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Abstract. The ^-differential calculus for the g-Minkowski space is developed. The
algebra of the ^-derivatives with the g-Lorentz generators is found giving the
^-deformation of the. Poincare algebra. The reality structure of the g-Poincare
algebra is given. The reality structure of the ^-differentials is also found. The real
Laplacian is constructed. Finally the comultiplication, counit and antipode for the
^-Poincare algebra are obtained making it a Hopf algebra.

1. Introduction

Quantum groups have already established themselves in such diverse branches of
mathematics and theoretical physics as conformal field theory, integrable models,
statistical mechanics, knot theory and topology of low-dimensional manifolds.
Like many other notions (quantum mechanics, special relativity) quantum groups
appear as some deformation of old "classical" objects, in this case groups. Although
this type of deformation can be understood in terms of usual quantum mechanics,
the idea of quantizing the symmetry itself is apparently new. The fruitfulness of this
idea is supported by the number of geometric and algebraic notions which can be
"g-deformed." First of all quantum groups can be viewed as symmetries of "quan-
tum" spaces [1, 2]. Next the frame of differential calculus can be extended to
include quantum groups and quantum spaces [3, 4].

The role of symmetry in physics is hard to overestimate. This explains the wide
interest which quantum groups found among theoretical physicists. Particularly
one is tempted to deform a real physical system in this spirit. This requires first of
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all a deep understanding of the ^-deformation of Minkowski geometry. The
quantum Minkowski space itself is more or less understood [5-8]. The quantum
Lorentz group serves as the ^-symmetry group of this space. One is naturally
interested in the action of the g-Lorentz algebra on the g-Minkowski space. This
question is nontrivial since the relation between Lie algebras and Lie groups
becomes more involved on the quantum level, in particular as of now the exponen-
tial map is unknown. The g-Lorentz algebra was obtained in [8, 9] where the
Lorentz generators were defined by their commutation relations with the g-spinors.

The next step is to define the quantum Poincare algebra, or to add the
infinitesimal translations to the g-Lorentz algebra. This is the aim of the present
paper. Following the classical example we treat the ^-derivatives as generators of
translations. (Another approach was followed in [10] where the translations stayed
undeformed.) The general theory [11,12] giving the ^-deformation of the universal
enveloping algebra of any simple Lie group is not sufficient for the Poincare
algebra, since it is not simple. To find the algebra we use the action of the Lorentz
generators and derivatives on the g-Minkowski space.

We discover a new effect absent in the classical Poincare algebra. Namely, the
operators conjugate to the derivatives cannot be expressed linearly in terms of
the derivatives themselves (in contrast to the ^-Minkowski coordinates for
which the conjugation is linear and just given by the classical formulas). A similar
phenomenon also occurs for the conjugated differentials.

We also construct the coproduct for the derivatives. We prove that this
comultiplication is natural, or in other words is compatible with the action. Finally
we find the counit and antipode to complete the Hopf algebra structure of the
g-deformed Poincare algebra.

The paper is organized as follows. In Sects. 2 and 3 we give preliminaries on the
g-spinors, the g-Minkowski vectors and the ^-matrices for them. Section 4 con-
tains the necessary information about the g-Lorentz algebra and its action on the
g-Minkowski space. In Sect. 5 we discuss the ^-differential calculus on the q-
Minkowski space. Section 6 is devoted to the reality structure for derivatives and
differentials. There we also construct the real Laplacian. Finally, in Sect. 7 the
comultiplication for the translation sector of the g-Poincare algebra is given and its
naturality is proved. Appendices contain technical formulas for the projector
decomposition of the .R-matrices, commutation relations between coordinates and
differentials, action of the conjugate derivatives, and relations for some ^-differen-
tial operators needed for defining the reality structure. Many of the relations are
given in a component form which is useful in checking some of the nonlinear
relations in the text.

2. ^-Matrices for the ^-Lorentz Group

The g-deformed Lorentz group has been studied in [5-7]. These analyses made use
of the classical isomorphism SΌ(3, 1) = SL(2, C)/Z2. Since the quantum group
SLq(2, C) is well understood, it is natural to use it for the ^-Lorentz group. The
fundamental representation of SLq(2, C) consists of two-dimensional complex
quantum spinors xa and their complex conjugates xd. Minkowski vectors are
constructed as bilinears of a spinor and a conjugate spinor. A vector is written as

χ*β = χάxβ . (2.1)
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The R-maiήx for the g-Lorentz group is determined by moving such a vector
through another bi g-spinor Wυδ, where u and v are independent copies of q-
spinors. However there is an ambiguityin choosing the ̂ -relations between x,
x and w, v. This results in two different K-matrices for the g-Lorentz group. Both
.R-matrices satisfy the Yang-Baxter equation. This construction of the ^-matrices
was followed in [7], and we shall refer to them as Rι and Rn.1

These two jR-matrices satisfy the characteristic equations

(Rιι + l)(Rιι-q2)(Rιι-q-2) = 0. (2.2)

Solution of the eigenvalue problem gives the decomposition of each matrix into
three projectors. Taken together one finds four projectors: Pτ which is the q-
deformed trace projector, Ps which is the traceless part of the ̂ -deformed sym-
metrizer, and P+ and P_ which are the selfdual and antiselfdual parts of the
^-deformed antisymmetrizer. These are the g-deformed versions of the classical
projectors. Their explicit form is given in Appendix A. The four projectors sum to
the identity matrix:

11 = Ps + Pτ + P+ + P_ , (2.3)

and the R matrices are written as the sums

Rn = q-2Ps + q2Pτ-P+-P- (24)

These are the only linear combinations of the four projectors which are compatible
with the relations between the components of a ^-vector. A more precise statement
will be given in [7].

