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Abstract. The combinatorial state sum of Turaev and Viro for a compact 3-manifold
in terms of quantum 6j -symbols is generalized by introducing observables in the
form of coloured graphs. They satisfy braiding relations and allow for surgeries and
a discussion of cobordism theory. Application of these techniques give the dimension
and an explicit basis for the vector space of the topological quantum field theory
associated to any Riemann surface with arbitrary coloured punctures.

1. Introduction

Since the early days of topological quantum field theories there was the question
whether such field theories have a lattice formulation analogous to lattice gauge
theory. The reason is that one would like to work in a context with mathematically well
defined quantities instead of more or less formal functional integrals. This question has
been answered affirmatively in part by the work of Turaev and Viro [TV]. Invoking
the 6j-symbols for the quantum group Uq(sl(2, C) with q being a 2r th primitive root
of unity they constructed invariants Z(M) of closed, compact 3-manifolds M. In
[KMS] this construction was extended to compact 3-manifolds with boundary. For
orientable 3-manifolds, the case we shall exclusively be dealing with in this article,
these invariants, called state sums or partition functions, in the case dM = 0 satisfy
the relation

Z(M) = τ(M)τ(M*) = |r(M)|2 , (1.1)

where r(M) is the partition function for the SU(2)-Chern Simons topological quantum
field theory at level k — τ — 2 [Tl]. Originally r(M) was introduced and discussed on
a formal level based on functional integration methods [Wi2]. However, introducing
the theory of coloured ribbon graphs, Reshetikhin and Turaev [RT] have provided
a mathematical construction of τ(M) having all the desired properties. Now the
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Turaev-Viro construction starts with a finite triangulation X of M and associates
to X a partition function Z(X). The main result of [TV] is that Z(X) does not
change under (a sufficiently large class of local) subdivisions and hence defines
an invariant Z{M) of M. This is a particular attractive feature from the point of
view of topological quantum field theories initiated by Witten [Wil] and axiomatized
by Atiyah in [Atl] (for a review see also [At2]). Indeed, since such theories have
trivial dynamics, a triangulation, which corresponds to the introduction of a high
energy cut-off, should have no influence. In other words, the renormalization group
transformation (i.e. a block spin transformation) defined by a subdivision should be
trivial. Mathematically there is another motivation for a combinatorial approach. In
analogy to algebraic topology but in contrast to quantum field theories with nontrivial
dynamics, topological quantum field theories are supposed to give rise to finite
dimensional vector spaces VΣ with certain structures which provide information on
those 3-dim. compact manifolds which are bounded by a fixed closed 2-manifold Σ.
Hence a finite set of data should suffice. Yet another nice feature of this approach is
that configurations are labelled by representations (customarily called colours) living
on the 1-simplexes instead of by group elements as is the case in lattice gauge theories.

Basically the Turaev-Viro construction goes as follows. Using g-dimensions of
colours on 1-simplexes and q — 6j-symbols on 3-simplexes to define local weights,
their product essentially defines the Gibbs weight W(j)(X), where j labels the
configuration. The partition function, also called state sum, is then given in the usual
way as the sum over all configurations

Z{X) = YjWφ{X). (1.2)

i

The reason Eq. (1.2) is well defined for Uq(sl(2, C)) (q a 2r th primitive root of unity)

ί 1 r )
is that there the set & — < 0, - , . . . , 1 > of colours is finite making the sum in

(1.2) finite. Cobordism theory was introduced in [TV] by freezing the configuration
j on the boundary dX to define

(1.3)

with a certain weight factor Wa. In view of relation (1.2) this gives in particular

Z(X) = ]Γ W&Z(Xua)Z(X2ia) (1.4)

whenever X may be cut along a 2-dimensional simplicial complex dXx — dX2 into
two disjoint parts Xι and X2 [see Eqs. (2.14)-(2.16) below for explicit definitions].
Arguments like these we will call surgery techniques. Relation (1.4) is the manifold
analogue of transfer matrix (i.e. semigroup) multiplication techniques in statistical
physics. Consider in particular the case where M = Σ x / (Σ a compact closed two
manifold /, the unit interval). Let X be a triangulation of M inducing a triangulation
dX of the boundary dM = Σ x {0,1}. If at and ar denote the colourings on the
two connected components dXt and dXr of dX, then one has the result that the
matrix Z{X,aι,ar) indexed by αz and ar acts as a projection operator, provided
the triangulations dX{ of Σ x {0} and dXr of Σ x {1} agree. Its trace, which is
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equal to Z(Σ x Sι) therefore gives the dimension of the vector space VΣ for the
underlying topological quantum field theory associated to Σ. This property, namely
that the transfer matrix is just a projection operator, is again a reflection of the fact
that topological quantum field theories have trivial dynamics. The drawback of this
discussion based on definition (1.3) is that it is triangulation dependent.

The aim of this article is to establish surgery relations which are manifestly
independent of the triangulation and which in particular allow for calculations of
explicit examples such as Z(Σ x Sι). In fact, we expect that the surgery methods
presented in this article should also allow the calculation of the state sum Z(M) for
other 3-manifolds like compact hyperbolic spaces (for examples see e.g. [Vin]). By
relation (1.1) the calculation of Z(M) for all large r could give some information
on the Ray-Singer torsions for the flat connections involved (see e.g. [FG, Wi3]).
The idea we use and which will be worked out in this article is to construct
observables in the form of coloured graphs, i.e. certain embedded 1-dimensional
simplicial complexes, whose 1-simplexes carry colour. These coloured graphs live
on dM or on the boundary of tubular neighborhoods of embedded 1-dim. simplicial
complexes in intM. The resulting state sums will be homotopy invariants of the
embedding and will in addition satisfy braiding relations giving rise to knot invariants
(see also [T2]). Responsible for these braiding relations is an addtional property of
abstract 6j-symbols called the Racah relation, which we postulate and which holds
for Uq(sl(2, C)). As is well known this Racah relation combined with the Biedenharn-
Elliot relation ensures the existence of an i^-matrix with the ensuing Yang-Baxter and
fusion equation (see e.g. [KR]).

The technique we use is the following. In addition to the configurations j of Turaev
and Viro in [KMS] we introduced configurations J on dX called vertex colourings.
They allowed to associate a certain additional weight factor to dX leading to a
partition functor Z(X) which was independent of the particular triangulation of X
thus leading to a state sum Z(M) for manifolds with boundary. We will generalize
the definition of J . This will allow us to associate weight factors to coloured graphs
\G\X on dM leading to state sums Z(M, \G\X). These state sums will be homotopy
invariants of the embedding. This notation will be generalized to coloured graphs 2 .̂
in M, which in addition will satisfy braiding relations. Techniques which in spirit
are similar to ours have been used by Turaev [T2]. As a result we obtain the surgery
formula when M is cut along Σ into Mx and M 2,

Z(M) = Σ WlZ{Mx\G\%)Z{Mi, \G\ξ), (1.5)

which is a triangulation independent form of relation (1.4). Here Σ is supposed to be
oriented and 17* is the same space with opposite orientation such that dMι = £**
and ΘM2 = Σ. \G\Σ is a canonical graph (to be defined in Sect. 6) with colours

x on Σ. WΣ is a certain weight depending on x only. In addition we construct

an explicit basis of the vector space VΣ of the underlying topological quantum field
theory associated to Σ. Here Σ may be a surface with coloured punctures. In addition
these coloured punctures may each be given an orientation. This additional structure
is again a reflection of relation (1.1).

In Sect. 2 we recall and extend the basic data needed in the construction of
Turaev and Viro and its generalizations to be presented in this article. In Sect. 3 we
introduce coloured graphs \G\X on the boundary of 3-manifolds and construct state
sums involving such coloured graphs. The notion of a reduced graph by which planar



358 M. Karowski and R. Schrader

parts of a coloured graph \G\X are collapsed is introduced in Sect. 4. In Sect. 5 we
establish elementary cutting rules for state sums with coloured graphs and introduce
what will turn out to be the central concept of a meridian. The notion of coloured
graphs in the interior of a 3-manifold is introduced in Sect. 6 leading to braiding
relations and knot invariants on the level of the associated state sums. Section 7
contains the main results of this article where we establish surgery formulas along
Riemann surfaces (with oriented coloured punctures). We elaborate on these state
sums in relation to topological quantum field theory. We have attempted to make the
reader familiar with the concepts introduced here by calculating explicit examples.

2. Basic Definitions

In this section we collect and extend the basic notions and definitions of the Turaev-
Viro state sum for 3-manifolds with boundary [TV, KMS].

Let K be a commutative ring with unit, denoted by 1. By K* we denote the
set of invertible elements in K. Let & be a finite set with a distinguished element
0. The elements in & will be called colours. Let i ι-> wi be a map from & into
K* such that Σ wί *s e Q u a l to the square of an element w € K* and such that

wo= 1. We assume there is given a nonempty set of unordered triples (i, j , fc) G &
called admissible. For any unordered triple (i, j , k) G & we set 6^ fc = 1 if (i, j , fc) is
admissible and zero otherwise.

We assume
(2.1)δOjk = δjk

Now the relation

Σ = w)wl (2.2)

is supposed to hold for all j , k e J7. This implies that

(2.3)

holds for all k G 27. The ordered 6-tuple (i, j , fe,Z,m, n) is called admissible, if all
the 4 triples (i,j,k), (fc, Z,m), (i,m,n), and (j, Z,n) are admissible. To each such
admissible 6-tuple we assume there is associated an element of K, the abstract 6j-
symbol, describing a 3-vertex, denoted by

J
m

where m n — (2.4)

(here the elements i,j, k G & are associated to the lines and l,m,n G & to the
plaquettes or sectors between the lines). The 6j-symbols are supposed to satisfy the
following symmetry relations:

(2.5)
I
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as well as
i j k

I m 0 = δimδijkδjl
1

WιW

3

and the following orthogonality relations

i j k

I m n
i j kf

I m n = δijkδlmkWk

359

(2.6)

(2.7)

The summation is such that all 6 j-symbols involved are defined (a convention which
we shall employ throughout this article whenever we write out relations involving
6j-symbols), i.e. both 6-symbols ( i , j ,k,l ,m,n) and (i, j , A/,£,ra,n) are supposed
to be admissible. We give these relations the following two alternative graphical
interpretations:

Σ< = δijkWk

2δkk'
I

m

and m (2.70

m
m

These 6j-symbols are also supposed to satisfy the abstract Biedenharn-Elliot relations
in the form

i j k

I m n

ί j k

B A C

i m n

D A C
n

D C B

mk

D A B
(2.8)

We give this relation the following graphical interpretation (called a Fierz transfor-
mation by physicists)

(2.8')

Finally we assume there are elements qi e K* (i e &) with q0 = 1 such that the
i?-matrix

i j k
I m n

i

m

c
> n

D

J

^B

/

\
_

A

/
m

U

\k

/

B

\
I

X D \ .
i J

A i D
B j C

(2.9)

satisfies the abstract Racah relation

A i D

B j C B A D

i j k

A B C
(2.10)
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We depict this graphically as

Qk

3 i
C

(2.100

All these conditions are met in the case of the quantum group Uq(sl(2, C)) with

q = exp(iτrs/r) (r and s £ Z relatively prime) where we have K = C,

2i<l ~{

~-l

w2 =
- 2 r

(2.11)

fi«AU =

0 otherwise

and where the q — 6j-symbols are given in [KR, K, TV].
The state sum of Turaev and Viro for a compact 3-manifold M with boundary

dM is defined via a triangulation X of M (inducing a triangulation dX of dM) as
follows [TV, KMS].

