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Abstract. We show how the moduli space of flat SU(2) connections on a two-
manifold can be quantized in the real polarization of [15], using the methods of
[6]. The dimension of the quantization, given by the number of integral fibres of
the polarization, matches the Verlinde formula, which is known to give the
dimension of the quantization of this space in a Kahler polarization.

1. Introduction

Let Σg be a (compact, oriented) two-manifold of genus g, and consider the moduli
space Pg of flat SU(2) connections on Σ9. This space contains a large open set 5^
which is a symplectic manifold with symplectic form ω such that 2πiω is the
curvature of a natural line bundle S£ on S?g. The quantization of this prequantum
system has been the subject of much recent interest. Much of the mathematical
work on this topic has concentrated on the Verlinde formula for the dimension of
the quantization in a Kahler polarization.

In [15, 16] there was introduced a different approach to the quantization
procedure, based on a real polarization of the space ίfg. If (M,ω) is a compact
symplectic manifold of dimension 2m, a real polarization of M is a map π\M-*B
onto a manifold B of dimension m, such that ω|π-i(5) = 0 for all beB. Under
sufficiently strong hypotheses, a submanifold L appearing as a fibre π~ ι(b) must be
a torus of dimension m, and the quantization procedure for a prequantum system
over (M,ω) given by a line bundle JS?-»M with connection of curvature 2πiω is
particularly simple. For there will be a finite number of fibres Lt of the
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polarization, the so-called Bohr-Sommerfeld fibres, such that the line bundle if,
restricted to Lu possesses a (one-dimensional family of) global covariant constant
sections. The quantization is then naturally isomorphic to the space of all such
sections [12].

One motivation for the work of [15,16] was the natural association of vectors
in the quantization in a real polarization to Lagrangian submanifolds, which when
applied to the case of the moduli space might be useful in trying to construct a
topological quantum field theory. Some progress on that account will be discussed
in a separate paper [9]. In this paper we turn our attention to a more careful study
of the classical system, which enables us to obtain an explicit description of the
Bohr-Sommerfeld fibres of the polarization of [15]. Most of these fibres are
smooth Lagrangian tori, as in the smooth case. There are also some singular
fibres; the role such fibres should play in quantization is somewhat unclear in
general.

The real polarization of [15] is associated to a choice of 3g —3 simple closed
curves on Σ9. These curves are obtained from a decomposition of Σ9 into copies of
the two-sphere with three discs removed and marked points on each boundary
component, also known as pants or trinions. If we choose a basepoint * for Σ9, and
arcs connecting * to each of the marked points on the boundaries of the trinions,
we obtain a collection of 3g —3 elements of the fundamental group of the surface
Σ9. The map π i ^ - ^ C l R 3 * 7 " 3 giving the polarization of [15] is obtained by
assigning a flat connection representing a point x e Pg to the trace of the holonomy
of the connection about each of the chosen curves. This is independent of the
representative taken for the point x. The existence on the space ^ of a real
polarization reflects a geometric fact about the structure of S?g as a symplectic
manifold, which we exploit for other purposes in [9, 10].

Any trinion decomposition of the surface Σ9 gives rise to a trivalent graph
obtained by associating a vertex to each trinion and an edge to each boundary
circle (see Fig. 1). Then every fibre of our polarization is associated to a marked
trivalent graph, where each edge is marked by the holonomy of the connections in
the fibre about the appropriate curve in the surface. We shall see that the Bohr-
Sommerfeld fibres of the polarization of the prequantum system associated to the

Fig. 1. A trinion decomposition of a two-manifold and the corresponding trivalent graph
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line bundle J£?k (for k a positive integer) are given by graphs marked with
holonomies which correspond to kih roots of unity. In order to count these fibres,
we must check which markings of this type actually occur as holonomies of flat
connections. The condition that such a marking occur is that there exist a flat
connection on each trinion with the appropriate holonomy about each boundary
curve; such a flat connection turns out to exist when the holonomies satisfy the
quantum Clebsch-Gordan conditions (Eq. 8.2a-c). Thus Bohr-Sommerfeld fibres
are associated to marked trivalent graphs with holonomies satisfying this relation
at each vertex. We prove that the dimension of the quantization in our real
polarization, given by the number of Bohr-Sommerfeld orbits, is given by the
number of such marked graphs, which is called the Verlinde dimension. The
Verlinde dimension is also now known to give the dimension of the quantization
of the moduli space in a Kahler polarization.

This paper is organized as follows. In Sect. 2, we recall from [15] the
construction of the real polarization of moduli space; the fibres of the polarization
are given by level sets of certain functions on this space. The Hamiltonian vector
fields of these functions will then define torus flows on Pg preserving the
polarization. In this formalism, the Lagrangian nature of the fibres is transparent,
but their topological structure is somewhat obscure. As we will need to study the
topology of the fibres, we include in this section an alternative description of the
fibres of the polarization, related to the work of Witten [17]. In this description,
we use trinion decompositions of two-manifolds to construct the moduli space of
flat connections on a two-manifold Σ9 from the moduli space Jί{D) of flat
connections on a trinion, by considering a collection of trinions whose union is Σ9.
A point in S?g can then be specified by giving a point in J/(D)3g~3 satisfying
appropriate conditions, together with "gluing data" which specify how the
corresponding flat connections on the trinions are to be put together to yield a flat
connection on Σg. From this point of view the fibres of the polarization in question
consist of all possible gluing data for a given point in M{ΰγg~z. It is not immediate
from this point of view that the fibres of the polarization are Lagrangian; as we
mentioned above this fact is proved in [15].

This description of ^ in terms of Ji{D) naturally occasions a careful study of
the space Jί{D\ which is none other than the space of representations of the fun-
damental group nγ (D) of a trinion - that is, of the free group on two generators -
in SU(2). This is the topic of Sect. 3. At first glance it may seem that the study of the
representations of the free group is fatuous. But the description of π^D) as a free
group on two generators is unnatural for us, as it treats the three punctures on the
trinion differently; the loops about two of them are taken as generators of the
fundamental group, and the third loop as the product of the first two. From our
point of view we must treat all three on an equal footing. Any representation of
π^D) in SU(2) then gives rise to three traces, corresponding to the three punctures;
we wish to ascertain whichf combinations of values of the traces can actually occur.
This is the content of Proposition 3.1; when the traces are restricted to values
corresponding to holonomies which are feth roots of unity, the quantum Clebsch-
Gordan conditions will arise out of these very simple considerations.

Having described the moduli space in these terms we are ready to look for the
Bohr-Sommerfeld orbits. The method we use to do this is the method of action
variables, as applied in [6] to the case of flag manifolds and the representations of
classical groups. The theorems standard in this subject cannot be applied directly
to the space Sfg which is not a smooth manifold. However, by dissecting the proofs
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of these theorems we see that the methods of proof remain valid in the main. These
are roughly as follows. The first crucial observation [3] is that in the smooth case,
where a smooth symplectic manifold M fibres over a manifold B with fibres that
are compact Lagrangian submanifolds Lα, the fibres Lα are of necessity tori. These
tori are given by the level sets of Poisson commuting functions f{: M-+R. These
functions may be adjusted so that the corresponding Hamiltonian vector fields vfi

generate flows of period 1. The resulting functions are called action variables.
Suppose then that the fibres of the polarization passing through two points
p,qeMare Bohr-Sommerfeldfibres; then f£p) —flq)eΈfor all /(see Theorem4.4).
The Bohr-Sommerfeld set can then be characterized if one Bohr-Sommerfeld point
can be found, and a set of action variables constructed.

However, S?g is not a smooth manifold, and the fibres of the polarization we are
considering are not tori; they degenerate at certain points, corresponding, in terms
of our trinion decompositions, to flat connections on the surface which restrict to
an "abelian" flat connection on some trinion. Using the description of the
polarization given in Sect. 2.3, we can nonetheless show that at the nondegenerate
points the fibres of the polarization are still tori, and that these tori are covered by
the flows given by the Poisson-commuting functions which defined the polar-
ization. This is done in Sect. 5. Hence, for the generic orbits of the polarization
the situation mirrors that of the smooth case.

Turning to the exceptional points, we see that, at such points, although the
Hamiltonian flows of the Poisson-commuting functions no longer cover the fibre,
they do cover a subspace of the fibre which generates the entire holonomy
representation of the fundamental group of the fibre. This is demonstrated in
Sect. 6, using again the topological description of the polarization. Hence, again,
the study of the action variables will suffice to determine whether such a fibre is a
Bohr-Sommerfeld fibre, in the sense that there exists a global covariant constant
section of the line bundle Jέfk restricted to this fibre.

Hence we see that although Sfq is not a smooth manifold and our polarization of
it is not a fibration, the Bohr-Sommerfeld orbits of our polarization may be
described, as in the smooth case, by integer differences of functions we may as well
call action variables. In order to classify the Bohr-Sommerfeld points it remains to
find some known Bohr-Sommerfeld points at which these variables are known to
take integer values. To do so we turn to (classical) Chern-Simons gauge theory, and
yet another description of some fibres of our polarization. In this description,
certain fibres of the polarization correspond to flat connections on the surface Σ9

which extend as flat connections to some three-manifold N3 bounding Σg. The
simplest example of such a fibre corresponds to the handlebody bounding Σβ; it
possesses a global covariant constant section of ££ given by a direct topological
construction. It turns out that this is not sufficient for our purposes, as all the
Hamiltonian flows degenerate at this fibre. We find other fibres of this type by
using the branched cover construction of [8], which constructs fibres correspond-
ing roughly to flat connections on Σg extending to the handlebody as connections
with curvature concentrated on a link in the handlebody, or equivalently, to flat
connections on a branched cover of the handlebody, branched over this link.
These fibres possess global covariant constant sections of <£k by a similar
topological construction, and for each Hamiltonian flow, we may construct a fibre
of this type where the Hamiltonian flow will not degenerate. This construction
occupies Sect. 7, which is the only part of this paper where Chern-Simons gauge
theory, and indeed, the topology of three-manifolds, enters at all.
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The fibres considered in Sect. 7, which we know to be Bohr-Sommerfeld fibres
of the line bundle 5£k, correspond to connections whose holonomies about the
boundaries of the trinions forming the surface Σ9 are conjugate to feth roots of
unity. The action variable construction considered above then shows that the
Bohr-Sommerfeld fibres of JS?k all satisfy this condition. They are, therefore, in view
of the construction of Sect. 3, in one-to-one correspondence with trivalent graphs
corresponding to the given surface, whose edges are labelled with kth roots of unity,
and whose labellings satisfy the quantum Clebsch-Gordan conditions at each
vertex. The number of Bohr-Sommerfeld fibres is thus precisely given by the
Verlinde formula, as stated in our final result (Theorem 8.3).

2. Real Polarization of the Moduli Space

In this section we will review some ofjhe relevant material from [15] about the real
polarization of the moduli space £fg. We give several characterizations of this
polarization: the final characterization is related to the work of [17], and will be
needed when we look for explicit generators of the fundamental group of the fibre.

2.1. The Moduli Space of Flat Connections

Let Σ9 be a compact, oriented two-manifold of genus g. The moduli space Pg of flat
G = SU(2) connections on Σ9 has two convenient descriptions, between which we
will alternate whenever necessary. The first more topological description of S?g is as
the set of conjugacy classes of representations of the fundamental group n^Σ9)
into G. More explicitly, we choose for π^Σ9) the usual generators AbB% for
i = 1,..., g, satisfying the relation ΠA^Ar ίβrί = ί. Then Hom(n^9\ G) is given
by the set { α ^ e G : Πaίbia^ίb^1 = ί}. The group G acts^n Uom(n^9),G) by
simultaneous conjugation of the at and bi9 and we have &?

g = Hom(π1(Σ9),G)/G.
Alternatively, we can consider the space srfF of flat (smooth) connections on the

trivial G bundle P-+Σ9. Given a fixed trivialization P = GxΣ9 of P, the space
stf = stf(Σ9) of connections on P may be identified with the space Ω1(Σ9)®^ of
g-valued one forms on Σ9, and jtfF is then identified with the subset s/F C ̂  given
by {A G s/: FA = dA -{-A A A = 0}. The gauge group 9 = Maps(Σ^, G) acts on stv\
with a map ge%_ taking\AestfΈ to A9=g~1Ag+g~ίdg. Then ^g = ^F/^.

The variety Sfg contains an open set ^g corresponding to conjugacy classes of
irreducible representations of πγ(Σ9\ which is a symplectic manifold, with
symplectic form ω described in [2]. Furthermore, in [11], there was constructed a
line bundle J δ ? - ^ , with a connection V with curvature equal to 2πiω. Thus,
setting aside for the moment our concern for the singularities of Pg9 we see we have
the usual prequantum data described in the introduction; we are given a
symplectic manifold (5^,ω), and a line bundle <£?->^ with connection whose
curvature is the form 2πiω. To produce a quantization we must polarize the
space ^g.