The higher dimensional orthogonal ^-groups are described by only one R-
matrix. In four dimensions this is the .Rπ-matrix. However, in four dimensions the
situation is special in that the antisymmetric square of the vector representation is
reducible. It decomposes into the selfdual and antiselfdual parts. The .Rπ-matrix
takes the same eigenvalue on both. The selfdual and antiselfdual parts are distin-
guished by the JRΓmatrix. Note that we need both ^-matrices since Rj in turn does
not split the g-symmetrizer into the trace and traceless parts.

The .R-matrix used to define ^-relations between elements of the g-space
depends on the projector decomposition needed. For the coordinates X1 the
antisymmetrizers acting on the tensor product of two coordinates must give zero.
Suppressing indices we write this as

0. (2.5)

Using this fact we then have

ίXX = (Ps + PT)XX = RiXX , (2.6)

1 In [5] the matrix Rn was derived in a different way. There a matrix of the g-Lorentz group was
constructed as a tensor product of an SLq(2, C) matrix and its conjugate. The ̂ -relations between
elements of the Lorentz group matrix were determined by the R-matrix for SLq(2, C). These
g-relations then give rise to the i?π-matrix for the g-Lorentz group
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where in the first step we used (2.3) for I and in the second step we used (2.4) for Rit

Including the indices we then have

X*XJ = R\j

klX
kXι (2.7)

for the g-relations between coordinates.
A differential calculus is established on this algebra by introducing an exterior

derivative d with the usual properties of nilpotency and Leibniz rule:

rf2 = 0, d(fg) = (df)g+f(dg)9 (2.8)

where/and g are functions of the coordinates. The differential of X1 is called ξι. The
action of d on the coordinates and differentials is

dXi = ξi + Xid, dξι= -ξιd. (2.9)

We will need ^-relations between the differentials themselves and between the
differentials and coordinates.

Classically the ξι are anticommuting objects, so in the g-deformed case we
require that a tensor product of two differentials is annihilated by the symmetrizers:

Psξξ = 0, Pτξξ = Q. (2.10)

Then we write

= (P++P.)ξξ= -Rnξξ (2.11)

using (2.3) and (2.4) for the projector decompositions of t and Ru, respectively.
Then the equation

?&=-R$^k? (2.12)

gives ^-relations between the differentials.
For g-relations between coordinates and differentials assume that Xξ = CξX

for some matrix C. Applying d to this equation gives ξξ = — Cξξ. Comparing with
(2.12) we see that C = Rn and

X^ = R^kXl (2.13)

gives the desired ^-relations.
Derivatives are introduced by the usual expansion of the exterior derivative:

d = ζidi. (2.14)

Then applying d to a coordinate X\ using the Leibniz rule (2.8) for d9 and (2.13) to
move the ξ's to the left, we find

diX
j = δ\ + R^ilX

ιdk (2.15)

for the action of derivatives on coordinates.
We also need ^-relations among the derivatives themselves. Assume a relation

of the form dd = Fdd for some matrix F. Applying both sides of this equation
to a coordinate X1 and using (2.15) gives the consistency condition
(1 - F)(l + Ru) = 0. A check of (2.4) shows that this is satisfied if F = Ru and the
g-relations between derivatives are given by

dtdj = Rψfldtfx. (2.16)
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Note the reversed order of index summation compared to the other K-matrix
equations.

Although we will not need them, one can also find ^-relations between the
differentials and derivatives. Assume a relation of the form dξ = Dξd for some
matrix D. Applying both^ sides to a coordinate X1 and using already established
relations one finds D = Rΰ1 and we have

dtξJ = Rϊ1Jkuξιdk. (2.17)

This completes the algebra of coordinates, differentials and derivatives^
Throughout this discussion we could have used the inverse of the K-matrices

instead. This would leave the XX, ξξ and dd ̂ -relations unchanged. However the
Xξ, dX and dξ relations would be different. This would give a second possible
choice for the differential calculus. However this second choice coincides with the
complex conjugates of the derivatives. With the definition of d in Appendix C this
can be seen by conjugating the above relations and using

R\\ kl = 1 θ Kn mkQnl = <1 θkmKll inG (Z.lδj

(this is a property shared by all orthogonal and symplectic quantum groups [1])
and

Rnij

kι=fίafiRnba

dcfίf<l, (2.19)

where / is the matrix appearing in the complex conjugation of coordinates:

3. Minkowski Coordinates

In this section we introduce the quantum Minkowski coordinates. Explicit for-
mulas for their ^-relations are given. The invariant Minkowski length is also
presented.

In [8] the g-Minkowski coordinates were constructed as bilinears of g-spinors
(x, y) and their conjugates (x, y). We take as coordinates the four quantities

A = xy9 C = xx ,

B = yx, D = yy. (3.1)

Their reality properties are

A = B, C = C ,

B = A, D = D. (3.2)

Real Minkowski coordinates are defined by the linear combinations

(3.3)
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In the following we will refer to general Minkowski coordinates as X\ but for
explicit calculations the basis (A, B,C,D) is convenient.

