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Abstract. We analyze the quantum field theory corresponding to a string
propagating on a Calabi-Yau threefold. This theory naturally leads to the consid-
eration of Witten's topological non-linear σ-model and the structure of rational
curves on the Calabi-Yau manifold. We study in detail the case of the world-sheet
of the string being mapped to a multiple cover of an isolated rational curve and we
show that a natural compactification of the moduli space of such a multiple cover
leads to a formula in agreement with a conjecture by Candelas, de la Ossa, Green
and Parkes.

1. Introduction

In its most fundamental form, string theory is normally considered as a loop of
string propagating through space-time to sweep out a two-dimensional world-
sheet. This map of the world-sheet into space-time allows one to "pull back"
physics from the familiar space-time around us into a more simple two-dimen-
sional quantum field theory. This model is usually cast in the form of the non-linear
σ-model where the non-linearity of this field theory arises from curvature in the
target space. Thus it is a simple matter to solve string theory in flat space-time, but
more general curved target spaces can only be solved perturbatively assuming the
curvature is small in some sense.

When one specializes to the case of requiring space-time supersymmetry one
picks out a specific class of allowed target spaces in the above approximation,
namely that the target space should have vanishing Ricci curvature and be
a complex Kahler manifold. When building realistic models of physics one is
naturally led in this situation to considering Calabi-Yau threefolds [1, 2].

This model might have been of interest only to superstring phenomenologists if
it weren't for the fact that there is an alternative to this method of solution. That is,
one can take an algebraic approach to string theory as a conformal field theory
[3, 4]. This process does not involve the approximations required in the non-linear
σ-model. The analogue of the Calabi-Yau condition in this case is that the
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conformal field theory should be an N = 2 superconformal field theory. At first it
was naturally assumed that this provided a more general class of solutions to the
superstring than Calabi-Yau's ever could, but it is now generally believed from
evidence such as [5] that these two approaches are in some way equivalent
although this equivalence can only be manifest in some regions of the moduli space
of the theories considered [6].

This equivalence should be a considerable source of new results as the know-
ledge to date about non-linear σ-models and N = 2 superconformal field theories is
quite different. Thus, for example, a great deal of knowledge about the classification
of superconformal field theories should be obtained from the classification of
Calabi-Yau manifolds which is better understood. Going the other way, the mirror
symmetry which is trivial in the language of conformal field theories has led to
a new symmetry hitherto unsuspected in algebraic geometry [7, 8]. Combining the
knowledge of the non-linear σ-model with the mirror symmetry has also allowed
further analysis of the structure of a particular Calabi-Yau and has allowed
information about the rational curves on this manifold to be obtained in an elegant
way [9]. It is the purpose of this paper to analyze the link between the rational
curves on a Calabi-Yau manifold and another quantum field theory closely related
to the superconformal field theory, namely the topological quantum field theory.

The topological quantum field theory was first introduced in the context of
Yang-Mills theory by Witten [10] to provide a model of Donaldson's diffeomor-
phism invariants for 4-manifolds [11,12]. Witten then introduced a topological
version of the non-linear σ-model [13] which will be our main object of study in
this paper. This will allow us to build diffeomorphism invariant polynomials with
integer coefficients for Calabi-Yau manifolds. The integer coefficients are related to
the number of rational curves within a certain class (a generalization of degree)
when this number is finite.

In Sect. 2 we study the N = 2 non-linear σ-model and show how it is related to
the topological σ-model. In Sect. 3 we begin the calculation of the integer coeffic-
ients reducing it to a problem in algebraic geometry. In Sect. 4 we perform this
calculation and finally in Sect. 5 we combine the results.

2. Reduction to Topological Field Theory

Let us consider a map of a Riemann surface Σ into a manifold X

φ: Σ -• X . (1)

Putting coordinates uμ on X and σα on Σ we can locally consider this map to be
determined by functions u{σ) on Σ. The bosonic string action (see for example [2])
then associates the following non-linear σ-model to this:

S = t J d2σ(η"βgμvdau
μdβu

v + ε"βBμvdau
μdβu

v), (2)

where we have imposed a flat (at least locally) metric ηaβ on Σ and εaβ is the
antisymmetric tensor. The symmetric field gμv is a function of uμ and represents the
metric on X and there is an antisymmetric field Bμv9 also a function of uμ. The field
Bμv does not have as clear a geometric interpretation as does gμv. The real
parameter, ί, can be thought of as representing the string tension or, equivalently, it
can be absorbed into gμv and Bμv and so used to control the volume of X.
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If we now impose N = 2 supersymmetry we are naturally led to the condition
that X is a complex Kahler manifold [14]. We will assume that this manifold has
/ί2'0 = 0 so that all closed 2-forms are (1, l)-forms (up to addition of exact forms).
Replacing σa with the single complex coordinate z and replacing the real index
structure of uμ with a Kahler index structure we obtain the bosonic part of the
action from (2),

s = \ ί {guidtfdu1 + dvίdu1) + iB^du^u1 - duiduJ)}d2z . (3)

We can split this as follows

S = t j gijdttduΨz + l- J (gij + iBφiβu^ - duW)d2z

= t$gίJduiduΨz+t-$(φ*J)9 (4)
^ Σ

where φ*J is the pullback from X to Σ of a (1, l)-form whose real part is the usual
Kahler-form on X.