2.2. Real Polarization of the Moduli Space

We recall from [15]_the polarization of the moduli space Pg9 obtained from some
good functions on 5^, associated to closed curves on Σ9. Let CcΣ9 be a closed,
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oriented curve in Σ9, and choose a basepoint yeC. We define a function Jc: j/F->R
by setting, for A e s/P9

/ (2.1)

where by holc(^4) we denote the holonomy of the connection A about the oriented
curve C from y to y. The function Jc then descends to a function / C : ^ - > R .

To obtain functions on ίfgy we need some good closed curves on Σg. These are
obtained from a trinion decomposition of the surface. A trinion (also called a pair
of pants) is a copy of the two-holed disc

with marked points on the boundary components of D, and the standard
orientation coming from C. Suppose there is given a decomposition of Σg into a
union of 2g —2 trinions Dγ, yeΓ = {l, ...,2g — 2} joined along their boundaries,
with the marked points coinciding whenever two trinions have a nonempty
intersection. Such a decomposition of Σ9 gives rise to a trivalent graph constructed
from the trinion decomposition by associating a vertex to each trinion and an edge
to each boundary circle (see Fig. 1). In any event a trinion decomposition of Σ9

provides us with a collection Ch ie</ = {{, ...,3g — 3} of simple closed oriented
curves with marked points on each curve, given byjhe boundary components of
the trinions. We can then consider the functions ft: <^->lR defined by f =/ c ., using
the functions / C : ^ - > R defined in Eq. 2.1 above.

The following is the main result of [15].

Theorem 2.1. Let x = (xί9 . . , x 3 r 3 ) 6 R 3 r 3 . The set Lx=f)fΓ1(xd satisfies

ω| L χ = 0.

Furthermore, Lx has dimension 3g — 3 for a generic point x in the image of 9>

g under
the ft.

It will be helpful to look at this as follows. Let BβClR3ίl~3 be the image of the
functions /f; in other words

Then the fibres of the map π = (f1,...,f3g_3):Pg^>Bg foliate Sfg by isotropic
sub varieties: the generic fibre is a Lagrangian sub variety.

The functions 2ft are traces of SU(2) matrices; they can, therefore, be described
as twice the cosine of angles 0f. We define the holonomy angle 0f of a connection A
associated to the curve Q by

(2.2)

where we take θt to lie in [0,π], and the functions fi=fci were defined in Eq. 2.1
above. We thus obtain a map

β β . (2.3)

Since the 07 are constant on the fibres of π, they may also be viewed as functions on
Bg. By abuse of notation, we shall also denote these functions by Θf:5g-^R.

The function θt is smooth on the open dense subset Ut = 0f~
 1((0, π)) of &g. Thus

the Hamiltonian flows of all the θf are defined on Pg = Q I/, c Pg. The Hamiltonian
_ i

flows generated by the θt on ίfg are periodic with constant period, and so induce a



Bohr-Sommerfeld Orbits and the Verlinde Dimension Formula 599

torus action on <?s

g. The map θ = (θl9...9θ3g-3): <9>*-+JR.39~3 is the moment map
for this torus action. We may, of course, think of θ as a system of coordinates on
Bg: we shall use this notation frequently in what follows.

2.3. Alternative Description of the Polarization

A different way of looking at the polarization π: ̂ g-^Bg is related to the work of
Witten [17, Sect. 4.5]. In this description the topology of the fibres of the
polarization is transparent, though their symplectic structure as Lagrangian
subvarieties is obscured. This alternative description thus nicely complements the
description of [15] where the reverse is true.

The general idea of this description of the fibres is to characterize a fibre π~ 1(b)
in terms of the gauge equivalence classes of the restrictions of the connections to
the trinions D . To do this, we pick a connection A on Σ9 whose gauge equivalence
class is in π~ (b), and which satisfies certain good conditions.

Let TcG be a fixed maximal torus, and let tCg denote the corresponding
subalgebra of g.

Definition 2.2. A connection A on Σ9 is said to be adapted to a trinion
decomposition (a.t.d.) if there is a tubular neighbourhood F f^(— 1,1) x S1 of each
boundary circle Q (i e J\ with coordinates on V{ given by (s, θ), s e (— 1,1), θ e S1,
such that A^^Xidθ, where Xt is a constant element of t.

One may easily obtain the following

Lemma 2.3. For all j /eπ" 1 ^) , there exists an a.t.d. connection A in the gauge
equivalence class y.

We now define certain subgroups of G corresponding to stabilizers of flat
connections. Suppose A is an a.t.d. connection. Then the stabilizer of the action of
the gauge group ^(Q) = Maps(Q, G) on A\c. consists of constant maps, and so may
be identified with a subgroup Ht of G. Under this identification, Ht = G if 6$) = 0
or 0.(b) = π; otherwise, Ht = T.

We obtain a similar identification for the stabilizer Jγ of the restriction A\Dy of
the connection A to the trinion Όv under the action of ^(Dy) = Mapsφ y, G). This
stabilizer also consists of constant maps, and Jy = Z(G)~Έ2 if A\Dy corresponds to
an irreducible representation of nt(Dy) into G, while Jγ = T (resp. G) if the
representation reduces to a representation into T [resp. into Z(G)~\. The stabilizers
Jy, Ht depend only on the point b e Bg, and not on the particular a.td. connection A
whose gauge equivalence class lies in π~1(b).

We now describe the fibre π" 1(b) in terms of a.t.d. connections. Suppose we are
given one a.t.d. connection A whose gauge equivalence class [4] is in π" 1(6), and a
collection of elements τt e H( (i = 1,..., 3g - 3). We define a map ψA: Π H^π~ ί(b)

as follows. Given a set of elements τ = (τ ί) ί = 1 3g-3 in Π^/> w e choose a
ii

collection of maps ζy:Dy^G such that Cy<o» Cy'<o a r e c o n s t a n t o n a tubular
neighbourhood of Ch where Cf is the boundary circle bounding the trinions
Z)y(ί), Dy'(j), and such that

[The orientation of the trinion and that of the surface determine which trinion to
call γ(i) and which to call γ'(i): we adopt the convention that the orientation of the
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surface is given by v Λ W, where w is the tangent to the oriented boundary circle C{

and v is a tangent vector transverse to Cf and pointing into Dy.~] We define a
connection Aτ on Σ9 by

A τ \ D γ = A \ D γ ^ . (2.5)

These connections agree on tubular neighbourhoods of the boundary circles Ct,
and hence combine to give a connection Aτ on Σ9. We then define ψA(τ) = [ylτ] here
[AJ denotes the point in Pg corresponding to the gauge equivalence class of Aτ.

We now consider the question of when two such connections, corresponding to
different elements of Π Hh are gauge equivalent. We have the following

i

Lemma 2.4. // τ, τ' are two points in Π Hh then the connections Aτ and Aτ. are gauge
i

equivalent if and only if there is a system of gauge transformations Φy :Dy-^G such
that
1. ΦyeJγ for all y. (In other words, the Φy are constant maps taking their values in
the subgroup Jy.)
2. If the boundary circle Ci bounds the trinions Dy(i),Dy,(i), we have

Φy'ίok τ ^ τ Φ ^ . (2.6)

We are now ready to complete the characterization of the fibre π " 1 ^ ) :

Theorem 2.5. The map ψAm-Y[^i"^π~1Φ) is surjective. Moreover, the group

J' = Y\Jγ has a natural action on f] Hh so that the fibre π~ *(&) is given by f] HJf,
y i ί

Proof To prove surjectivity it suffices to consider a collection of a.t.d. connections
on the trinions with the desired holonomies; the a.t.d. condition then allows them
to be combined to form a connection on the surface Σ9 with the given holonomies.
It remains to construct the group actions. We define the action of an element
(^A=i 2,-2 b y sending ( 4 = 1 ^ - 3 ^ 1 ] ^ t 0 (Φ/(o

τiφy~ω)i=i,...,30-3 Then
i

two connections Aτ, Aτ> are gauge equivalent if and only if τ, τ' are equivalent
under the action of β', by the condition (2.6). •

3. The Moduli Space of Flat Connections on a Trinion

In Sect. 2.3 we showed how the moduli space 5^ of flat connections on Σ9 could be
described in terms of the space Jίφ) of gauge equivalence classes of flat
connections on a trinion, and how the real polarization of [15] arose naturally in
the context of this description. In order to make the connection more explicit, we
study the moduli space Jί{O) in more detail, and show how the functions fy
defining the polarization behave on Jί(Ό\

The space Jt{J)\ just like its counterpart Pg, can be described as the quotient of
the space H o m ^ D ) , G) by the conjugation action of G. Now πx(D) is the group
generated by the homotopy classes [CJ, [C2], [C3] of based loops Cl9 C2, C3

corresponding to the three boundary components of the trinion D, with the
relation [C 1 ][C 2 ][C 3 ] = 1. Corresponding to the three boundary components
C l 5 C2, C3 of the trinion D, we may therefore define three functions 5ί9 θ2, S3 on

), G), given by
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These maps descend to maps 0 f: Jί(D) -> [0, π], just as in the case of a closed surface
Σ9. Indeed, if we are given a trinion decomposition of a surface Σβ, these functions
agree with their counterparts defined on Σ9, in that any representation of %γ{Σ9)
restricts to a representation of πγ(D^ for each trinion Dγ; under the map
ίfg-+Jl{D^ induced by this restriction, the functions θj defined on Jί{D) agree with
the functions θij{γ) defined on Pg.

Our main result is the following:

Proposition 3.1. The map θ=(θ1,02,03):^(D)->[0,π]3 sends Jί{D) bίjectively to
the set satisfying the inequalities

Proof. We wish to derive the condition on a triple of angles (0i,02>03) (with
0 ^ 0 / ^ π ) needed for (0 1 ?0 2,0 3) to arise as holonomy angles of some flat
connection on the trinion. We use quaternionic notation

'•[-: ]z + wj

(where z,we(C, j2= — 1 and zj=jz). We consider elements gteG such that gf is
conjugate to eιθi (i = 1,2,3). We want to find the condition on 0f in order for there to
exist in these conjugacy classes solutions gt of the equation

By conjugation, we may assume without loss of generality that gx is of the form eιθ\
0 ̂  θ1 ̂  π. We then have the freedom to conjugate g 2 and g3 by an element of T. So
we may assume g2 is of the form

, (3.1)

in other words

g2 = cos02 + i sin02(cosβ—ij sin β) (3.2)

for some /JeR. The condition that gxg2 be conjugate to eίθ3 is then

Re {eiθ J(cos 02 + i sin 02(cos β - ij sin /}))} = cos 0 3

or

COS0JLCOS02 — sin01sin02cos/? = cos03 . (3.3)

One may solve this for cos/J if and only if

COS0! cos 02 — s h ^ s i n 0 2 ^ c o s 0 3 ,

cos0 3 ^cos0 1 cos0 2 -f sin0 1sin0 2

or

Noting that cos is a decreasing function on [0, π], this becomes

|βl-02

0 3 ^ 0 x + 0 2 if

if |01 + 0 2 | > π .
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In other words, the condition is

\θί-θ2\^θ3^mm{θί + θ2,2π-{θί + θ2)} (3.4)

as claimed. This equation defines a tetrahedron inscribed in the cube O ^ 0 f ^ π .
To prove the map $is injective, we observe that we have chosen sin θ2 sin β ̂  0 in

(3.1), and Eq. (3.3) determines sin02 cos/? if sinfli =j=0. Thus the equation

g2 = cos θ2 + i sin θ2 cos β+j sin θ2 sin β

for g2 has a unique solution in terms of cos01? cosθ2, cosθ3. This is true also for the
degenerate case sinί^ = 0. Thus the functions θt can be considered as coordinates
on the space of conjugacy classes of representations of the trinion fundamental
group. •

The image of Sfg in R 3 ^ " 3 under the maps θί9...,Θ3g_3 is thus given by those
values of θt satisfying the inequalities (3.4) on every trinion. This is because flat
connections on trinions can be glued together to form a flat connection on the
closed surface, provided the conjugacy classes of the holonomies around the
boundary circles of adjacent trinions agree. This gluing process was discussed
above in Theorem 2.5.

Thus we have the following

Proposition 3.2. The image of ^q under the maps (θl9...,Θ3g_3) is the polyhedron
defined by Eq. (3.4) for θί = θiίiγ)9 θ2 = θh{γ), θ3 = θi3iγ) corresponding to every trinion
Dγ, where Ciliγ), CJ2(y), C i 3 ( y ) are the boundary circles of Dy.

We recall the following fact from [5] (Lemma 2.1):

Proposition 3.3 [Guillemin-Sternberg]. (a) The differential (dΦ)x of the moment
map Φ for the action of a torus (S1)"1 on a symplectίc manifold M of dimension 2m at x
is a surjectίon into R m if and only if the stabilizer at x is discrete.
(b) More generally, the codimension of the image of (dΦ)x in R m is equal to the
dimension of the stabilizer of xeM under the torus action.