Quantum relations between the coordinates are provided by the ^-matrix for
the Lorentz group through the ̂ -matrix relation (2.7). Explicitly the ^-relations for
(A, B, C,D) are

AB = BA- q-χλCD + qλD2, BC = CB - q'^λBD ,

AC = CA + qλAD, BD = q2DB ,

AD = q~2DA, CD = DC, (3.4)

where q is real and λ = q — q'1. These relations are invariant under complex
conjugation accompanied by reversal of the variable order. Also these relations
allow ordering of any monomial in the coordinates.

A quantum Minkowski metric may be obtained from the trace projector which
is one of the projectors comprising the ̂ -matrix. In the basis (A, B, C, D) the metric
gij and inverse gίj are

βu =

V

0

1

0

0

q2

0

0

0

0

0

0

- 1

0

0

- 1

aΊ

o \ /o i
~2 0

0 0

0 0
\

0

0

-qλ

- 1

o\
0

1

0

(3.5)

Written out using the ^-relations for the coordinates the Minkowski length of
a four vector is

L = (q2 + iyίgijX
iXj = AB - q~2CD .

This length is real and commutes with the coordinates: LXι = XιL.

(3.6)

4. Lorentz Algebra

In this section we review the previous results on the g-deformed Lorentz algebra
[8,9]. Lorentz generators are defined by their action on the four vectors. From this
the algebra and coproduct of the generators is determined. The counit, antipode,
and reality conditions complete the description of the Hopf algebra.

In [8, 9] the ^-deformed Lorentz algebra was presented. There the generators
were defined by their action on two dimensional complex quantum spinors. Here
we will confine the discussion to the quantum Minkowski coordinates which can
be constructed as bi g-spinors. The three generators of SUq(2), Γ+, Γ", and Γ3,
form the rotation subalgebra. The Lorentz algebra is completed by adding non-
compact generators T1, T2, S1, and S2. Although this is an algebra with seven
generators, we had shown [9] that they are not independent and one generator
may be eliminated. All these generators annihilate the constant monomial:
Tι\ =0 . For the diagonal generators T3, T1, and S2 it is convenient to define

τ

3 = 1 - λτ3, τ1 = 1 + λT\ and σ2 = 1 + λS2 which obey τ fl = 1.
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The SUq{2) generators have the following action on the Minkowski coordin-
ates:

T+A = q~2AT+

9 T+C = CT+ + a'1 A ,

T+B = q2BT+ +qD-q~1C, T+D = DT+ -q~xA,

T~A = q'2AT" + q~γC - qD, T~C = CT - qB ,

T~B = q2BT~, T'D = DT~ + qB ,

τ3A = q-*Aτ3

9 τ*C = Cτ3,

τ3B = q4Bτ3

9 τ3D = Dτ3 . (4.1)

Note that all of these generators commute with the time coordinate X° oc C + D.
Thus they do not generate boosts. The additional generators have action

T2A = qAT2, T2C = qCT2 + qAτ1 ,

T2B = q-γBT2 + q'1Dτ1

9 T2D = q~1DT2 ,

SXA = q~1AS1 + q~ιDσ2, SXC = (q'ιC + qλ2D)S1 + qBσ2 ,

S1^ = qBS\ SXD = qDS1 ,

τ 1 ^ = ^ τ 1 + qλ2DT2, τ1C = (q~1C + qλ2D)τ1 + ^/125Γ2 ,

τίB = q-1Bτ\ τ1D = qDτ1 ,

σ 2^ = q~1Aσ2

9 σ2C = qCσ2 + g λ 2 ^ 1 ,

σ2B = qBσ2 + qλ2DS\ σ2D = q~1Dσ2 . (4.2)

As shown in [8], these generators produce a linear combination of rotations and
boosts in the limit q->l9 and they complete the Lorentz algebra. Also, it should be
noted that all generators of the g-Lorentz algebra commute with the ^-Minkowski
length L.

The algebra of the generators follows from this action. To this end one finds
bilinear combinations of the generators having an action proportional to the
action of some linear combinations. The full algebra of the seven generators is

τlT+ = T+τl + λT2^ T+T2 = q-2TΊT+ 9

τ^T~ =q'2Tτ1-λS\ T-T2 = T2T- + A - i ( σ 2 _ τ i ) ?

τ'T2 = q2T2τ\ T+S1 = q2S1T+ + ^ ( τ V - σ2) ,

τ 1 S 1 = S 1 τ 1 , T~S1=S1T- ,

T+T~ =q2T~T+ +qλ-1{l-τ3),

σ2T+ = τ+σ2_ tfχτιT29 Γ 2 5 i = s i Γ 2 ^

σ 2 Γ =q2T~σ2 + q2λS\

• σ2T2 = q~2T2σ2

9 τ'σ2 = σ2τx + qλ3T2S1 ,

σ2S1=S1σ2

9 τ 3 τ i = τ i τ 3 ?
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τ3T+ =q~*T+τ3 ,

τ3T~ =q*T~τ\

T3SX =q*S1τ3 , (4.3)

The algebra may be written in a more conventional form by the substitutions
τ 1 = 1 + λT\ σ2 = 1 + λS2, and τ 3 = 1 - λT3.

