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Abstract. We present some results on duality maps and ground states of 1 dimensional
quantum spin models. We also give some applications to Kramers Wannier duality
and the nonlocal transformation that Kennedy and Tasaki discovered in their study of
Haldane phase of quantum antiferromagnetic spin models.

1. Introduction

In this note, we consider certain nonlocal transformations which are used in the
study of 1 dimensional quantum spin models. Examples are Kramers Wannier duality
for quantum Potts models and the nonlocal transformation of Kennedy and Tasaki
discovered in their study of Haldane phase of quantum antiferromagnetic spin models
[5]. We will consider infinite volume ground states determined by these nonlocal
transformations.

The ground state structure of quantum antiferromagnetic spin models attracted
much attention of solid state physicists recently. Even in the 1 dimensional case, the
characterization of phases is not yet fully understood. The isotropic antiferromagnetic
Heisenberg model is believed to have a unique massless infinite volume ground state
in the half odd integer spin case while Haldane’s conjecture states that the model is
massive in the integer spin (see [2]). However, it seems that no rigorous proof for
uniqueness of the infinite volume ground state exists even in the spin 1/2 Heisenberg
model which is a typical “solvable” model in the sense of Baxter ([2] deals with
only the infinite volume limit under the free boundary condition while we expect that
the infinite volume limit in any boundary condition converges to the same infinite
volume state.) We believe that the rigorous study of infinite volume ground states is
not merely of mathematical interest.

One nice feature of the 1 dimensional quantum spin model is existence of nonlocal
transformations (e.g. bosonization, Kramers Wannier duality, etc.) that make some
models formally equivalent to other simpler models. Such formal transformations
give rise to “dual fields” (alternatively called disorder variables). The aim of this note
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is to present results on duality transformations of quantum spin models in the infinite
volume ground states. We consider the relation between ground states of original and
transformed systems.

The duality techniques are old (see [6] and the references therein). However,
mathematically speaking, the existence of dual fields on the physical Hilbert space is
quite subtle. In the case of the 1 dimensional XY model, we can prove rigorously non-
existence of dual variables on the ground state representation when the Hamiltonian
has no mass gap in its spectrum by use of ideas of [1]. The results of this note are
distinguished from other results ([6] for example) in the following points. (a) We do
not assume the existence of dual fields and we carry out our proof, looking only at the
globally gauge invariant observables on which the duality transform is well defined.
(b) We consider quantum spin models. The most important example of this paper is
the deformation of the AKLT model (see below and Theorem 4.1). Hence Lorentz or
spatial rotation invariance is not available and as a consequence cluster properties of
correlation functions at large spatial distance have nothing to do with spectral gap of
Hamiltonian.

We are going to use the C* algebraic method for study of infinite volume quantum
models. The basic reference of this approach is [4].

We consider 1 dimensional spin models and the algebra of quantum observables
A is the infinite tensor product of matrix algebra,

C* algebra

A=) M,(©) : (L.1)
zZ

where M, (C) is the set of all n by n matrices and by " algebra we denote the

C™* algebra completion.

Let Q be a n by n matrix. Then by QU we denote the observable @ on the
site 7. We will also use the lattice translation automorphism «(-) (k is an integer)
determined by

ak(Q(j)) — Q(j+k) ) (1.2)

loc is the dense subalgebra of strictly local elements generated by {a"’}.
The Hamiltonian is usually a (formal) sum of selfadjoint strictly local elements
and in this note we consider translationally invariant or periodic Hamiltonians,

H=Y" oyh), (13)

kepZ

A

where p is the period and h = h* € A4,,.

The nonlocal transformations mentioned above are described as follows.
(1) Kramers Wannier duality for quantum Potts models. We consider n state quantum
Potts models. The Hamiltonian is the time continuum limit of the logarithm of the
transfer matrix for the 2 dimensional Potts model.

Let U and V be n by n matrices defined by

0 -+ - 0 oL 0 --- 0

1
0 ..

U=|0 0 w* 0 0 |, V=|..coooo........ , (1.4)
0 ..
0
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where w is the n' primitive root of 1.
The matrices U and V are the n state analogue of Pauli spin matrices o,0,. They
satisfy the following relations:

Ur=0U0*=U0"0=V"=VV*=V*'V=1,

(1.5)
UV =w""'VU.
Then we consider U9 and V@ in A, . and we set
VD if j is an integer (1.6)
J UO=1/2@G+1/2y* if j is a half odd integer ’ )
The following identity can be easily verified.
W, Wj+1/2 = ij+1/2 Wy, 1.7
W, Wy=W,-W, if |k—j>1.
Let §() be the automorphism determined by
— i @ -1
p@= lim [ v@Q I vo-'. (1.8)
lilsM lil<M
Then () induces an action of the group Z, =Z/nZ because ()™ = identity.
We consider the fixed point algebra of this action AZ»
A ={QeA BQ=Q) (1.9)

It is not difficult to show that {W, :j half integer} generates A?n,
The Kramers Wannier duality map is an automorphism of A% determined by the

following equation:
TewW) =W (1.10)

We can also check

@ Thw = 0 Tw © 0 = Q4 © Ty, .

