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Abstract. The g-differential calculus for the g-Minkowski space is developed. The
algebra of the g-derivatives with the g-Lorentz generators is found giving the
g-deformation of the. Poincaré algebra. The reality structure of the g-Poincaré
algebra is given. The reality structure of the g-differentials is also found. The real
Laplacian is constructed. Finally the comultiplication, counit and antipode for the
g-Poincaré algebra are obtained making it a Hopf algebra.

1. Introduction

Quantum groups have already established themselves in such diverse branches of
mathematics and theoretical physics as conformal field theory, integrable models,
statistical mechanics, knot theory and topology of low-dimensional manifolds.
Like many other notions (quantum mechanics, special relativity) quantum groups
appear as some deformation of old “classical” objects, in this case groups. Although
this type of deformation can be understood in terms of usual quantum mechanics,
the idea of quantizing the symmetry itself is apparently new. The fruitfulness of this
idea is supported by the number of geometric and algebraic notions which can be
“g-deformed.” First of all quantum groups can be viewed as symmetries of “quan-
tum” spaces [1, 2]. Next the frame of differential calculus can be extended to
include quantum groups and quantum spaces [3, 4].

The role of symmetry in physics is hard to overestimate. This explains the wide
interest which quantum groups found among theoretical physicists. Particularly
one is tempted to deform a real physical system in this spirit. This requires first of
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all a deep understanding of the g-deformation of Minkowski geometry. The
quantum Minkowski space itself is more or less understood [5-8]. The quantum
Lorentz group serves as the g-symmetry group of this space. One is naturally
interested in the action of the g-Lorentz algebra on the g-Minkowski space. This
question is nontrivial since the relation between Lie algebras and Lie groups
becomes more involved on the quantum level, in particular as of now the exponen-
tial map is unknown. The g-Lorentz algebra was obtained in [8, 9] where the
Lorentz generators were defined by their commutation relations with the g-spinors.

The next step is to define the quantum Poincaré algebra, or to add the
infinitesimal translations to the g-Lorentz algebra. This is the aim of the present
paper. Following the classical example we treat the g-derivatives as generators of
translations. (Another approach was followed in [10] where the translations stayed
undeformed.) The general theory [11, 12] giving the g-deformation of the universal
enveloping algebra of any simple Lie group is not sufficient for the Poincaré
algebra, since it is not simple. To find the algebra we use the action of the Lorentz
generators and derivatives on the g-Minkowski space.

We discover a new effect absent in the classical Poincaré algebra. Namely, the
operators conjugate to the derivatives cannot be expressed linearly in terms of
the derivatives themselves (in contrast to the g-Minkowski coordinates for
which the conjugation is linear and just given by the classical formulas). A similar
phenomenon also occurs for the conjugated differentials.

We also construct the coproduct for the derivatives. We prove that this
comultiplication is natural, or in other words is compatible with the action. Finally
we find the counit and antipode to complete the Hopf algebra structure of the
g-deformed Poincaré algebra.

The paper is organized as follows. In Sects. 2 and 3 we give preliminaries on the
g-spinors, the g-Minkowski vectors and the R-matrices for them. Section 4 con-
tains the necessary information about the g-Lorentz algebra and its action on the
g-Minkowski space. In Sect. 5 we discuss the g-differential calculus on the g-
Minkowski space. Section 6 is devoted to the reality structure for derivatives and
differentials. There we also construct the real Laplacian. Finally, in Sect. 7 the
comultiplication for the translation sector of the g-Poincaré algebra is given and its
naturality is proved. Appendices contain technical formulas for the projector
decomposition of the R-matrices, commutation relations between coordinates and
differentials, action of the conjugate derivatives, and relations for some g-differen-
tial operators needed for defining the reality structure. Many of the relations are
given in a component form which is useful in checking some of the nonlinear
relations in the text.

2. R-Matrices for the ¢g-Lorentz Group

The g-deformed Lorentz group has been studied in [5-7]. These analyses made use
of the classical isomorphism SO(3, 1)~SL(2, C)/Z,. Since the quantum group
SL,(2, C) is well understood, it is natural to use it for the g-Lorentz group. The
fundamental representation of SL,(2, C) consists of two-dimensional complex
quantum spinors x* and their complex conjugates x*. Minkowski vectors are
constructed as bilinears of a spinor and a conjugate spinor. A vector is written as

X = wxP . @.1)
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The R-matrix for the q-Lorentz group is determined by moving such a vector
through another bi g- spmor 7'v’, where u and v are independent copies of g-
spinors. However there is an amblgultyA in choosing the g-relations between X,
x and 4, v. This results in two different R-matrices for the g-Lorentz group. Both
R-matrices satisfy the Yang-Baxter equation. This constructlon of the R-matrices
was followed in [7], and we shall refer to them as R, and R;.!

These two R-matrices satisfy the characteristic equations

Ri— DR+ PR +¢g72)=0
Ry + DRy — g} (Ry—q™2)=0. 2.2)

Solution of the eigenvalue problem gives the decomposition of each matrix into
three projectors. Taken together one finds four projectors: P which is the g-
deformed trace projector, Ps which is the traceless part of the g-deformed sym-
metrizer, and P, and P_ which are the selfdual and antiselfdual parts of the
g-deformed antisymmetrizer. These are the g-deformed versions of the classical
projectors. Their explicit form is given in Appendix A. The four projectors sum to
the identity matrix:

1=Ps+Pr+P.+P_, (2:3)
and the R matrices are written as the sums
R =Ps+Pr—q*P, —q ?P_,
Ry=q *Ps+¢*Pr—P, —P_ . (2.4)

These are the only linear combinations of the four projectors which are compatible
with the relations between the components of a g-vector. A more precise statement
will be given in [7].

