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Abstract. We show that the ^-difference systems satisfied by Jackson integrals of
Jordan-Pochhammer type give a class of the quantum Knizhnik-Zamolodchikov
equation for Uq{ύ2) in the sense of Frenkel and Reshetikhin.

1. Introduction

One of the most interesting features of the Knizhnik-Zamolodchikov equation
originated in conformal field theory is the relation between its connection matrix
and the trigonometric solutions of the quantum Yang-Baxter equation
[TK, K, D]. It is related to the fact that certain hypergeometric type integrals give
solutions to the Knizhnik-Zamolodchikov equation [DJMM, Ma, Ch, SV], etc.
This fact is also looked at from the viewpoint of the free field realization, e.g.
[Ku, ATY]. Besides them, the structure of the hypergeometric type integrals had
been studied, e.g. [Al, A2]. Recently it attracts attention to construct a ^-analogue
of these theories.

The Jackson integrals of Jordan-Pochhammer type are the simplest multivari-
able generalizations of Heine's basic hypergeometric function which is a ^-ana-
logue of Gauss' hypergeometric function. They satisfy a system of first order
^-difference equations, whose connection problem was solved by Mimachi [Mi].
Recently Aomoto and others [AKM] showed that the connection matrix deter-
mined by Mimachi is related to the ABF-solution of the quantum Yang-Baxter
equation [ABF]. On the other hand, Frenkel and Reshetikhin [FR] studied
a ^-analogue of the chiral vertex operators of the WZNW model, along the line of
Tsuchiya and Kanie [TK]. In particular, they introduced a g-difference system
called the quantum Knizhnik-Zamolodchikov equation, and discussed the relation
of the connection matrix with elliptic solutions of the quantum Yang-Baxter
equation. Then it seems possible to understand the result of [AKM] in the
framework of Frenkel and Reshetikhin.

In this article, we shall explicitly give solutions to a certain class of the quantum
Knizhnik-Zamolodchikov equation for l/β(sl2) by Jackson integrals of Jordan-
Pochhammer type. More precisely, we show that the ^-difference system for the
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Jackson integrals of Jordan-Pochhammer type is written in terms of trigono-
metric quantum /^-matrix, and that this equation gives a class of the quantum
Knizhnik-Zamolodchikov equation. When q goes to 1, our expressions of solu-
tions go to the integral solutions of the Knizhnik-Zamolodchikov equation given
by [Ch] in the trigonometric form.

The paper is organized as follows. In Sect. 2, we write the ^-difference equation
for Jackson integrals of Jordan-Pochhammer type, whose proof will be given
in Sect. 4. In Sect. 3, we identify the equation with the quantum Knizhnik-
Zamolodchikov equation. In Sect. 5, we give some comments on the connection
problem according to current literatures.

2. ^-Difference System for Jackson Integrals

Let p be a fixed complex number such as 0 < \p\ < 1. Let us denote

( α ) β ) = Π ( l -ap") (2.1)

» = o
as usual. For a value s e C * and for a function φ(t\ we define

SJ φ(t)dpt = s(l - p) Σ φ(spn)pn (2.2)
0 n= - o o

whenever it is convergent. This is called the Jackson integral along a g-interval
[0, soo], which is a ^-analogue of the ordinary integration. The g-shift operator Tk

is defined by

(TkF)(xu . . . , x H ) = F(xl9 . . . ,pxh9 . . . , x n ) (2.3)

for a function F(xίi . . . , xn).
Now consider the Jackson integral of Jordan-Pochhammer type:

*>(*>=7 f-1 π $ $
where βj are complex parameters and x = (xl9 . . . , xn) is a variable in ( C x )n. We
are interested in the g-difference system associated with Fo. Take the set of
functions ( F 1 ? . . . , Fn) defined by

Ft(x) = 7 Φt(t)dpt (2.5)
o

where, for each i = 0, . . . , n, we have set

i{}" πr=i
Let us calculate the ^-difference system satisfied by Ft. We set

i/Xj ϋi<j9

1 i f / = ; , (2.7)

xi/xj if i>j.