Let j:σι £ X t-> j(σι) £ S? be any map from the (nonoriented) 1-simplexes of

X \xm~9r and J :σ° £ dX t-> J(σ°) G & any map from the vertices of dX into ^ .

Any such pair 0 , J) of maps will be called a configuration. For any (nonoriented)

3-simplex σ3 in X set

(2.12)

where σ\ and <τ|_|_3 (i = 1,2,3) are the pairwise opposite 1-simplexes in dσ3. For any

(nonoriented) 2-simplex σ2 in dX set

(6j,J)(σ2) = j(σ\) j&i) j(σ\)

J(σ?) J(σ§) J(σ?)
(2.13)

where the vertices σ? in 9σ 2 are opposite to the 1-simplexes σ\ in dσ2 (i = 1,2,3).
By (2.5) both definitions (2.12) and (2.13) make sense. The Gibbs weight factor of a
given configuration is defined to be

W(J,J)(X)= Π
σ°eX
x Π Π

(2.14)
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Also Wa in Eq. (1.3) is given as

Π
σιedX

For given triangulation the state sum is now defined to be given by

(2.16)

hi

The basic result in [TV] for the case dM = φ and in [KMS] for the general case
is that Z(X) is independent of the particular choice of the triangulation and hence
defines an invariant of M.

Examples 2.1. In [KMS] we calculated the following state sums

Z(D3) = 1, Z(handlebody) = 1 (2.17)

(the second equation follows from the first one since the cutting of handles does not
change the state sum),

Z(M\D3) = w2Z(M), (2.18)

Z(S3) = w~2 , Z(S2 x 51) = 1. (2.19)

Also for a connected sum the relation

Z(M1#M2) = w2Z(M1)Z(M2) (2.20)

is valid.

3. State Sums of Coloured Graphs on dM

In what follows G will denote a finite 1-dimensional simplicial complex without
boundary and \G\ the associated normal Hausdorff space (see e.g. [Sp]). In this section
we will in addition make the restriction that every vertex σ° G G is contained in the
boundary of n = n(σ°) 1-simplexes with 2 < n < 4. According to the value of n(σ°)
we will speak of an n-vertex. Note that the notion of being an n-vertex with n > 3
is independent of the particular triangulation G of \G\. We will call the set of stars
st(σ°) in G the elementary stars in G. Also we will introduce the following additional
structure at a 4-vertex σ° G G by paring the 4 1-simplexes meeting at σ° into two
unordered paris. The 1-simplexes in one pair are called opposite to each other. In
addition one of the pairs is given the name "above" and the other pair is given the
name "below." We depict this structure geometrically in Fig. 1. By the above remark
this additional structure is again independent of the particular triangulation G of \G\.
By abuse of notation we view \G\ as the associated space equipped with this additional
structure.

Fig. 1. A 4-vertex
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Let x:σι ι-> ^(σ1) be a map from the set of nonoriented 1-simplexes in G into &
with the following properties:
1) If two 1-simplexes σ\ and σ\ join at a 2-vertex, then x{σ\) = x(σ\).
2) If two 1-simplexes σ\ and σ\ are opposite to each other at a 4-vertex then
x(σ\) = x(σ\) (compare Fig. 1).

If sdG is a subdivision of G, then such a map x induces a map sάx on
sdG with similar properties by setting sάx(σι ) = ^(σ1) whenever Iσ1 | c |σ*|
(σ1' e sd G, σ1 e G). We say that x on G and x' on G' with |G| = \G'\ are equivalent,
if they induce the same maps on a common subdivision. An equivalence class is called
a coloured graph and is denoted by \G\X. Any set / in \G\ homeomorphic to an interval
will be called a line. Given \G\X obviously to each line / we may associate a colour
x = χ{/). By definition a coloured graph on a 2-manifold Σ is a pair (\G\x,φ) where
φ is a homeomorphism of \G\ into Σ with the following additional property. Near
the image φ(σ°) of a 4-vertex σ°, the images of the two open opposite 1-simplexes
in one pair are separated by the image of the closed 1-simplexes in the other pair
(as pictured in Fig. 1). Two coloured graphs (\G\X, φ) and (\G\X, ψ

r) on Σ are called
homotopic if there is a homotopy φt (0 < t < 1) of the maps φ and φ' such that
(\G\X, φt) are coloured graphs on Σ for all 0 < t < 1.

The aim of these section is to define a state sum Z(M,\G\x,φ), which is a
homotopy invariant of the coloured graph (|G|X, φ) on dM. In analogy to the strategy
reviewed in Sect. 2 this will be achieved by a construction starting with a triangulation
X of M. We say that the triangulation G of the coloured graph (\G\X, φ) is adapted
to dX if the image under φ of the kth skeleton of G is contained in the kth skeleton
of dX (k = 0,1). dX obviously induces a triangulation of \G\ which is a subdivision
of G and which will be denoted by G(9X, φ). Also to every coloured graph (\G\x,φ)
on dM with a triangulation G there is a triangulation X of M such that G is adapted
to <9X. We will generalize the definition of a vertex colouring J on dX as explained
in Sect. 2 to what we will call a sector colouring J on <9X. Away from <p(|G|), J
and J will agree. This will enable us to define weight factors in the form

W(j\ J) (X, \G\Ά, φ) = W(j\ J) (X) Π W(x, J) (σ°)

σ°£G(dX,φ)

W(x,l,J)(σι) (3.1)

whenever G is adapted to dX. Ths will give us a state sum

GL, ^ ) . (3.2)

u
The main result to be proven in this section is that for given (\G\x,φ) this state
sum is independent of the particular choice of the triangulation X of M. Thus we
obtain a quantity Z(M, \G\x,φ) which we simultaneously will prove to be a homotopy
invariant of φ. The technique we use is to define configurations in addition to the
1-simplex colouring j on X of Turaev and Viro and the vertex colouring J on dX
introduced in [KMS]. These additional configurations live near the support of the
coloured graphs and intuitively serve as "ski wax" to allow "gliding," i.e. homotopy
invariance and braiding of the state sums for these coloured graphs. It remains to
define all quantities on the right-hand side of (3.1) and we start with introducing J .
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For the purpose of easier notation we will identify G(dX, φ) with its image in
dX under φ. For given orientation of dM and σ° G G(X, φ) consider the set of
n(σ°) 1-simplexes {μ|(σ°),z = 0, . . . , n(σ°) — 1} in G(dX,φ) having σ° in their
boundary and enumerated with respect to their counterclockwise ordering in the
open star st(σ°) C G(dX, φ) of σ° (see also Fig. 3 below for the three possible
cases of n(σ°) = 2,3,4). A sector colouring J on dX is by definition a map
(σ°,i) ι-> J(σ°,i) e & (0 < i < n(σ°) - 1), where σ° is a vertex in dX and
where n(σ°) is set equal to 1 if σ° is not a vertex in G(dX, φ). With j being an edge
colouring of X as discussed in Sect. 2 we set

wW(i,J)(X)= 11 w
σ°eX σι£X

x Π ^
σ°<EdX

fί (3.3)

to be the modification of W{j_,J){X) as defined in Sect. 2. Here (6j, J)(σ 2 ) is the

following modification of (6j, J) (σ2). If σ° is a vertex in σ2 not in G(9X, </>), then

J(σ°) is replaced J(σ°, 0). If on the other hand σ° is a vertex in G(dX, φ) then J(σ°)
is replaced by J(σ°,i) where i is chosen such that the sector at σ° defined by the
1-simplexes μ\(σ°\ ^ ^ ^ o ^ 0 ) intersects σ2

Fig. 2. An elementary line (colour x) of a graph associated to a 1-simplex (colour a)

Furthermore we define a weight for σ1 e G(dX, φ),

Af (3.4)

with a = j(σι), x = x(σι). Also A, A', B, B' e & are given in terms of J as
follows. For given σ1 = [σ^σ^] let i and if be such that σ1 = μ|(σj) = μj/(σ§).
Then (compare Fig. 2)

A = J(σ?, i), A' = J(σ?, i - l(modn(σ?))),

B = J(σ5, ix - l(mod n(σ^))), B' = J(σ%, i).
(3.5)

It remains to define the weights for the vertices σ° in G(dX, φ). For the three possible
forms of the open star at σ°, we have the situation depicted in Fig. 3. Here A,B,C,D
denote the relevant sector and x, y, z the relevant line colourings respectively. The
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weights will depend on the orientation of M which induces an orientation of dM. If
this orientation is counterclockwise on dM, we asociate weights

. = δ -

w(v3) =

w(v4) =

xAB >

x y z

A B C

A x D

B y C

(3.6)

QCQD

If the orientation is clockwise, we associate weights denoted by w(υ*). They are

obtained from the weights w{v^) replacing all q^ by —. This means that the weights

w(υ*) are equal to u>(^) if i = 1 or 3. If i = 4 we replace A B by its inverse. The

vertices υ* have the same geometry as the vi in Fig. 3. In the following we write all
relations for counterclockwise oriented boundaries of 3-manifolds. The transition to
the opposite orientation will become relevant in Sect. 7. This concludes the definition
of the right-hand side of Eq. (3.1),

x
υ2 =

x B

Fig. 3. The elementary vertices

v4 =

Theorem 3.1. For sufficiently fine triangulations X of M the state sum (3.2) for a
coloured graph (\G\x,φ) on dM is invariant under isotopies on the l-skeleton of
dX of the coloured graph (\G\x,φ) and invariant under local subdivisions (such as
Alexander moves [Al]j of X. Thus the state sums Z(X, \G\X, φ) for all such X are
equal and hence define a state sum Z(M, \G\x,φ) which is a homotopy invariant
w.r.t. φ.
Remark 3.2. Having established this fact, in order to abbreviate notation we shall
also write Z(M, \G\X, φ) simply as Z(M, \G\X) with the understanding that now \G\X

itself is viewed as a7 coloured graph on <9M7Also we will write G(dX) instead of
G(dX, φ\ etc.