Let us now add in fermions (i.e., anticommuting operators) χι and pι and
another bosonic field Fι along with their conjugates, χ\ pi and F\ to obtain an
explicitly N = 2 supersymmetric action. The above field theory splits naturally into
holomorphic (left-moving) and anti-holomorphic (right-moving) pieces so that we
can obtain 2 sets of N = 2 supersymmetries generated by the infinitesimal para-
meters εM, εn. We have

(Sεy = 0 ,

β l ρι = 2ε1 duι, ίg l p1' = Si F ' ,

l F Γ = - 2 8 x 3 / , « g l F Γ = 0 , (5)

and

δε2u
i = iε2ρ

i, δέ2u' = 0,

^ 2 M ' = 0 , δi2u
i = iε2p

i,

δeΛ1 = -iε2F
i, δi2χ' = 2ε25u(,

4 2 χ Γ = 2 ε 2 5 V , 5 i 2 / = - ί 8 2 F r ,

5«p' = 0 , 5 fap' = 0 ,

δe2F
Γ=2ε2dpΓ, δl2F

r=0. (6)
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We can now write down the N — 2 supersymmetric form of (4) with the fermions
χ and p. The fields F ' can be determined through the equations of motion to yield

F^-ΓjΛpK FΓ=-ΓyP*9 (7)

where Γ)k is the usual connection on a Kahler manifold, gιmdjgkΰ (it does not
depend on Bij). Eliminating the Fι fields we have

S = t j LjduW - l- gijP'Dγϊ - l- g^Dt - ^ RujrffrA d2z

In this equation, D is the covariant derivative, e.g., Dχι = dχ( + Γjkdujχk and
Riΐjj= didjgjϊ— gmmΓ jΓjj. The above action is invariant (the integrand is un-
changed up to total derivatives) under (5) and (6) if gtj is a Kahler metric and J is
a closed 2-form.

Consider the last term in (8) which we shall refer to as Sc. The first thing one
should notice is that this term has not changed from (4), that is, it has the rather
strange property of being supersymmetric even though it does not explicitly
contain any fermions. The Sc term is also a topological invariant, i.e., it depends
only on the cohomology class of J and the homology class of the image of Σ in X.
Under small continuous variations of the field (u\ χ\ pι) Sc does not change. Thus
we can say that, in some sense, this term has no bosonic degrees of freedom and no
fermionic degrees of freedom. This does not stop this term from being of some
importance however.

The first integral, St9 in (8) does not have this property. That is, it is not
topological in the above sense. It is, however, topological in another sense. It is the
precise action (except that holomorphic and antiholomorphic maps are inter-
changed) that appears as a topological non-linear σ-model in [13]. Also the part of
the N = 2 supersymmetry given by (5) is the BRST symmetry used in that theory.
Note that we have to reinterpret the roles of the fields χ and p when going between
the language of N = 2 theories and topological theories. That is, we introduced
χ and p as world-sheet spinors but to interpret St as a topological field theory we
consider χι to be a 0-form and pl to be a (0, l)-form on Σ. This reinterpretation is
usually referred to as "twisting" the N = 2 theory.

For our purposes there are two ingredients in establishing a topological
quantum field theory. Firstly one must identify a BRST symmetry, Q. This
automatically exists in an N = 2 theory and is provided by (5). Secondly, the action
is itself BRST-exact (i.e., it is the BRST variation of something). This is true of St but
not of Sc:

A \ ^ l = 6lε,St . (9)

A theory with these two properties will have correlation functions which are
integers (with the observables in a suitable basis) and does not depend on any
continuous parameters in the theory, i.e., the rc-point functions are diffeomorphism
invariant [10]. Thus our action for an N = 2 non-linear σ-model does not have any
interesting topological properties as a whole but it splits into two pieces Sc and St

which each have special properties.
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Consider calculating a 3-ρoint function between 3 observables 9Iα,

fate = <«α«l>«Ic> = ί KaKbKce-S@U@X@p . (10)

Because Sc is invariant under smooth continuous deformations of the fields, it is
simplest to consider this path integral as a discrete sum over the homotopy classes
of the map φ. This is the usual instanton calculation. For classes v we have

f. — V f^ (U)
Jabc /^Jabc ? \ X 1 /

v

where

fate = J W.Vlb9lee-s9u@χ®p = e~SM J SΆa<&b%e-St2iu2iχ2)p . (12)
V V

This shows that the only path integral we need perform is within the topological
field theory. Strictly speaking, we have a different stress-energy tensor between the
N = 2 superconformal field theory and the topological model but this does not
affect the calculation for 3-point functions [15].