The higher dimensional orthogonal g-groups are described by only one R-
matrix. In four dimensions this is the Rn-matrlx However, in four dimensions the
situation is special in that the antisymmetric square of the vector representation is
reducible. It decomposes into the selfdual and antiselfdual parts. The Ry-matrix
takes the same eigenvalue on both. The selfdual and antiselfdual parts are distin-
guished by the R;-matrix. Note that we need both R-matrices since R, in turn does
not split the g-symmetrizer into the trace and traceless parts.

The R-matrix used to define g-relations between elements of the g-space
depends on the projector decomposition needed. For the coordinates X' the
antisymmetrizers acting on the tensor product of two coordinates must give zero.
Suppressing indices we write this as

P.XX=0, P_.XX=0. (2.5)
Using this fact we then have
1XX =(Ps + Pr)XX = R XX, (2.6)

! In [5] the matrix Ry was derived in a different way. There a matrix of the g-Lorentz group was
constructed as a tensor product of an SL,(2, C) matrix and its conjugate. The g-relations between
elements of the Lorentz group matrix were determined by the R-matrix for SL,(2, C). These
g-relations then give rise to the Rj-matrix for the g-Lorentz group



498 O. Ogievetsky, W.B. Schmidke, J. Wess and B. Zumino

where in the first step we used (2.3) for 1 and in the second step we used (2.4) for R,.
Including the indices we then have

XX/ = R, X*X! Q2.7

for the g-relations between coordinates.
A differential calculus is established on this algebra by introducing an exterior
derivative d with the usual properties of nilpotency and Leibniz rule:

d>=0, d(fg)=(df)g +fdg), (2.8)

where fand g are functions of the coordinates. The differential of X" is called &'. The
action of d on the coordinates and differentials is

dX' =8+ X'd, dfi= —¢&d. (2.9)

We will need g-relations between the differentials themselves and between the
differentials and coordinates.

Classically the ¢ are anticommuting objects, so in the g-deformed case we
require that a tensor product of two differentials is annihilated by the symmetrizers:

PséE =0, PrEE=0. (2.10)
Then we write
188 = (P4 + P_)EE = — Ry& (2.11)

using (2.3) and (2.4) for the projector decompositions of 1 and Ry, respectively.
Then the equation

g = — R, & (2.12)

gives g-relations between the differentials.

For g-relations between coordinates and differentials assume that X¢ = CEX
for some matrix C. Applying d to this equation gives (&€ = — CEE. Comparing with
(2.12) we see that C = Ry and

Xigi = R, & x! (2.13)

gives the desired g-relations.
Derivatives are introduced by the usual expansion of the exterior derivative:

d=2¢E9;. (2.14)

Then applying d to a coordinate X', using the Leibniz rule (2.8) for d, and (2.13) to
move the &’s to the left, we find

80, X7 = 5! + Ri*,X'0, @.15)

for the action of derivatives on coordinates.

We also need g-relations among the derivatives themselves. Assume a relation
of the form 00 = Fdo for some matrix F. Applying both sides of this equation
to a coordinate X i and using (2.15) gives the consistency _condition
(1 — F)(1 + Ry) = 0. A check of (2.4) shows that this is satisfied if F = Ry, and the
g-relations between derivatives are given by

0:0; = R¥ ;,0,0, . (2.16)
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Note the ‘reversed order of index summation compared to the other R-matrix
equations.

Although we will not need them, one can also find g-relations between the
differentials and derivatives. Assume a relation of the form 0 = D&O for some
matrix D. Applying both sides to a coordinate X’ and using already established
relations one finds D = R;; ! and we have

0:&7 = Ry " *4 &0 . (2.17)

This completes the algebra of coordinates, differentials and derivatives._

Throughout this discussion we could have used the inverse of the R-matrices
instead. This would leave the XX, ££ and 00 g-relations unchanged. However the
X¢, 0X and 0¢ relations would be different. This would give a second possible
choice for the differential calculus. However this second choice coincides with the
complex conjugates of the derivatives. With the definition of 0 in Appendix C this
can be seen by conjugating the above relations and using

Ritiy = ¢*¢"™ Ry’ igni = @ GmRu™ 1n g™ (2.18)

(this is a property shared by all orthogonal and symplectic quantum groups [1])
and

R]]ijkl =ffz f{;Rnbaac Sk ff P (2.19)

where f is the matrix appearing in the complex conjugation of coordinates:
X =fix/.

3. Minkowski Coordinates

In this section we introduce the quantum Minkowski coordinates. Explicit for-
mulas for their g-relations are given. The invariant Minkowski length is also
presented.

In [8] the g-Minkowski coordinates were constructed as bilinears of g-spinors
" (x, y) and their conjugates (X, y). We take as coordinates the four quantities

A=xy, C=xx,

B=yx, D=jyy. (3.1)
Their reality properties are

A=B, C=C,

B=4, D=D. (32)

Real Minkowski coordinates are defined by the linear combinations

(C+D), X1=—1—(A+B),

NG

(c D), X*=—_(4—B). (3.3)

72

X0 =

%l

X3

%I
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In the following we will refer to general Minkowski coordinates as X*, but for
explicit calculations the basis (4, B, C, D) is convenient. R

Quantum relations between the coordinates are provided by the R-matrix for
the Lorentz group through the R-matrix relation (2.7). Explicitly the g-relations for
(4, B, C, D) are

AB=BA—q 'ACD + qiD>, BC=CB—q 'iBD,
AC = CA + gAAD, BD = ¢*DB,
AD = q™2DA, CD =DC, (34)

where q is real and A = q — g~ !. These relations are invariant under complex
conjugation accompanied by reversal of the variable order. Also these relations
allow ordering of any monomial in the coordinates.