This algebra appears to have seven generators. However there is an extra
relation in the algebra which allows elimination of one of the diagonal generators.
Consider the quantity

Z = τ1σ2-q2λ2T2Sί . (4.4)

One finds that Z is central in the algebra and commutes with all of the coordinates:
ZX* = XιZ. Therefore Z is 1. Then one could eliminate τ 1 or σ2 from the algebra,
for example by the substitution σ2 = ( τ 1 ) " 1 ^ + q2λ2T2S1). However this would
leave the algebra with inverse powers of the remaining diagonal generator. In the
following it will be convenient to keep all seven generators, having in mind that
they are not independent.

In [8,9] the coproduct for the generators was found by considering their action
on functions of the spinors. The same results can be obtained using functions of the
Minkowski coordinates. The counit and antipode are determined by the co-
product, and conjugation of the action on the coordinates (including reversal of
variable order) yields the real structure of the generators. For the SUq(2) generators
the coproduct A is

A(T±)=T±®1 + (τψ ® 7* , A(τ3) = τ3 ® τ3 . (4.5)

The counit ε and antipode S are

6(7*) = 0, 5 ( 7 * ) = - ( τ 3 ) - ^ ! * ,

ε ( τ 3 ) = l , 5(τ3) = ( τ 3 ) " 1 . (4.6)

Under conjugation the SUq(2) generators obey

Γ Γ = ̂ : F 2 Γ = F , ? = T 3 . (4.7)

The results for the remaining generators are slightly more complicated. The
coproduct is

Aiτ1) = τ 1 (x) τ 1 + λ2S1{τ3)~^ ® T2 ,

A(σ2) = σ2 ® σ2 + λ2T2{τψ® S1 ,

A(T2) = T2 (x) τ 1 + ( τ 3 Γ ^ σ 2 <g> T2 ,

1 ) = S1 (x) σ2 + ( τ 3 ) V (x) S1 . (4.8)
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The counϊt and antipode are

ε ( τ 1 ) = l , S(τ1) = σ 2 ,

s(σ2)=l S{σ2) = τ\

ε(T2) = 0, S(T2) = - q2(τψT2 ,

ε^ 1 ) = 0, SiS1) = - ( τ 3 ) " ^ 1 . (4.9)

In checking the antipode property one needs the fact that Z = 1. Finally the reality
conditions for the new generators are

σ* = (τψτ\ ¥ = - q2(τψT2 . (4.10)

This completes the construction of the Hopf algebra of the Lorentz generators.

5. Poincare Algebra

In this section we add translation generators to the Lorentz algebra. As translation
generators we take the g-deformed four-vector derivatives. The action of the
derivatives on the Minkowski coordinates and the algebra of the derivatives is
defined by the i£-matrix. The action also allows one to find the commutation
relations of the derivatives with the Lorentz generators.

The action of the derivatives on the ^-Minkowski space reads

dAA = l+ q~2ΛdA + λ2BdB + λ(qD - q~1C)dc - q~

dAB = BdA ,

dAC = q~2CdA + λ2DdA + qλ(l - qλ)Bdc ~ qλBdD ,

dAD = DdA - qλBdc ,

dBΛ = ΛdB ,

dBB = 1 + q~2BdB - q

dBC = CdB — qλΛdc ,

dcA = A d c - q B ,

dcB = q~2Bdc ,

dcC = 1 + q~2Cdc + λ2Ddc -

dcD = Ddc ,
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dDA = q~2AdD + λ(qD - q~1C)dB ,

dDB = BdD - q~1λDdA + λ2Bdc ,

dDC = CdD - q~xXAdA + qλBdB - qλ2(qD - q~1C)dc ,

dDD = l + q~2DdD - q~γλBdB . (5.1)

The algebra of derivatives is

dAdB = SBdA - qλdcdc + qλdDdc, dBdc = q~2dcdB ,

SASc = q2dcdA> ^BSD — SDdB + qλdcdB ,

SASD = SDdA - q3λdcdA, dcdD = dDdc . (5.2)

This algebra is consistent with the action on coordinates.
To find the commutation relations between the derivatives and the Lorentz

generators we follow the same procedure used for the Lorentz algebra alone. The
procedure is straightforward but somewhat lengthy. For the rotation subalgebra
one obtains

T+dA = q2dAT
+ - qdc + qdD, T+dc = dcT

+ + q~ιdB ,

T+dB = q~2dBT\ T+dD = δDT+ - qdB ,

T~dA = q2dAT~, T~dc = dcT~ - q-xdA ,

T~δB = q~2δBT~ + q-1dc ~ q^d* T~dD = dDT~ + qdA ,

τ3dB = q-*dBτ\ τ3dD = dDτ3, (5.3)

and for the noncompact generators the result is

T2dA = q-γdAT
2 - qdcτ\ T2dc = q^dcT2 ,

Γ 2 a β = qdBT\ T2δD = ^ Γ 2 + 9 λ 2 3 c Γ 2 - ^ τ 1 ,

S1dA = qdAS\ S1dc = qdcS
1,

S'dβ = q^dsS1 - q-'dcσ2, S1 dD = q^dnS1 - q-χdAσ
2 ,

τ1dA = q-1dAτ\ τ1dc = qdcτ
1,

τidB = qdBτ
ι - qλ2dcT

2, τ 1 ^ = q^dtf1 - q~1λ2dAT
2 ,

σ2dA = qdAσ
2 - q3λ2dcS\ σ2dc = q-xdcc

2 ,

σ2dB = q-^aσ2, σ2dD = qdDσ2 + qλ2dcσ
2 - qλ2dcS

1 . (5.4)

This completes the g-deformed Poincare algebra.