As usual in instanton calculations, we take the approximation of expanding
around the classical solutions of the theory. For topological field theories this is not
an approximation at all since we know that changing continuous parameters in the
theory such as t in (8) have no effect on the correlation functions. Thus we can take
the t -+OO limit suppressing all but the St = 0 contributions to the path integral.
The whole theory is not invariant however and so one should be careful to realize
that we are always assuming that we are in some large t, i.e., large radius limit in the
following calculations. The topological action is of the form

St = t J d2z {|| dul | | 2 + fermions} , (13)

and so we see that the instantons are given by the holomorphic maps w*(z). This
leads to three possibilities for the map φ:

(1) φ(Σ) is a point in X,
(2) φ(Σ) is an algebraic curve in X,
(3) φ(Σ) is a multiple cover of an algebraic curve in X.

We shall often refer to all of the above cases as n-fold covers of algebraic curves
with n = 0 for case (I).1

Let ea9 a = 1,. . . , h1*1 be a set of integral generators oϊHίΛ(X). We therefore
have

[ J ] = 2 Σ c°[e α ], (14)

where ca are complex numbers. It follows that

Sc = tΣ cama , (15)
α = l

1 The target point does not need to be contained in such a curve in X in this case
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where ma are integers given by the homology class of φ(Σ). The case n = 0
comprises of all ma vanishing. Let us introduce a new set of variables

qa = e~tca, (16)

so that

e~s° = qΐίq52...ΰfr. (17)

The observables, 2Ifl, in the topological field theory correspond to cohomology
classes on X [13]. The N = 2 superconformal field theory has 2 sets of fields that
naturally correspond to the (1, l)-forms and the (2, l)-forms on X. When an N = 2
theory is twisted to form a topological field theory, the process of introducing
a BRST symmetry forces us to project out one of these sets of fields. That is,
observables must be BRST-closed and this can only be achieved for one of the
classes of fields at a time. In this case, we are left with only the (1, Informs as
observables. One can twist the N = 2 model in a different way however and be left
with only the (2, l)-forms. We will have more to say about this later. We can take,
as observables, the generators ea considered as elements of H1Λ(X) or, equiva-
lently by Poincare duality, as algebraic surfaces within X to form 3-point functions
fabc which will have the general form

fate = NL + Njjteq1 + Nlhcq2 + + Nabcq\q2 + . (18)

That is, these/αfec functions can be expressed as polynomials in qt. The coefficients of
the polynomial, N%hc, are the 3-point functions from the topological field theory
and, as we will see in the next section, these numbers are intersection numbers of
cycles in a moduli space and, in particular, are integers.

Thus we see that to each X, the non-linear σ-model associates a set of
polynomials fabc in h1Λ variables, qt. The t -• oo limit, implicit in calculating fabc,
corresponds to limit qt -• 0. If we were to calculate the 3-point functions for the
purely topological field theory, i.e., if we drop the Sc term from the action, we would
lose the qt dependence of/αfcc (as one would expect for a topological field theory). In
fact, dropping the Sc term corresponds to setting qι = 1 which in turn is like a "zero
radius limit" of (18), that is, we shrink X down to zero so that J = 0 in (8). We thus
have the rather curious result that the topological field theory (or, at least its
3-point functions) related to the usual string action is obtained by taking the large
radius approximation of the non-linear σ-model and then putting the radius equal
to zero!

It is important to note that we will not explicitly use any information about the
complex structure of X in deriving fabc. These functions depend explicitly only on
the cohomology class of J. The/a&c are thus local diffeomorphism invariant objects
of X although they could conceivably depend on global changes in complex
structure in much the same way as Donaldson's polynomials [12].

In the large radius limit, fabc is dominated by the N° term in (18). This integer,
corresponding to the case where φ(Σ) is a point, is given by the intersection number
of the 4-cycles eα, eb9 ec within the threefold X [15]. It is useful to think of the
functions ^ f t c as generalizations of the intersection form to contain more diffeomor-
phism invariant information.

Having reduced the functions fabc to polynomials with integer coefficients we
will now go on to analyze the precise meaning of these integers as regards the
geometry of X.
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3. Reduction to Algebraic Geometry

We need to compute

Nv

abc = Je a e b e c exp{-S t )@u®χ@p , (19)
V

where

St = t f j ^ j θ i i W - l- QijpW ~ \ QijpW - l- Riϊjjt/pjpJj d2z . (20)

The index structure of the fields χι and pι should be interpreted as these fields
taking values in R = φ*Tx, the pullback of the holomorphic tangent bundle on X,
with the barred quantities taking values in the pullback of the antiholomorphic
tangent bundle. The field uι however takes values in X itself rather than the tangent
bundle. Any small variation, δu\ can be considered as a deformation of X and so
this field does take values in the pullback of the tangent bundle. In particular, it will
be important to note that the field du{ is an ^-valued (0, l)-form.

The integral (19) was effectively solved some time ago for the case where φ(Σ) is
a point [16] and when φ(Σ) is a rational curve [17]. In the latter case theidea is
that one assumes the t -> oo limit and so restricts the integral to the case du* = 0,
i.e., the holomorphic maps. One interprets the path integral as being over a super-
space parametrized by {u\ χ\ p% The duι = 0 constraint restricts this to the moduli
superspace comprising of the moduli space of holomorphic maps in question and
the fermion zero modes. To yield the value of (19) one integrates over this moduli
superspace.