A quantum Minkowski metric may be obtained from the trace projector which
is one of the projectors comprising the R-matrix. In the basis (4, B, C, D) the metric
g;; and inverse g¥ are

0 ¢ 0 0 0 1 0 0
Clt oo 0 s a0 o 0

%5i=10 0 o -1 |7 Vo 0o —g - (3.3)
00 —1 ” 0 0 —1 0

Written out using the g-relations for the coordinates the Minkowski length of
a four vector is

L=(¢*+1)"1g;X'X' = AB—q~2CD. (3.6)

This length is real and commutes with the coordinates: LX' = X'L.

4. Lorentz Algebra

In this section we review the previous results on the g-deformed Lorentz algebra
[8,9]. Lorentz generators are defined by their action on the four vectors. From this
the algebra and coproduct of the generators is determined. The counit, antipode,
and reality conditions complete the description of the Hopf algebra.

In 8, 9] the g-deformed Lorentz algebra was presented. There the generators
were defined by their action on two dimensional complex quantum spinors. Here
we will confine the discussion to the quantum Minkowski coordinates which can
be constructed as bi g-spinors. The three generators of SU,(2), T*, T, and T3,
form the rotation subalgebra. The Lorentz algebra is completed by adding non-
compact generators T!, T2, S!, and S2. Although this is an algebra with seven
generators, we had shown [9] that they are not independent and one generator
may be eliminated. All these generators annihilate the constant monomial:
T'1 = 0. For the diagonal generators 73, T, and S? it is convenient to define
3=1-AT% 1t =14 AT?, and 62 = 1 + AS? which obey 7’1 = 1.
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The SU,(2) generators have the following action on the Minkowski coordin-
ates:
T*A=q 2AT", T*C=CT" +q7 4,

T*B=q¢*BT* +qD — q™'C, T*D=DT* —q 4,

T"A=q 2AT +q'C—gqD, T C=CT —4B,

T"B = ¢*BT", T°D=DT" +4B,
34 = g * A7, 3C =C13,
3B = ¢*Bt?, D = D73 . 4.1)

Note that all of these generators commute with the time coordinate X° oc C + D.
Thus they do not generate boosts. The additional generators have action

T?A = qAT?, T?C = qCT? + qAt!,
T?B=gq 'BT? + ¢~ 'D<!, T?D=q 'DT?,

S'A=q 1 AS* + q" ' Do?, S1C =(q~'C + qA*D)S! + ¢qBo?

S'B = ¢BS", S'D = ¢DS ,

T1A=qA‘El+q/12DT2, 11C=(q‘1C+q/12D)1:1+q/lzBT2,

!B =q " 'Bt, ™D = gDt!,

0?4 =q ' Ad?, 02C = qCo* + qA*AS'

62B = qBs?* + qA*DS?, 6*D =q 'Do?. (4.2)

As shown in [8], these generators produce a linear combination of rotations and
boosts in the limit g — 1, and they complete the Lorentz algebra. Also, it should be
noted that all generators of the g-Lorentz algebra commute with the g-Minkowski
length L.

The algebra of the generators follows from this action. To this end one finds
bilinear combinations of the generators having an action proportional to the
action of some linear combinations. The full algebra of the seven generators is

T1T+ — T+‘L'1 + }'Tl’ T+T2 = q—ZT2T+ ,

T =q 2T ¢! — ASY, T T?>=T2T + A Yo? — 1Y),
Tl TZ — quZTI, T+S1 — q2S1 T+ + /1_1(1'3‘[1 . 0.2) ,
'St = Sit, T-S'=8'T",

T*T =@*T" T +qgA~'(1 — 1%,

2t _ o 2 29 3702 2¢1 _ ql2
‘T " =T"¢ q* At T?, TS =8'T*,
62T~ = q*T 6% + ¢*18%,

o*T? = g~ T?a?, tlo? = g2t 4 gA3T2S!,

628! = S'o2, 1l = glg?

3 2 2.3
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T3T+ — q_4T+T3 ,
BT =¢*T %,
T3T2 — q_4T213 ,
381 = g*St3, 4.3)
The algebra may be written in a more conventional form by the substitutions
=14+ AT, 0?2 =14+15% and t®> =1 — AT3.
This algebra appears to have seven generators. However there is an extra

relation in the algebra which allows elimination of one of the diagonal generators.
Consider the quantity

Z =1le? — g?A2T2St | (4.4)

One finds that Z is central in the algebra and commutes with all of the coordinates:
ZX' = X'Z. Therefore Z is 1. Then one could eliminate t* or ¢2 from the algebra,
for example by the substitution ¢2 = (t!)"*(1 + ¢?42T2S'). However this would
leave the algebra with inverse powers of the remaining diagonal generator. In the
following it will be convenient to keep all seven generators, having in mind that
they are not independent.