6. Real Structure

In the classical case it is straightforward to find conjugation rules for derivatives.
However in the ^-generalization one encounters difficulties. The action of the
conjugated derivatives is given in Appendix C. Comparing with (5.1) one observes
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that these operators cannot be expressed linearly in terms of the ^-derivatives
themselves. This exhibits a new effect which does not appear on the classical level.
The conjugation operation becomes nonlinear. In this section we give the explicit
nonlinear relations between the derivatives and their conjugates.

To this end we will need to define several operators. First is the Laplacian of the
^-derivatives

A = (q~2 + ly'g^djdt = δAdB - q2δcdD , (6.1)

central element in the algebra of derivatives. Also we
an:

A=q-2dJB-dcdD. (6.2)

which is the only quadratic central element in the algebra of derivatives. Also we
have the conjugated Laplacian:

The two are related by

A=q10A . (6.3)

Note that A commutes with the hatted derivatives. With the unhatted derivatives it
obeys

diA=q2Adi. (6.4)

Next we define the operators E and E:

E = Xιdb E = X^i, (6.5)

which are related by

E= -q\qi + l)2-qSE . (6.6)

The action of these operators on the coordinates and derivatives is given in
Appendix D.

These operators together with the Minkowski length L serve as building blocks
for two more operators A and A:

A = l-q-1λE + q~2λ2LA ,

Λ = l+qλE + q4λ2LA . (6.7)

Using the formulas from Appendix D one finds

ΛΛ = 1, A = q8λ . (6.8)

The operators A and A act on both coordinates and derivatives multiplicatively.
For A we have

ΛXi = q~2XίΛ9

Adi = q2diA,

Adi = q2dtA (6.9)

with the corresponding relations for A given by relation (6.8).
It is clear from the construction of these operators (A, E, A and their conjugates)

that they are Lorentz scalars. A check verifies that they all commute with the
Lorentz generators.
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The hatted derivatives can now be expressed in terms of the unhatted derivat-
ives as

§i = q-2A-ίlA,gijX
jl . (6.10)

Using the formulas in Appendix D we can write this in the form

Si = A ~1 (δi — q~3 λgijXJ A) (6.11)

or explicitly

dD = q-3λ(C-qλD)A) (6.12)

The inverse map is

dD = A~\dD - q3λ(C - qλD)Δ) . (6.13)

One verifies these relations by checking that the left- and right-hand sides (rhs)
have the same action on the coordinates. Note that the terms proportional to the
Laplacians in the rhs of these equations have the same transformation properties as
the derivatives. Thus these mappings are covariant under the global g-Lorentz
group. Along with (4.7) and (4.10) this describes the real structure of the g-Poincare
algebra.

The properties of the differentials under conjugation are also nontrivial. Again
we introduce several relevant scalar quantities. Define

Note that

XJ = q2ζAB + ξ*A - ξcD - ζD(C - qλD).

5 = q2 W. The quantity

U = W-qλLd

(6.14)

(6.15)

commutes with all coordinates: UX* = X1 U. The relations between the coordinates
and the differentials are given by (2.13). One can check that the quantities

φι = ξι - qλX'd

satisfy the following relations with the coordinates:

(6.16)

(6.17)

Up to the factor q2 in the lhs and the last term in the rhs these are the relations (B.4)
for X's and <fs. There is another set of quantities which satisfy relations with X's
similar to (6.17). Namely one can rewrite the relations (2.15) in the form

(6.18)



^-Deformed Poincare Algebra 507

where dι = gijdj. Since U commutes with coordinates we can compensate the extra
term in (6.17) by adding q3λUdk to φk- To get rid of the factor q2 in the lhs of (6.17)
we use the same scaling operator A. Thus the quantities A(φi + q3λUdi) have the
same commutation relations with X's as <f s. Since these commutation relations are
homogeneous we can conclude only that the ξ* are proportional to
A(φi + q3λUdi). The proportionality factor can be found from the requirement
that the square of the conjugation operation is unity on the <fs. Finally we obtain

ξ* = q-*Λ{φι + q^λUd1) = q~*A(? - qλX'd) + q'^λUid1 - q~3λXiA) (6.19)

with δ1 = gijdj. This implies the following reality property for the exterior derivat-
ive:

d ΞΞ £di = q~4Λd + q-5λUA . (6.20)

This can be verified by a direct check. We note also that

d=-d. (6.21)

To write the inverse map define W = g^XK Using (6.19) for the <fs one finds

U=W+ qλLd . (6.22)

By conjugating (6.14) one finds that W= q2W. This implies that U is real, Ό = U.
Then the inverse map reads

ξι = λφ + q^λX'd - qλUd1), (6.23)

where we use (6.22) to write U in terms of <f s. For the exterior derivative we have

d = q*Λd-q5λUΔ . (6.24)

Again we note that the mappings (6.19) and (6.23) do not spoil the global g-Lorentz
covariance.