We apply this to the case of Pg as follows:

Corollary 3.4. Suppose x e π(S^) C Bg. Then
(a) The Hamίltonian vector fields corresponding to the functions θt are linearly
independent on the fibre π~ί(x) if and only if x is a point where all the inequalities
(3.4) are strict.
(b) More generally, the number of linearly independent Hamiltonian vector fields on
the fibre π~x(x) is equal to 3g — 3 — s, where s is the number of independent linear
equations of the following type satisfied by θ(x):

i2iγ)(x)-θi3(γ)(x) = 0,

)(x)-Θiί(γ)(x) = θ,

θi3{y)(xnθiliy)(x)-θi2{γ)(x) = 0,

These equations are the equalities corresponding to the inequalities (3.4).

We note also the following.
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Lemma 3.5. Let xeJi(D) and let Θ1(x),θ2(x),θ3(x) be the holonomy angles of x
around the three boundary circles of D. Then x corresponds to a conjugacy class of
reducible representations of the trinion fundamental group if and only if at least one
of Eq. (3.5) is satisfied.

This lemma motivates the following

Definition 3.6. A triple of angles (θl9θ29θ3) (0;e[O,π]) will be called an interior
triple if the point in Jί(D) with holonomy angles (θl9 θ2, θ3) corresponds to a
conjugacy class of irreducible representations of the trinion fundamental group.

For a generic fibre π " 1(x), all triples (θil(y)(x), θh(y)(x\ θi3iy)(x)) corresponding to
holonomies around the boundary circles of trinions Dγ are interior. Thus the
generic fibre of π is a torus of dimension 3g —3: this is a consequence of
Theorem 2.5, as stated in the following proposition.

Proposition 3.7. Let xbe a point in Bg, and let Abe a flat a.t.d. connection whose
gauge equivalence class lies in π " 1 ^ ) . Assume that for each trinion Dγ, the triple
(0, (y)(x), θi2^pc\ θh{y)(x)) is interior. Then the fibre π~\x) identifies with
Ti9~3/(Z2y

9~2 under the map ψA defined in Sect. 2.3.

More generally, it will be convenient to focus our attention on good subsets of
the base space Bg. The first good subset is the space Bg = π(£fg) defined by
Bs

g = {xeBg\ 0f(x) e(0, π) for all i}. The second good subset is the subspace Bs

g>
ind of

Bs

g consisting of those points xεBg for which all the Hamiltonian vector fields are
linearly independent [i.e., for which the triples (θiιiy)(x% θi2{y)(x\θi3{y)(x)) corre-
sponding to all γ e Γ are interior triples]. Both Bs

g and Bs

g>
ind are open dense subsets

of Bn.

4. Bohr-Sommerfeld Orbits and Quantization

We summarize the general method for quantizing using a real polarization. This
leads to the consideration of a certain set of points in Bg, the Bohr-Sommerfeld set.
The Bohr-Sommerfeld set in Pg is the main topic of this paper. We discuss the
characterization of the Bohr-Sommerfeld points in terms of the values of an
appropriate set of Hamiltonian functions with period 1 (action variables). We
show how this method can be developed into a theorem constructed to apply to the
case of the moduli space Pg; this is Theorem 4.4.

4.1. Quantization in Real Polarizations

Our treatment is taken from [6], whither we refer the reader for more details.
Let (M, ω) be a compact connected symplectic manifold of dimension 2m, and

let j£?->M be a line bundle with connection V of curvature given by 2πiω (the
prequantum line bundle with connection). A real polarization of M is a surjective
map π: M^B onto a manifold B of dimension m, such that ω\n- i(JC) = 0 for every
xeB; for generic x, the fibre Lx = {π~1(x)} is a Lagrangian submanifold. The
curvature of the line bundle 3?, restricted to each fibre, is zero. Among the fibres
will be a finite number on which the restriction of ££ will have a global covariant
constant section. The fibres satisfying this Bohr-Sommerfeld condition are called
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the Bohr-Sommerfeld fibres of the polarization, and the points x e B in the image
of the Bohr-Sommerfeld fibres are the Bohr-Sommerfeld points of the space B.

Assume in addition that the map π:M->£ is a fibration. Then the relation
between the Bohr-Sommerfeld set and quantization is the following. Let βπ denote
the sheaf of local sections of S£ which are covariant constant along the fibres of π.
The quantization of the polarized prequantum data corresponding to M, ω, if,
and V is defined as the vector space

2m

^ = 0ίP(M,Λ).
i = 0

This cohomology can be computed by a theorem of Sniatycki [13]. Let BhscB
denote the set of Bohr-Sommerfeld points of B; for b e JBbs, let Sb denote the (one-
dimensional) space of global covariant constant sections of the restriction of if to
π~1(b). Then Sniatycki's theorem declares that there is a natural isomorphism

W^ ffi Sb.
beBhs

Hence the quantization can be constructed from the sections of if over the Bohr-
Sommerfeld fibres of the polarization. _

Sniatycki's theorem does not apply to our case, since the moduli space Sfg is
not a manifold and the map %\9?

q-^Bq is not a fibration. From our point of
view, Sniatycki's result instead provides a motivation for considering the Bohr-
Sommerfeld set. On the basis of Sniatycki's result, we would expect the Bohr-
Sommerfeld set to correspond to a basis of a suitably defined quantum Hubert
space J f corresponding to the real polarization. We shall, indeed, see that the
number of points in the Bohr-Sommerfeld set is given by the Verlinde formula,
which has recently been proved to give the dimension of the quantum Hubert
space #? arising from a Kdhler polarization.

4.2. Alternative Characterization of the Bohr-Sommerfeld Fibres

Let us then consider the Bohr-Sommerfeld fibres of a fibration π: M->£. The set of
Bohr-Sommerfeld fibres consists of those fibres Lx = π~1(x) of the polarization π
for which the holonomies of the connection V around a set of loops generating
π^LJ are all equal to 1. Then a basis of loops is most conveniently obtained in
terms of a basis of a certain lattice of functions H on B, the period lattice. For
further discussion of the following material, see [3] and [6], particularly Theorems
2.4 and 2.6 of [6].

Let x be a point in B. Elements of the cotangent space T*B define vertical
vector fields along the fibre π " 1 ^ ) : for oteT*B9 denote the associated vertical
vector field by vΛ. Denote by /α the symplectic diffeomorphism of the fibre π~ί(x)
induced by the time 1 map of the flow along va.

Definition 4.1. The period lattice in T*B is the set of α in T*B such that the
corresponding fa are trivial.

This is a lattice of dimension m. One may show (see [3]) that in a sufficiently
small neighbourhood & of any point xeB, there is a set of functions Hλ (λ e A) on &
forming a lattice A under addition, such that the period lattice at x! e & is given by
{(dHλ)x,}λeΛ. (Under suitable hypotheses, the functions in the period lattice exist
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globally: see [3, Theorem 2.2].) By abuse of language, we shall use the term "period
lattice" to designate this lattice of functions as well.

Let us denote a basis of the period lattice by /^eC^l^R), and define
μf = μf o π e C^iM, 1R); then the Hamiltonian flows of the functions μ{ have period
1, and the fundamental group π^LJ is generated by the loops ηt which are the
period 1 trajectories of the Hamiltonian flows of μt. These Hamiltonian flows
generate a transitive action on the fibres of the polarization: in other words, these
fibres are m dimensional tori. The functions (μl9..., μm) define a moment map for an
action of the torus (S1)"1 on M, preserving the Lagrangian fibration.

Remark. In classical mechanics the set of functions μt corresponding to a basis of
the period lattice is known as a set of action variables.

The period lattice is important to us because, as we shall see below, the Bohr-
Sommerfeld set is roughly characterized as the set of points where the functions in
the period lattice take integer values. The precise statement that applies to the
situation we shall consider is Theorem 4.4.

The material summarized in this section applies to the case when M is a smooth
manifold and π is a smooth fibration. This is not the case for our moduli space
situation: the purpose of the remainder of this section is to show how the methods
described here generalize to our setting.

4.3. Flows and Bohr-Sommerfeld Orbits

The setting in which we wish to study quantization differs from the ideal setting
described in the previous sections in several ways; for the^map π: ̂ g-^Bg defining
the polarization is not a fibration, and the moduli space £fg is not smooth. The fact
that the map π is not a fibration will turn out to be our main concern, and will
reflect kself in the fact that Hamiltonian flows of period one cannot be defined on
all of 9*g. In this section we will characterize the Bohr-Sommerfeld orbits of a real
polarization of a smooth manifold M of dimension 2m given by a map π: M->J3
onto a manifold B of dimension m, which is not a fibration. The result we obtain in
Theorem 4.4 will apply to the moduli space case also.

Lemma 4.2. Let M be a connected symplectic manifold of dimension 2m with a
surjective map π:M-+B, where B has dimension m. Suppose y0, yx are two points in
M, and x0, xx are their images in B. Suppose that H is a smooth function on B, and
that μ = Hoπ is a Hamiltonian function (constant along the fibres of π) whose
Hamiltonian flow has period 1. Let ηt(yn) (n = 0,l) be the closed loops arising from
the Hamiltonian flow starting at y0 and y1. Then there is a map χ: I x S1 ->M such
that χ(n, t) = ηt(yn) (n = 0, \). Furthermore, the symplectic form pulls back under χ to
a smooth two-form on I xS1.

Proof We take a smooth path λ(s) in B between x0 and xu and consider a lift to
I(s)cM interpolating between y0 and yt. We may then define

χ(s,t) = φt(X(s)),

where φt is the Hamiltonian flow of the function μ at time t. By definition the

tangent vector χ^ — is the Hamiltonian vector field Xμ. Thus the symplectic form
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on M pulls back to

[ J ^ - , XμJdsΛdt

(4.1)

which is a smooth two-form on the cylinder. •

Using the existence of these cylinders constructed from Hamiltonian flows, we
are able to relate the difference of holonomies of the line bundle <£ around loops
given by the Hamiltonian flow with the difference of Hamiltonian functions at x0

and xx:

Proposition 4.3. Suppose μ is a Hamiltonian function on a symplectic manifold M,
who§e Hamiltonian flow has period 1. Let χ: / x S 1 ->M be a one parameter family

of integral curves of the Hamiltonian flow of μ, i.e., χ*-r-~Xμ for teS1, where Xμ

denotes the Hamiltonian vector field associated to μ. Let S£bea line bundle over M
with connection V of curvature 2πίω. Then the function μ(χ(s, t)) depends only on s
(since μ is constant along the orbits of the Hamiltonian flow), and therefore defines a
function H(s) = μ(χ(s,ή). Then

(Here, holχ ( π t) denotes the holonomy of the connection V around the closed loop
X(n,t).)

Proof Denote by ^ the image ^ = χ(I x S1) C M. Then ^ is a region over which the
pullback of the line bundle 3? may be trivialized: choosing such a trivialization, we
may represent the connection V by a 1-form α on # , such that dcc = 2πiω. Thus

log hoi (i t) V - log hol χ ( 0 t) V = J α - J α = 2πi j ω. (4.2)

Now consider the restriction of the symplectic form to # . We have

χ*— =(Xμ)χ{Sft), so by (4.1), we see that

( l 4 ) f . • (4.3)
We shall use Proposition 4.3 to find the Bohr-Sommerfeld points, by the

following method. Let us assume we have a function μ = H°π whose Hamiltonian
flow has period 1 denote by η(y) the closed loop which is the integral curve of the
Hamiltonian flow through a point y eM. Suppose we want to find all points xeB
for which there is a covariant constant section of Jέf over η(y). We may locate these
points x by finding one such point (denoted xμ) and using Lemma 4.2 to construct a
cylinder whose (oriented) boundary is — η{yμ)vη(y\ where y, yμ are points in π ~ ι(x)
[resp. π~1(xμ}]. Then Proposition 4.3 tells us that there is a co variant constant
section of i f over η(y) if and only if H(x)~ H{xμ)eZ.

In order to locate the Bohr-Sommerfeld points, we must then find a set of
functions μt on B such that the trajectories of the Hamiltonian flows of μ ^ μ ; o %



Bohr-Sommerfeld Orbits and the Verlinde Dimension Formula 607

on M generate the entire fundamental group of each fibre. Given such a collection
of flows, we will be able to characterize the Bohr-Sommerfeld points as given by
integer values of the functions μf assuming that we can find, for each such function,
a point xt known a priori to be a Bohr-Sommerfeld point, and where μ^x^eΈ.
Thus our characterization of the Bohr-Sommerfeld points is as follows:

Theorem 4.4. Let (M, ω) be a connected symplectic manifold of dimension 2m, and let
π:M->B be a map onto a manifold B of dimension m such that ω| π -i ( x ) = 0 for all
xeB. Let j£? be a line bundle over M with connection V of curvature 2πiω. Let
μ. = μ.oπ, ί = l , . . . , n (for fii'.B-^lR.) be a set of Hamiltonian functions constant
along the fibres π~ 1(x) and with Hamiltonian flows of period 1 with respect to the
symplectic form ω. Let Xi = π~1(π(Xi)) be a connected subset of M where μt is
smooth. Denote by η^y) the closed loop obtained from the Hamiltonian flow of μf

through a point yeXt. Suppose that
1. (Flows generate the fundamental group): For all xeB, the trajectories of those
Hamiltonian flows corresponding to functions μf for which x e π(Xf) form a set of
generators for the fundamental group of the fibre π " 1 ^ ) .
2. (Existence of a priori Bohr-Sommerfeld points): For each ί, there exists a point
xt e n(Xt) with j2i(Xi) e Έ, such that for any yeπ~ 1(xi), the line bundle ^\m{y) possesses
a global covariant constant section.
3. Whenever xeB is a Bohr-Sommerfeld point, and xφπ(Xi), then fit(x)eZ.