In [8, 9] the coproduct for the generators was found by considering their action
on functions of the spinors. The same results can be obtained using functions of the
Minkowski coordinates. The counit and antipode are determined by the co-
product, and conjugation of the action on the coordinates (including reversal of
variable order) yields the real structure of the generators. For the SU,(2) generators
the coproduct 4 is

ATH=T*®1+ (13)% T, Ax¥)=1*®13. 4.5)
The counit ¢ and antipode S are
T =0, S(T*)=— (1:3)"%T‘—“ ,
) =1 S@E)=})"". (4.6)
Under conjugation the SU,(2) generators obey
T = g%2T%, =13, @7

The results for the remaining generators are slightly more complicatéd. The
coproduct is

1
A =t @t + 2251 (%) 2 @ T2,
1
A(O‘z) — 0.2 ® 0_2 + 12 T2(1.'3)7® Sl ,
1
ATH=T*’R 1t + (1% 262°Q T?,

A8 =S'® % + (‘1:3)%1'1 ®St. 4.8)
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The counit and antipode are
etl)=1, S@!)=d?,
e(@?) =1, S(@?) =1,
o(17)=0, S(T%) = — (R,
e(SH =0, SSYH=— (13)—%5'1 . 4.9)

In checking the antipode property one needs the fact that Z = 1. Finally the reality
conditions for the new generators are

— 1 —_— 1
T= (@) 2% TP=— ()28,

J— 1

— 1
o2 =(%2¢!, S'= —q*(3)2T?. (4.10)

]

This completes the construction of the Hopf algebra of the Lorentz generators.

5. Poincare Algebra

In this section we add translation generators to the Lorentz algebra. As translation
generators we take the g-deformed four-vector derivatives. The action of the
derivatives on the Minkowski coordinates and the algebra of the derivatives is
defined by the R-matrix. The action also allows one to find the commutation
relations of the derivatives with the Lorentz generators.

The action of the derivatives on the g-Minkowski space reads

04A=1+q 243, + 2*Bdy + A(gD — ¢~ ' C)oc — ¢~ Doy ,
04B=Bo,,

04C=q 2Co4+ A*Dd, + qA(1 — qA)Bdc — qABOy ,
0,D = Do, — qABoc ,

oA = Ady ,

0gB=1+q 2Bdg—q 1AD0c,

0gC = Cog — qAA0.,

0D = q %Dég,

0cA = Ade — g~ ' AD0y ,

dcB =4 *Boc,

0cC=1+4q 2Cdc + 2*Dd. — q~ 1 ABog ,

0¢D = Do,
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O0pA=q ?Adp + AMgD — q 1 C)0g,
0pB = Bdp, —q 'ADd4 + A*Bo. ,
0pC = Cop — q~*2A04 + qABOg — qA*(gD — q~*C) o, ,
0pD =1+ q %Dd, —q *AB0g . (5.1)
The algebra of derivatives is
040p = 0504 — qA0c0c + qAdpdc, 0Opdc = q *0c05 ,
040c = q*0c0 4, 0p0p = 0p0p + qA0c0p ,
040p = 0p04 — q°>A0c0 4, 0c0p = 0pOc - (5.2)

This algebra is consistent with the action on coordinates.

To find the commutation relations between the derivatives and the Lorentz
generators we follow the same procedure used for the Lorentz algebra alone. The
procedure is straightforward but somewhat lengthy. For the rotation subalgebra
one obtains

T+6A=q26AT+—qac+an, T+6C=GCT++q_153,
T+63=q_263T+, T+6D=6DT+ —an,
T—6A=q26AT_, T_ac=acT_ —q_laA,
T_03=q_203T_+q_10c—q_161), T_6D=aDT_+qu,

130, = q*0,73, 30c = 0c1,

‘r303=q~463‘c3, T30D= 5D‘c3 . (5.3)

and for the noncompact generators the result is
T26A=q_10AT2—qac‘rl, T26C=q_lacT2,
T283=anT2, T26D=anT2 +q/126CT2 —anTI s
SlaA=quS1, S16C=qacs1 ’
S'0p=q '05S' —q '0c0% S'0p=q '0pS' —q 1,07,
10, =q 10,1t t10c = qoctt,
10y = qogtt — qA?0.T?, tlop=q toptt —q 12%0,T?,
620, =q0,0% — q3A%0cS',  6%0c=q '0co?,
020 = q 10502, 620p = q0pc? + qA*0c0? — qA*0cSt . (5.4)

This completes the g-deformed Poincaré algebra.
6. Real Structure
In the classical case it is straightforward to find conjugation rules for derivatives.

However in the g-generalization one encounters difficulties. The action of the
conjugated derivatives is given in Appendix C. Comparing with (5.1) one observes
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that these operators cannot be expressed linearly in terms of the g-derivatives
themselves. This exhibits a new effect which does not appear on the classical level.
The conjugation operation becomes nonlinear. In this section we give the explicit
nonlinear relations between the derivatives and their conjugates.

To this end we will need to define several operators. First is the Laplacian of the
g-derivatives

A=(q"2+1)""970;0; = 0405 — q*0c0b , (6.1)

which is the only quadratic central element in the algebra of derivatives. Also we
have the conjugated Laplacian:

j=q_25AaAB_éCaAD . (6.2)
The two are related by
A=q"4. (6.3)

Note that 4 commutes with the hatted derivatives. With the unhatted derivatives it
obeys

04 =q*40; . (6.4)
Next we define the operators E and E:
E=X'd, E=X;, (6.5)
which are related by
E=—q*¢*+1)? - ¢°E . (6.6)

The action of these operators on the coordinates and derivatives is given in
Appendix D.