To prove this theorem, we note that the first part is a direct consequence of

Lemma 3.3. For a fixed sufficiently fine triangulation X of M the state sum (3.2)
is invariant under the following 3 elementary isotopies of (\G\X, φ) on the l-skeleton
ofdX.
a) A line with colour x passing a 2-simplex σ2 G dX along two 1 -simplexes in its
boundary may be shifted to the other l-simplex in its boundary as depicted in Fig. 4a.
b) An elementary v3 graph at a vertex σ° G dσι may be shifted to the other vertex

σQ/ G dσι as in Fig. 4b.
c) An elementary v4 graph at a vertex σ° G dσι may be shifted to the other vertex

σ° G dσι as in Fig. 4c (depicted for the case that the colour x is below the colour y).
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c

b

365

B

x ~~ y

Fig. 4. Elementary deformations of graph

Proof. The proof of a) follows directly from the Biederharn-EUiot relations in the
form

c

p f

a

A

a b c

Ar
 B' σ

b c
B C

c

X

a C
x B'

A B
B' Ar

B

σ
b A C
T C A'

The claim b) means that

Σ WA" C B A''
a A" B
y B' A'

b A C

z σ A"
x y z

A" A A'

B"
C B" A

a A B
x B' A'

c σ B
z B" C

x y z
B B" B'

This follows by applying the Biedenharn-Elliot relations twice in the form

C B A"
b

z

a

C

A
C

b

B"

C

A"

c

A
c σ B
z B" C

a A B"
z B A"

(3.7a)

(3.7b)
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and

w.
x y

A A!

x y z
B B" B'

a A B"
z B A"

a A B"
x B' A!

M. Karowski and R. Schrader

a A" B

y B' A'

The claim c) for the case of Fig. 4c) is that

Σ
C",C"

WctlWcιιι

Qc'Ίc"

b
X

C"

c

A
C"

X

y

C"
A'

C"

c
b
L

e C" D

y D' c
c B' C"
y C B

d

D C" C"

= Σ
A",A"

W2

Aι,W
2

Am
b A1"

x C

C d A D

y D' A"'

b c
B' A'

a A" B
y B' A'

A x A'

A" y A1"

b d e

D' C A'

a b c

C B A"

To prove (3.7c) we first use the Biedenharn-Elliot relations in the form

a
C"

b
B

A"

c
1 A!

A"

c

y

c

A"

B'

σ
b

B

C"
B

a

σ
b

y

A'

σ
C"
A"

a

y

A"
B'

B
A'

Then the Yang-Baxter equations in the form

•Wr

= Σ
ΐ, QA>"<1A>

C"

σ
-,,,2
wA,,,

x C"
y c

b A C"

x C" A'

b C" A

y A'" C
b A'"

x C

b A1 C"
y C A"

C
A"

A x

A" y

A'
A'"

(3.7c)

and finally again the Biedenharn-Elliot relations in the form

C"

.2
VJC,,

d

y

b

D

A

Dr

d e

C" A

D
A!"

b

D'

e

y

d

c

C"
Df

e

D

C

Am

b

y

C"
A!"

A
C

prove the claim (3.7c). The case where the line with colour x lies above the line with
colour y is treated analogously. This concludes the proof of Lemma 3.3.

To conclude the proof of Theorem 3.1 we adapt the strategy used in [KMS].
Consider a local subdivision in Y c X. By the first part of the theorem before
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A c B

Fig. 5. A triangulation of the coloured graph \G\X = Sι

x

performing the subdivision if necessary we may move the graph (\G\x,φ) away
from Y without changing (3.2). Then we may perform the subdivision wRich by the
arguments in [KMS] again does not change the state sum (3.2) proving the theorem.

The present restriction to the case of the elementary vertices of Fig. 3 with
n(σ°) < 4 will be removed in the next section when we discuss what we will call
reductions of coloured graphs (\G\x,φ).

Example 3.4. Let the graph \G\X = Sx be contractible in dM and triangulated as
in Fig. 5. Using Eqs. (2.8), (2.7), and (2.2) one finds for the contribution from the
2-simplex (ABC) of Fig. 5 to the state sum the expression

A'B'C'

a

A! B' C
a C B
x Br σ

b A C

x σ A'

c A B

x Bf A!

a b c

A B C

= w
- 2 a

A'B>

b c

c A B

x B' Af

c A B

x B' A1

A B C
w2

Δ,δ^
a b c

A B C
(3.8)

The 6j-symbol is just the contribution of the 2-simplex (ABC) to the state sum Z(M)
without the graph \G\X = Si so this means

Z(M,Sι

x) = Z(M)w2

x. (3.9)

In Sect. 4 we derive a generalization of this formula to an arbitrary, what we will call
planar graph.

4. Reduced Graphs

With the techniques to be developed in this chapter, we shall establish the following
results.

Theorem 4.1. The state sum Z(M, \G\X) is invariant under the following local

changes of \G\X on dM as depicted in Fig. 6,

Fig. 6. Local changes of graphs
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Any closed subset V of \G\ is called planar, if it is equal to the intersection of \G\
with a closed set in dM homeomorphic to a disc.

Theorem 4.2. For a planar coloured graph \G\X on dM the state sum factorizes

, (4.1)

where (Z{\G\X), called the invariant of the planar graph, is independent ofM. For a

coloured circle S].,

Z(SιJ = Z(OX) = υξ . (4.2)

This theorem states that as observables, planar coloured graphs on dM are uninter-
esting for probing dM. Only nonplanar graphs give rise to interesting information.
Note that for the case that dM is the disjoint union of spheres S2 every connected
component of a coloured graph is planar. Relation (4.1) then reflects the fact that the

vector space Vs of the associated topological quantum field theory is one dimen-
sional as has been proved for the present context in [KMS]. The following remark
deals with the general case.

Remark 4.3. Theorem 4.2 will be generalized as follows. To each oriented 2-manifold
Σ there is a canonical coloured graph \G\X on Σ and for any M with dM — Σ one
can write the state sum Z(M, \G\y) as a linear combination of the form

Z(M,|G| ) = £) W*(\G\ ,\G\f)Z(M,\Gφ (4.3)

for a certain weight factor Wx and with coefficients ( |G| y , \G\X ) which are

independent of M. In the language of topological quantum ϋeld theory we will

see that the graphs \G\X define a complete set (although in general not linearly

independent) of vectors υ(x) in the finite dimensional vector space VΣ associated to

Σ. In Sect. 7 we will construct these canonical graphs explicitly and write the above

coefficients as state sums of coloured graphs on Σ x /.
The notion of reduced graphs to be developed now also will serve to eliminate

the topologically nonrelevant parts of any coloured graph. For a given triangulation
G of \G\X C dM let {Vκ}κe% be a finite family of pairwise disjoint planar subsets
of \G\X with the following properties:
a) every vertex in G is contained in some Vκ and conversely each Vκ contains at
least a vertex of G.
b) The intersection of any closed 1-simplex σ1 in G with any Vκ is either empty or
a closed interval with nonempty interior in σ1 containing at least one vertex in the
boundary of σ1.

The sets Vκ (K e 3&) will be called generalized vertices. More precisely, if we
identify points in \G\X which lie in the same Vκ we obtain a 1-dimensional simplicial
complex Gr with vertices {σ^}κe% (the images of Vκ under this identification) and
1-simplexes which may be identified with those 1-simplexes in G not completely
contained in any Vκ. Stated in a different way \Gr\ C dM is the deformation re-
tract of \G\ in dM where each disc defining a Vκ is retracted to a point. With the
above identification of 1-simplexes in Gr with certain 1-simplexes in G we obtain a
coloured graph \Gr\χr from \G\X and in addition an induced colouring xκ of each Vκ.



Topological Quantum Field Theories and Invariants of Graphs 369

There are of course incidence relations between xr and the xκ. Taking into account

of this it is easy to see that \G\X may be reconstructed up to homotopy from \Gr\χr

and the ( V ^ . To abbreviate notation we let | G r | x denote the collection of the data

\Gr\xr and the (Vκ)x and call it a reduction of \G\X. In analogy to the definition of

Z(X, \G\X) we will now define (Z(X, \Gr\x) for any reduction. In fact the definition

is analogous to (3.1) and (3.2), now with the proviso that dX is adapted to Gr and J
is defined w.r.t. the induced subdivision Gr(dX) of Gr. The only modification nec-
essary is a definition of w(x,J) (σ°) for σ° e Gr(dX). If σ° is not equal to any σ°κ

then necessarily n(σ°) = 2 and its open star is of the form v2 (see Fig. 3) and we give
it the corresponding weight. If σ° is a σ^ then we define its weight in terms of the
associated coloured graph {V^)x . For this purpose we define a map Aκ:c \-+ Aκ(c)
into & from the set of those connected components of 9M\|V^| which are discon-
nected from the complement of the closed disc in terms of which Vκ is defined. Aκ

may be called a plaquette (or cell) colouring of Vκ. These data supplement the sector
colours 3(o\, i) (0 < i < n(σ^) — 1). Together with the colours xκ of Vκ they allow
us to define the weight of the vertex σ°κ as the product of the weights w(υ) of the
open stars v of the form v2, v3, and ι?4, out of which Vκ is composed, multiplied by
Π w\κ(c) a n c * summed over all Aκ(c):

Π (4.4)
Aκ(c)

If n = n(σ^), we call Vκ a generalized n-vertex which we picture as a disc in the
figures below. The definition (4.4) is motivated by and implies the following lemma.

Lemma 4.4. The local reductions depicted in Fig. 7 do not change the corresponding
state sums. In Fig. 7d the weights w(Vn) and w(Vn_2) are related by

w(Vn_2)(Av...,An_2;y)

(4.5)

for n > 2 and
w(V0) = w, (4.6)

for n = 2 and V2 — v2 the elementary 2-vertex defined by (3.6). This last case reflects
the appearance of a "Markov trace" for closed loops. In relations (4.5) and (4.6) we
have only listed the dependence on the "exterior colours" of the generalized vertices
involved.