Then the result is summarized as the following proposition.
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Proposition 1. We define the nxn matrix Λk with entries a\j as follows. Ifί=j

then

^i <j then

(ί-p"')xki 1-pβ

4 = π

(2.8)

(2.9)

/ / ; ^ k ^ i then

n*. — r>β
-pβ<)XkίJπPβιXki-

Otherwise a\j = 0 .

Then we have

!zrφr • (2.10)

(2.11)

(2.12)

Remark. For each i,j (i φy), let Stj denote the n x n-matrix defined by

1

u - Pβt

pβ<

Pβ

- 1

ij - P

β

Λh

(2.13)

•th

We also consider the n x n-matrix Pk defined by

Λ . \
1

Pβ

1

(2.14)
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Then, by an explicit calculation, we see

Ά i — &k,k+l - >^k,nΓk^k, 1 Ή,fc-1 \^ΛD)

Matrices Siy j form a set of unitary quantum ^-matrices. Namely we have

Sitj(TiSjti) = id, and S1>2S2y3Slf3 = Sί>3S2f3Slt2 (2-16)

Finally, let us discuss the relation among F o , . . . , Fn.

Proposition 2. We put β0 = - β - (βx + + /?„). Then the following relation
holds:

n

\ p^i+i ^n y 1 — P )F( = 0 . (2.17)
i = 0

Therefore Fo is recovered from Fu . . . ,Fnifp
βo Φ 1.

Remark. The identity (2.17) is a g-analogue of Aomoto's linear relation in the sense
of [A2] and [DJMM].

3. Comparison with the Quantum Knizhnik-Zamolodchikov Equations

Let us briefly review the^quantum enveloping algebra and the trigonometric
R-matrix in the case of sϊ2- The quantum enveloping algebra Uq = Uq(£l2) is
defined as an algebra with the generators:

y ± γ + F ί l j / i l /"5i\
- ^ O J ^ I J ^ O > Λ 1 W 1 /

and the relations:

KYϊΊf-i — n±2Ύ± F y±F-i _n + 2Y± rί + nJ^iΛi J^i —q A , , JS^iΛj J^i —q Λj yiψj),

{XtfXf - (q2 + 1 + q-2){X?)2XfXr +(q2 + ί+ q~2)Xt Xf{Xt)2

-Xf{XtY = Q (iΦj). (3.2)

Here, q^ denotes a general complex parameter. The comultiplication
Δ:ϋq-*ϋq®UqVi defined by

i) = Ki<S)Ki. (3.3)

We put Δ' = σ°A where σ(a®b) = b®a in f/,®^,. Next we consider the
subalgebra Uq = Uq(sl2) generated by X* = X f, X * = X ί . For each x e C*, we
define the algebra homomorphism φx: Uq -*• Uq by

φx{Kx) = K. (3.4)
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Let (Fj, TCf) be representations of Uq with the highest weights λ f. Then
(Vi(x% TCi) = (Vi9 7tioφx) gives a representation of Uq for each xeC. The operator

RViVj(x): Vt(x) ® Vj(l) -> Vt{x) ® Vj(l) (3.5)

such that

Δ'(a)RViVj{x) = RVιVj{x)Δ{a\ aeUq

gives a trigonometric .R-matrix. Let vt be the highest weight vector in Vt. We fix
a choice of normalization such that

RviVj(x)υi ® vj = υi ® υj - (3-6)

Then jRKiK (x) acts as

Λ ( ) A " " S X- ® J ® X-Λκ,κ,(x)A""»t <S> vj = χ_qm,+mjX- v, ® »j + χ _ Jm+mj υt ® X-»; ,

x(ί — a2mi) xam — amj

Rvιrj{x)υt ®X~Vj= χ

l _ q*+m;x- vt Θ vt + χ

g _ q m \ v^X'Vj. (3.7)