Then the Bohr-Sommerfeld set BhscB is characterized as follows:

x e Bhs if and only if μ^x) e Έ
for all i.

Remark. Condition (1) in Theorem 4.4 may be replaced by the following weaker
condition:

(1') Let xeB, and suppose fit(x)eZ for all ί. The trajectories of the Hamiltonian
flows corresponding to those functions μt for which x e π(Xf) generate the image of
the entire fundamental group of π~1(x) under the holonomy representation
associated to the connection V on the line bundle ££.

We wish to apply this result to the moduli space ^ , equipped with symplectic
form kω associated to the prequantum line bundle Jδf . This moduli space is not a
smooth manifold; it consists of strata, corresponding to representations of the
fundamental group of the surface Σ9 which are irreducible, or which reduce to the
subgroups T or Z(G) of G. The most straightforward approach would be to apply
Theorem 4.4 stratum by stratum. This would require finding a priori Bohr-
Sommerfeld points in each stratum. However, the proof of Theorem 4.4 shows that
a priori Bohr-Sommerfeld points in one stratum can be used to fix the values of the
action variables on the other strata, provided that smooth paths can be
constructed connecting these points to any other point in the moduli space; then
the smooth cylinders of Lemma 4.2 will still exist, allowing the proof of Theorem
4.4 to go through, exactly as in the smooth case. This is the version of the result of
Theorem 4.4 which will be used for the moduli space.

Our plan is now apparent. Our Hamiltonian flows will be given by the functions
θι defined in Sect. 2.2 (and by certain linear combinations of them). These flows will
be defined on ίf* = f] Ui9 where all the 0f are smooth, and will be shown to generate

the fundamental group of any fibre lying over a point of <9̂ 5; this is the result of
Proposition 5.4. Those fibres of the polarization lying outside £fg

s are treated in
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Proposition 6.13, which applies the alternative form (Γ) of condition (1) of
Theorem 4.4. Finally, the a priori Bohr-Sommerfeld points [condition (2) of
Theorem 4.4] are constructed in Sect. 7, using methods of Chern-Simons gauge
theory. Section 7 is the only part of this paper where any is made of Chern-Simons
theory, or indeed of three-manifold topology. The reader who is willing to accept
on faith the existence of the a priori Bohr-Sommerfeld points will find that nothing
else in this paper relies on the constructions of Sect. 7.

5. Torus Actions in Sfg

The purpose of this paper is to apply the methods of quantization in a real
polarization, studied in Sect. 4, to the symplectic variety ψ"φ kω); in other words,
to look for the Bohr-Sommerfeld orbits of the line bundle $£k. In this section we
begin this process by studying torus flows defined in Pg9 which will allow us to
apply the cylinder construction of Theorem 4.4. These torus flows will come from
the Hamiltonian flows corresponding to the functions 0f defined in Sect. 2. We then
determine a set of Hamiltonian functions generating the period lattice (by
verifying that the Hamiltonian flows of these functions give a set of closed loops
generating the fundamental groups of all fibres). One set of functions in the period
lattice are, as one might expect, given by the functions

Λ i=-Θ j for ieJ\

n

however, there are additional generators

gy=2(hiliγ) + hi2(γ) + hi3iγ)) for yeΓ.

Integer values of these functions will then correspond to the Bohr-Sommerfeld set,
assuming, first, that we can find points known a priori be in the Bohr-Sommerfeld
se{ Cas i n condition (2) of Theorem 4.4], and, second, that we can deal with the
singularities of the torus actions. The former will be the topic of Sect. 7; the latter
of Sect. 6.

5.1. Twist Flows

The construction of the torus flows in Pg is due to Goldman [4]. In [4] it was
shown that associated to every closed oriented curve CcΣ9 there is an S1 action
Sf: UC^UC defined on an open dense subset UcC^g, and called by Goldman a
twist flow. To define twist flows, we first need the following auxiliary construction.
For any conjugation invariant function / : G-»IR, we may define an associated
G-equivariant function F: G->cj by

<X,F(Ay>=dfA{X)= jtf(AexptX).

[Here, < , > denotes the basic inner product on the Lie algebra g, in other words
<X,r>=-Tr(XY).]

For the function f(A), the associated function is
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In Sect. 2, we also find it useful to study functions on Sfg related to the invariant
function 0:G->g defined by

where the value of cos" * is chosen to lie between 0 and π. We observe thus that if
A = dmg(eiθ,e~iθ\ι we have Fc(,4) = |diag(jsin0, -isinθ). Then the function Fθ

associated to the invariant function θ (where the values of θ are taken to be in
[0,π])is

F F ' {5Λ)

(as dcosθ= —sinθdθ). Thus we get

ίJ) (5.2)

for A = diag(eiθ,e~iθ) and 0e(O,π). For B = gAg~1 and A of the above form, we
define

For the values 0 = 0, π (corresponding to A= + 1), Fθ is undefined.
We now give the definition of twist flows. To do so we must first

construct an action of S1 on an open dense subset of Homίπ^I^), G). Given
a simple closed curve C in Σ9, and a basepoint *, we may choose an arc δ
joining * to a point xeC; then [C] = [ ί o C o Γ 1 ] e π 1 ( Σ 9 , * ) is canonically
defined up to conjugation by π^Σ9, *). We may then define open dense
sets Uc = {φeHom(πί(Σ9),G) \ φ&CJ)ή=±l}, and UcC^g is defined as the
image of Uc in 9f

r Then we define ζf(φ)eG, for /eR and φeϋc, by2

Cf(0) = exp4π2{ίFa(0([C]))}, (5.3)

where Fθ: G->g is the G-equivariant function defined above.
In defining the twist flow, we will deal first with the case where C is a

nonseparating curve in Σ9

9 i.e., Σ9 — C is connected. Suppose CcΣ9 is a simple
closed oriented curve in Σ9 which does not separate Σ9. There exists another
(oriented) simple closed curve BcΣ9 which intersects C once transversely with
positive intersection number. The fundamental group n^Σ9) is then generated by
the two subgroups n^9-C) and <[£]>, with the relation [β^A + lBY^AZ1,
where A+,A_ are the elements of π^Σ9 — C) whose image in π^Σ9) is [C].

We then define a flow on Uc by the map Ξf: UC^>UC given by

for ^ ) ,
(5 4)

1 We denote by diag(α, b) the matrix

L° h\
2 We normalize the symplectic form ώ on J / as follows:

where #,beTjtf\A = Ω1(Σ9)(g)Q; this differs from Goldman's normalization, which omits the
factor 4π2. In our normalization, ώ gives rise to a class in the integer cohomology group
H2(yg, Έ). The discrepancy between our normalization and Goldman's explains the difference
in normalization between our formulas and those given in [4]
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There is a similar formula if C is a separating curve; let Σl9Σ2 be the two
components of Σ9 — C. The fundamental group of πt(Σ9) is then generated by
π^ΣJ and πΐ(Σ2), amalgamated over the subgroup generated by [C]. We define a
flow on Homiπ^Σ9), G) by the map Ξf: UC-*UC given by

Ξf(φ)(a) = φ(oc) for α e π ^ ) ,

f Cf(0)-1 for ^ )

The following is a summary of the results of Theorems 1.10, 4.3, 4.5, and
4.7 of [4].

Theorem 5.1 [Goldman]. The flow Ξf on Uc covers the Hamiltonian flow on Uc

associated to the function 0C: j^->]R defined in (2.2).

It is now apparent from (5.2), (5.3), (5.4), and (5.5) that the Hamiltonian flow
associated to the function / = θc has period 1/π if C is a nonseparating curve, and
period l/2π if C is a separating curve. More generally, if we multiply the symplectic
form bykeZ, we see that the functions kθc/π (if C is nonseparating) and kθc/2π (if
C is separating) have Hamiltonian flows with period 1. Corollary 3.4 gives the
condition for these Hamiltonian vector fields to be linearly independent.

A trinion decomposition of Σ9 determines a set {CJ of 3g —3 closed oriented
curves on Σ9. Hence it gives rise to a collection of 3g — 3 flows given by Ξf * on ΰc.9

and corresponding flows we denote by Ξf1 on UCi = Ui = θj~1((09π)). Since the
Hamiltonian functions 0f are constant on the fibres of π, their Hamiltonian flows
also preserve the polarization given by π : ^9-^Bg. Further, the functions ft = cos0;
(and hence also the 0f) Poisson commute: this property was shown in [4] and
by a different method in [15], and was used to construct the polarization π.
Hence the flows generated by the 0f commute.

In summary, then, we have the following:

Proposition 5.2. Let Chί=ί,...,3g — 3be the curves defined by the boundary circles
of a trinion decomposition for Σ9. Then there exist 3g —3 functions ht defined by
hi = kθCi/π:Sfg-*[Q9k']. The Hamiltonian flow of ht is defined on the open dense
subset UiC&'g, it has period 1 if Ct is a nonseparating curve, and period 1/2 if Ct is a
separating curve. The functions hb hj Poisson commute on L^n Uj. Furthermore, the
corresponding Hamiltonian vector fields are linearly independent whenever the
inequalities (3.4) corresponding to all trinions are strict inequalities. Π

5.2. The Period Lattice in ^g

We have seen above that the Bohr-Sommerfeld set is characterized by integer
values of a set of functions generating the period lattice. We must, however, point
out a subtlety arising in finding such a set of generators. Certainly, our functions
ft. = kθjπ are in the lattice, but they do not form a set of generators. There is an
additional set of flows of period 1, namely those given by the functions

8y = (hh(y) + K(y) + K{y))l2 > 7 E Γ > ( 5 6 )

and defined on the dense open subset Uγ=Uhiγ)nUi2(γ)nUh{γ) of Pg\ here ^(y),
j2(y), i3(γ) label the boundary components of a trinion Dγ. To see that the flows
associated to these functions have period 1, it will be necessary to understand the
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relationship between the Goldman flows and the description of the fϊbration in
Sect. 2.3 in terms of connections over trinions.

Proposition 5.3. Let A be a flat a.t.d. connection on Σ9 whose holonomy (starting at
a point (*,l)eΣ9 xG) is a representation φ: π^Σ9, *)->G (where * is the basepoint
of the fundamental group). Let C} be a boundary circle in a trinion decomposition,
and suppose that the holonomy angle θj corresponding to φ is in (0, π). Then the map
S 1 - ^ given by the Goldman twist flow ΞfJ(φ) in the fibre π - 1 (x) containing the
conjugacy class of φ is the same as the map ψA embedding S1 as the copy of T
corresponding to the boundary circle Cj (given in Theorem 2.5): that is,

where τft) e f] Ht is given by

Proof For simplicity we treat the case when the boundary loop Cj is nonseparat-
ing. The proof when Cj is separating is similar.

The Goldman flow (5.4) is given in terms of the evolution in t of the holonomy
(around certain curves in Σ9) of a one parameter family of flat connections with
parameter t. In accordance with Sect. 2.3, we consider the fibre π~ 1(x) to consist of
the family of gauge equivalence classes of flat connections Aτ corresponding (under
the map ψA of Theorem 2.5) to elements τ e Π Ht. We examine the evolution in t of

i

the holonomies of this family of flat connections as one component τ, [given by
e 2 π 2 i ί e (7(1) = T ] varies in S1.

Let β be a curve that intersects Cj once transversely. We want to compute the
holonomy of a connection Aτ around β. We take the basepoint to be a point * near
Cj inside the trinion yn9 as in Fig. 2. As shown in the figure, the curve β decomposes
as

where the λi9 i = l,...,n, are arcs each of which lies within one trinion γt. The
parallel transport with respect to the flat connection A{θh{y\ θi2(γ), θi3(y)) along a
(non-closed) curve λ within a trinion γ is well-defined as an element in G, since we

Fig. 2. The closed curve β is decomposed into arcs λt lying wholly in the trinion yf, as in the proof
of Proposition 5.3
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are working with a fixed trivialization of the principal bundle GxΣd^Σ9. With
respect to this choice of trivialization, parallel transport along an arc λr using the
connection A corresponds to left multiplication by an element ρr e G. Likewise,
parallel transport along λr using Λτ is left multiplication by ρ rτ i r, where Cir is the
boundary circle shared by yr and yr-1.

Since

we have

holβΛτ = ρnτίn...τί2ρίτil. (5.7)

We also see that if α is a closed loop not intersecting Cj = Ch, then holα^4τ is given
by an expression similar to (5.7), but one which does not involve τh = τ }. So a
variation in τ^ does not change the holonomy around such loops α.