These operators together with the Minkowski length L serve as building blocks
for two more operators A and A:

A=1—q YJE+q %)*L4,
A=1+4qlE+ q*A*LA . (6.7)
Using the formulas from Appendix D one finds
AAd=1, A=¢4. (6.8)

The operators A and A act on both coordinates and derivatives multiplicatively.
For A we have

AX = g72X A,
Aai = qzai/l s
16, = 26,4 (69)

with the corresponding relations for A given by relation (6.8).

It is clear from the construction of these operators (4, E, A and their conjugates)
that they are Lorentz scalars. A check verifies that they all commute with the
Lorentz generators.
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‘ The hatted derivatives can now be expressed in terms of the unhatted derivat-
ives as
8i=q 2474, g;X]. (6.10)
Using the formulas in Appendix D we can write this in the form
8= A"10; — g3 Agi; X7 1) (6.11)
or explicitly
aAA =A"Y04—q 'AB4),
dp=A"1(0—q*244),
Jc=A"Yoc + q 3iD4),
dp=A"Y0p + q 3A(C — giD)4) . (6.12)
The inverse map is
04=A"104+ q°ABA),
0p = A" 1@ + q*1A4),
dc=A"Y0c — ¢*AD4),
dp=A"1(6p — ¢*AC — gAD)4) . (6.13)

One verifies these relations by checking that the left- and right-hand sides (rhs)
have the same action on the coordinates. Note that the terms proportional to the
Laplacians in the rhs of these equations have the same transformation properties as
the derivatives. Thus these mappings are covariant under the global g-Lorentz
group. Along with (4.7) and (4.10) this describes the real structure of the g-Poincaré
algebra.

The properties of the differentials under conjugation are also nontrivial. Again
we introduce several relevant scalar quantities. Define

W = gijfin = quAB + B4 — ECD — EP(C — gAD). (6.14)
Note that g;; X'& = q> W. The quantity
U=W—qiLd (6.15)

commutes with all coordinates: UX’ = X' U. The relations between the coordinates
and the differentials are given by (2.13). One can check that the quantities

¢ =& —qiX'd (6.16)
satisfy the following relations with the coordinates:
P X'¢) = Ri "¢t X' + qigU . (6.17)

Up to the factor g in the lhs and the last term in the rhs these are the relations (B.4)
for X’s and &’s. There is another set of quantities which satisfy relations with X’s
similar to (6.17). Namely one can rewrite the relations (2.15) in the form

X0 = Ry 'V 8 X' — q 297, (6.18)
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where §' = gV 6 Since U commutes with coordinates we can compensate the extra
term in (6.17) by adding g>AU* to ¢** To get rid of the factor ¢ in the lhs of (6.17)
we use the same scaling operator A. Thus the quantities A(¢* + ¢°> AU’) have the
same commutation relations with X’s as é s. Since these commutation relations are
homogeneous we can conclude only that the f' are proportional to
A(¢' + ¢>AUG"). The proportionality factor can be found from the requirement
that the square of the conjugation operation is unity on the £’s. Finally we obtain

E = g A + PPAUF) = g A — qAX'd) + ¢V — ¢7*AX'd)  (6.19)

with ¢' = g9;. This implies the following reality property for the exterior derivat-
ive:

d=E88=q*Ad+q°U4 . (6.20)
This can be verified by a direct check. We note also that

d=—d. (6.21)
To write the inverse map define W = gijEiX i, Using (6.19) for the &s one finds
U=W+qiLd. (6.22)

By conjugating (6.14) one finds that W = ¢ W. This implies that U is real, U = U.
Then the inverse map reads

&= AE + ¢®AX'd — qAUd) (6.23)
where we use (6.22) to write U in terms of f’s. For the exterior derivative we have
d=q*Ad — ¢°AUA . (6.24)

Again we note that the mappings (6.19) and (6.23) do not spoil the global g-Lorentz
covariance. ~

The Laplacians 4 and 4 defined above are not real as seen in (6.3). However
relations (6.12) allow the construction of the real Laplacian. Substituting them into
(6.2) one finds

A=q 4474, (6.25)
Therefore using (6.3) we obtain
A=q°A"14. (6.26)
Now define the real Laplacian to be
1 1 .
Ar=q *A724 = q*A24 . (6.27)

Using relations (6.8), (6.9) one checks that this Laplacian is indeed real, A_R =Ag. It
g-commutes with the derivatives:

AR0; = qﬂlaiAR > Axéi = qéiAR . (6.28)

The properties of this Laplacian will be discussed elsewhere.
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7. Hopf Structure of g-Derivatives

In this section we complete the Hopf structure of the g-derivatives. The coproduct
is found by a heuristic method. Arguments are made for the validity of this
coproduct. Then this coproduct is used to determine the counit and antipode.