Here m̂  = (λh α) for the simple root α.
Let λ i, . . . , /lM, A be a set of weights. Let Ff be the irreducible representation of

Uq with the highest weight λt and the highest weight vector vt. Let v be a complex
parameter and put pv = q. We set p = α/2, the half sum of the positive roots. For
a weight μ, we denote by (qμ)k the action of qμ on the fcth component of the tensor
product Fi ® . . . ® Vn. For instance,

qμ(vk) = q{μMυk, qμ{X~ vk) = q^^^X' vk . (3.8)

The quantum Knizhnik-Zamolodchikov equation introduced by Frenkel and
Reshetikhin [ F R ] is written as the following system of ̂ -difference equations:

k = 1, . . . , n , (3.9)

where #" = ̂ (xί9 . . . , xM) is a function valued in VΊ ® . . . ® Vn.

Let us compare Eqs. (2.12) and (3.9). Take the weights λθ9 λ^ such that

Λo + + λn - λ^ = α, λ 0 + /loo = λ , (3.10)

and put the parameters as:

/ ϊ = - 2 α o o + α , α ) v , ft = 2(Aίf α)v . (3.11)

We set

φ^X!, . . . , * „ ) = pV-i + + ^ x ξ i . . . xfrFtp'^xu . . . , p ^ 2 x M ) , (3.12)

for each i = 1,. . . , n, and define the Fx ® . . . (x) Fn-valued function &F by
n

^ = Σ Φ«(*i> » x ») ϋ i ® ® x " ϋi ® ® υn - (3.13)

Then, by rewriting Eq. (2.12) in terms of #", we have
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Theorem 3. The system (2.12) is equivalent to the restriction of the system (3.9) to the
weight subspace with the weight λx + + λn — α, and the function 3F defined by
(3.13) is a solution of (3.9).

Remark. When q goes to 1, 3* defined by (3.13) goes to a special case of the integral
solutions to the Knizhnik-Zamolodchikov equation obtained by Cherednik [Ch]
in the trigonometric form.

We shall give another description of the equation. Let λ0,. . . , λn9 λ^ be a set of
weights such that

λo+ ' - +λn-λO0 = κ. (3.14)

Let Vi be the irreducible representation of Uq with the highest weight λt and the
highest weight vector vt. The quantum Knizhnik-Zamolodchikov equation for
a Homy ( FQO, F O ® . . . ® FJ-valued function 3F is written as:

Xk-i) RvkVl(pXk/Xi)Rvkvo(0)(q2p)k

xRv,v(0)-1RVk+ιVk(xk+1/xky
1 . . . RVnvJίxnlxk)-1&'. (3.15)

00 *

Here we understand !F as an element of Fo ® . . . ® Fn ® F * . Next we consider
the set jf λ w( Fo <g) . . . ® Vn) of highest weight vectors in Vo ® . . . ® Fπ with the
weight AQO. We have an injection

, F o ® . . . ® F J - ^ J ^ J F o ® . . . ® FM) (3.16)

by evaluating the highest weight vector i ^ . Then Eq. (3.15) is regarded as a restric-
tion of the following system:

= Rv^.SpXk/Xk-1) Rvh

xRv^v^Xk+i/Xk)'1 . . RVnvk(Xn/XkV1&' , (3.17)

where 3F is a Jf; ( F o ® . . . ® Fπ)-valued function.

Remarks. (1) If all Ff are the Verma modules or are the finite dimensional modules,
then the linear map (3.16) is surjective, and the system (3.15) is the same as (3.17).

(2) If g2<λo'α) φ 1, then the system (3.17) is same as the restriction of the system
(3.9) to the weight subspace with the weight λ1 + + λn — α, hence is equivalent
to the system (2.12).