The Laplacians A and A defined above are not real as seen in (6.3). However
relations (6.12) allow the construction of the real Laplacian. Substituting them into
(6.2) one finds

A=q-4A~1A . (6.25)

Therefore using (6.3) we obtain

A=q6A~1A . (6.26)

Now define the real Laplacian to be

ΛR = q-2A~^A = q2A^A . (6.27)

Using relations (6.8), (6.9) one checks that this Laplacian is indeed real, ΔR = AR. It
g-commutes with the derivatives:

ARdi = q-1diAR, ARdi = qdiAR. (6.28)

The properties of this Laplacian will be discussed elsewhere.
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7. Hopf Structure of ̂ -Derivatives

In this section we complete the Hopf structure of the q-derivatives. The coproduct
is found by a heuristic method. Arguments are made for the validity of this
coproduct. Then this coproduct is used to determine the counit and antipode.

In [8,9] the coproduct for the Lorentz generators was found by considering the
action of the generators on monomials in the spinors. The same could be done for
the derivatives on monomials in the Minkowski coordinates. However the com-
plexity of the action on coordinates (5.1) makes this a difficult task. Here we use
a more heuristic approach. We make an ansatz for a coproduct of the form

A(di) = di®l + &j

i ®dj9 (7.1)

where the operators G\ are made up of the Lorentz generators and the scaling
operator A. An inspection of the derivative action shows that dB and dc have
a simple form. For these derivatives it is not difficult to find combinations of the
Lorentz generators for O\ which produce the correct action on coordinates. But
there remains an undetermined power of A in the Θ\Λt is also easy to evaluate dB

on the monomial Bn. This fixes the power of A The coproduct for the remaining
derivatives is then found using the algebra with the SUq(2) generators Γ*. By this
procedure the coproduct is found to be

Δ(dΛ) = dA®\ + λkτψτ1 ®dA + q3λ2Λϊ(τ3Γ*T~S1 ® θB

®dc- qλΛiS1 ® dD ,

= dB ® 1 + Λ^{τ3y^σ2 ®dB~ qλΛ^T2 ® dc ,

A(dc) = dc®l+ Λ^τ1 ®dc- qλΛ^τψ^S1 (x) dB ,

A(dD) = dD®l+ Λ^σ2 ®dD- qλΛ^(τψT2 ® dA ,

2k3)-^T- σ2®δB + qλ2Λ^T~ T2 ® dc . (7.2)

This coproduct is a homomorphism of the entire Poincare algebra and is coas-
sociative.

The comultiplication was found by direct inspection. We know only that it is
a homomorphism of the algebra. We now discuss the naturality of this comultipli-
cation. In other words we wish to prove that the comultiplication is compatible
with the action.

Proposition. Let f and g be functions of A, B, C and D. Let A(φ) = Xααα ® ba, where
ψ is any element of the q-Poίncare algebra. Then

Ψ(fg) = Σ"Λf)kM. (73)
α

Sketch of Proof 1. A straightforward calculation shows that A is coassociative.
Explicitly, if

Φ«β , Δ (K) = X μay ® vay , (7.4)
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then

Σ λ«β ®Φaβ®ba = Yjaa® μaγ ® vaγ . (7.5)
aβ αy

2. Comparing with the action we conclude

φ(Xig) = ΣaΛXi)K(g) (7.6)
α

for all g-Minkowski coordinates X\

3. Induction in deg/ For def/= 0 the proposition obviously holds. By (7.6) we
have

Ψ(xifg) = Σ«Λχi)b*(M' ( 7 7 )
α

For φ = ba in (7.3) the statement holds by induction assumption for deg/= n.
Therefore

g) (7.8)

y

and

φiX'fg) = Σ M*')μα yσ)vα y(<7) . (7.9)
αy

Using coassociativity (7.5) we can rewrite it in the form

φiX'fg) = Σ λaβ(Xi)φaPU)ba{g) . (7.10)
aβ

Now using (7.6) with φ = aa\

i Y i { f ) , (7.11)

we conclude that

i Σ ί g ) (7.12)

and (7.3) holds for deg/= n + 1.

4. Induction in deg g. For deg/= 0 and deg g = 1 one easily sees that the state-
ment holds. Above induction in deg/shows then that it holds for any/and g = X1

(that is, deg g = 1). Now since it holds for g we have

ΣK(g) (7.13)
α

Using (7.3) with φ = aa we can write

Now we use coassociativity again:

'g) = Σ W)Φ«β(xι)bΛg) = Σ ^ ( / W ^ K t e ) . (7.15)
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For φ = ba in (7.6) we already proved that

bΛ(Xig) = Σμaγ(Xί)vΰcγ(g). (7.16)
v

Therefore

φ(fXig) = ΣaΛf)K(Xίg), (7.17)
α

and the statement holds for Xιg. This finishes induction in deg g and the proof.
With this coproduct the counit and antipode are determined. The counit for all

derivatives vanishes:

ε(dt) = 0 . (7.18)

The antipode is

S(dA) = - Λ-kτ3ykσ2dA + qλ2SlrΓdB + λσ2T~dc + qλS'dj,),

S(dB) = - Λ-kτψtfdB + q3λT2dc) ,

S(dc) = - Λ~kσ2dc + q-'λS'dβ),

S(dD) = - A\τιdΌ + qλT2dA + λτ^-δj, + qλ2T2T~dc) . (7.19)

In checking the antipode property ones uses the fact that Z = 1 in (4.4).
The coproduct for the derivatives includes the derivatives themselves, Lorentz

generators and the scaling operator A. We note that A does not belong to the
g-Lorentz algebra. This is seen by the fact that AL = q~4LA, whereas the q-
Lorentz generators commute with L. A similar effect already occurs for the
^-derivatives in two dimensions: their coproduct includes the scaling operator
which does not belong to SLq(2) [4]. The Hopf structure of the scaling operator is

A(Λ) = A®A, ε(A) = 1 , S(Λ) = A'1 . (7.20)

This completes the Hopf structure of the Poincare algebra.