Proof. Parts a)-c) of the lemma are analogous to those of Lemma 3.3 and have the
same proof. It only remains to prove part d). The claim is that

Σ b

Bf

c I I b Ax

Cf\\x Cr

C

X
a

X

a

ALl

C

B'

b

B

B

Cf

c

C
„../
VL'K

B A,•n-l

B'
w(Vn)(Av...,An;x,y)

w(Vn_2)(Av...,An__2;y). (4.7)
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b)

2/n

Fig. 7. The four elementary reductions of graphs

Now by the Biedenharn-Elliot relations and the orthogonality relations the sums over
B' and O can be performed on the left-hand side of (4.7) (cf. example 3.4) and one
finds

a b cl.h.s.(4.7) -
B C

(4.8)

proving the claim for n > 2. For the case n = 2 the sum over An_λ in Eq. (4.8)
does not exist and instead we have Ax = An_v Therefore inserting (3.6) into (4.8)
we obtain the claim (4.6) due to (2.2). Notice that the other vertices in Fig. 7 are
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considered elementary vertices, i.e. of the type υ2, v3, and v4. However, this lemma
may easily be generalized to include generalized vertices. Therefore we immediately
obtain

Lemma 4.5. For all reductions \Gr\x of \G\X such that Gr is adapted to dX, the

partition functions Z(X, \Gr\x) agree.

Proof of Theorem 4.1. The relations of Fig. 6 now follow by considering them inside
a generalized vertex. But there they follow easily from relations (2.7), (2.8), and
(2.10).

Proof of Theorem 4.2. By Lemma 4.4 we may find a suitable triangulation X and a
reduction of \G\X which has the form of Fig. 7d for the case n = 2. Equation (4.6)
can be generalized for the case of an arbitrary 2-vertex. From a Wigner-Eckart type
relation (see Appendix A) we conclude

V2 ) +-> w{V2;x,x) = 6xt'δxΛA*f(x).

A V 7 A'
\x'

This implies that for the general "0-vertex" Eq. (4.6) is replaced by

(4.9)

(4.10)

Therefore in Eq. (4.1) the desired factor Z(\G\X) equals w^.f(x) while the remaining
contributions to the state sum give Z(X) = ZjM). This proves the first part, while
the second part follows from the fact that f(x) = 1 in case \G\X is a planar coloured
circle Sx (see also Example 3.4).

For later convenience we write some additional formulas for changes of graphs.

Lemma 4.6. The following (additive) relations between state sums with the following
local form of the coloured graphs hold:

k ,

, (4.11)

(4.12)

(4.13)
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W2δ yO

z *-* (wxWy) ιδxx

(4.14)

(4.15)

These relations will become important in the next section when we establish cutting
rules. The two first relations (4.11) follow from the orthogonality relation (2.7), the
Biedenharn-Elliot relation (2.8) and the Racah identity (2.10) imply (4.12) and (4.13),
respectively. The equality (4.14) is derived in Appendix A and (4.15) follows from
Eqs. (2.6), (3.6), and (4.4). Because of Eqs. (2.9), (2.6), (3.6), and (4.4) this relation
remains true if there are additional elementary 4-vertices on the line with colour

Remark 4.7. Note that if one 1-simplex at an elementary 3-vertex has vanishing
colour, then by (2.1) necessarily the colours of the two other 1-simplexes entering
this vertex are to be equal in order to have Z(M, \G\X) Φ 0. This "conservation law"
will always be taken into account in what follows.

Moreover for the \G\X to be considered in the following it turns out that Z(M, \G\X)
is nonvanishing only if one or several lines of the graph have vanishing colour. This
motivates the following discussion as a generalization of Eq. (4.15).

Lemma 4.8. Let \G\ be a graph with only elementary vertices υ3 and υ4. For a given
fixed colouring x of \G\ consider the subset / 0 of lines / in \G\ with x(f) = 0.
Let G be the 1-dimensional simplicial complex obtained by deleting all the σι which
belong to these lines / G / 0 . It is esy to see that \G\ depends on \G\X only and that
\G\ inherits a colouring x leading to a coloured graph \G\Ά. Now inspection o/(3.4)
combined with (2.6) easily leads us to conclude that

Z(M, \G\J = ,/0
)Z(M, | with f(\G\x,f0) = J ] w^ (4.16)

holds. The product is over all 3-vertices with v3 i Π / 0 φ 0 and xi is the colour of the
two other lines entering υ3^.

Lemma 4.9. For the fundamental representation of Uq(sl(2, C))6\ \ = δxQ + δxl

holds. Therefore when the local colours are ^, one finds by means of Eqs. (4.1), (2.10),
and (2.11) the "skein" relations

(4.17)

Examples 4.10. i) Let \G\a be a planar circle with a twist. Its invariant defined by
Theorem 4.2 is obtained by the Racah relation (2.10) (for i = j — a and k = 0) and
Example 3.4,
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ii) Using the orthogonality relation (2.7) or (4.11) we find

Z(\G\abc) = Z I <(Ί O ) = <W (4.19)

if the graph \G\abc is planar.
iii) Relations (4.11) and (4.12) imply that the όj-symbol is represented by the
following graph invariant:

Z(\G\ijklmn) = Z
i j k
I m n

(4.20)

iv) Let | G | β 6 be planar and consist of two circles with linking number one. Its
invariant is obtained by Eqs. (2.7), (2.10), and ii)

Z{\GU) = Z\ [<5i ) = Σ χ z
1 cWb.

= Σ f f *•*« = (-l)2α+26((2α + 1)(26 + 1)),. (4.21)

The last equality holds in the context of Uq(sl(2, C)) for the data given by Eq. (2.11).
In Appendix A we will discuss the modular properties of the matrices Tab oc
δabZ(\G\a) and Sab = wZ(\G\ab) with the graph invariants of Eqs. (4.18) and (4.21).

5. Cutting Rules

In this section we will introduce some techniques which allow to extend the surgery
methods employed in [KMS], where we were able to cut M along a manifold Σ
diffeomorphic to 5 2 , to any Σ. This will in particular enable us to calculate Z(M)
for several examples. The main calculations are collected in Lemmas 5.1 and 5.2
below. They make it possible to cut out (solid) cylinders and to introduce (empty)
tubes. The following discussion will always make tacit use of the homotopy invariance
of Z(Af, \G\a.) with respect to the embedding of \G\^ in dM.

LetC = D2xI (D2 = closed unit disc C R2 with boundary Sι and / = [0,1]
the unit interval) be the cylinder with boundary (S'1 x /) U (D2 x {0,1}). For

51x{0,l}
simplicity we will also denote any subset of M homeomorphic to this set by C.
Consider now one of the following two situations for C c M ,

a) Sι x / C dM, (intD2) x {0,1} C M\dM,

b) D2 x { 0 , 1 } C 9 M , S1 x (0,1) C M\dM.

Intuitively case a) describes a cylinder in M and case b) means that C is a cylinder
in M with "top" and "bottom" in dM.



374 M. Karowski and R. Schrader

In the case a) we consider the cylinder C "cut out" of M giving M with
M = M U C and dM = {dM\Sι x [0,1]) U (D2 x {0,1})). Assume now

D2x{0,l}

that \G\X C DM is such that only one line / of \G\X with colour x = x(/) passes
through the handle C in the form that / Π C = {P} x / with P e Sι. With these
notations we have the following

Lemma 5.1. The following relation is valid for an arbitrary colouring x of \G\,

(5.2)

Here \G\X is obtained from \G\X by deleting the line / and f(\G\x,f) is obtained from

Eq. (4.16). In particular \G\X is a coloured graph on M making the right-hand side
of (5.2) well defined (compare Lemma 4.8).

Proof Consider the handle C = D2 x [0,1] triangulated as in Fig. 8. The contribution
to the state sum Z(M, \G\X) from this piece is

w=
i,/,?n,n

a b c
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Fig. 8. A triangulated handle with a line of colour x

We use the Biedenharn Elliot relations (2.8) three times in the form
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then twice the orthogonality relations (2.7)

d e e

B D C

•Σw.

e

C

a

C

d

B'

b

B

c

D

c

A'
b a c

B C A

and finally

Σ a A B

x B A

375

= 6B,B'

= δt

where Eqs. (2.6) and (2.7) have been used. Thus in particular Z(M, \G\X) vanishes
unless x = 0. By (4.16) we therefore have ~

Z(M, \G\X) = δxH\G\xy)Z(M, \G\X). (5.3)

On the other hand, by the arguments of [KMS] when the cylinder C is cut the relation

, \G\X) = Z(M, \G\X) (5.4)

is valid. Indeed, this follows by calculating the local factor for D2 x [0,1] [now with
the line / with colour #(/) delected] using the triangulation of Fig. 8. This concludes
the proof of Lemma 5.1.

In the case (5.1b) we consider the manifold M = (M\ int C) U Sι x I such
SΊx-fO,!}

that M = M U C. In particular dM is obtained by removing D2 x {0,1} and gluing
Sιxl

the tube T = Sι x [0,1] along Sι x {0,1}. We will call the operation M -> M the
removal of the cylinder C and the introduction of the tube T. We may assume that
the coloured graph \G\X on dM satisfies the condition \G\X Π (D2 x {0,1}) = 0, if
necessary by modifying the graph \G\X by a homotopy. Thus we may view \G\X as
a coloured graph on dM. With these conventions we make the

Definition 5.2. We consider a coloured circle mx on the tube T c dM of the form
(Sι x {P})x (P G (0,1)). Combining \G\X and mx to a coloured disconnected graph,
denoted by \G U m\x x for short, we define

Z(M(TJ, \G\ J = Σ J Z(M, \G U (5.5)

and say that the tube T is equipped with a meridian m. The following lemma states
what happens to the state sum Z(M, \G\X) if a cylinder C is removed and the tube
T is introduced. ~

Lemma 5.3. The following relation is valid:

1
(5.6)
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Fig. 9. A triangulated tube with a meridian of colour x
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F

Proof. Let T = 5 1 x [0,1] c dM be triangulated as in Fig. 9 with the meridian m
running along the edges with colours c, /, and I. The contribution to the state sum
on the right-hand side of (5.5) from this piece is then given as
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(5.7)

This follows again from the Biedenharn Elliot relations and the orthogonality relations
in the form
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Now the right-hand side of (5.7) is just the local contribution to the state sum
Z(M, \G\X) for this triangulation concluding the proof of Lemma 5.3.