We define the Fo ® . . . ® FM-valued function & by

& = Σ <f>i(xi>- >*n)vo® . . . ®X-Vi® . . . ®ι?Λ, (3.18)
i = 0

where φt is defined by (3.12) for each i = 0, . . . , n. Then, by interpreting the
identity (2.17), we have

X+^ = 0. (3.19)

Therefore !F is one of the highest weight vectors in Fo ® . . . ® Vn with the weight
A a,. Thus we finally obtain:

Theorem 4. The JfλJ Fo ® . . . ® Vn)-valued function & defined by (3.18) is a solu-

tion of the quantum Knizhnik-Zamolodchikov equation (3.17).
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Notes. (1) In the situation of [ F R ] , Vo and V^ are integrable (/^-modules and

Vx, . . . , Vn are finite dimensional (/^-modules, and v corresponds to — — ,
2(k -f g)

where k is the fixed level and g is the dual coxeter number. Moreover the quantum
Knizhnik-Zamolodchikov equation for the correlation function is written in terms
of the image of the universal .R-matrix, which differs from our Rγ.γj by a certain
scalar factor.

(2) For n = 2, our expressions of solutions to (3.9) coincide with those given in
[FR, Sect. 7].

4. Proof of Propositions

We write φi(t)~ φ2(t)iί

°J ΦΛt)dpt = '] φ2(t)dpt (4.1)
o o

holds for any seC*. For example, we have

Φt(t) ~ pΦi(pt) . (4.2)

Proof of Proposition 1. The following is obvious from the definition:

TkFt = 7 ThΦt(t)dpt . (4.3)
o

Therefore the g-difference system (2.12) is equivalent to

TkΦj{t)~ t αΐjΦM (4.4)

Now, because of (4.2), the following lemma is enough to prove the proposition.

Lemma 5.

(a) For j < k9 we have

pTkΦj(pt) = p t aϊj
i=l

(b) For j = fc, we have

PTkΦj(pt) = / Σ atjΦtipt) +
i = l ί = j

(c) For k < j , we have

TkΦj(t) = t ^jΦi(t) .
i = k

Proof Since all the cases are treated in a similar way, we will exhibit detailed
calculations only for the most difficult case (b). We put atj = a^ for simplicity.
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Multiplied by appropriate factors, (b) is equivalent to

*,)

π
1 = 1

j - i

Π
l = j+l

(p' , •

- * )

ί-

j-i

l = i +

1

(pt
1

-Xι)U

n

(P>" t ~xι)

1=1

i=l

n j-1 i-1

i=j 1=1 l = j l = i+l

Since both sides are polynomials of degree n — 1 with respect to ί, it suffices to
check the equality at n different values of t. Putting t = xm/p for m Sj — 1 in (4.5),
we have

j - 1 j - 1 i - l j - 1

l = τn i = tn I = τn ϊ = ΐ + 1

(4.6)

We put t = Xj/pβj, then we have
j — 1 n

j-1 n

= cijj Y\ (pXj — pβjxι) Yl (Xj — pβjxι). (4.7)
1=1 l=j+l

We finally put t = xm/pβrn for + 1 ^ m, then we have

i=j l=j l=i+l

Now let us consider the explicit values of atj defined by (2.8)-(2.10). Substitute them
in the left of (4.6) inductively as ί =j — l9j — 2, . . . , N. Then we have

PX\ W "—« Γί (pβlχm — Xι) ΓT (Xm — Xι)
l = N pXj — pJXt ι = m ι = N

N ί-1 j-1

~ Σ aijXi(Pβjχm - PXj) Π (Pβlχm ~ Xl) Π (Xm ~ *l)
i = m i = m Z = i + 1

When N = m, this is zero and (4.6) is verified. Equation (4.7) follows easily from
(2.10). To verify (4.8), it suffices to substitute the values of aij9i=j9j + l9 ... 9N
inductively. Hence (4.5) is shown and the proof of (b) is completed. Q.E.D.

Proof of Proposition 2. By the relation (4.2), it suffices to show the following lemma.

