has antisymmetric α-coefficients:

alk — ~ akl •

In particular, this means that Eqs. (107)—(110) are also satisfied when the α's and 6's
are replaced by the α's and 6's.

Now replacing the α's in Eq. ( I l l ) by α's we see that ak^ = άkι

ι — α^J, while
inserting Eq. (114) in Eq. (112) then gives

l + fk) - (r~ιs;1 + f m ) ,
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Hιl=fk~fι- (115)

Defining g = s~ι we get

Jk Jl

Thus if b = 0, we arrive at the solution (i). Suppose therefore that b φ 0. Dividing
Eq. (110), with α's and δ's replaced by α's and 6's, by bklbkmάlrn gives

b~ι =b~ι -a~ι =b~ι - f , + f
kl km Im km JI J m ">

i.e.,

Both sides of this equation can depend on Xk only (the lhs does not depend on λ m

and the rhs does not depend on λ j , so there must exist a function h G Rλ such that

Now dividing Eq. (109), with α's and 6's replaced by α's and 6's, by akmbkl and
inserting Eqs. (115) and (117), we get

^k ~ fl , fk ~ fm _ γ
hm ~ fl hl~ fm

or

Λ - foJfc Λ - hm

Again, both sides of this last equation can depend on λ̂  only, so choosing two fixed
numbers ζ and ζf in DfΠDh and setting a = f(ζ), β = h(ζ\ a' = /(CO, /^; = Hζ')9

we see that Eq. (118), with λ̂  = λ, Xk = ζ, λ m = ζ ;, becomes

(/5 - β')ht = (a- a') ft + a'β - aβ1.

As / is a non-constant function, we can choose ζ and ζf in such a way that otφ a1.
But then, for the same reason, β φ β', and hence h is a non-constant function given
by

h = -γf + δ, (119)

with

7= ^Γ^7^° a n d *=-$=&-'

On the other hand, Eq. (119) taken at λ = ζ and at λ = ζf gives

β = Ίa + δ and β'= ηa! + δ. (121)

Eqs. (120) and (121) imply

7 = ± 1 and δ ( 7 + l ) = 0,

and hence either

h = ±f,

or
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The first case yields

hi = ± y^rj . (122)

i.e., solutions (ii) and (iii), whereas the second case results in

Qi

hi = Ί T 7 ( 1 2 3 >
δ-fk-fl

So shifting / by δ/2 gives again (iii), q.e.d.

5.2. Proof of the No-Go Theorem

Here we shall prove the no-go theorem given at the end of Sect. 4.

Proof. Write the quantities akl and bkl in Eq. (101) as linear combinations of Ckι

and σkl, i.e.,
akl — fkfikl + 9klσkl '

hi =ΨklCkl+ΎklσkH

where the functions fkl, gkl, φkl, and ηkl depend on λfc and λz and are antisymmetric.
Now looking at the expressions in curly brackets in Eq. (101), we see that the terms
containing a commutator with Ckl -f Ckrn (plus cyclic permutations) give rise to C — σ
type commutators but not to C — C type commutators: the only contribution to the
latter comes from the Yang-Baxter term. Thus according to Eq. (107), we get

JklJkm JklJlm J km J ml '

ΦklΦkm ~ ΦklΦlm ~ ΦkmΦml = °

Arguing as in the proof of Theorem 5.1 to derive Eq. (115) from Eq. (107), we
conclude that there exist non-constant functions / and φ of one real variable λ and
real numbers ex and ε2 which are either 0 or 1, such that

f - £ i
J kl r £ 1

h ~ h

On the other hand, using (82), the Ckl -coefficients of akι and bkl can be computed
in terms of akl, whence we have the following two equations:

fk-fι λ f c -λΛl-λ 2

f c

 kί 1-λf
' a k l

Φk ~ Φl ^k — Λι \ 1 — λk 1 — λι

Adding the two equations gives the following α-independent consistency condition:

ίk-fι
^ I ΓV I

Now we use the following singularity argument.9 For λk = ± 1, the rhs of this
equation is singular for all values of λ̂ , while the denominators on the lhs can vanish

We are indebted to C. Nowak for suggesting this simple reasoning
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only for certain values of Xt because the functions / and φ are not constant. Therefore
this last equation cannot be satisfied, and a contradiction is established, q.e.d.
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pointing out ref. [3J.
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