There are some additional useful formulas for tubes with meridians. In the
following we rename M to be M (case 5.1b).
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r

a a a
Fig. 10. A nontrivial change of a line in presence of a meridian

m

m'

m

Fig. 11. The projection property of meridians

m"

τn

Fig. 12. Shifting meridians at branch points of tubes

Lemma 5.4. If dM contains a tube T with meridian m, then a line I of the coloured
graph \G\X may be changed nontrivially iflΠT^βis of the form depicted in Fig. 10
to give

\ \G\X) = Z(M(Γm), \G\X). (5.8)

Here \G\X is obtained by replacing a piece of I with colour α, contained in some
Sι x {Q}, by its complement in Sι x {Q}. The proof of this lemma is also depicted
in Fig. 10, making use of Eq. (2.7) and Theorem 4.1 and where summation over x
and y with weight factors wx and w2

y is understood.

Obviously we may generalize Eq. (5.5) by introducing several coloured merid-
ians ?7i, m ' , . . . on T (summing over the associated colours x,xf,... with weights
w^wχ/,...). By the previous lemma, however, the additional meridians act trivially
in the sense of

Corollary 5.5. Meridians on the same tube act as projections (see Fig. 11), i.e.

tm,tJ, \G\,) = Z(M(Tm), |Gp. (5.9)

Corollary 5.6. If there is a branching of tubes as depicted in Fig. 12 meridians may
be shifted as follows:

Z(M(Tm,rml), \G\X) - ,T^,), \G\X). (5.10)
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Remark 5.7. So far we have assumed that \G\X had support away from the meridians

m,mr, However, in Lemma 5.4, Corollaries 5.5 and 5.6, \G\X may contain line

/ζ (i = 1,..., N) where the crossings of each line with the meridians ra, ra'',... are
all of the same type ("above" or "below" in the sense of the R-matήx (2.9) or the
vertex i?4 in Fig. 3).

Examples 5.8. i) Let M = Sι x D2 be a solid torus (dM = Sι x Sι) and Sι

x a not
self crossing circle not contractible in dM but contractible in M. By handle cutting
(away from Sx) due to Lemma 5.1 (M —> D3) we arrive at Example 3.4 and find

Z(Sι

= wl (5.11)

ii) Let M = S 1 x D2 be a solid torus (<9M = S 1 x S 1 ) and 5^ not contractible in
M. By handle cutting due to Lemma 5.1 we now also cut S^ and find with the help
of Eq. (5.2),

= OaQ. (5.12)

iii) For a later application we consider the more complicated graph on a solid torus
depicted in Fig. 13. Let S^ U Si U 5* U 5^ be four circles without any crossings not
contractible in M and let Sx be a not self crossing circle not contractible in dM
but contractible in M "undercrossing" S^ U 5^ and "overcrossing" S^ U S^ in the
sense of the R-matήx (2.9) or the elementary vertex vΛ of Fig. 3. We obtain from the
orthogonality (4.11), Lemma 5.1, relations (4.14) and (4.15) with \G\αbcdx of Fig. 13,

x D\\G\αhcdx) =

efgx

W

(5.13)
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Fig. 13. The graph \G\abcdx = Sι

a U Sι

b U Sι

c U Sι

d U Sι

x on a solid torus

6. Coloured Graphs in M

Up to now we have considered graphs \G\ embedded in dM. In this section we
introduce coloured graphs S?x in the 3-manifold M.

Definition 6.1. Let M be a compact, oriented 3-manifold. A coloured graph ^ in
M is given by the following data:
α) A finite 1-dimensional simplicial complex c ( ^ ) , called the core of S?x, embedded
in intM.
β) An open tubular neighborhood J ^ of c(¥/x) in intM.

γ) A coloured graph \G\X in the sense of Sect. 3 on the boundary d&?χ.

We will always assume that &$> consists of (connected) components 3ζ, (1 < i <

N) each of which is a tubular neighborhood of each component q of c(S?x). ΪFX is

called a coloured framed link, which then will be written as J^., if each connected

component \c%\ of \c(S?x)\ is homeomoφhic to a circle Sι and if |G | X Π^f consists

of a line ^ (an embedded coloured circle Sx.) homotopic in ^ t o the core ci. The
N

line ^ together with the core q defines a framing. We write 2§x = (J ( ^ ) x . for the

resulting canonical decomposition of J^.. Given ^ we denote by M(^x) the compact

submanifold of M obtained by deleting ^ from M. By construction dM(^) is the

disjoint union of d^ and 9M. In particular \G\X may be viewed as a coloured graph

on 9M(gy

Definition 6.2. The state sum of a compact, oriented 3-manifold M equipped with a
coloured graph ^ is given as

= Z(M(S?X),\G\X), (6.1)

where \G\X is the graph on d^χ associated to &x by property 7).

In analogy to the discussion in Sect. 5 we may in addition introduce one or

several meridians m on any tube T of d^x which locally looks like S1 x I (see

Definition 5.2). Again we make the proviso that \G\X restricted to such a set T is a

(possibly empty) union of coloured straight lines, each of the form {P} x / for some
P eSι.
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•

m

i

Fig. 14. Left (/) and right (Γ) handed lines

α = 0

O

Fig. 15. Left and right handed lines cannot be connected

Definition 6.3. We say such a local line is left handed w.r.t. to a meridian m =
S1 x {Q} (Q G (0,1)) if it "overcrosses" m in the sense of the elementary vertex v4.
It is called right-handed if it "undercrosses" (see Fig. 14). This notion makes sense
since d^ inherits an orientation from the orientation of M.

We may then generalize the state sum (6.1) to

O = Z(M(S?x)(TmXml,...), \G\X) (6.2)

which agrees with the state sum (6.1) in case no meridians are present.

Lemma 6.4. // the local coloured line fx = ({P} x I)x c T C d^χ in Gx is left-
handed w.r.t. a meridian m and right-handed w.r.t. another meridian fh (both living
on T), then the state sum (6.2) vanishes unless the colour x of <ζ vanishes. By the
discussion in Sect. 4, we may then delete the whole line in \G\X.

We give a graphical presentation of the proof by Fig. 15. Obviously it suffices
to consider the case where T only has the meridians m and m. Here we have
used arguments similar to the proof of Lemma 5.4. The claim now follows by
relation (4.14) in Lemma 4.6. Using Corollary 5.6 we conclude furthermore

Corollary 6.5. Left and right handed lines do not "interact," i.e. there is no branching
if both left and right lines enter unless the colours are vanishing.

Using the orthogonality relations (2.7), Eq. (4.14) and Corollaries 5.4 and 5.6 and
Remark 5.7 one can prove

Lemma 6.6. A single coloured local line fcon a setT = S1 x / C dJ%^ which does
not cross any meridian may be decomposed into a right- and left-handed one in the
form depicted in Fig. 16 such that

Z(M, SQ = w2

awlZ(M(Tm,TJ, % (6.3)

a,b
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c c

Fig. 16. Decomposition of a line into left and right handed ones

Here &x a 5 is obtained from a local modification of &x as depicted in Fig. 16.
Obviously relation (6.3) may be generalized in the sense of (6.2) to the case where
meridians are present somewhere else.

In the following we will consider coloured graphs S^ 5 with left-handed lines of
colours a and right-handed ones of colours h only. We write [simplifying the notation
of (6.2)]

2^,), % ) , (6.4)

where x = aUh and the 7^(7^) are the meridians of the left-(right-) handed lines.
The case of a coloured framed link 3%a 5 with TV connected components deserves

special attentioin. We introduce a meridian on each connected component d3ζ of

Theorem 6.7. The state sums Z{M,2>aι) of a coloured framed link 2§aι in a 3-
manifold yield a representation of the braΐd group under change of the embedding of
S?al in M. The relative braiding of left-handed and right-handed lines is trivial. The
braiding of left-(right-) handed lines is w.r.t. the matrix R(R~ι) defined by (2.9) and
the vertex v4 ofEq. (3.6) and Fig. 3.

In particular for the fundamental representation ofUq(sl(2, C)) (i.e. when the lines

involved in the braiding have colours equal to 1 /2) one has the skein relations

Z(M, &&:t) = AZ(M, BZ(M, (6.5)

Here the coloured framed links 2%'a ^ and coincide with 3%a 5 outside the local

braiding region and inside they are depicted by Fig. 17. For two left-handed lines
A = q, B = 1 — q~2 and for two right-handed lines A = l/q, B = 1 — q2,

Fig. 17. Skein relation
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Fig. 18. The braiding of lines SZ. Here the symbols + and -φ- mean the following. For a left- and
right-handed line we have e.g. + = -|- and -φ- = -f. For two left- or two right-handed lines we have
+ = -φ- = -|- and + = -φ- = -T-, respectively

Proof. Using Lemmas 5.3 and 5.4, Corollaries 5.5 and 5.6 combined with Remark
5.7 we deform 2§a 5 into a ^ 5 with the same colours α, b as depicted in Fig. 16.
The proof is completed by Theorem 4.1 and Eq. (4.17).

Examples 6.8. i) Let S$a be a simple left-handed loop with colour a and contractible
in M, i.e. a link of one component without any nontrivial linking and framing. We
have the core c ( ^ ) ^ S\ T = Sι x D2, d3T = Sι x S 1 and the associated
graph \G\ax = S^ x S^, where S^ correspond to the meridian and undercrosses S^.
The state sum can be calculated using Lemma 5.1, Example 3.4 [i.e. Eq. (3.9)] and
Example 2.1 [i.e. Eq. (2.18)]

\ D\ S\) = Z(M \ D3)^ = Z(M)w2

a (6.6)

For a right-handed simple loop one obtains the same result.
ii) Let J?^n ) be as in i) but with framing number n [i.e. linking number n of c(i?α)
and S^]. Using Lemma 5.4 and the Racah relation (2.10) one finds

Z(M,C[n)) = Z A/, Γ" \

= qlnZ
V

For a right-handed simple loop with framing number n one obtains

(6.7)

„ wl • ( 6 8>

iii) Let S§ah a two component link (each with zero framing) such that the relative
linking number of both components is one. Using the techniques applied in the proof
of Theorem 6.7 one finds

= Z(M)Z(\G\ab) , (6.9)
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where \G\ab is the planar graph of Example 4.10iv) and its invariant is given by
[Eq. (4.21)]. With Eqs.(A.2) and (A.3) one may write

, ^ α | 6 ) = Z(M)w2

aw
z

b(a) = Z(M)wSab. (6.10)

iv) Let S%a 5 be as in iii). Since the braiding of a left-handed line relative to a right-
handed one is trivial, one obtains

Z(M, J^α f δ) = Z(M)w2

aw\ . (6.11)

7. Surgery Formulas

In this section we establish the main results of this article. The aim is to derive a
surgery formula which generalizes the following relation obtained in [KMS]:

^ ι 1 (7.1)

for the case
M = Mλ U (S2 x /) U M 2 ,

S2x{0} 52x{l}

where MιnM2 = Φ and where the gluing takes place at components of dMi (ί = 1,2)
which look like £ 2 ' s . Here M need not be orientable.