The BRST invariance gives a grading (a BRST "charge") to the fields in the
theory. The charges can be assigned as follows; q(ul) = 0, qiχ1) = 1, q(pι) = — 1 and
q(ea) = 1. The path integration measure also has a BRST charge which comes from
the fermion zero modes. Each χι zero mode contributes — 1 and each pι zero mode
contributes + 1 . It is also known that the fermion zero modes correspond to
harmonic forms on Σ. Therefore

# of χ zero modes = dimifo(.R),

# of p zero modes = dim H1(R) . (21)

The 3-point function (19) vanishes unless the BRST charges cancel. This leads to
the constraint

dimH°(R) - dimHX{R) = 3 . (22)

The left-hand side of this equation is the index of the K-twisted Dolbeault complex
on Σ and can easily be computed (see [18]) by the index theorem (or the
Hirzebruch-Riemann-Roch theorem):

dimH°(R) - dimH^R) = $ch(R) td(TΣ)
Σ

= (l-g)dimX-dεg(φ*Kx)9 (23)

where g is the genus of Σ and Kx is the canonical divisor of X. Thus we have the
result that for a Calabi-Yau threefold, we will generically have non-zero values for
fabc for all classes of maps v of genus 0 curves Σ into X.
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Let us now specialize to the case where X is a Calabi-Yau threefold and we will
specify v as being a class of maps from Σ, a genus 0 Riemann surface, to give an
w-fold cover of an isolated rational curve, C, in X. We will assume that the curve is
of type ( - 1 , -1), i.e.,

c{-\). (24)

Thus

άimH°{R) = dimH°(Θ(2n) © Θ(-n) φ 0(-n)) = In + 1 (25)

and

= dimH°{Θ(-2 - 2n) φ β(n - 2) 0 G{n - 2)) = 2n - 2 . (26)

If n = 1, life is comparatively simple. There are no p zero modes and three
χ zero modes. Putting these into (19), the three operators for the observables ea

"soak up" the χ zero modes and we can do the integral over the moduli space
S/(2, <C) without considering the exp( — St) term that appears in (19). (See [19] for
the explicit calculation.) When n > 1, things become more messy. We now have
p zero modes and an equal number of extra χ zero modes. These cannot all be
soaked up by the observables. The integral is not zero however since we can expand
out the exp( — St) term to introduce some Riϊβχιχιpjpi terms into the action. These
terms soak up the extra fermion zero modes that have appeared to yield a generi-
cally non-zero answer. Such a calculation will be, in general, rather difficult.

There is a much more elegant approach however exploiting the fact that we are
dealing with a topological field theory. A topological field theory is based on an
action which has the general form

St = t J d2z {|| s | |2 + fermions} , (27)

where s is a section of a bundle If over some moduli space, Jί, of all field
configurations. When calculating a path integral containing the above action,
a topological field theory has the property that such an integral will not depend on
the parameter t. One can thus take the limit t -> oo so that the path integral only
contains contributions from the zero locus of s. What's more, the fermionic part of
the action is arranged so that the determinants arising from the integral over the
fermions cause each component of the zero locus to contribute + 1 or — 1 to the
path integral (according to orientation). See [10] for an explanation of how this
happens. In this way, the path integral computes the Euler class of the bundle 1V. If
dim 1V = dim J(, the Euler class is an integer. If dim 1V < dim Jί, the Euler class
can be thought of as an homology cycle within Jt. To obtain integers in this case,
one can insert cohomology classes (observables) into the path integral which leads
to intersection numbers on this cycle [10, 13].

It is instructive to do this calculation for the case of the single cover of an
isolated rational curve [15]. The zero section of s corresponds to the moduli space,
M, of holomorphic maps of a IP1 into this curve, or equivalently, reparamet-
rizations of IP1. This space is well-knownto be S/(2, <C). To do intersection theory,
we should really have a compact space, M, for the instanton moduli space. SI (2, C)
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naturally compactifies to IP3. We can choose the coordinates uι to obtain the map
function

<«>

and M^Z) = u2(z) = 0. The complex parameters in (28) can be chosen to satisfy
ad — be = 1. This space naturally compactifies to P 3 by considering the coordi-
nates [α, ft, c, d] as homogeneous. The space that we add in to S7(2, (C) to form P 3

(i.e., the compactification divisor) is isomorphic to F 1 x F 1 and can be thought of as
the algebraic variety defined by ad — be = 0.

To calculate (19) we need to represent the ea as homology classes within the
compactified instanton moduli space, M. This can be achieved as follows [15].
Each ea is associated with a 4-cycle in X or, by Poincare duality, by a (1, l)-form
whose support lies in an arbitrary small neighborhood around this cycle. Thus any
map which does not take a point of Σ to this cycle gives an arbitrarily small
contribution to the path integral. Using the same argument about the fermionic
determinants as we used above to obtain the Euler class, we can obtain the
following result:

Nv

abc= #(LanLbnLc), (29)

where La is the subspace of M given by maps that take a particular point on Σ to
a point within the 4-cycle associated to ea. Which particular point in Σ is chosen for
each ea does not affect the above calculation because of the properties of topologi-
cal field theories.