In [8, 9] the coproduct for the Lorentz generators was found by considering the
action of the generators on monomials in the spinors. The same could be done for
the derivatives on monomials in the Minkowski coordinates. However the com-
plexity of the action on coordinates (5.1) makes this a difficult task. Here we use
a more heuristic approach. We make an ansatz for a coproduct of the form

40) =001+ 0! ®40;, (1.1)

where the operators (¢} are made up of the Lorentz generators and the scaling
operator A. An inspection of the derivative action shows that dp and 0. have
a simple form. For these derivatives it is not difficult to find combinations of the
Lorentz generators for (9’ which produce the correct action on coordinates. But
there remains an undetermined power of A in the (9’ It is also easy to evaluate 0p
on the monomial B". This fixes the power of A. The coproduct for the remaining
derivatives is then found using the algebra with the SU,(2) generators 7. By this
procedure the coproduct is found to be

400 = 0,® 1 + A2 @ 8, + ¢ A2 A2(:) 2T~ S @ 0
AT ® de — AAZS' @ 0y

A(65) = 65 ® 1 + A2(1%) 202 @ Oy — GAA T2 ® O ,

A(6c) = 0c ® 1 + A27' @ de — gAAZ() 251 ® 6y,

A0p) = 0p® 1 + A20% @ Op — AT IT? @ 0,
- qZAA%(#)-%T“ 0> @0 + qle% T T*® 0. . (7.2)

This coproduct is a homomorphism of the entire Poincaré algebra and is coas-
sociative.

The comultiplication was found by direct inspection. We know only that it is
a homomorphism of the algebra. We now discuss the naturality of this comultipli-
cation. In other words we wish to prove that the comultiplication is compatible
with the action.

Proposition. Let f and g be functions of A, B, C and D. Let A(W) = )" a, ® b,, where
Y is any element of the q-Poincaré algebra. Then

¥(f9) =X a.(f)balg) - (7.3)

Sketch of Proof. 1. A straightforward calculation shows that 4 is coassociative.
Explicitly, if

A(aa) = Z’laﬂ ® ¢aﬂ > A(ba) = Z#ay ® Vay » (74)
B b
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then
\
Z}”aﬂ ® d)aﬂ ® ba = Zaa ® ,uazy ® va'y . (75)
af ay

2. Comparing with the action we conclude

Y(X'g) =Y a.(X")b.(9) (7.6)

for all g-Minkowski coordinates X°.

3. Induction in deg f. For def f= 0 the proposition obviously holds. By (7.6) we
have

Y(X'fg) =Y a(X")b(fg) - (7.7)

For ¢ = b, in (7.3) the statement holds by induction assumption for deg f'= n.
Therefore

ba( f9) = X Hay (f) Ve (9) (7.8)
and y
V(X'fg) = Z 2(X") tay () V2 (9) - (7.9)
Using coassociativity (7.5) we can re:vrite it in the form
Y(X'fg) = FF Aap(X7) Bap(f)balg) - (7.10)
Now using (7.6) with ¢ = a,: a
a,(X'f) = ;lap(X")%p(f) ; (7.11)
we conclude that
V(X' fg) = Z a,(X" )by(9) (7.12)

and (7.3) holds for deg f=n + 1.

4. Induction in deg g. For deg f = 0 and deg g = 1 one easily sees that the state-
ment holds. Above induction in deg f'shows then that it holds for any fand g = X*
(that is, deg g = 1). Now since it holds for g we have

V(fX'g) =3 a.(fX")b.(g) - (7.13)

Using (7.3) with { = a, we can write

a,(fX') = % Aap(f) bap(X7) - (7.14)

Now we use coassociativity again:

Y(fX'g) = Z,; Aap(f)Dap(X)ba(9) = X 0( ) ey (X7) V2 (9) - (7.15)
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For ¥ = b, in (7.6) we already proved that
ba(X'9) = 3 ey (X') Vs (9) - (7.16)
Y

Therefore
Y(fX'g) =} alf)b(X'9) , (7.17)
and the statement holds for X'g. This finishes induction in deg g and the proof.

With this coproduct the counit and antipode are determined. The counit for all
derivatives vanishes:

€(0;)=0. (7.18)

The antipode is
S(0,) = — A2(%) (620, + qA2S T~ 05 + 402 T 6 + q)S10p) ,
S@n) = — A2 05 + AT?00)
S(00) = — A~ 2(0%0¢ + q~1iS" 3) ,

1
S(@p) = — A72(t'0p + qAT?0, + A T~ 0g + A2 T2 T~ 0) . (7.19)

In checking the antipode property ones uses the fact that Z = 1 in (4.4).

The coproduct for the derivatives includes the derivatives themselves, Lorentz
generators and the scaling operator A. We note that A does not belong to the
g-Lorentz algebra. This is seen by the fact that AL = q~*LA, whereas the g-
Lorentz generators commute with L. A similar effect already occurs for the
g-derivatives in two dimensions: their coproduct includes the scaling operator
which does not belong to SL,(2) [4]. The Hopf structure of the scaling operator is

AN =A@ A, eA)=1, SA)=A"". (7.20)

This completes the Hopf structure of the Poincaré algebra.

A. Projector Decomposition of R-Matrices

In this appendix we list the four projectors extracted from the two forms of the
R-matrix for the Lorentz group. They act on the tensor product of two coordinate
spaces, so are 16 x 16 matrices. However, they are block diagonal and decompose
into two 1-, two 4- and one 6-dimensional blocks. The bases for these blocks are
labeled by pairs of coordinates, and are

(1): (A4) (4): (DA, CA, AD, AC)
(1): (BB) (4): (CB, DB, BC, BD)
(6): (BA, DD, DC, CD, CC, AB). (A.1)