A. Projector Decomposition of ^-Matrices

In this appendix we list the four projectors extracted from the two forms of the
^-matrix for the Lorentz group. They act on the tensor product of two coordinate
spaces, so are 16 x 16 matrices. However, they are block diagonal and decompose
into two 1-, two 4- and one 6-dimensional blocks. The bases for these blocks are
labeled by pairs of coordinates, and are

(1): (AA) (4): (DA, CA9 AD, AC)

(1'): (BB) (40: (CB9 DB, BC, BD)

(6): {BA, DD, DC, CD, CC9 AB). (A.I)

We write the projectors in blocks with these bases.



g-Deformed Poincare Algebra 511

The syriimetrizing projectors are Pτ and Ps. Pτ is the trace projector, and may
be written in terms of the metric as

Explicitly it is

— *T(V) —

1

* Γ(4) —

(A.2)

Pτ(6) = ]
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- 1
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~ 2 1

0
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^ 2

where λ = q — q x. The traceless part of the symmetrizer Ps has the form

Ps(i) = Ps(i') — 1 5
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The selfdual and antiselfdual

P + ( 1 ) = P + ( r ) = O

1
+ < 4 ) q2 + l

1

\
I

1
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0 0
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Classically these reduce to the four usual projectors. Plugging q = 1 into the above
expressions it may be verified that

iJ-ki = \(δίδi - δ\δi) + l-ειJkl. (A.7)

Here the ε-tensor is defined so that in the real basis ε 0 1 2 3 = 1.

B. ήf-Differentials

As discussed in Sect. 2 the first step in finding the derivative action is to find the
^-relations between coordinates and differentials. These are given by the R-matrix
equation (2.13). In the (A, B,C,D) basis we have explicitly

AξB = ξBA + qλξDD - q~1λξDC - q~1λξcD + λ2ξAB ,

Aξc = ξcA + qλξAD - q-1λξAC ,

BξB = q-2ξBB ,

Bξc = q-2ξcB + λ2ξDB - q~1λξBD ,

BξD = ξDB ,

CξA = q'2ζAC + λ2ξAD - q-1λξDA ,

CξB = ξBC - q-1λξcB + qλξDB ,

Cξc = q-2ξcC - qλξBA - q2λ2ξDD

+ λ2ξDC + λ2ξcD + qλ(l - qλ)ξAB ,

CξD = ξDC - qλξAB ,

DξA = ξAD ,

DξB = q-2ξBD-q-1λξDB,

DξC = ξCj) _ qλξAβ ^

DζD = q-2ξDD. (B.I)
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We define the hatted differentials by

£* = £» ξ* = ξ*, ξc = ξϊ, ξ° = ξϊ. (B.2)

With these definitions, conjugation of the above ^-relations results in

AξA = q2ξAA,

AξB = ξBA + qλξDD ,

Aξc = q2ξcA + q3λξAD,

AξD = ξDA ,

BξA = ξAB + q~ίλ$>C + q-^fD + λ2ξBA - qλ(ί + q~1λ)ξDD ,

BξB = q2ξBB,

Bξc = ξcB - qλξBD + qλξBC + q2λ2ξDB ,

BξD = q2ξDB + qλξBD,

CξA = ξAC + qλξcA - qλξDA + q2λ2ξAD ,

CξB = q2ξBC + q3λξDB,

Cξc = q2ξcC - qλξBA + q3λξAB - q2λ2ξDD ,

CξD = ξDC + qλξBA + q2λ2ξDD ,

DξA = q2ξAD + qλξDA ,

DξB = ξBD ,

Dξc = ξcD + qλξBA + q2λ2ξDD ,

DξD = q2ξDD . (B.3)

These relations can be written in the compact form

Xtξ^Rϊ^u&X1. (B.4)

Also we give the explicit form of ξξ relations (2.12):

(ξΛ? = (ξBf = (ξD)2 = 0 ,

(ξc)2 = qλξBξA . (B.5)

ξAξB =

ξΛξC =

ξAξD =

~ ξBξA ,

-q2ξcξA-\

-ξ°ξA,

h q3λξDξA ,

ξBξC =

ξ B ξ D =

ξCξD =

- q'2ξcξB - qλξDξB

- ξ°ξB ,

-ξ°ξC- - qλξBξA . (B.6)

Using these relations along with the derivative algebra (5.2) one verifies that
d2 = 0. Conjugating (B.6) one finds commutation relations for the <f s. Other relevant
relations between the ξ's and operators discussed in Sect. 6 are listed in Ap'pendix D.
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C. Conjugate ^-Derivatives

In this appendix we list some of the relations involving the conjugate derivatives.
Their action on coordinates is determined by conjugating the action of the derivat-
ives in (5.1). Hatted derivatives are then defined by normalizing so that
§iXj = δί+ . . . . Writing

= d~c, (β)D = TD , (C.I)

we get

di=-q-4gkig
kj(d)j (C2)

or explicitly

~dA=-q6dB, Tc=-q*dc,

d~B=-q2dA, TD=-q*dD. (C.3)