The generalization is obtained by replacing S2 by an arbitrary closed, compact,
oriented 2-submanifold Σ in intM. In order to stay close to the case (7.1), we assume
that M decomposes into disjoint Mx and M2 when we cut along Σ. The case where
M stays connected after such a cut may be discussed in the same way with obvious
modifications in the resulting formulas.

Below we will introduce so-called canonical coloured graphs \G\^ on Σ. In terms
of these coloured graphs we have the

Theorem 7.1. Let M be a compact oriented 3-manifold and Σ a closed compact
2-submanifold in int M such that M may be decomposed in the form

M = MX U (Σxl) U M2 . (7.2)
!i;x{0} Σx{l} 2

with M{ΠM2 = 0, dM2 = Σ, and dM{ = Σ1*. Then

Z(M) = Σ WlZ(Mx,\G\f)Z{M2, \G\ξ) (7.3)

with a weight factor to be given below for typical examples.

This result provides the alternative triangulation independent formulation of the
cobordism analysis of Turaev and Viro as announced in the introduction. To define
the canonical graph on Σ1, it suffices to consider a connected component Σ9 of genus
g > 1. Indeed, note that for g = 0 we already have relation(7.1), such that \G\^g by
definition is the empty graph for g = 0.
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Fig. 19. The canonical graph \G\%9 with βg - 3 colours x

Definition 7.2. Let Σ9 be represented in the standard way by a 4^-polygon

The canonical graph | G | ^ 5 is given by Fig. 19 where x = (a?j,..., a^-s)* Note that
this graph is minimal, i.eTit cannot be reduced nontrivially in the sense of Sect. 4 to a
smaller graph having only generalized 3-vertices. Among all such maximally reduced
and connected graphs with only (generalized) 3-vertices it is maximal, in the sense
that it intersects each element of the homology basis (cx, dλ,..., cg, dg) exactly once.
Every other graph with these properties may be obtained from this one by means
of "crossing transformation" (called Fierz transformations by physicists) of the form
(2.8). The weight factor for Σ9 in Eq. (7.3) is

Remark 73. Theorem 7.1 may be generalized in the following way to the context
where M already contains a coloured graph ^ c M with the associated graph Gy

as introduced in Sect. 6 [see Eq. (6.1)]. We will assume that Σ intersects dJ^ in a

union of disjoint discs D2 enumerated as D2

a , . . . , D^n, D^ , . . . , D? , where the disc

Ό1 φ\ ) is the intersection of Σ9 with that part of d^ which carries a left-(right-)

handed line with colour a^bj) G y. We define the set

2£j = Σ9\D2

aι\ ... \Dl\Dl\ ... \D\n . (7.5)

Also we define the canonical graph G^- on Σ^ as depicted in Fig. 20 which

Σ9

extends Fig. 19. Note that both Σg

a 5 and Gχ~'~ are not of the usual form, since they

are not closed. However, we replace in Eq. (7.3),
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Σ9

D2

Fig. 20. The canonical graph Gχ_-'~ with N = 6g — 3 + n + n colours

- l

to obtain again a closed 2-manifold as a boundary of a 3-manifold and a closed graph
on it (and correspondingly for Σ1* and M2). Note that e.g. the open line with colour

Kb.
ax of |Cr|χ~'~ is hooked up to the open line with the same colour of (\G\y Π Mx). The
weight factor for the case of Σg

a ^ in Eq. (7.3) is

Σ9 , βg—3+n+n

(7.6)
i=\

The proof of the surgery formula (7.3) and the evaluation of the weight factor (7.4)
and its extension (7.6) will be given in Appendix B. It relies mainly on applications
of Lemmas 5.1 and 5.3.

The surgery formula (7.3) has an obvious extension to a state sum with an arbitrary
coloured graph \G\y on dM. Of particular interest is the case where Σ is chosen to
be dM and M2 a (closed) tubular neighborhood of dM in M such that M2 = Σ x /.
We let Mx be the closure of the complement of M2 in M such that Mx = M. Then
(7.3) generalizes to the relation

Z(M, \G\y) = u (7.7)

valid for Σ = dM.
The notation on the right-hand side of (7.7) is such that \G\y is supposed to live

o n Γ x {0} and G^ on 17* x {1}. Relation (7.7) in particular proves relation (4.3)
with

,,\G\f) = Z(ΣxI,\G\yU\G\f). (7.8)

Relations (7.3) and (7.8) suggest the introduction of finite dimensional complex
vector spaces VΣ and VΣ associated to Σ and Σ*, respectively. Viewing manifolds
and graphs as defining elements in these spaces via

M2 -> v(M2) e VΣ for dM2 = Σ,

M, -> v*(M1) e VΣ* for dMλ = Σ* ,

\G\Σ-*v*(x)eVΣ* for \G\ΣCΣ,

\G\f - v(x) € VΣ for \G\fcΣ*,

(7.9)

(7-10)
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with the pairings (by which VΣ is considered to be the dual of VΣ)

vΣ -> K ,
-> (Mx, M2) = Z(M! U M 2 ) ,

v*fe) <8> (M2) -> (x, M2) = Z(M2, |G|f),

^ ( M ^ 0 i;(x) -> (M l5 x) = Z(MU \G\f),

^ fex7) = Z(Σ x /, |C?|f U |

(7.11)

we obtain a realization of a topological quantum field theory in the sense of [Atl]
and [At2]. In this notation Eq. (7.3) and (7.7) read for dM2 = Σ and ΘMX = Σ1*,

Z(M) = (

corresponding to the surgery

(7.3')

CX3
and

(7.70

corresponding to the surgery

for the case \G\y = \G\Σ. Obviously, (7.10), (7.11), and (7.70 may be generalized to

arbitrary graphs \G\y c Σ. The significance of these equations is that the vectors v(x)

and υ*(x) form a complete set of vectors in VΣ and VΣ , respectively. (They are in
general not linear independent since the number of vectors exceeds the dimensions
of the spaces, as we will see below. However, we will also construct a basis.) From
Eq. (7.70 we read off that

1ίy = (^y) (7-12)

represents the unit matrix 1Σ in the vector space VΣ (and VΣ , respectively) in the
sense that

1Σ = V WΣ1Σ 1Σ (1 13)

The dimension dΣ of the vector space VΣ is given by evaluating the trace

(7.14)
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Theorem 7.4. For the (n + n)-fold punctured Riemann surface Σ9

a δ of genus g, the

dimension of the associated vector space is given as

. . . Nan(N2)9~ι)tr(Nhl . . . Nhfi(N2)9-1), (7.15)

where the fusion matrices Na are given as

iNa)bc = δabc, (7.16)

and where N2 is the matrix

In view of Eq. (1.1) this agrees with Verlindes's formula [Ve] and its generaliza-

tions to punctured surfaces (see e.g. [MS, Bo, Th, Wi3]). The proof of Theorem 7.4

will be given in Appendix C. It relies mainly on Theorem 7.1, the disentangling of

knots and applying modular formulas derived in Appendix A. Note that in the case

of an unpunctured surface Σ and an explicit triangulation of Σ x Sι formula (7.15)

gives a nontrivial sum rule for 6j-symbols.

As promised we now construct a basis in the space VΣ associated to an oriented

surface Σ. Again it suffices to consider a connected component of Σ, so we will

consider the case Σ = Σ9 (g > 1).

Definition 7.5. Consider the handle body (gefillte pretzel) MΣ9 associated to Σ9

such that dMΣ9 = Σ9. Let ( α l 5 . . . , ag, 6 1 ? . . . , bg) be a canonical homology basis of

Σ9 such that the α's are contractible in MΣ9. The canonical coloured graph &Σg

is defined as follows. Its core is of the form depicted in Fig. 21, where the circles

are homotopic to ( α ^ . . . , ag) in MΣ9. The tubular neighborhood ΪF^ΣQ of this core

is then a deformation of MΣ9 (it lies in the complement of a tubular neighborhood

of Σ9 in MΣ9). On dJfξ?, which is diffeomorphic to Σ9, let \G\e be the coloured

graph with colours e = ( e 1 ? . . . , e 3 3 ) for g > 1 [e = ( e ^ for g = 1] as depicted in

Fig. 2 1 .

In addition all lines with colours e 1 ? . . . , e3g_3 are assumed to be left-handed, i.e.

meridians Tm (m = (m1,..., rn3g_3)) are introduced. Let ί ^ ? 5 be another canonical

graph of the same form, where now the colours / = ( / ! , . . . , hg-^) a r e right-handed

w.r.t. to meridians T ^ and such that ^ΣQ and ^ΣQ are disjoint. Obviously this
~~ - L

last condition may be fulfilled. We recall that the relative braiding between these

two coloured graphs is trivial. We write for short 5^/? = &Σ9 U S?jP9'. Note that

the colours e and f are restricted by the fusion rules i.e. δ^ „ „ = δp „ p = . . . =
— ±- J e l e l e 2 e2e3e4

δf j f2- — 1 holds (see Fig. 21). Therefore the number of colourings of ̂ Σ^ is

βi β3 e3<7~3

e 4

Fig. 21. The core of canonical graph W^9 or the graph | ^ | e associated to
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given by Eq. (7.15) for the case n = n = 0,

dΣQ = (tr(N)9~1)2 . (7.157)

We extend the maps (7.9) by

ZζΣl ->v(eJ)eVΣ (7.18)

and the pairings (7.11) (for dM = Σ9* and \G\ξ C Σ) by

* v(e, /) -» (M, e, /) = Z(M U MΣ9,9f!),
_ (7.19)

fee/) = ^Σ^\G\Σ

and have the

Theorem 7.6. ΓAe handle body MΣ9 equipped with the graph &ΣQ and 'SPjF9 defines

a vector basis υ(e, f) of the vector space VΣ9 associated to the surface Σ9. In analogy

to relation (7.9) the colours x describe the "components" of the vectors v(e,f). In

addition there exists a vector basis v*(e, /) G VΣ such that the pairing relations

υ*(e, /) ® v(e', /') - (e/, e'f) = δ^δg (7.20)

hold and
(Mλ, M2) = ^ (Mx, φ (e/, M2) (7.21)

is valid for dMλ = Σ9 and dMΊ = Σ9*.