For the case we are considering we get a contribution to La for each point of
intersection between C and ea. Each such point clearly puts a linear constraint on
the homogeneous coordinates [α, b9 c, d~\ and thus gives a hyperplane in M. Three
hyperplanes in F 3 intersect at one point and so we reproduce the result

ΛΓβt
=1)= #(eanC) #(ebnC) #(ecnC). (30)

Now let us try to perform the same calculation for a multiple cover of C. The
additional complexity of this problem is caused by p{ zero modes. The solution to
this problem is provided by much the same method as used in [20] where similar
"antighost" zero modes also appeared. To understand more clearly what the
relationship between the path integral and the Euler class is, we should consider the
approach of [21].

Consider a vector bundle Hf' -+ Jί. We will refer to M as the horizontal
direction of the bundle and the fibre as the vertical direction. We can consider the
cohomology of this space by introducing differential forms with compact support
in the vertical direction, i.e., each form vanishes outside a compact region of the
fibre. It is a general result of algebraic topology (see, for example [22]) that there is
a (dim i^)-form in this class, called the Thorn class which can be pulled back via the
zero section to the Euler class on Jί. In the case we are considering we have
a bundle of infinite dimension. In this situation it is more convenient to introduce
the Mathai-Quillen form [23],

ωs = s*U , (31)
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where s is a section of IV and U is a slight variant of the Thom class. One replaces
the condition for compact vertical support with the constraint that the form should
decay at least as fast as exp(—x2) along the fibre. If s is the zero section we
effectively reproduce the above argument whereas we can represent the path
integral idea if we take 5 to be some t —• 00 limit of a generic section.

The moduli space Jί in our theory is the space of all maps Σ -» X. It is
convenient to assume that the maps under consideration have derivatives in U\
then using the Sobolev norm one can give Jί the structure of a Banach manifold
with an almost-complex structure [24, 25]. With this structure, the holomorphic
tangent space to Jί at φ is the space Tjttψ:= H®P)(Σ, φ*Tx) of ZΛsections of the
bundle R = φ*Tx. These spaces fit together to form the holomorphic tangent
bundle TM -> Jί, which is a Banach bundle over M.

For any map φ: Σ -» X, the derivative dφ gives a map between tangent bundles
TΣ~+TX, which can be thought of as a map TΣ-+φ*Tx. If we let s&\ denote
the 1-forms on Σ9 dφ can also be regarded a section of st\® Φ*TX (which
would determine a map from TΣ by evaluating the 1-form on the tangent vector).
Taking the (0, l)-part of dφ, we get dφ, which can be interpreted as a
section of stf%Λ ® φ*Tx over Σ, that is, as an element of the space
ifrφ := H?P)(Σ, stψ1 <g> φ*Tx). The spaces ΊΓΦ fit together to form another Banach
bundle iΓ -> Jί. This bundle comes equipped with the natural section

s:φh^dφ. (32)

This is the section s which appears in the action (27), and whose zero locus M is the
space of holomorphic maps.

We can also consider the following more heuristic approach to the bundle iV in
terms of local coordinates. The fermions in the path integral can be taken to
represent differential forms on iV? To be more precise, the "anti-ghost" fermions p*
represent a basis of 1-forms in the vertical direction and the "ghost" fermions χ*
represent a basis of 1-forms in the horizontal direction. The following diagram
should be born in mind:

uι — M
δ l _ l δ . (33)

δut ^U Dδu*

The bottom row of this diagram can be thought of as 1-forms with δ acting as some
kind of de Rham ^-operator. The left-hand side can be thought of as the horizontal
part of the bundle and the right-hand side the vertical part. The correspondence
between δu1 and χι is central to topological quantum field theory and is what allows
us to represent BRST-observables as cohomology classes in the moduli space [10].
In the vertical direction the fibre should be thought of as R 0 0 and so the cotangent
bundle in this direction is isomorphic to the fibre itself. Thus the ρι fields can be
interpreted as a basis for the fibre. When we perform the path integral (19) we can
interpret this as taking the Euler class of the vector bundle whose fibre is spanned
by the pι fields. That is, the vector bundle in question is the bundle of (0, l)-forms on
Σ taking values in the pullback of the tangent bundle on X.

2 In topological Yang-Mills there are three sets of fermions. The extra set arises because of gauge
invariance and is not relevant here
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The moduli space M has been closely studied by Gromov [26]. (In fact,
Gromov's work provided one of the inspirations for Witten's construction of
topological σ-models [13].) We follow the approaches of McDuff [24] and
Wolfson [27] to Gromov's ideas. Gromov showed that Jί has a natural compac-
tification to a space Jl which includes maps from "simple cusp-curves"
Σo u U«=i E*1 t 0 x a s l i m i t s °f m a P s fr°m Σ -> X. In the case at hand (multiple
covers of an isolated rational curve C), these maps from cusp-curves can be most
easily understood by means of their graphs. A sequence of graphs Γφ. c Z x I o f
maps φf Σ-^X can converge to a curve in I x l which is not a graph. Such
a limiting graph Γφ will have one component Σo which is the graph of a map of
lower degree (possibly even degree 0), and other P^components which map to
points in X.