The set of possible τ} is the image ψA(l x ... x Hj x ... x 1) of the group Hj= T

under ψA:γ\Hj^π~1(x) (see Theorem 2.5). We may now compare (5.7) with the
j

formula (5.4) for the Goldman flow, to see that the image of Hi indeed corresponds
to the closed loop given by the Goldman twist flow Ξfj for Oίgfrgl/π. •

5.3. The Fundamental Group of the Fibre

We now confirm that

Proposition 5.4. Let xeBs

g

Λnd. The fundamental group of the fibre π~ι(x) is
generated by the closed loops given by the period 1 flows of ht and g r

(Recall Bs

g>
inά was defined at the end of Sect. 3.)

Proof. We have shown that π - 1 ( x ) is isomorphic to T3g~3/(Z2)
2e~2 (Proposition

3.7). This is the same as R3fif ~ 3/Λ, where A is the lattice generated by the usual basis
vectors et (f = l, . . .,3g-3) for R 3 * " 3 and by fy = $(eiiiy) + ei2iy) + ehiyp, γeΓ. We
have already (Proposition 5.3) identified the loop tet (O^Ξf^l) with the loop
arising from the time 1 Hamiltonian flow of h{. Thus by definition of
gy=2(hiί(y) + hi2(y) + hi3{y)\ the loop tfy arises from the time 1 Hamiltonian flow
of g r D

To find the Bohr-Sommerfeld orbits it suffices to verify that there are points
xi9 xy e Bg for which we can construct covariant constant sections of ^k over the
loops in π~ 1(xί), π~ί(xγ) arising from the Hamiltonian flows of ft,, and gy, and for
which the functions ftt and gy take integral values on π~1(xi) and π" 1 (x y ),
respectively. This will be the result of Proposition 7.1. Once we have achieved that
result, we see that the hypotheses of Theorem 4.4 are satisfied, and hence that the
Bohr-Sommerfeld points are those points in Bg for which ht and gy have integer
values. In other words, we have

Proposition 5.5. Let xbea point in Bs

g

Λnά. Then x is a Bohr-Sommerfeld point if and
only if, for any yeπ~1{x\

heZ, (5.8)
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where lt is even if Ct is a separating loop; and

gyω = i{^ω + ̂ ) + W e Z (5.9)
for all boundary circles Ct and trinions Dy.

Finally, we shall need the following observation characterizing the subspace ^
of reducible connections:

Proposition 5.6. Suppose yePg (as defined at the end of Sect. 2.2). Then y
corresponds to a conjugacy class of reducible representations of πγ(Σ9) if and only if,
for each trinion Dy, one of Eqs. (3.5) is satisfied.

Proof. The "only if" part is obvious. For the "if" part, Eqs. (3.5) guarantee that the
flat connection Ay representing y on the trinion Dy is abelian, i.e., it takes values in t.
Moreover, as none of the θt are 0 or π, the stabilizer groups H} from Sect. 2.3 are
copies of T. Thus also the gauge transformations ζy from Sect. 2.3 may be chosen to
have values in T. Hence the restrictions of the flat connection Aτ to the trinions Dv

Λτ\y = Λy

ζγ, all take values in t: in other words, Aτ is reducible. •

Corollary 5.7. For ye^gn^g, the Hamiltonian flow of hi at y preserves the
subspace 2Γg of reducible connections.

Proof. 2Γg is defined in a neighbourhood of y by the vanishing of a set of functions
fv y = 1,..., 2g — 2, where for each γ, either fy is θiι{y) — θh{y) + θhiy) (or a permutation
of iui2>h i n this), or else fγ = θiι{y) + θi2iy) + θi3iy) — 2π. But then ht Poisson
commutes with all the fv so that its Hamiltonian flow preserves their zero
locus Fa. •

6. Singular Bohr-Sommerfeld Fibres

In this section we consider those nongeneric points xePg where some of the
Hamiltonian flows degenerate. In this case the fibres containing x may not be tori,
but by Theorem 2.5 have the form of products of tori with factors of G, G/Z(G\ and
G/T. In this section we study the holonomy of the line bundle ifk on these fibres
and show that naϊve extrapolation of the Bohr-Sommerfeld rule derived for fibres
which are tori suffices to characterize the singular Bohr-Sommerfeld fibres also.

The fibres may degenerate for two reasons. First, if some θt take values 0 or π on
a fibre, the Hamiltonian flow 2ff is not defined on that fibre. This is because the
function 0f is continuous but not smooth at these points. We may see this
behaviour explicitly from the fact that Goldman's function Fθ:G->g defined by
(5.1) is constant with the value ±diag(ι/2, = i/2) on each component of T— {± 1}
but takes a different value on each maximal torus, determined by the requirement
that the function Fθ must be equivariant under the action of G by conjugation. It
thus cannot be defined on the central elements, which belong to every maximal
torus.

Second, even if all the flows are defined, there will be some values of θ( for which
the flows degenerate, i.e., the 3g — 3 Hamiltonian vector fields are no longer linearly
independent. This phenomenon is well known in the study of global actions of the
torus Tm on a compact symplectic manifold M of dimension 2m [1, 5]. In this
situation, the image of the moment map is a convex polyhedron cut out by
hyperplanes in Rm, and the flows degenerate on the boundary: the number of
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linear constraints satisfied by the flows in the fibre over pelR™ is equal to the
number of boundary hyperplanes containing p. (This follows from Proposition 3.3
above.) Fibres where only this type of degeneration occurs will be tori of
dimension lower than m.

In our case, at those points lying in the domains of definition of all the
Hamiltonian flows [that is, where all the θt lie in (0, π)] the boundary hyperplanes
are given by the equalities corresponding to the inequalities (3.4). They correspond
to trinions where the flat connection restricts to an abelian connection.

Because of these degenerations, we do not have a polarization in the strict sense,
since the fibres of a genuine polarization should all be smooth manifolds and
indeed be tori whose dimension is half the dimension of the symplectic manifold. A
similar difficulty was encountered by the authors of [6] in quantizing flag
manifolds: to get the correct dimension for the Hubert space arising from
quantization, they found they had to include certain degenerate orbits correspond-
ing to integer values of the action variables. In the present case, we shall also
include such orbits in our count of the Bohr-Sommerfeld fibres.

Justification for the inclusion of these extra fibres is provided by the fact that
these degenerate fibres of the polarization do admit a global covariant constant
section of ifk. Although some Hamiltonian flows degenerate or are not defined, the
fundamental group of the fibre degenerates correspondingly. Thus, for fibres of
this type where the action variables take integer values, the holonomy represent-
ation of the connection on $£k still sends the entire fundamental group of the
fibre to 1.

An important example is the fibre consisting of those points x where θx{x) = . . .
= θ3g _ 3(x) = 0, which corresponds to those flat connections on Σ9 which extend as
flat connections over a handlebody bounding the surface Σ9. This fibre is
"maximally degenerate" in that it is not in the domain of definition of any of our
Hamiltonian flows. However, we can explicitly construct a global covariant
constant section over this fibre using the Chern-Simons functional, as described
below in Sect. 7. This fibre will be of central importance in the companion
paper [9].

Our result is

Theorem 6.1. Let xeBg.
(a) The first homology group (with coefficients in Έ) of the fibre π~1(x) is given by

Here, the free summand may be taken to be generated by the trajectories of the
Hamiltonian flows of those functions ht for which x e π(U^ and of those gy for which
xeπ{Uγ).
(b) // in addition h^x) and gγ(x) are integral for all i and γ, with ht(x) an even integer
whenever Q is a separating loop (as in Proposition 5.5), the image of the torsion
subgroup Έ\ vanishes in the holonomy representation of πί(π~1(x)) corresponding to
the line bundle <£k.

Remark. Because the holonomy of a line bundle is a homomorphism from the
fundamental group into U(ί), the holonomy representation of the fundamental
group reduces to a representation of the first homology group of the fibre. It will
therefore suffice to study the image in this representation of generators of the first
homology group in order to verify condition Γ of Theorem 4.4.
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Proof of Theorem 6.ί. We shall first prove the result for the case when no
boundary circles Ct have the corresponding boundary holonomies 0f equal to 0 or
π; we shall then reduce the general case to this case.

Proposition 6.2. The conclusion of Theorem 6Λ is true for fibres π " 1 ^ ) , where
xeBg.

Proof If x e π(U^ for all i, we obtain the result by Theorem 2.5. Recall that in Sect.
4.2, flat connections Aτ corresponding to points in the fibre above x were formed by
gluing together flat connections A(θil(y)(x\ θi2(γ)(x), θi3(y)(x)) = Ay on trinions Dy

along the boundary components of the trinions. We must simply extend the
construction given in Theorem 2.5 to allow for the possibility that on some trinion
Dy, the flat connection Ay is reducible: this happens whenever (θίί{y)(x), θi2iy)(x),
θi3iy)(x)) is not an interior triple, i.e., whenever one of the inequalities (3.4) becomes
an equality. Then the stabilizer of Λy is T. [Since we are assuming all θ^x) e (0, π), Ay

cannot correspond to a representation into Z2.]
Suppose there are a trinions for which the flat connection Ay has stabilizer T By

Theorem 2.5, the fibre π" \x) is then T3g~ 3/{Ta x (Έ2)
2g~2~a}, where the action of

Tax(Z2)
2g-2-aisby

Here, τteT denotes an element in the /th copy of T in T3fif~3, the copy
corresponding to the boundary circle Cf. Likewise, Φy{i), Φy>{i) denote the elements
of T or Έ2 in Tax(Z2)

2g~2~a, where y(i),/(0 designate the two trinions
bounding C, .

The stabilizer group of the action of Tax(Z2)
2g~2~a on T 3 *" 3 is thus

Stab[^J = {{Φy}: Φγ(i) = Φγii) for all i};

in other words, it is T if the flat connections on all trinions are abelian, and Z(G)
otherwise. Thus the fundamental group of the fibre is Z3g~3~a+1 if the flat
connections on all trinions are abelian, and Z3g~3~a otherwise.

By Proposition 5.3, the Hamiltonian flow of the function h{ was identified with
the action of T on T3g ~ 3 given by multiplication on the ίth copy of T in T3g " 3 . The
number of linearly independent Hamiltonian vector fields from the torus action is
also given by 3g — 3 — a +1 (resp. 3g — 3 — a) under the above hypotheses. For one
begins with 3g —3 vector fields, which are subject to one linear constraint from
each trinion whose associated flat connection is abelian. This follows from
Proposition 3.3: indeed, Propositions 3.3 and 3.4 say that the linear equations
satisfied by the vector fields are the same as those (3.5) satisfied by the coordinates
0f. If the number of constraints a is less than 2g—2, then the constraints are linearly
independent: indeed, by considering the trivalent graph one sees that each
additional constraint equation introduces a new coordinate 0f not involved in the
previous equations. However, if α = 2g—2 (i.e., if the flat connections on all
trinions are abelian), then since the flat connections Ay being glued have structure
group T, the global connections we obtain by gluing are T connections (see
Proposition 5.6). Now the flows of the Hamiltonian functions ht preserve the
subspace SΓg of reducible connections (see Corollary 5.7). In fact, they give g
linearly independent Hamiltonian vector fields, so the number of linearly
independent vector fields is indeed g = 3g — 3 — (a — 1) in this case, as needed. Π

In the following, we shall find a relation between fibres in the polarization of 9*g

where certain flows degenerate and fibres of moduli spaces corresponding to
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surfaces (with boundary) of lower genus. To keep track of the corresponding
coordinates 0, it will be helpful to introduce the following

Definition 6.3. Let Σ9 be a surface (possibly with several boundary components)
equipped with a trinion decomposition. A labelling of the trinion decomposition
by holonomy angles θ is a set of elements θ}e [0,π] associated to each boundary
circle C, in the trinion decomposition (including the components of dΣg).

If Σ9 is a closed surface, a point x e Bg with coordinates θ(x) gives rise to a
labelling of a trinion decomposition by holonomy angles θ(x).