Proof. In Appenix D we construct the vectors υ*(e,f) fulfilling (7.20). The claim

follows then by Eq. (7.15').

Remark 7.7. This theorem may be generalized to the case where Σ9 is replaced by
Σ9 -

the punctured surface Σ9

 5. Now S?e

ΣQ has to be replaced by S^ -'-, obtained from

&Σ9 by n tubes starting at D2

a , . . . , Ό\n and ending on d^e carrying lines of colour

α 1 ? . . . , α n respectively. These lines all end on \G\e. The construction for ^ -'- is

analogous.
We conclude this section by introducing [for the case Uq(sl(2, C)] a hermitian

structure on VΣ (Σ an unpunctured Riemann surface) making VΣ a Hubert space.
This structure is analogous to reflection positivity [OS] in euclidean quantum field
theories. For simplicity we again consider the case Σ = Σ9 only. The extension to
arbitrary Σ is straightforward.

Theorem 7.8. For the case J7 (sZ(2, C)), there is an antilinear map τΣ :VΣ —> VΣ

such that (τΣ)* = τΣ*, τΣ* o τΣ = iάvΣ and τΣ o r Γ * = i d y i : * with the following
properties:
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(i) The vectors defined by Eqs. (7.9), (7.10), and (7.18) are mapped as

τΣv(M2) = v*(M2) for all M2 with dM2 = Σ, (7.22a)
2 Σ χj

τΣv(x) = (~l) i υ*(x), (7.22b)
2Σ*

V(x),

τ2/υ(e,/) = (-l) ' ' Jv*(e,/). (7.22c)

(ii) 77ze hermitian form

(v, vf) = (τΣv, υ') for υ, vf G F ^ (7.23)

on VΣ is positive definite.

Proof We introduce the basis

u(e,/) = (i) J e^Jv(eJ) (7.24)

on F^7 and the dual basis

u*(e,/) = (-i) '" GJ+ J (ej) (7.24*)

Define τ Γ to be the unique antilinear extension of the map u(e,f) ι-» w*(e, /) on
this basis. Then relation (7.22c) automatically holds and the claim (ii) is a consequence
of (7.20). It remains to prove the relations (7.22a, b). They, however, are immediate
consequences of the following proposition which is proven in Appendix E.

Proposition 7.9. The following relations are valid in the Uq(sl(2, C)) case:

(Mx, M 2)* = (M2 , M*), (7.25a)

2Y. x •

(Mux)* = (-l) i \x,M*), (7.25b)

(7.25c)

(ef,M2f = HH'" J" J '(M*,e/), (7.25d)

(pf rn\* (—\\ 3 3 (rp pf\ (1 Ί^pΛ

for any Mx and M2 with dMλ = Σ*, dM2 = Σ.
Note in this context that the relation

W^ = |W^ | (-1) J Xj (7.26)

is valid. Also this proposition in particular says that the relations

Z(Mf = Z(M*) = Z(M) (7.27)

and

U M) > 0 (7.28)
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are valid for all compact oriented (not necessarily closed) 3-manifolds M. In (7.28)
we have equality if and only if v(M) e VdM is the zero vector. Note that if the υ(M2)
(dM2 = Σ) span VΣ', then τΣ, whose existence we just have proven, is uniquely
fixed by Eq. (7.22a).

Examples 7.10. i) Let M 5 i x 5 i = Sι x D2 be the solid torus and |G|f £ f its

canonical graph on dMs\xS\ = Sι x Sι. By means of Lemma 5.1 one easily finds

(for e = / = 0)

( x , M S i χ s 0 = (3L,00) = Z I ( k ^ V ^ ) I = ί, ι Oί.,,,. (7.29)

ii) Let M = S3\(Sι x i^2) be the external of a torus in S3 and | G | ^ ^ f 3

} its

canonical graph on dM = Σ7* = (S'1 x S1)*. By means of Lemma 5.1 we obtain

V X2 J

Applying the surgery formula (7.3) or (7.37) we find with M = Ms\xS\ of i)

(M, M) = Y^ W!? xS (A

iii) As a generalization of i) let |G| f i : £^ and M 5 i x 5 i be as in i) but now equipped

with its canonical lefthanded graph &f xS c ^ 5 i x 5 i given by Definition 7.5.
Using Lemmas 5.1, 5.3 and Racah's relation (2.10) one finds (for / = 0)

feeO) = Z(MsixSi9&e , \G\XιX2X3) = —— - 5 - δXιX2X3. (7.32)

iv) As a generalization of ii) let \G\^X

X^ ) and M be as in ii) but now equipped with

a lefthanded graph ^ , ; (not contractible in M). Similar as in iii) we calculate
(for f' = 0)

s l s l { s l S l ) * Qχ Xie' δ (1 33)

v) Let | G | ^ ^ 4 ) a n c^ ^ ( ^ ^ s 1 ) * = ^51x51 b e as in ii) but with the opposite

orientation and equipped with its canonical lefthanded graph S?;, C M^s\xS\y

Analogously to (7.32) and taking into account the remarks after (3.6) we find (for

*X3 xl
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vi) Combining iii) and iv) we use M U M 5 i x 5 i = 5 3 and obtain in agreement
S'1x51

with example 6.8 iii) [see Eqs. (6.9) and (6.10)]

(?6,eO) = Z{S\ sξ?xSl)* u S?/xsl) = Σ WllχS\e\x)(x,e)

Σ Π ^ ^ ^ L ^ i ^
i=\

where Eq. (A.I) has been used.
vii) Combining iii) and v) we use M*ίχSl U Ms\xS\ = S1 x S2 and obtain in
agreement with Eq. (7.20), s ί χ S l

(e'O,eO) = Z(Sι x S\ g**1**1)* u ^/^) = £ WflχSV,*)(s,e)

5e'e (7-36)

8. Conclusion

This article has shown the richness of structures contained in the combinatorial
approach of Turaev and Viro to topological quantum field theories. So far our
discussion has basically been limited to the quantum group Uq(sl(2, C)) and to finite
groups having only real representations (i.e. real characters) and fusion matrices
whose entries are either zero or one (like e.g. the permutation groups S3 and «S4). By
the discussion in [DJN1, DJN2] the Turaev-Viro approach as well as the extension
given here may be extended to arbitrary quantum groups or finite groups. Note that
for finite groups and the corresponding usual group algebra the Racah relation is
essentially trivial leading to an R-matrix which is just the permutation matrix. This
implies that finite groups in contrast to quantum groups do not give rise to interesting
knot invariants. Also the Reshetikhin-Turaev invariant τ(M) is trivial in that case
[FRS]. On the other hand, every 3 cycle on a finite group as considered in [DPR]
actually defines an associator which turns the cocommutative Hopf algebra of the
group into a quasitriangular quasi-Hopf algebra [D] (we owe this observation to G.
Felder). Our methods also extend to this case and should be related via (1.1) to
the discussions in [DW, AC1, AC2, FQ]. The discussion of links and graphs in 3-
manifolds and of punctured Riemann surfaces shows that particles may be introduced
describing conformally invariant field theories (CFT) on the boundary of the 3-
manifold. The appearance of left- and right-handed coloured punctures correspond
to left and right handed chiralities. The picture emerging here suggests that CFT
describes the asymptotic "free" part of a 3-dim QFT with braid group statistics. This
raises the question of finding analogues of the usual Hamilton and LSZ formulation
in order to discuss scattering theory in this context.

Acknowledgements. The authors have profited from discussions with W. Mϋller, F. Nill, S. Novikov,
K. H. Rehren, and B. Schroer.
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Appendix A

In this appendix we present some usful well known modular formulas. The following
equations involving graphs are to be understood as equations of their invariants in
the sense of Theorem 4.2 and Eq. (4.1). If there are parts of graphs they are to be
interpreted as generalized vertices in the sense of Eq. (4.4). With the conventions
used in Sect. 4, let us define the matrix Sab (α, 6 G &) with values in K by

Sab = —
W

111 ' J

2 2

(A.I)

Here we have made use of relation (4.19). By the Wigner-Eckart theorem to be proven
below, we also have

a

(A.2)

and we define
w (A.3)

Now the chain of equalities combined with (A.2)

imply

= w2

c(a)w2

d(a) (A.5)

for all a G JF. In what follows, we will assume K is an integral domain.

Lemma A.I. If for given a G & there is some b € & with ω\ =|= ̂ ( α ) , then

w2

bw
2

b(a) = w2δa0 . (A.6)

Proof The proof mimics the orthogonality relation of eigenfunctions for different
eigenvalues of the Schrodinger equation. By (2.2) and (A.5) we have

- w2

h(a))

for all b and the claim follows.

δbcdw
2

dw
2

c(a) - ^ δbcdw
2

cw
2

d{a) = 0

c,d c,d
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For the Uq(sl(2, C) case

) 2

393

(A.7)

such that the assumption made in Lemma A.I holds for all a =j= 0. In the general
context one has the following sufficient condition

Lemma A.2. If q2

a -φ 1 and Σ Qlwt Φ 0 t n e n there is b e ^ with w\ φ w\(a).
c

Proof. Assume the contrary, then

holds for all b. Multiplying by w\ and summing over b gives

2 2 \Γ^ 2 4 V ^ 2 4 2

TaK 2 ^ %Wb = 2 ^ QcWcWa
b c

from which we deduce q^ = 1 contrary to the assumption, q.e.d.

Note that (A.6) amounts to the statement

7 y
b

Lemma A.3. Assume (A.8) is valid for all a e <$?. then

/ , SabSbc = δac

b

holds for all a and c in ί7.

Proof. By (A.8) we have

= w2δac.

On the other hand by (4.2) and (A.2) this quantity also equals

vaUJb ^b^c

(A.8)

(A.9)

and the claim follows:
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Corollary A.4. Assume (A.6) is valid for all a e & such that (A.9) also holds. Then
one has

δabc = (A. 10)
J0d

and the fusion matrices Na with (Na)bc = δabc all commute.