If we extend Of to a bundle iV over the compactified space Jl by continuing to
use the spaces iffφ\= H^(Σ9 srf%Λ (x) φ*Tx) as fibres even in the case of limiting
graphs, then the limitingjnaps φ will still have dφ e ϋfφ. Thus, the section s extends
to a section s of iV -> Jί.

We now attempt to calculate the Euler class by pulling back the Mathai-
Quillen form by our section s of Of -> Jί. For this process to work correctly, we are
required to take a generic section of this bundle. Unfortunately, our section s is
usually not generic. Fortunately, there is a method [20] which can be used to
calculate the Euler class from a non-generic section. (We have formally extended
this method from the finite-dimensional to the infinite-dimensional case, ignoring
convergence questions.)

If we vary the map φ by a displacement δφ (or in local coordinates vary wι by δuι

as in (33)), we find that δφsTj^^φ — H(P)(Σ9 φ*Tx). Thus, the variation of dφ is
given by

DδφeDH?p)(Σ9φ*Tx). (34)

If we regard D as defining a map of bundles

D.Tjϊ^ir (35)

(a linearization of the section_<3), we find that the displacements of dφ all lie in the
image bundle Ψ*' = Image(D).

Following [20] we can use this information to calculate the correct Euler class
of Of. We have the following exact sequence:

0-^^r'^#->^^0. (36)

The cokernel if is a bundle whose fibres correspond to H 1 (R) 1 This bundle has
finite dimension In — 2. The zero locus of a generic section of iV can be taken as
the zero locus of a generic section of if restricted to the zero locus of a generic
section of Hf'. Translating this into a statement about Euler classes, we can do the
path integral (19) by considering the moduli space of holomorphic maps (the Euler
class of Of1) and including the cohomology class corresponding to the Euler class
of if (the top Chern class of if) in the integrand. That is

Nv

abc= J eaebee c2n-2(HHR))

= Φ(LanLbnLcnU), (37)
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where the eα's are interpreted as (1, l)-forms on Mv and U is a 6-cycle correspond-
ing to the Poincare dual of the Euler class of "Γ.

The appearance of the top Chern class in (37) can be viewed as the effect of
integrating out the pι zero modes by using the four-fermion term in the action (20).
This process will bring powers of the curvature tensor into the action and this
should correspond to the usual de Rham representation of Chern classes by powers
of the curvature.

We have reduced the problem of finding the Euler class of an infinite dimen-
sional vector bundle, which is best done by path integral techniques, to the problem
of finding the Euler class of a finite dimensional vector bundle. This can be done by
more conventional methods in algebraic geometry.

4. A Bundle Calculation

Let X be a Calabi-Yau threefold, and let C c X be an isolated smooth rational
curve such that Tx\c = Oc(2) © Θc( — l) θ Θc( — Ϊ). Consider the moduli space

Mn(C) = {φ: IP1 - XI (/KIP1) = C, deg φ = n) (38)

of parametrized maps from Σ = P 1 to X. For each φeMn(C\ the vector space
H°(φ*(Tx)) is the tangent space at φ to this moduli problem,3 while the vector
space Hx{<t>*{Tx)) is the obstruction space (also at φ). The "virtual dimension" of
the moduli space is therefore

dimtf °(</>*(Γx)) - damH^*(Tx)) = X(Φ*(TX)) = 3 . (39)

Motivated by Gromov's work [26] as described in the previous section, we
compactify Mn(C) by using graphs. Associate to each φeMn(C) the graph

Γφ cz P 1 x C . (40)

These graphs fit together into a "universal graph"

Γ czM^QxΨ^C (41)

defined by

Γ = {{φ,t,φ(t))\φeMn{C)9 ί e P 1 } . (42)

The graphs^ Γφ all belong to a common linear system on P 1 x C. We compactify
Mn(C) to Mn(C) ^ ψ2n + 1 by including the elements of that linear system which are
not graphs of maps of degree n. The universal graph then compactifies to the
"universal divisor in the linear system"

fcM.ίOx^xC. (43)

3 Since C is isolated in X, the conditions φQP1) = C, degψ = n simply serve to pick out
a component of the space of all maps from P 1 to X
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This has a very concrete description as follows. Let x9 y be homogeneous coordi-
nates on P 1 , let s, t be homogeneous coordinates on C, and let αo> > 0n>
ί?0, . , bn be homogeneous coordinates on Mn(C). Then the map (/> correspond-
ing to the point [α 0, . . . , an9 bOi . . . , bM] can be described as

(44)

and the divisor Γ in Mn(C) x P 1 x C is defined by the equation

Σ atxY'h - Σ btxY^s = 0 . (45)

As before, each new graph which has been added in this compactification contains
a graph of a map of lower degree, together with some P 1 ? s which map to points
in C.

It is a simple matter to explicitly construct the compactification divisor of
Mn(C). The points in Mn(C) which do not correspond to smooth rc-fold covers are
given by values of [αo> > &«] for which (45) factorizes. That is, the resultant of
the two polynomials of (45) vanishes:

a0

0

0

bo

ax

a0

0 0

b2

. . . 0

. . . 0

. . . a,

. . . 0

0 0 0

= 0. (46)

Thus, the compactification divisor is a hypersurface of degree In in M

n(C) ^ ψ2n+1. This shows that Mn{C) is isomorphic to the subspace of <C2 n + 2 given
by the constraint that the left side of (46) is equal to 1. This generalizes the
ad — be = 1 constraint for the single cover case.