We now reduce the proof of Theorem 6.1 to the case proved above, where
θi(x) G (0, π). To do so we relate the fibre of our polarization above a point where
some of the 0f(x) are 0 or π to a product of fibres of polarizations of lower genus
surfaces. These surfaces Σa are obtained from Σ9 by cutting Σ9 along those
boundary circles Cf marked 0 or π. In doing this we will use the following notation:

Let v:Hom(n^g\G)^>£?g denote the projection to the quotient under the
conjugation action, and let the function 0ί:Hom(π1(I'flί), G)->IR be defined by

1. Σa C Σ9 is a surface with several boundary components Cf\ εα is a map from the
set of boundary components of Σa to {0,1}, and the boundary component Cψ is
labelled by the holonomy angle πεa{j). We also define H o m ^ π ^ Γ J , G)
= {ρeHom(π1(2;α),G) | i([Cje)]) = ( - l ) ^ for all j}.
2. Let SΛt i: H o m ^ π ^ ) , G)-> [0, π] be the function given by the holonomy angle
around the boundary circle Q.
3. Let i/<fα) denote the subset of representations in Homω(π1(2I

β), G) for which all
of the functions Sal corresponding to boundary circles in the interior of Σa take
values in (0, π).
4. Let B^ denote the base space corresponding to H£α); that is, B^ is the image
of if<fα) under the map C/i X e # α corresponding to the subset ^ α c / corre-
sponding to those boundary circles Ct which are in Σa.
5. Let v%*):H%*)-+H%*)/G and π^'.H^/G^B^ be the natural projection
maps.
6. Let xa e B^a) be a point whose coordinates are the values of the functions fpcj
corresponding to the boundary circles C^e^.
7. Let #<fα)OJ denote (π^ o v ^ ) " \xΛ) C H^\

Now all of the results developed in Sects. 2, 3, and 5 about Hamiltonian flows
have a straightforward generalization to moduli spaces of representations of
fundamental groups of surfaces with boundary, of the type considered above. This
can be seen directly as in [10]. Alternatively, we note that the spaces i/iεα)[xj, #i£ α )

and their quotients by the action of G are all subspaces of the spaces
Homiπ^Σ9), G) and its quotient &g9 and that these subspaces are preserved by the
flows corresponding to the functions h{ and g r Thus these flows give rise to flows
on H^lxJ, H{*"} and their quotients by G, which can in fact be seen to correspond
to the Hamiltonian flows of the functions constructed from the ΰal. We will refer to
these flows, by abuse of language, as the flows defined by the functions ht and gy;
note that when Cf is in the interior of ΣΛ9 the flow corresponding to ht is defined
everywhere on H^lx^, H{*a) and their quotients by G.

Lemma 6.4. Let Ct be a nonseparating boundary curve in a surface Σa with N
boundary components, and consider 3ati:Uomieoc)(n^a\G)->lO,n]. If ε = 0,1 then
ϋ~l(επ) = G x Hom^^π^Z^), G), where Σβ is the surface formed by cutting Σa along
Ch and the map εβ is obtained from the map εα by extending it so it sends the two new
boundary circles to ε.
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Proof. Without loss of generality the curve C{ may be assumed to be the generator
aγ in the standard set of generators ai9bi9dj for π^ΣJ, satisfying the relation
(Π ai^iaΓ 1b[1\d1...dN = l. Let ρ be a representation of π1(Σα) in G. Then if ρ(aί) is

central, the condition that ρ be a representation of π^ΣJ reduces to the condition

Suppose, on the other hand, that C, is a boundary circle in a trinion
decomposition of Σa9 which separates Σαinto surfaces Σβl and Σβ2 of genus g1 and
g2 with Nx + l (resp. N2 +1) boundary components. Denote by δ the element of
π1(Σ'α) corresponding to Q. Then

where nx(Ifi) have standard generators α^0,..., af., bψ9..., bf., df,..., d§., δ, and the
amalgamated product is defined by taking the free group on these generators and
imposing the relations3

αf bf (a

Thus we have

Lemma 6.5. Suppose ε = 0,1 and suppose Ct is a separating boundary loop in Σa.
Then ^-ί

1(επ) = {ρeHom(εa)(π1(2:a),G): ρ(δ) = (-l)ε} satisfies

3~!(επ) = Hom<β* W Σ ^ ) , G) x H o m ^ ί π ^ i j , G),

£βί,sβ2 are obtained from the restrictions of the map εa to the subsets of
boundary components of Σa in Σβι,Σβ2, by extending them to send Ct to ε.

Remark. The identifications given in the previous two lemmas equate the values of
the functions 9t on elements of Hom(π1(Σ'β), G) with the values of the functions 5aJ

on corresponding elements of H o m ^ π ^ Σ J , G): thus the fibre C\S~l(yι)
i

CHom^^π^IJjG) (for any values yt) is identified with the corresponding
fibres in Uom{ε^)(π1(Σβl),G)xUom(ε^)(πί(Σβ2),G) (if Ct is separating), or in
G x Hom^^πj ί^) , G) (if Cf is nonseparating).

For any loop Q C Σg, we obtain a new (possibly disconnected) surface by cutting
Σ9 along Ct. We may cut Σ9 along all boundary circles Ct for which 0 ^ = 0 or
θi(x) = π, and obtain a collection of surfaces Σa9 each with several boundary
components, and each equipped with a trinion decomposition labelled by
holonomy angles. All boundary circles C} in the interior of Σa are labelled by
holonomy angles θjE(0,π), while all boundary circles C} in dΣa are labelled by
θj=0or θj=π.

Thus, by repeated application of Lemmas 6.4 and 6.5, we therefore relate our
fibre (π o v)~1(x) C Horn(7^(2?), G) to subspaces of Hom(π1(I'α), G), where each 2"α is
a surface with several boundary components. Each Σa is equipped with a trinion
decomposition labelled by holonomy angles, with all boundary circles Cj in the
interior of Σa labelled by holonomy angles 0ye(O, π), and for which all boundary
3 Here we have chosen a basepoint in Cf
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circles C, in dΣa are labelled with θj=O or 0, = π . Thus, we relate our fibre
(π o v)" \x) C Homin^I*), G) to the product of a number of fibres ( π ^ o v<fβ))" ι(xa)
C Hom(f iα)(π1(Γα), G), where Σa are surfaces with trinion decompositions labelled by
holonomy angles.

Summarizing, we have shown

Proposition 6.6. Let Σ9 be a surface of genus g, and let </' be an arbitrary subset of J.
Let ε = (ε j) f e^:y /->{0,l}, and let Homϊ(π1(Σ9),G)Cΐlom(πi(Σ9),G) denote the
space of representations of n^Σ9) into G sending the boundary loops Ci9 ί e £' (and
only these), to (— l ) ε ί = + 1 . This space can be written in terms of representation
spaces of surfaces of lower genus, as follows:
1. The representation space Hom-fa^Σ9), G) decomposes into a product of repres-
entation spaces of lower genus surfaces:

Hom^πάΣ9), G) = Π H«a) x G " α far some naeZ, na^0.

2. The surfaces Σa are equipped with trinion decompositions labelled by holonomy
angles, and there are functions 3Λtl: ifjfα)-»((), π) (for all boundary circles Cι in the
interior of Σa) which generate Hamiltonian flows at all points on H^/G. Under the
identification given in (1), there functions ΰa ι agree with the functions $ι defined on
"Άomiπ^Σ9), G).
3. Under the above identification of the coordinates on Horn-(7^(2^), G) with those
on lower genus surfaces, the fibres of the map π o v decompose into fibres of the
corresponding maps on lower genus surfaces, as in part (1): i.e., (πov)" 1 ^)

The surface Σa has a trinion decomposition labelled by holonomy angles, and
there are no boundary circles (in the interior of Σa) labelled 0 or π: by Proposition
6.2 (and its analog for a surface with several boundary components labelled 0 or π)
we thus also have that

Proposition 6.7. The first homology group (with coefficients in Έ) of the fibre
ii<fa)[xJ/G is generated by the trajectories of the Hamiltonian flows of those
functions h( where Ct is in the interior of Σa and those gγ where Dγ is in the interior
ofΣa.

In completing the proof of Theorem 6.1, the following observation, which
follows from Proposition 5.6, will be useful:

Lemma 6.8. // Jtfiββ)[xJ contains any abelian representations, then it consists
entirely of abelian representations.

It will be helpful also to have the following explicit characterization of the space

Lemma 6.9. The space i2^a)[xa] is of one of the following types:
(a) // #i ε α ) [XJ consists of representations into Έ2, then Σa is a trinion (with all three
boundary circles labelled by holonomy angles 0 or π) and H^fa)[xa] is a point.
(b) // ffaββ)[xJ consists of reducible representations which are not representations
into Z2, then i/ifia)[xa] is of the form G/Tx Tm\
(c) // H^ a )[x a] consists of irreducible representations, then #Ϋa )[xa] is of the form
G/Z2 x Tm\
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Proof. Part (a) follows immediately from the definition of #iε<x)[xα].
(b) In this case, we have the fibration G/T^iί^α)[xJ^iϊ^α)[xα]/G. Here
#αα)[>α]/G is a torus (by Theorem 2.5). We may show this fibration is trivial by
exhibiting a section of it, i.e., a G equivariant map /^[xJ-^G/T. Such a map is
given by the restriction map Hjfα)[xJ->Ήoin(π!(!)), G) to some trinion DcΣa

chosen so that the representations in iίiε<χ)[xj do not restrict on πx(D) to
representations into Έ2: the image of this restriction map forms one orbit G/T of
the action of G on Homίπ^D), G) by conjugation.
(c) The proof is the same as in (b) except that G/T is replaced by G/ΊL2, and D is a
trinion such that the representations in JtfJfβ)[xJ restrict on π^D) to irreducible
representations. •

We now use the decomposition theorem of Proposition 6.6 to complete the
proof of Theorem 6.1. We do this by showing that certain maps induce
isomorphisms on the free part of the integer homology of the spaces we consider.
There are four such maps. The first map is simply the projection v[x]: (π © v)~ι(x)
->π~ ί(x). The second map is given by the identification of Proposition 6.6: this is a
homeomorphism

m[x]: (π o v ) " \x)-+ fl fl^lXJ x Gw«.
α = l

N N

The third map is the projection map P t [x] : Π H?β )[xJ x G"β-> Π #?β )IX]
α = l α = l

Finally, we consider the projection map v£β)[xJ: ί/?β)[xJ -•ff^lXJ/G.

Proposition 6.10. The maps v[x], m[x], Pi[x], and vjfa)[xa] induce isomorphisms on
the free parts of homology groups with coefficients in Έ. In particular,

where the isomorphism carries the trajectories of the flows of the Hamiltonίan
functions /ιf and gy on π " 1 ^ ) (where xeπ(Ui) and xeπ(Uy), respectively) to their
counterparts in iiJfa)[xa]/G for appropriate a. (Here, the homology groups H1 are of
the form Za®Zb

2, as in the statement of Theorem 6.1: we denote by H\ the Έa

summand.)

Proposition 6.10, taken along with the identification (Proposition 6.7) of the
homology of the fibres ff^a)[xa]/G with the trajectories of the flows ht and gv

allows us to identify the free parts of the first homology of the fibres in Theorem 6.1
as also generated by these trajectories. The torsion in H1(n~1{x)) will be dealt with
in Proposition 6.12.

Proof of Proposition 6.10. The map m[x] is a homeomorphism by Proposition
6.6; whereas Pγ[x\ induces an isomorphism on H1 since G is simply connected.
The fact that v[x] and vjfα)[xα] induce isomorphisms on the free parts of H1 will
follow by an argument using path lifting and the exact homotopy sequence of a
fibration.4 We may restrict our attention to the case where none of the spaces
if$fα)[xα] that appear are of the type given in Lemma 6.9(a), since these H%α)[xα] are

4 The spaces in question all have abelian fundamental groups, as one sees from Lemma 6.9: thus
exact homotopy sequences yield the results (6.1) and (6.2) as stated for their first homology groups
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just points. We must then show that the maps

« x J* : HΊ(fl^[x J)^Hi(fl^[x J/G), (6.1)

a n d v[x]φ: i/U(π o v)- \x))-*H\{π- \χ)) (6.2)

are isomorphisms.
First we prove statement (6.1). This follows from the fibration

G/S > H^ίxJ *"*** > H^ίxJ/G, (6.3)

where S is the stabilizer of the conjugation action of G on i/<fα)[;cα]. By Lemma 6.8,
S is either Z 2 or T globally; thus πi(G/S)=Έ2 or 1, so H^H^lx^Z)
= Hί(H(**)[xa]/G,Z) up to factors of Z2.

Now we turn to the proof of (6.2). We introduce the notation [see item (3) of
Proposition 6.6]

γ=(nov)-\x)= Π#i ε α )IX] x G"α (6.4)

V[JC]

The statement (6.2) follows from consideration of the map Y —> Y/G given by
the quotient of Y by the conjugation action of G on Y. The inverse image
v[x] " 1(v[x] (p)) is G/Sp9 where Sp is the stabilizer at p of the conjugation action on
Y. Unless all H^lxJ consist of reducible connections, Sp is TL2\ in this case
Y —• Y/G is a fibration and (6.2) follows from the associated exact homotopy
sequence.

We thus have reduced the proof of (6.2) to the case where our fibre is such that
all #ifiα)[XJ consist of reducible connections. In this situation, the group Sp

depends on the point pe Y: Sp is still Έ2 unless peY corresponds to a reducible
connection on Σ9, in which case Sp = T. Thus the map v[x] is not a fibration in this
case. Let us define Yreg = {peY: SP=Έ2}. Since the map v[x] restricted to Yreg is a
fibration, the statement (6.2) will follow from the homotopy exact sequence of
v M : Yreg^Yreg/G if we can show π1(Γ) = π1(Yreg) and π1(Y/G) = π1(Yreg/G). To
check this, we need to prove

Lemma 6.11. Let Y= Π#α α ) IX] x GWα, where all the H^lxJ consist of reducible
connections. Then:
(a) Every loop σiS^^^Yis homo topic to a loop σ': S1 -» Yreg (and likewise with Y and
Yreg replaced by Y/G and YrJG).
(b) // fl9 f2: S1 -> Yτeg are homotopic as maps Sί-+Y then they are homotopic as maps
S 1 ^ Yreg (and likewise with Y and Yreg replaced by Y/G and YτJG).