Lemma 6. We have the following relation:

p^ + ''+^Φo(t)-p-β+1Φo(pt)= Σ pβi+ι + '"+βn(pβi - l)Φt(t) . (4.9)
i=l
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Proof. Multiplied by an appropriate factor, (4.9) is equivalent to

i = l 7 = 1

The right becomes

ΣpΛ+ +'-Πί l
i = l 7 = 1

' U x j ) Π U-t/xj). (4.10)

) Π (i-t/*ί)
7 = 1 7 = i + 1

Σp''+ + f c Π
1=1 J = l

χίp'm +'"+'"Π(i-p' ίί/χ/) Π (i -ί/*j),
i=ί 7=1 i = i + l

which yields the left of (4.10). Q.E.D.

5. Discussions

In this paper, we have constructed a Jackson integral representation of solution^ to
the quantum Knizhnik-Zamolodchikov equation in the simplest case for L^(SΪ2)
Let us briefly review the results of [AKM] and [FR], and discuss the relation of
our result and the connection problem of ^-difference equations.

Let F'i = F'i{xu . . . , xn) be the function defined by

F, 7 t*- 1 Π'-i(*/*j)« j t

'• J

o l - ί / X ί Π ' - i ί P ^ / ^ ) - " '

Consider the system satisfied by F[:

(TkF
f

u...9TkF'n) = (F'u...,F'n)A'k (5.1)

The asymptotic behavior in

{(*!,. . . , * „ ) ; | χ σ ( i ) |> ••• > \χσ{n)\ > 1}

characterizes the fundamental solution Ξσ = Ξσ(xl9 . . . ,xn) for a permutation
σe ©„. Let e be the identity in ®Λ. In the sense of [Mi], the elementary connection
matrix Pt is defined by Ξσ. = ?{Ee for a transposition σ̂  = (i, i + 1)G ®n. Then it is
shown in [AKM], for β^ = = /?„, that Pf depends only on the ratio Xi/xi+1

and satisfies the Yang-Baxter equation:
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This is equivalent to the Boltzmann weights of the eight vertex SOS model, i.e., the
ABF-solution of the star-triangle relation (cf. [ABF, JMO]).

On the other hand, Frenkel and Reshetikhin [FR] studied a ^-deformed chiral
vertex operator along the line of [TK], for a quantum affine algebra Uq($).
They showed that the correlation function satisfies the quantum Knizhnik-
Zamolodchikov equation, which is written in terms of the universal jR-matrix, and
considered the connection matrix as a ^-analogue of the braiding matrix in
conformal field theory. In some situations, they proved that the connection matrix
of the quantum Knizhnik-Zamolodchikov equation for a simple transposition
depends only on the ratio of two arguments and it satisfies the quantum
Yang-Baxter equation. The most remarkable point of their theory is the factoriz-
ation property, from which it is possible to determine the connection matrix by
computing it for n = 2, namely by considering the 4-point function as in the
discussion of [TK]. Using this argument and considering Jackson integral solu-
tion^ for n = 2, they calculated the connection matrix in the simplest case for
Uqffii) which includes the ABF-solution [FR, Sect. 7]. Therefore the connection
matrix of the quantum Knizhnik-Zamolodchikov equation for a special case
coincides with that of [AKM].

Now our Eq. (2.12) for the function Ft defined by (2.5) is obviously equivalent
to Eq. (5.1). In fact, F( and F\ are related to each other by a triangular
matrix:

The explicit form is given by

Xj - Xk

pβ' ~ 1 ) X ί (if/c = 0

Since Theorem 3 says that Eq. (2.12) is equivalent to the quantum Knizhnik-
Zamolodchikov equation (3.9), we have seen the coincidence above explicitly at the
level of the ^-difference equation before going to the connection matrix. Finally,
combined with the discussions in [FR], the results in the present paper enable us to
observe the surprising phenomenon revealed by [AKM], that a very rich structure
is contained in such a simple expression:

tβ-ι ΓΓ ( t / : X j ) o 0 d t

from the viewpoint of the representation theory of quantum enveloping algebra
Uq(ΐl2).
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