By methods similar to those used above one can prove the following. Set

Tab = ^

provided ρ == fw~ι

= ptabql ,

K exists. Then the relation

(TSf = 1

(A.ll)

(A12)

holds. Relations (A.9) and (A. 12) show that S and T form a representation of the
modular transformations on a torus with period r

S:τ -v - 1 T:τ->τ-f-l. (A.13)

In the case of Uq(sl(2, C) the w\(a) are all real such that 5 is a real orthogonal matrix.
Also ρ is then of modulus 1 such that T is unitary. In fact, ρ may then be calculated
via Gauss reciprocity theorem to equal qι/2e~l7Γ'4. In particular, this representation
is the same as in [GW].

Lemma A.5. A Wigner-Eckart type relation holds for any generalized vertex Vn^x in
the sense of Sect. 4 (see e.g. [KRJJ

~~ (A. 14)

where the vnx(y) are called basic vertices (in a "path-basis") and are given by
Eq. (A. 15). For n = 2 and 3 they coincide with the elementary ones 0/(3.8).

Proof. Using the orthogonality relation (2.7) one obtains

Vn n - 3

Σ- 2

X\X2

i = 0

Vn

IΠ < χo

Vo yi

yo yi

~TT " 1
Xn

y =i

Vn

n-3 Xi

yι

Jxn (A. 15)

y

ΓTΓ •- Ί
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The last equality is a consequence of assumption (2.1). We find

395

AA, (A.16)

where the first proportionality follows from Eq. (2.4) and the second one since A
and A' belong to the same sector in the sense of Sect. 3. But because of Eq. (2.1):
δab0 = δab W e O b t a i n

ί,A'e.δAA> => x0 = 0. (A.17)

Appendix B. Proof of Theorem 7.1

Let M be of the form (7.2). In order to perform surgery along a surface Σ9 of genus
g we represent it in a canonical way by a 4^-polygon ( c u d1? dj"1, d j " 1 , . . . , d j 1 ) . In
Σ1 x / as the intersection point of all cycles d
D3 as in Fig. 22a,

έ we cut a hole into M of the form

Z(M) =-X; Z(M\D3).
to 2 (B.I)

Along the cycles c{ and d̂  we introduce tubes d3ζ (i = 1,.. ., 2g) (by means of
Lemma 5.3) with meridians m j , . . . , m 2 g as in Fig. 22b,

= ά Σ Π U (B.2)

where M = M\D3\^\...'

As a consequence M{ and M2 are now only connected by a cylinder D2 x / as
depicted in Fig. 22c. The intersections of the meridians with this cylinder are of the
form Pi x / (i — 1,.. ., 2g; Pi e dD2). We use the second orthogonality relation of
(4.11) 4g — 1 times (introducing new lines with colours x^ ,yi (i = 0,. . . ,4# — 3)
such that only one line Po x / (with colour x0) intersects the cylinder (see Fig. 22d)
to obtain

1 29 4^-3

" ̂ 2 2.^ 1 1 Wχi Z^ 1 1
x i=0 y i=0

a) b)
Fig. 22. a Surgery along Σ9. The "half meridians with colour xi drawn in b at the c- and d-cycles
are connected to the corresponding other "half ones at c~λ and d~ι
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M2

c) ' Mi

Fig. 22c, d. Surgery along Σ^

where \G\xy is the graphic depicted in Fig. 22d. We cut the cylinder by means of

Lemma 5.1 to obtain x0 = 0, y0 = xx and

1 6^-3

= — Σ Π < , \G\f), (B.4)

where we have written x2g+i = y^i = 1, , 4# — 3 and | G | ^ 9 is given by Fig. 19.
Using Lemma 5.3, Corollary 5.5 and 5.6 one can prove the surgery formula for the
case that some left- or right-hand lines may cross Σ.

Appendix C. Proof of Theorem 7.4

The dimension of the vector space VΣ associated to a closed oriented 2-manifold Σ
is given by

dΣ = Z(ΣxSι). (C.I)

It suffices to consider the case where Σ = Σ9 is connected of genus g. Using the

surgery formula (7.2) we write (see Fig. 23a)

, | G | ^ U | G | ^ ), (C2)

where GΣQ is the canonical graph given by Fig. 19. By means of Lemma 6.4 we
may introduce a tube with two meridians over and undercrossing, respectively, a line
with colour x0. The tube connects Σ and Σ1* as in Fig. 23b. Using relation (4.11)
we obtain

4 ff= Σ25ΣΠ<Π
x,y i=0u,v

WΔ
(C.3)

x ι=\
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Fig. 23a, b. The state sum Z(Σg x I)

Fig. 23. c The handle body Hlg with the graph |G| X ) U / U of Eq. (C.3) (the handles are connected at
1,2, etc.); d the ball D3 with the graph Si U Si ofΐq. (C.4)

where Hlg = (Σ^ x /)\(£>2 x /) is a handle body as depicted in Fig. 23b or
Fig. 23c. The 2 — g handles may be cut due to Lemma 5.1 and as a generalization of
Example 5.8 iii) we find (see Fig. 23d)

U,V

g-2\ 2

)
(C.4)

The last equality follows from (A. 10) and (A.9).
For the case Σ = Σ9

a h (a = ( α l 5 . . . , α n ), b = (bu . . . , bn)) of (7.5) in (C.2) the

Σg -

canonical graph is replaced by |G|χ-'~ of Fig. 20 and Eq. (C.I) by

(C.5)
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a) b)

Fig. 24. a The handle body D3

a h with the graph |G|^)6,m,nι,u,v> b t n e b a i l D?> w i t h t h e S r a P h

6

where the tubular neighborhood of c ( S ^ ) is of the form (D2

aι x Sι)U... U(£>^ x S1).

The associated coloured graph \G\^hmM consists of n + n loops of the form

(P α i x S \ U . . . U (P-bn x S ^ ' ί w k h P α ί G 02%> P 5 . G 32^.) and their

meridians (Sι

aι x Q)mγ U . . . U ( 5 ^ x Q ) ^ (with Q e S1). We may proceed

as above and in (C.4) D3 (Fig. 23d) is now replaced by the solid handle body
D3 r = D3\D^ x I\... \D^_ x / whose boundary has genus n + fi (Fig. 24a shows
an example for n = n — 1).

The graph Sι

u U Sι

v in (C.4) is replaced by a graph \G\^hmM^v (see Fig. 24a for
the case n = n = 1, where the meridians m and m have been moved to the ends of
their tubes for clarification). A procedure similar to the one used in example 5.8 iii)
leads to

(C.7)

5^ U U S^ ) U ( S i U U Si ) is of the form depicted

in Fig. 24b (for the case n = n= 1). Using Eq. (A.2) we obtain

^g-2 n ς n_ g

wlwl Π
i=ι

= tr(iVαi ...Nh"(N2)9-1). (C7)

\LJ. ί)

Apendix D. Proof of Theorem 7.6.

Consider in S3 the external of the handle body MΣ9 of Definition 7.5

S3\MΣg, with d(S3\MΣg) = Σ9* ,

and the graph &ΣT in i n t S 3 \ M Σ 9 ) such that the braiding w.r.t. S?fl in ir

is given by Fig. 25a) for the left-handed part (the right-handed part is defined
analogously).

As an extension of Eq. (A.2) we define the modular matrix See, associated to Σ9

U (D.2)
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e4 e4

: a)

Fig. 25. The modular matrices S and S associated to Σ9

•b)

Analogously to (7.19) we obtain a map

with the pairing

(D.3)

(D.4)

Let § (the "mirror" of S) be defined analogously to (D.2) by Fig. 25b. Using the
Wigner-Eckart like relation (A. 15) we find

/ .

Hence we have the "orthogonality" relation (7.20) with

(D.5)

(D.6)

e'J'

It is easy to see that S and S are related by "modular shifts" T w , analogously to Eq.
(A.11),

(D.7)

Appendix E

In this appendix we give a proof of Proposition 7.9. It is an easy consequence of the
relations

and
(E.2)

and the lemma below. Note that the definition of the vector v*(ef) given by Eqs.
(D.3) and (D.6) is in agreement with Eq. (E.2). This follows from the orthogonality
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relation (7.20) and the fact that

Z(M* U MΣ, 3ζ} U S?,z/) = δ^δtf , (7.200

where SP*- C M% and 3?e, ̂  C MΣ. The derivation of Eq. (7.200 uses techniques of

Sect. 5, especially those applied in example 5.8 iii).

Lemma E. For any oriented, compact 3 manifold M and any coloured graph \G\%
on dM the following relation is valid in the context ofU(sl(2, C)):

(E.3)

σ°EG
n(σ°)=3

Proof The proof is a hidden cohomology argument and based on the following
behaviour of the 6j-symbols under complex conjugation:

i j k

I m n
\2i+2j+2k+2l+2m+2n i j k

I m n

For a given (admissible) edge colouring j of a triangulation X of M let

2_\ j(& )

(E.4)

signj(σ2) = (-i

signj(σz).

Then (E.4) implies

(E.5)

(E.6)

(E.7)

( E 8 )

for suitably defined sign(j, J)(σι,cr2) (σ1 G 9σ2) [see also Eq. (E.10) below for an
example]. With these formulas it is easy to see that the relation

j \ J) (Xf = J ] sign(j, J) (σ1, σ2)W{j\ I) (X) (E.9)

(6j) (σ3)* = sign j(σ 3) (6j) (σ 3 ).

Analogously, if we define sign(j,J)(σ2) (σ2 e dX) by

(6j, J) (σ2)* = sign(j, J) (σ2) (6j, J) (σ 2),

then it is easy to see that we can write sign(j, J) (σ2) in the form

holds. Next we look at (3.4) with the notation of Fig. 2. By (E.4) we have

sign(x, J) (σ°, σ1) sign(x, J) (σ°, σ1)

x signϋ,iXσ'.^ JS feJ.iXσ1) (E.10)
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with the obvious definition of sign(x, J) (σ°, σ1) (i = 1,2). Here σ\ (i = 1,2) are the

unique 2-simplexes in dX having σ1 in their boundary.

Finally we look at w(x,J)(σ°) (σ° G G{dX)) [see (3.6)]. There we have

w(x, J) (σ0)* = w(υf = w(υ*) J J signfe J) (σ°, σ1)
σιest(σΌ)

if n(σ°) = 2 o r 4

Σ -(σ1) (E.11)

where i>* equals υ with the opposite orientation. Then an easy argument shows that

<x°eG
n(σ°)=3

since all other sign factors sign j(σ 3), sign(x, J) (σ°, σ1), and sign(j, J) (σι, σ2) appear

exactly twice. Relation (E.I2) obviously proves the lemma.
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