Now under the assumption that H^a)[xa] consists of reducible connections,
we have [from Lemma 6.9(b)]

(6.5)
Hence Y becomes

Y=γ\Tm«xG/TxGn«, (6.6)

where G acts on Tm<* trivially, on G/T by left multiplication, and on GΠα by
conjugation. Thus we have

Y/G= Π Tm«x ( Π G/TxGnA G
α=l \β=l )\

f-ι xGA)/T, (6.7)
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where A'= £n α and T acts on G by conjugation while it acts on G/T by left
α

multiplication.
To prove Lemma 6.11 for Y, note from (6.6) that Y is a smooth manifold, so the

lemma follows provided the codimension of Y— Yreg is ^ 3 (see [7, Propositions
VII. 12.4 and VII. 12.6]). This is the case except in a few special cases (specifically,
Y=Gx H^lxJ or H^[xa~\ x fl^Dc,], where #<εα) |>α], Hf\x^ consist entirely
of abelian representations, or Y= G x G). For these special cases, (6.2) can be
checked directly.

To prove Lemma 6.11 for Y/G, we need to modify the argument of [7, VII. 12]
so it applies in this case, since Y/G is not a smooth manifold; for this, we shall need
a more careful analysis of Y/G near ( 7 - 7reg)/G. Define Z=(G/T)N~1 x GA: then
either T acts with stabilizer TL2 at z e Z, or z is a fixed point of the T action. The
space Z/T is smooth wherever Γ acts with stabilizer TL2\ to find a local model for
neighbourhoods in Z/T near the fixed points of the T action, we look at the
tangent space to Z at a point z in the manifold of fixed points WN-1 xTAcZ
[where W=N(T)/T denotes the Weyl group]. We then have the identification

TZ\z=ΈLA®<εN-ί+A, (6.8)

where eiθe T acts trivially on R, and on C by multiplication by e2iθ.
By considering this linear action of T on TZ\Z9 we see that a local model for a

neighbourhood of [z] in Z/T is

Θ^TZ\Z/T=JR.A x C(<£PN-2+A), (6.9)

where C(CFN-2 +^) = C P Λ r - 2 + ^ x [0, oo)/(p,0)~(p',0) is the cone on (CPN~2+A.
We are now ready to prove Lemma 6.11 (a) for Y/G. We choose the basepoint

for πγ(Y/G) to lie in the regular locus Π Tm" x Zreg/T, where Z r e g is the set of points
α

in Z, where the stabilizer of the T action is ΊL2. We must show that any loop
σ: S1 ->Z/T can be deformed into ZreJT keeping the basepoint fixed: then Lemma
6.11 (a) will follow from the exact homotopy sequence of the fibration

rreg^» Yreg/G=γ\τm*χztjτ.
a

It suffices to prove (cf. [7, Proposition VII.12.4]) that a path σ in Z/T with
σ(0) = yo, σ(ί)=yieZreg/T lying entirely in an open neighbourhood of a point in
Z/T— Zreg/T may be deformed (keeping y0, yγ fixed) to a path σf in ZttJT. But we
have seen in (6.9) that such a neighbourhood 0 is of the form
0=]R 4 x C(<DPN~2+A), which is in particular contractible. We thus denote our
path by σ = (σl9σ2), where σx: [0,1]^RA and σ2: [0, l]->C(<CPN-2+^). Further,
there is a path σ' joining y0 to J/J and lying entirely within ΘnZreJT. (We ob-
tain this path by projecting y0 and yγ on (Qp*- 2 + ^ a n ( j joining their images
under the projection by a path ρ in (£^pN~2+A

t Then, for an appropriate function
τ: [0,1 ] -•((), oo), the desired path is given by σ'2 = (ρ, τ): [0,1 ] -»CP*" 2 + A x (0, oo).
The path σ' = (σ l5σ2) is homotopic to σ because Θ is contractible.) This proves
Lemma 6.11 (a).

To prove Lemma 6.1 l(b) for Y/G, we recall that given an open cover of a
topological space X, two homotopic paths in X are homotopic by a sequence of
homotopies each of which is the identity outside one of the sets in the open cover.
Thus we may assume fl9f2: [0,1]-+&c\Z . We may project fί°f2~

1 onto
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<EPN ~2+Λ

9 and then the existence of the desired homotopy in Zreg/T follows, by an
argument similar to that given above, because <CPN~ 2+A is simply connected. This
completes the proof of (6.2) and hence of Proposition 6.10. Π

We now show that the Έ2 summands that appeared in Proposition 6.10 vanish
in the holonomy representation. More precisely, we have

Proposition 6.12. Let xeBg satisfy (5.8) and (5.9). Let ξ e H ^ n ' ι{x)) be an element
of the torsion subgroup of Hi(π~1(x)); that is, 2£ = 0. Then the holonomy
representation of H^π'1^)) (defined by the connection V on £?k) takes ξ to 1.

Proof We must recall how the factors of TL2 appear. These factors arise for fibres
corresponding to labelled trinion decompositions of the surface Σβ

9 where the
collection of curves Cf labelled with 0j = O or d{ = π separates Σ9 into two (not
necessarily connected) surfaces Σl9 Σ2 In our earlier notation, Σί is one of the Σa

and Σ2 is Σ9 — ΣΛ. An element in this fibre can be represented by a flat a.t.d.
connection A on Σ9, which give rise to flat connections Aγ — A\Σχ and A2 = A\Σl on
Σx and Σ2. A loop generating a nonzero torsion element of H^π'^x)) is then
represented by a path At of flat a.t.d. connections on Σ9

9 where

At\Σl = Af, At\Σ2 = A2, (6.10)

and where ζt = dmg(eiπ\e~ίπt) (O^ί^l) is a path of (constant) gauge transforma-
tions from 1 to — 1. If Σ9 = ΣίuΣ2, then the path At is a closed loop in jtfF. The
connection form for the trivial line bundle srf¥ x <C-» sdF which descends to the line
bundle JS?->^ is given by the one form θ which assigns to an element a e Tstf\A the
number

θA(a) = ]- f T r μ Λ a) (see [11, p. 412]).

l /ĵ 4 \
We then must check that the integral of the connection form J kθAt I -j11 dt is

an integer multiple of 2πi, since the exponential of this integral is the parallel
transport in iffc along the path A. This follows by explicit calculation: we have

J J
Σ9 te[0,1]

J J
Σι ίe[0,l]

J
x ίe[0.1]

= - 2 π J Tr((diagft - 0 μ 1 ) = 4π2n, (6.11)
dΣ,

where n is the number of boundary circles Cj in dΣί for which θ:=π. Thus
1 / ^ \
J kθAt I -j-^ I dt = ίπkn. But it will follow from Lemma 8.2 that n is even when k is
o \ dt J
odd. This completes the proof. •

This completes the proof of Theorem 6.1. •
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We now apply Theorem 6.1 to extend the characterization of the Bohr-
Sommerfeld set given in Proposition 5.5 to the singular fibres. Once we have found
a point for which there is a covariant constant section over the loop corresponding
to the Hamiltonian flow (which will be dealt with in Sect. 7), we shall be able to see
(as we did in the case of nonsingular fibres, Proposition 5.5) that the hypotheses of
Theorem 4.4 are satisfied, and hence to conclude:

Proposition 6.13. Let xeBg — Bs

g'
ind. Then x is a Bohr-Sommerfeld point if and only

if Eqs. (5.8), (5.9) are satisfied for all boundary circles Cf and trinions Dγ.

Proof First, if these conditions are satisfied then x is a Bohr-Sommerfeld point:
for the holonomy representation of the fundamental group of π~ 1(x) is generated
by the trajectories of the Hamiltonian flows corresponding to a subset of the ht and
gy, and by certain Έ2 factors, and by Proposition 6.12, the Έ2 factors vanish in the
holonomy representation given by JSfk.

On the other hand, if x is a Bohr-Sommerfeld point then one can verify [as
needed for condition (3) of Theorem 4.4] that (5.8) and (5.9) are satisfied, for all i for
which x e π(U^9 for all γ for which x e π(Uγ), and in fact for all i and γ. For x e π(l/f) if
θι(x) e (0, π); likewise x e π(Uγ) if θiriγ)(x) e (0, π) for all the boundary circles CiΛy) of
the trinion Dr Thus if xφπ(Uι) for some i, Λf(x) must be integral, and one of the
following possibilities must occur:

θiίiy)(x) = 0, θi2iγ)(x) = θί3{y)(x) φ {0, π},

θh{y)(x) = π, θί2iy)(x) = π- θHy)(x) φ {0, π},
(6.12)

θh(y)(x) = θi2(y)(x) = θi3(yίx) = ° >
θii(y)(x) = °> θi2(y)(x) = θh(y)(x) = π

Thus we see that (5.9) is satisfied in all cases. The fact that h^x) is an even integer if
Q is a separating loop will then follow from Lemma 8.2. •

7. Normalization of the Action Variables via Branched Covers

The objective of this section is to establish the following result:

Proposition 7.1. There exist points XiEπiU^cBg (resp. xγeπ(Uγ)) such that
1. The function ht (resp. gγ) takes an integer value on the fibre π""1^;) (resp.
π-\xγ)).
2. There exists a covariant constant section of $£k along one orbit of the
Hamiltonian flow of ht (resp. gy) in π~1(x^) (resp. π~ι(xy)).

Proposition 7.1 plays an important part in the proof of Propositions 5.5 and
6.13, since the a priori Bohr-Sommerfeld points constructed in Proposition 7.1
allow the moduli space case considered in this paper to be fit into the framework of
condition (2) of Theorem 4.4. Thus the construction of these few Bohr-Sommerfeld
points allow us to characterize the entire Bohr-Sommerfeld set.

To find the a priori Bohr-Sommerfeld points, we employ constructions from
Chern-Simons gauge theory. These constructions will enable us to construct
explicit covariant constant sections of the line bundle Jέfk restricted to fibres
π~ ι(Xi), π~1(xγ), for which the action variables ht and gγ assume integer values as in
Eqs. (5.8), (5.9). Chern-Simons gauge theory enters the picture since the fibres we
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work with are related to moduli spaces of flat connections on handlebodies. On the
fibre corresponding to such a moduli space, the line bundle J£? has a global
covariant constant section, constructed from the Chern-Simons invariant in [9].
The actual fibres we use correspond to handlebodies which are fc-fold branched
covers of the handlebody bounding Σ9; the corresponding covariant constant
section descends to a section of ££k on the fibre. Thus we see an intimate
connection between the holonomy of the flat connections in a fibre (related to the
branching index) and the power of the line bundle possessing global covariant
constant sections on such a fibre.

The present section of the paper is the only one that employs Chern-Simons
gauge theory: those readers who are willing to accept on faith that one can find
suitable points x{ and xy will find that nothing else in the paper depends on the
arguments presented here.

7.1. Results on the Chern-Simons Cocycle

We recall from [11] the following construction of the prequantum line bundle i?
over Pg. As mentioned in Sect. 2, the moduli space is given by Pg = siF/^S9 the space
of flat connections on Σ9 modulo gauge transformations. So we begin with the
trivial line bundle si x <C over the space si of all connections over Σ9. This line
bundle has a connection V with curvature 2πiω, which may be written as a one
form θ, defined by

where a e Tsi\A and where Ao denotes the product connection. We lift the action of
an element ζ of the gauge group ^ to si x C as follows:

ζ:(A,z)^(A^Θ(A,ζ)z). (7.1)

Here, the Chern-Simons cocycle Θ(A, ζ) is defined as follows. We choose a path A(t)
in si from the product connection Ao to A. This path defines a connection A on
ΣβxL We extend the gauge transformation ζ on Σ9 = Σdx{l} to a gauge
transformation ζon Σ9xl which is equal to 1 on a neighbourhood of Σ9 x {0}. The
Chern-Simons cocycle is then defined as

Θ(A, 0 = exp2πi[CS(^) - CS(I)] 617(1). (7.2)

Here, CS(B) is the Chern-Simons functional on connections B on Σ9 x/,

The cocycle Θ is independent of the choice of the extension ζ and of the choice of
the path A(t). In [11] it was shown that the lift (7.1) preserved the connection V on
i x ( C . Thus (the restriction to siF of) the line bundle si x <C descends to give a line
bundle J£? with connection on siψjΦ.

We also note the following facts:

Proposition 7.2. Let Hbea genus g handlebody with boundary Σ9. Denote by Jί(H)
the space of conjugacy classes of representations of the handlebody fundamental
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group into G, and by LH its image in ίfg under the restriction map. Then
1. The map from Jί{H) to £?g is injective.
2. Given a flat connection A whose gauge equivalence class lies in LH, denote by A an
(arbitrary) extension of A to a flat connection over H. Then the map
s\stfF-+stf¥x (C given by

is well-defined (independent of choice of extension) and descends to give a section s
of Jδffc over LH. This section is covariant constant.