We write the projectors in blocks with these bases.
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The symmetrizing projectors are P and Pg. Py is the trace projector, and may

be written in terms of the metric as

1 .
(q—_i_qT)nggkl-

oo _
Tkl —

Explicitly it is

Pray=Pray=0, Pray=Pra)=0,

g2 PRty) —q? —gq2 0 1
0 0 0 0 0 0
Preg = 1_12 -1 —qA 1 1 0 —g°
(@+qa V| -1 —4qi 1 1 0 —q°
—qgi —q*2* qA gh 0 —4%2
1 gl -1 -1 0 4

where A = g — g~ . The traceless part of the symmetrizer Pg has the form

Psqy=Psuy=1,

Z? 0 ¢ 0
e _ 1 —gh @ @r 1
WEL+1l 1 0 1 o0 |
0 ¢ ¢1 1
1 ¢2 ¢ 0
Psan = 21 o0 ;
11 @2 ¢ —q
0 ¢ 0 ¢
P = g7
¢ —qA2+q7? 1 1 0 1
0 (g+q 1> 0 0 0 0
y q° a3 1 1 0 1
q? q*A 1 1 0 1
— g4 - —q "4 —q7'2 (@+q) G2+
1 q4 q? q? 0 -2

(A.2)

(A3)

(A4)
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The selfdual and antiselfdual parts of the antisymmetrizer are P, and P_:

P+(1)=P+(1')=0,

1 qi
Py =
=77 g
0
q2
P 1 0
=y |
0
_ 1
O @ +q7
and

0

P_o@= 21 °
ag+110

0

0

P_wy= 21 °
g+110

0

_ 1

0 —¢> 0
0 —¢*2 0
0 ¢ 0|
0 0 0
-4 —¢ 0
0 0 0
qi 1 ol
0 0 0
1 qh q 2 -1
0 0 0 0
1 qi q? -1
qz _ q3/1 —1 q2
a ¢ g A —qh
-1 —gr —q? 1
0 0 0
1 qi —1
0 0 0o |
-q* —-q¢1 ¢
0 0 O
¢ 0 —1
—¢*A 0 qr |
—-q¢*> 0 1
1 qi -1 q?
0 0 0 0
- —-¢1r ¢ -1
1 ql -1 q?
at  q*2*  —qi q'2
-1 —qA 1 —q 2

S O O O O O

S O O O o O

0

—1

A
_ql

1
—1

0

2
q

A.6

° (A6)
— gl
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Classically these reduce to the four usual projectors. Plugging g = 1 into the above
expressions it may be verified that

i 1 ..
ij‘kl = Zgugkz s

1
2

y L a1
Pdu =00, + 6i0,) — Zgugkl )

. 1 . o i ..
Plu= 1(5251 - 5;5i) - ZSUM >

A N
Y= (616] — 018) + g . (A7)

Here the e-tensor is defined so that in the real basis ¢°123 = 1.

B. g¢-Differentials

As discussed in Sect. 2 the first step in finding the derivative action is to find the
g-relations between coordinates and differentials. These are given by the R-matrix
equation (2.13). In the (4, B, C, D) basis we have explicitly

Al = g4,

AEE = EBA + qAEPD — q~1AEPC — g1 AECD + A2E4B
A=A+ qAe'D —q g C,

AP =q 2 PA—q D,

BEA = 4B — q71ePD,

Bt =q72¢"B,
B =q B+ A*¢PB—q 1 2%D,
B¢? =¢PB,

CEA = q28AC + A2EAD — ¢~ 1 4E%4 ,
C& =EPC—q ' AB + qA¢"B,
CEC=q 28C— qil®A — ¢* 2E°D
+ A2EPC 4 228D + qA(1 — qA)E4B,
CEP =EPC — qAé'B,

D& =q "D — q71AEPB,
D¢ =D —qit“B,
DEP = ¢ 2¢PD . (B.1)
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We define the hatted differentials by
Gr=gB B FoiC P (B2)

With these definitions, conjugation of the above g-relations results in

Aé‘A = ¢ é‘A A

AZE =34 + qiEPD,

AE = PEA+ @AED,

A =4,

BEA=EAB + g7 AEPC + q 1 AED + 2284 — gi(1 + ¢~ HED

BE = 28,

BEC = E€B — qAEED + qAEC + ¢*A*EPB,

BE» = g?EPB + qAZ®D ,

CE4 = E4C + qAE°A — qAEP A + 2 284D

CE® = ¢?E5C + ¢*28"B,

CE = 2E°C — qifP A + P18 B — 228D,

CEP = EPC + qAfBA + *22EPD

DE* = g?EAD + AP A,

D& = &p,

DE =D + qif A + ¢ 128D,

DEP = qZEDD ) (B.3)
These relations can be written in the compact form

Xl 6’ Rll 1 kl éle (B4)
Also we give the explicit form of &£ relations (2.12):
P =¢r=¢’=0,

() = qag”et . (B.5)
Her = - gt P = — 2L — iR,
fAéC=—q2§CfA+q3).§D€A, 6B6D=_§D§B,
gagh = - ghen, EEP = — £PEC — qagPet . (B.6)

Using these relations along with the derivative algebra (5.2) one verifies that
d? = 0. Conjugating (B.6) one finds commutation relations for the &s. Other relevant
relations between the &’s and operators discussed in Sect. 6 are listed in Appendix D.
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C. Conjugate g-Derivatives

In this appendix we list some of the relations involving the conjugate derivatives.
Their action on coordinates is determined by conjugating the action of the derivat-
ives in (5.1). Hatted derivatives are then defined by normalizing so that
0; X' =6]+ .. .. Writing