It will be convenient to denote P 1 x C by S. Let p: S -> P 1 and q: S -* C be the
projection maps; let pφ: Γ ^ - ^ P 1 and qφ: Γφ-+C be the induced maps on the
graphs. If φ e Mn(C\ then pφ establishes a natural isomorphism between Γφ and P 1 .

We regard Tx\c as a fixed bundle on C. Then for each φeMn(C\ the bundle
φ * ( Γ x | c ) is mapped to the bundle qφ(Tx\c) under the isomorphism pφ. Thus, the
important spaces for us to study are the spaces H°{q$(Tx\c)) and H1(q%(Tx\c)).
(As φ varies, these spaces will fit together to form bundles over the moduli space
Mn(C).) We now need to extend this bundle over Mn(C) to a sheaf over the
compactified space Mn(C). Unfortunately this is not a unique process. However,
given the construction we have used for the compactified moduli space, there is
a natural way we can do this. As in the previous section, we choose to extend by
using H°(q$(Tχ\c)) and H1(q%(Tx\c)) for all values of φ, even values for which Γφ

is not a graph.
We now claim that the dimensions of these spaces are independent of φ, and

that they admit another description. Let & = q*(Tx\c). Then the restriction ί%\Γφ of
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$ to Γφ coincides with q%{Tx\c). Thus, the spaces we wish to study can be identified
with H°(@\Γφ) and R^{β\Tφ). Consider now the restriction sequence

φ0. (47)

The associated long exact sequence in cohomology is then

0 -> H°m-ΓΦ)) -> H°(a) -» H°(@\Γφ) -> H'm-Γφ))
γ 1 2 > # 2 (i f) - . 0 . (48)

(The last i/ 2 term is 0 since supp(Γ^) is a curve.)
We will abuse notation a bit and let P 1 and C denote divisor classes on S, as

follows: for some fixed points PeC, g e P 1 we identify P 1 = q'HP), C = p~1{Q)
Since Eq. (45) has degree 1 in s and ί, and degree n in x and y, each Γφ belongs to the
linear system IP 1 + nC\ on S. Moreover, since Tx\c ^ (Pc(2) φ d?c(-1) 0 0 C (-1)
by assumption, we have

» = q*(Tχ\c) = «s(2P1) Θ Φ s ί - P 1 ) Θ ^ ( - P 1 ) . (49)

It follows that

^ ( P 1 - nC) Θ ^ s ( - 2 P 1 - nC) Θ ίP s (-2P 1 - nC). (50)

Note also that Ks = - 2 P 1 - 2C.
We calculate the cohomology of $ as follows. First,

1) Θ ^ ( - I P 1 ) Θ tfsί-P1)) = H°(^S(2P1)) (51)

which has dimension 3. Also, by Serre duality,

H2(β)* ^ HO(^S(-4P1 - 2C) Θ ^s ί-IP 1 - 2C) φ Φsί-lP1 - 2C)) = {0} . (52)

In addition, since Ci(^) = c2{β) = 0, by Riemann-Roch we have χ(β) = 3. It
follows that H\a) = {0} as well.

Next we calculate the cohomology oϊ@( — Γφ). It follows directly from Eq. (50)
that H°(&(-Γφ)) = 0, while by Serre duality

£ H°(ΘS(- 3P 1 + (n - 2)C) φ 0s((n - 2)C) φ 0s((n - 2)C))

(n - 2)C) Θ H°{Θs((n - 2)C),

which has dimension (n — 1) + (n — 1) = In — 2. This time, φ

- 3 P 1 - 3nC and c2{β(-Γφ)) = 6n. Thus, by Riemann-Roch, χ(^(-Γ^)) = 0. It
follows that Hι(0β(-Γφ)) also has dimension In - 2.

Thus we see that the long exact sequence (48) can be shortened to

(53)

Moreover, the dimensions of all of these spaces are independent of φ9 so the sheaf
we are after will be locally free.
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Now to fit these all together, let M = Mn(C\ and look at the space Z = MxS,
with projections π: Z -• M, p: Z -* S. Let <ί = p*(J^). The restriction sequences (47)
fit together into a restriction sequence

0 -* <f ( -Γ) -><?-> <£|f -• 0 . (54)

For any bundle 0 on Z, Rln*& denotes the bundle of #ι(fibre, ^fibre)'s on M. Using
the vanishing of cohomologies which we have established above, we see that the
long exact sequence associated to (54) takes the form

0 -> R°π*δ -+ R°π*{δ\r) -> R^tfi-f)) -+ 0 -• R}π+{δ\r) -+ R2π*{δ{-f)) -+ 0 .

(55)

In particular, R1π^(δ\r) is isomorphic to R2π#(δ( — Γ)\ and both of these are
locally free of rank In — 2.

To identify the bundle R2π*(δ( — Γ)\ we need one additional fact: Γe
\n-\H) + p - ^ P 1 ) + np-^C)^ where H is a hyperplane in M ̂  P 2 n + 1. This
holds because the equation for Γ, Eq. (45), has degree 1 in α0, . . . , bn, degree 1 in
s, t and degree n in x, y.