Proof To see that this map defines a section of J5f, we use the construction of the
line bundle J5f from the trivial bundle srf¥ x <C-> stfF. The definition of s in terms of
the Chern-Simons invariant of connections on a three-manifold bounding Σβ

guarantees that it has the correct equivariance property under the action of the
gauge group to descend to a section of JSf \LH-+LH C Pq. The proof that the section s,
and therefore the induced section s: LH^>&, is covariant constant, is given in [9].

7.2. Covariant Constant Sections over Loops

The construction of covariant constant sections over the fibre LH may be
generalized to yield covariant constant sections over submanifolds of certain
Lagrangian fibres other than LH: in particular, it will enable us to produce
covariant constant sections over certain loops ηt coming from Hamiltonian flows
of period 1. The construction uses branched covers, in much the same way as these
were treated in [8].

We give first, in Proposition 7.3, the proof that if Cf is a nonseparating loop,
then ££k has trivial holonomy over an orbit of the Hamiltonian flow of ht precisely
when hi takes an integer value on that orbit. We will prove this by explicitly
constructing a fibre Lim where there is a covariant constant section of if* over
each trajectory of the Hamiltonian flow of hi9 and on which h( takes an integer
value. The analogous result when Cf is a separating loop will then be deduced from
the nonseparating case in Proposition 7.6.

Suppose then that Q is a nonseparating boundary circle in the trinion
decomposition. There is then a cycle βt in the trivalent graph representing the
trinion decomposition, which contains the edge representing C f. This cycle
corresponds to a simple closed curve Q{ in the interior of the handlebody H
determined by the trinion decomposition, which has linking number 1 with Q. For
every trinion Dγ, the curve ρf either does not meet Dγ, or else links precisely two of
the boundary circles of Dγ with linking number ± 1 and has linking number 0 with
the other boundary circle.

We now construct the fc-fold branched cover H of H branched over ρt . We have

Proposition 7.3. The branched cover H is a handlebody.

Proof. We construct Hexplicitly as follows. Consider a solid torus U = D2 xS1cH
with meridian Ch which retracts onto the curve ρt = {0} x S1. The solid torus U
meets the closure H— U of H— U in N disjoint disks Eί9 ...,EN (see Fig. 3). The
fe-fold branched cover H is constructed as the union of a solid torus U = D2 xS1

and k copies of H— U, each of which is joined to U along N disks. The covering
map U^U is the standard map
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Fig.3. The handlebody H and its /c-fold branched cover H, branched over the curve
(here/c = 3)

the Nk disks mdUcΌ, along which the k copies of (H—U) are attached, are the
components of the inverse images of Eu ..., EN under this map. The branch locus ρt

has inverse image ρf under the covering map. The space H is a handlebody; in
particular, the boundary of H is a surface Σ9' of genus g' = 1 + k(g — 1), which is a
fe-fold regular cover of Σ9. •

We consider a particular fibre Lin of the polarization π of Pθ, defined by

Li,n = {r*(Φ) IΦ e H o m f o ί J Ϊ - ρ λ Trf l [CJ) = 2cos(2πn/k)}/G,

where r:Σ9^H—ρi is the inclusion map. In other words Lf M consists of
(restrictions to ^ of) gauge equivalence classes of flat connections on H — ρt for
which the holonomy around the meridian Cf of ρf is conjugate to
diag(exp2πm//c,exp— 2πin/k). We now have

Proposition 7.4. Consider the fibre Lin of the polarization πof Ί?q. Then the natural
map Pg-*Pg, associated to the covering map q: Σ9'-+Σ9 takes Lu n into the fibre Lg of
yq> consisting of gauge equivalence classes of flat connections which extend to flat
connections over the handlebody H. Moreover, this map lifts to a bundle map
ψ: S£k^>& from the kth power of the line bundle J5f over 9*g to the corresponding line
bundle 3? over ί̂ ,, which is a map of bundles with connection.

Proof Under the covering map, a representation φ .π^H—ρ^-tG sending the
meridian [ C ^ to an element of order k pulls back to a representation
(j) = q*(φ):πί(H — ρ f )^G which comes from a representation of π^H) into G. In
terms of flat connections, a flat connection A of this form on H — ρf pulls back to a
connection which extends as a flat connection over all of H.

Let q*: stf(Σ9)-*stf(Σ9') denote the map induced on the spaces of connections by
the covering map q. Let K denote the map τc:C-»C defined by κ(z) = zk. Let
ψ = q*xκ: sί{Σ9) x <E-+s/(Σ9') x (C denote the map of trivial line bundles induced
by q* and K. Let Ae<z/(Σ9) be a connection on Σ9, and let ζ:Σ9^>G be a gauge



Bohr-Sommerfeld Orbits and the Verlinde Dimension Formula 627

transformation on Σ9. The kth power of the Chern-Simons cocycle on Σg, Θ(A, ζ)k,
then lifts to the Chern-Simons cocycle on Σ9'; that is,

Thus the map ψ is compatible with the action of the gauge group, and descends to
a bundle map ψ: S£k^>3?. It remains to show that the map ψ is in fact a map of
bundles with connection. If aeTstf(Σ9)\A, then q*(a) can be considered as an
element of Tstf(Σ9')\q*{A). The connection one form θ' on the trivial bundle
HJ?') x <C given by

then pulls back to the connection one-form kθ on s/(Σ*) x C; that is,

Thus the bundle map ψ: i? k->J? is a map of bundles with connection. •

The flow generated by the Hamiltonian function h{ preserves the fibre Lin.
Further, the map of LUn to Lβ is injective. Thus we may pull back the covariant
constant section over L# to get a co variant constant section over Lin. Since such a
section exists, the holonomy of V around loops in Lin generated by the
Hamiltonian flow of ht is 1.

Since hx takes the integer value In on the fibre Lin, this suffices to establish:

Proposition 7.5. If Ct is a nonseparating loop in Σ9, then $£k has trivial holonomy
over an orbit of the Hamiltonian flow of h( precisely when ht takes an integer value on
that orbit.

We now turn our attention to

Proposition 7.6~ The result of Proposition 7.5 holds also when Ct is a separating loop
in Σ9.

Proof By adding another handle, we may construct a surface Σ9+x in which Cf is a
nonseparating loop. There is then a map Σ9+1^Σ9 which collapses the extra
handle to a point. Thus we get a map ^ - > ^ + 1 which is compatible with the
Hamiltonian flow of hh and with (jέ7, V). We wish to show that a covariant
constant section of j£?k exists over the orbit of the Hamiltonian flow of hi through
yePg whenever hly)eΊL\ butthis may now be inferred using Proposition 7.5 from
the corresponding fact for ^ + 1 . Π

We now turn our attention to normalizing the Hamiltonian function g r

Proposition 7.7. The function gγ takes integer values on orbits of the Hamiltonian
flow over which there is a covariant constant section of 5£k.

Proof We let 2Γ'g C 3~g C Pg denote the subspace of conjugacy classes y of reducible
representations [i.e., representations πγ{Σ9)-±T(LG\ for which θil{γ)(y) + θi2{γ)(y)
+ θί3iy)(y) = 2π (cf. Lemma 3.5). If we examine Hamiltonian flows beginning at a
point y e 2Γg\ then since the flows of the ht preserve ZΓ'g (see Corollary 5.7), so does
the flow corresponding to gv i.e., the Hamiltonian vector field XQy lies in the
tangent space to ZΓ'q. (This flow is defined on the open subset ^~g'nύγ of 2Γg'^)
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However, the flow corresponding to gy is trivial restricted to ̂ ' , since ω restricts
to give a (nondegenerate) symplectic form on ^ and gy — k (and hence also dgy) is
identically zero on 2Γg\ while Xg is tangent to 3~g. Thus there is a global covariant
constant section of 5£ over the (trivial) loop arising from the Hamiltonian flow of
gγ through y e 3Γg. This, combined with the observation that gy = k on ^g, suffices
to establish the Hamiltonian function gy is normalized so as to take integer values
on orbits over which there is a covariant constant section of ££k. •

This completes the proof of Proposition 7.1.

8. Counting the Bohr-Sommerfeld Orbits

We now conclude by counting the Bohr-Sommerfeld fibres of our polarization, to
determine the dimension of the putative quantization. We shall see that the
number of fibres obtained agrees with the Verlinde formula for the dimension of
the quantization in a Kahler polarization.

We have seen in Theorem 4.4 that to find the Bohr-Sommerfeld orbits, it
suffices to verify that there are points xbxyeBg, for which we can construct
covariant constant sections of ££k on the orbits of the Hamiltonian flow of h{ (resp.
gy) on π~ ί(xi) [resp. π~ 1(xy)] and for which the Hamiltonian functions h{ (resp. gy)
take integer values. The existence of these points was proved in Sect. 7 (see
Proposition 7.1). The resulting characterization of the Bohr-Sommerfeld set was
given in Propositions 5.5 and 6.13. We may restate the situation as follows:

Theorem 8.1. The set Phs of Bohr-Sommerfeld points in Bg is given by

Phs = {xeBg\ hb gy take integer values on π" 1(x) Vi, y},

where the value of ht must be an even integer if Ct is a separating curve.

In terms of the coordinates θ = θ(x) of the point x e Bg9 this condition reduces to

(a) θiW^πlt/k with /t = 0,1, ...,fe for all i,
and liE2Z if Cf is separating; I, (8.1)

Pbs=)xeB
for ally

The condition (8.1)(a) arises from the integrality condition for ht, while (b)
arises from the integrality condition for gy.

To obtain our final result, we recall that a set of values θ = (θu..., 03g_ 3) arises
as the image (θ^x),..., Θ3g_ 3(x)) of a point x e Bg if and only if the conditions (3.4)
are satisfied for the triples (θiliy), θi2{y), θi3{y)) corresponding to each trinion Dr As
discussed in Sect. 2, trinion decompositions correspond to trivalent graphs, where

Fig. 4. The trivalent graph of Fig. 1, labelled by integers giving the holonomies of connections in
the corresponding Bohr-Sommerfeld leaf
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one associated a vertex to each trinion and an edge to each boundary circle joining
two trinions, as in Fig. 1. Therefore, the Bohr-Sommerfeld points may be seen to
correspond to labelled trivalent graphs, where one assigns the integer label
/f = 0,1, ...,fc to each edge i (see Fig. 4).

In terms of the labels lteZ such that 0f = πljk is the holonomy angle around a
boundary circle, θ actually is equal to θ(x) for a point x e Bg if and only if

Thus we see that the Bohr-Sommerfeld set is in 1 — 1 correspondence with
labellings of a trivalent graph by integers in [0, k] such that for each vertex with
labels lί9l2j3, th e following conditions are satisfied:

(a) |/ i-/ 2 l^3^' i + /2,

(b) /1 + /2 + /3^2fe, (8.2)

(c) lx + l2 +

and such that edges corresponding to separating boundary circles are labelled by
even integers. Equations (8.2a, b) arise from the condition (3.4) that the point θ be
in Bg9 while Eq. (8.2c) results from the integrality condition for g r

An elementary combinatorial argument establishes that

Lemma8.2. Suppose Σ9 = Σί<uΣ2, where ΣxnΣ2 = [j Cj. Suppose that the

boundary circles Cj of Σ9 are labelled by integers lj such that liιiy) + li2(y) + /i3(y) e 2Z
for each trinion y. Then Σ hI5 even- (^n particular, separating boundary circles are

jeJt'

always labelled by even integers.)

Proof The corresponding trivalent graph is separated in two components S l 9 S 2

corresponding to Σx and Σ2. We denote by ViS^ and E(SX) the sets of vertices and
edges in Su and consider the sum

/ = Σ liίiγ) + li2(γ) + li3(γ)e-+Z [by (8.2c)].
yeV(Sι)

This sum is equal to Σ ί, + 2 £ lh and hence £ /. must be even. •

Thus the condition that separating boundary circles be labelled by even
integers follows automatically from (8.2): in other words, the solutions of (8.2) are
in bijective correspondence with the points in the Bohr-Sommerfeld set.

Equations (8.2a-c) are the quantum Clebsch-Gordan conditions: this system of
equations arises from the "fusion rules" in conformal field theory, specifically in the
SU(2) Wess-Zumino-Witten model [14]. The number of labellings of a trivalent
graph satisfying (8.2) is also known to give the dimension of the quantization
2tf = H°(Σ9,5£k) associated to a Kahler polarization (i.e., the space of holomorphic
sections of the line bundle ifk).

Our final result is then

Theorem 8.3. Consider a fixed trinion decomposition of a two-manifold Σ9; it gives
rise to a trivalent graph and to a real polarization of Pr There is a one-to-one
correspondence between the set of Bohr-Sommerfeld fibres of the real polarization
and the set of labellings (by integers in [09k]) of the edges of the trivalent graph
satisfying the quantum Clebsch-Gordan conditions (8.2a-c) at each vertex.
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