(5)A=0—B’ (5)B=—6_I;’ (5)C=6—C9 (—a_)D=a—Da (Cl)

we get

0= —q *9ug”(0); (C2)
or explicitly

04=—40p, %c=—q*,

O=—¢"04, Ip=—q"*0p. (€3
The action of these operators on the coordinates is given by the R-matrix equation

0: X7 =6 + Ry V%, X'6, . (C4)
Explicitly we have
04A=1+q*40,4+ ¢*D0c ,

0,B=Bd,,

9,C=Cdy+ q*A*Dd 4 + ¢>ABoc ,
d4D =q*Dd, ,

dgA = Aly ,

3sB =1 + q* By — qADO¢ + qACO¢ + qADdy + A2 A,
35C = q*Clg — qAAD + qAADy ,

35D = Dég + qAAdc ,

JcA = g*Adc ,

8cB = B¢ +q~'ADd, ,

3cC =1+ q*Céc + qrAd,

9cD = Do,

dpA = Adp + qADOg ,

dpB = q*Bdp — gA(l + q~*2)D3, + q*A*Bdc + q~ 1 ACd, ,
3pC = Cdp — qAAd4 + q* B0y — q>2*Dic + q> )2 Dé, ,
OpD =1+ ¢>Dép + qAAd 4 + ¢*A* D, . (C.5)
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These relations are consistent with the expressions for hatted derivatives in terms of
unhatted ones (6.12) and the action of unhatted derivatives (5.1). Among themselves
the 0’s satisfy the same algebra (5.2) as the J’s. This is compatible with the conjuga-
tion rules (C.3).

One can also find the algebra of hatted with unhatted derivatives. This is given by
the R-matrix equation

0;6; = Rt '™ 0,0, . (C.6)

This yields the explicit relations

5A<§A = qzéAaA >

0504 = 0405 + q*Adcdc ,

aCéA = éAac >

0004 = q*040p + ¢ #040c + 4*A0c0s ,

040 = 0pd4 — qA0c0c + qAdpdc + qAdclp + 120405 ,

3853 = qzéBaB >

0c0p = q*0p0c + qA0c0p ,

0pdp = 8p0p — qADcOp + qA0p0y ,

040c = q*0c04 + qA040c ,
aBéC = éCaB >

élcahc = qzécac >

dpdc = 8cdp +q~ 40405 ,

940p = Opda + qA0adp — qAd40c ,
dp0p = q*0pos + q*A*0c0p + q° Adgoc
0c0p = 0p0c +q~ 148,05,
5050 = qzéDaD + q2,125cab + q*420pdc
— q*226c0c + qAdg04 — qAq ™ A + 1) 40 . (C.7)

These relations may be verified using the expressions for the hatted derivatives in
terms of unhatted ones (6.12) and the algebra of hatted derivatives (5.2).

Finally the algebra of the conjugate derivatives with the Lorentz generators is
given by (5.3) and (5.4) with hatted derivatives replacing the unhatted ones.

D. Relations for Scalar Operators
In this section we list some relations involving the Lorentz scalar operators discussed

earlier. These formulas are useful in checking the properties of the conjugate
derivatives and differentials.
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First, for the derivatives acting on the Minkowski length L we have

0L =q Lo + gy X7,
OL=q*Ld; + q ;X .
The action of the Laplacians on the coordinates is
AX'=q72X'A + ¢*¢70;,
AX' = @ X' A + q72g"5; .
Acting on the Minkowski length the Laplacians give
AL=q *LA+q *E+(q*+1),
AL=q*LA+E+q2%q %+1).
The action of E and E on coordinates is
EX'=q *X'E + X'+ qALg"0;,
EX' = *X°E + X' — qALg"3;
and on the length is
EL=gq ?LE +(¢* + 1)L,

EL=q*LE+ (g >+ 1)L.
The algebra of the derivatives with E and E is
0,;E=q 2Ed;+ 0, + q ' Ag; X4,
0,E = Ed; + 6; .
Conjugation gives the algebra with hatted derivatives:
6.E=q?Eé; + 0, — Cﬁu‘ii;‘XjZT )
O,E = Eb; + ;.
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(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(D.7)

Now we turn to the relations including &s. First, with the scalars, L, E, 4 and A

L&=q2¢L, EC=(E, AG=q*l4, AEG=04A.

The operator W has the following action on the coordinates:
WX'=X'W+q 'L
With derivatives it obeys
6,-W= Wa, + g.-,-(q_zfj + QiXJd — q_alijE) .
The operator W has the following commutation relations with &:
We=—q2tw.
The operators U and ¥ commute with coordinates as
UX'=X'U, VX'=q 2X'V+ &4+ qAUg"0;.

(D.8)

(D.9)

(D.10)

(D.11)

(D.12)

Now we list several relations involving the exterior derivative d. With the derivatives

d obeys
0id = q*do; — q 1 Ag;;& A
and with the scalar operators

(D.13)
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dA=q %Ad, dL=W+Ld, dW=—Wd,

dE=d+q *Ed +q *\W4. (D.14)
The Laplacian 4 with these quantities # and U obeys
AW = WA+ q*d, AU =Ud+ Ad. (D.15)
Several relevant relations with E’s are:
L& =g 8L,
WX = X'W — qALE
dL=q W+ Ld. (D.16)

Finally we list some useful summation relations:

979x0;X* =(q+q7 ")’ +q*E,
g ¢ EX)=q *WE + ¢*ALd + W,
9, X'dX) = (¢* + Y)Ld + "W,
9,88 =0. (D.17)

These are the relations needed in Sect. 6.
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