The action of these operators on the coordinates is given by the K-matrix equation

§iX
3^Sl

i+Rilίk

aX%. (C.4)

Explicitly we have

§AA = 1 + q2ΛdA + q3λDδc ,

§AB = BΘA ,

§AC = CdA + q2λ2DdA + q3λBδc ,

dAD = q2DδA ,

§BA = AdB ,

§BB = 1 + q2BdB - qλDdc + qλCdc + qλDdD + λ2AdA ,

dBC = q2CdB — qλAdc + qλAδD ,

δBD = DdB

dcA = q2Adc ,

dcC = 1 + q2Cδc + qλAdA ,

ΘCD = D§c ,

§DA = AdD + qλDdB ,

§DB = q2BdD - qλ(l + q~1λ)DdA + q2λ2Bdc + q~ιλCdA ,

^ + <ϊ3Aβ5β - q2λ2Ddc + q2λ2DdD ,

qλAdA + ̂ 2A2Z)ac (C.5)
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These relations are consistent with the expressions for hatted derivatives in terms of
unhatted ones (6.12) and the action of unhatted derivatives (5.1). Among themselves
the ffs satisfy the same algebra (5.2) as the δ's. This is compatible with the conjuga-
tion rules (C.3).

One can also find the algebra of hatted with unhatted derivatives. This is given by
the ^-matrix equation

didj = Rnllk

jidkdl. (C.6)

This yields the explicit relations

SBSA = dΛdB + q3λdcdc ,

dcdA = dAdc ,

dDdA = q2dAdD + q2λ2dAdc + q3λdcdA ,

dAdB = dBdA - qλdcdc + qλdDdc + qλdcdD + λ2dΛdB ,

SB^B = q2SBSβ •>

dcdβ = q2dBdc + qλdcdB ,

dDdB = dBdD — qλΰcdB + qλdDdB ,

dAδc = q2dcdA + qλδAdc ,

dBdc = 3 c 3 β ,

^c^c = q2Scdc ,

^ δ D = dDdA + ^3 Λ δi> - qλdAdc ,

^β^z) = ^ 2 ^ ) 5 β + q2λ2dcdB + q3λdBdc ,

5C5D = 5 D 3 C + q-1λdΛdB ,

^D^O = ^ 2 ^ 5 D + q2λ2dcdD + q2λ2dDdc

- q2λ2dcdc + tfλδβ^ - ^ ( ^ " U + l)dΛdB . (C.7)

These relations may be verified using the expressions for the hatted derivatives in
terms of unhatted ones (6.12) and the algebra of hatted derivatives (5.2).

Finally the algebra of the conjugate derivatives with the Lorentz generators is
given by (5.3) and (5.4) with hatted derivatives replacing the unhatted ones.

D. Relations for Scalar Operators

In this section we list some relations involving the Lorentz scalar operators discussed
earlier. These formulas are useful in checking the properties of the conjugate
derivatives and differentials.
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First, for the derivatives acting on the Minkowski length L we have

3,L = q~2Ldt + 9ijX
},

S,L = q2Ldi + q-2

gijX
j. (D.I)

The action of the Laplacians on the coordinates is

ΔXi = q-2XiΔ +q2gίjdj,

ΔT = q2XιΔ + q~2gίjdj. (D.2)

Acting on the Minkowski length the Laplacians give

ΔL = q~*LΔ + q~2E + (q2 + 1),

ΔL = q*LΔ + E + q~2(q~2 + 1) . (D.3)

The action of £ and E on coordinates is

EX1 = q~2XiE + Xι + qλLgίjdj,

EX* = ςf2Xf£ + X* - qλLgίjdj, (D.4)
and on the length is

EL = q-2LE + (q2 + l)L,

EL = q2LE + (q~2 + 1)L . (D.5)

The algebra of the derivatives with E and E is

diE = q~2Edt + 3£ + q^λg^Δ ,

δiέ = £δ, + a;. (D.6)

Conjugation gives the algebra with hatted derivatives:

dtE = Edi + dt. (D.7)

Now we turn to the relations including <f s. First, with the scalars, L, E, Δ and A

L? = q~2?L, E? = ?E9 Δξi = q2ξiΔ, Λ? = ξ*Λ . (D.8)

The operator W has the following action on the coordinates:

IVX* = XiW+q~1λξίL. (D.9)
With derivatives it obeys

dtJV= Wdi + gtj{q-2ξJ + qλXjd - q~3λξjE). (D.10)

The operator W has the following commutation relations with ξι:

Wξι= -q-*?W. (D.ll)

The operators U and V commute with coordinates as

UX* = X1 U , VXι = q-2X{ V + ξ*Λ + qλUgijdj. (D.12)

Now we list several relations involving the exterior derivative d. With the derivatives
d obeys

did = q2ddi-q-1λgijξ
jΔ (D.13)

and with the scalar operators
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dA=q~2Ad, dL = W + Ld , dW = - Wd ,

dE = d + q~2Ed + < Γ 3 λ ί ^ P.14)

The Laplacian A with these quantities W and U obeys

AW=WA+q4d, AU=UA+Λd. (D.15)

Several relevant relations with ξ's are:

Finally we list some useful summation relations:

0Wj** = te + <Γ1)2 + «~4£,
tfyfEX* = q~2 WE + 03λZΛ + W9

These are the relations needed in Sect. 6.
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