It follows that S(π~γ(H) — Γ) will be a pullback from S. That is, there is some
bundle ^ on S such that S{π~γ{H) - Γ) = p*(#"). Then by the projection
formula,

Λ 2 π , ( * ( - f ) ) s ΘM(-H) ® i^ 2 πJp*(J^)). (56)

Now I ^ π j ^ - Γ ) ) and :R
2π ί i ί(p*(#')) are both locally free of rank In - 2, and

since Z is the product of M and S, jR2πH{(p*(#')) must actually be the trivial bundle
of that rank. Thus,

R2π*(δ(-f)) * ΘM(~H) ® (®Mm2n-2)) * ψΰi-H))^2"-* . (57)

The Hodge numbers for p 2 n + 1 satisfy hίJ = δt j and so we have a unique integral
generator, /, for / / 2 M - 2 ' 2 M - 2 ( P 2 M + 1 ) . Equation (57) tells us that

c2n-2(R1π^\f)) = (-I) 2 "" 2 / = / . (58)

5. The Result

We are now in a position to complete the computation of (37). The result of the
previous section is that U is homological to a sub-P3 of the moduli space P 2 w + 1 .
The argument now proceeds in an identical way to the case of n — 1. For each point
of intersection between C and ea we obtain a contribution to La. The condition that
a point of Σ maps into a specific point of X puts a linear constraint on the
coordinates [α0, . . . , bn~] of Mn(C) and thus corresponds to a hyperplane of
Mn(C). The intersection of 3 hyperplanes and a sub-P3 within ψ2n + 1 is a point and
so we yield a result identical to (30) for any n > 0

Nv

abc= Φ(eanC)- φ(ebnC) #(ecnC) . (59)

As an example, consider the case examined in [9]. We take X to be the
algebraic variety given by a quintic constraint in P 4 . This manifold has the
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simplifying feature that h1Λ = 1. In this case we only have one/-polynomial of the
form (18) and this polynomial is a function of only one variable, q.

Let us, for the time being, make the assumption that all rational curves are of
the type ( — 1, — 1). In the case of h1Λ = 1, each rational curve in X has a degree
which is defined by the intersection number for this curve with the unique integral
generator of HίΛ(X). For the quintic threefold this generator is the generator
inherited from the ambient P 4 . Let us compute the contribution to the /-poly-
nomial by an n-fold cover of a degree k curve. As we pullback the Kahler form from
X to Σ by this map we multiply the degree of this form on Σ by n and k. It is thus
a simple matter to show that m = nk in (15). From (59) we see immediately that the
contribution t o / i s

k3qnk . (60)

Thus

00 nΛ3nk

/=HΣfJ, (61)

where ak is the number of rational curves of degree k on X. This is precisely the
formula used in [9] where the expression (60) was conjectured and justified by the
fact that it was the only simple form that would yield integers for ak.

One of the great virtues of the/-polynomials comes from the mirror property.
The /-polynomials here are written in terms of the complexified Kahler form and
give information about the couplings between (1, l)-forms on X. However, they
also apply to couplings between (2, l)-forms on the mirror of X where here the q{

variables would encode information about the complex structure. This is how/was
derived in [9]. One key point to note is that the/-polynomials were derived in the
large-radius, or small q, limit. When using the /-polynomials in the context of
complex structure one must ensure that one is in some "large complex structure"
limit [6]. There is a natural construction of this situation using methods of
algebraic geometry [28].

The mirror symmetry also came in to play when we derived our topological
field theory from the original N = 2 superconformal field theory. We chose the
BRST symmetry to be generated by (5). If we had chosen this symmetry to be
generated by (6) we would have obtained identical results except for the fact that
instantons would then have been given by antiholomorphic maps. We could also
try to work with a BRST generator given by the right-hand set of equations in (5)
and the right-hand set of (6). This would have the result of leaving us with a quite
different topological quantum field theory containing only the (2, l)-forms from the
original theory rather than the (1, l)-sector. The/-polynomials generated would be
the ones describing the complex structure deformations. By this method we obtain
the general result that the coefficients in these polynomials must always be integers.
This fact is not apparent from conventional algebraic geometry.

So far, in our example of the quintic threefold, we assumed that the rational
curves were isolated. This is believed to be true for a generic quintic threefold [29].
If we consider the Fermat quintic, i.e., the threefold given by the constraint

z% + z\ + z\ + z\ + zl = 0 (62)

in F 4 with homogeneous coordinates [z0, . . , z 4 ] , the set of curves of degree one
consists of a continuous family that forms a set of 50 cones [30]. A generic member
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of this set is of type ( - 3,1). One might suspect that the form of/will change in this

situation. However, when one computes/from the mirror manifold, no account of

the Kahler class of the mirror of X is taken. Thus, on X,/must be invariant under

deformations of complex structure - / is a local diffeomorphism invariant. This

establishes that if one did the path integral over these families of rational curves in

the Fermat case, one should obtain the same/-polynomial as in the generic case of

isolated curves. It would be interesting to confirm this explicitly.
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