(ii) Ty cannot be extended to an automorphism of A.
The Hamiltonian of the quantum Potts model is

HON) ==Y {e, + Aejp1 0} (1.11)
JjE€Z

where ) is a real parameter and

e; =

S|~

(Ev)

1=0
This model is selfdual in the sense that

Trew (HO)) = AH(1/)). (1.12)
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If |\| is small, the model has a unique translationally invariant ground state.

The correlation function is represented by a Gibbs measure of [ dimensional
classical spin system. See [8].
(ii) Duality of Kenneda and Tasaki for spin 1 model [5]. In their study of the Haldane
phase, Kennedy and Tasaki discovered the following unitary which transforms
the AKLT Heisenberg Hamiltonian [3] into a model having product states as its
ground state. The transformation of Kennedy and Tasaki is highly nonlocal and
breaks the SU(2) symmetry but the Hamiltonian after the transformation admits
a convergent polymer expansion for certain perturbation. Unfortunately not all the
expected properties of Haldane phase were proved in [5]. Our results imply uniqueness
of ground state and existence of mass gap (see Sect.4).

We now introduce the duality transformation of [5]. We consider the spin 1 case
(n = 3). Let SY)(a = z,y, 2) be the spin 1 operator on the site j.

The AKLT Hamiltonian H y;  is the SO(3) invariant model with the Hamiltonian,

Hygir = Z {(S© . gu+D 4 é(gm AR (1.13)
JjE€EZ

The exact ground state is known. It is a unique translationally invariant ground state
with exponential decay of correlation and mass gap.
The duality transformation is now associated to the following Z, x Z, symmetry.
The elements of the group Z, x Z, are denoted by ++, +—, —+ and —— and
Byy(®,y = + or —) is an automorphism of the C* algebra A determined via the
formulae, 3, , = identity and,

B (8 =-89, B, (89 =-59, B, (89)=59, (l.14a)
B (SP)=89, B (S9)=-8D  B_(SP)=-8D = (1.14b)
B__=B_LoB,_=pB,_0oB_,. (1.14c)

The fixed point algebra by this action (1.14) is denoted by A%2*%2,
A2 —{QeA B,(@Q=Q =zy==}. (1.15)

Let m be a positive integer and consider the following selfadjoint unitary V,,:

Vo= [ %, (1.16a)
k=—m
where
Y, = {E,exp(v/—17S®) + (1 — E)}, (1.16b)
k—1
1
— ()

By =3 |1-exp <\/—17rl_§; ¢ )} (1.16¢)

Then set
lim V, HyqrVi' = H. (1.17)

m—00
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Even though the transformation is nonlocal, the Hamiltonian H is of finite range.

We have 4 to 1 correspondence of infinite volume ground states of H,x, and
H (see [5]). We will try to find the condition for the appearance of this 4 to 1
correspondence in Sect. 3.

In the present situation, the duality map 7, we will consider is

Ter(@ = lim V, QV . (1.18)

The limit (1.17) exists iff @ is A%2*%2, We can also show that (i) 7%, = identity,
(i) Tg cannot be extended to A.

We are going to consider these maps in one framework in Sect.2. In Sect.3 we
give necessary and sufficient conditions for purity of states transformed by the duality
map of Kennedy and Tasaki in the presence of string order. In Sect. 4 we explain the
implication of results of Sect.2 to the deformation of the AKLT model.

2. Infinite Volume Ground States and Mass Gap

In this section, we give some results on ground states after the duality transformation.
We suppose that G is a finite abelian group and A is the C* algebra of observables.

C* algebra

A=) M,(©C) : 2.1
Z

G is a (global) gauge group of A, so G acts on A via the automorphism 3,(). By
A% we denote the fixed point algebra of this action ByO)s

AS={QeA B,(@Q=Qforany geG}. (2.2)

o, () (k € Z) is the (lattice) translation defined in (1.2). We also assume that ﬁg()
commutes with a,(-) where p is the period.

0, 0 By() = By 0 @, (). 23)
We will consider periodic Hamiltonians with finite range interaction,

H=> oh), (2.4)

lepZ

where p is the period of the Hamiltonian H.
We assume that H is selfadjoint, of finite range and G invariant, namely

h=h*e A_ NA®. (2.5)

loc

Duality map 7(-) is an automorphism of A satisfying the following properties:
(1) 7(-) cannot be extended to A.

(ii) 7(-) maps any strictly local element of A® to a strictly local element of A€,
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(iii) 7(-) commutes with a,,(-) for the period p.

a, 0 T(Q) =70, (Q)(Q € A).
The Hamiltonian determines the time evolution of an observable () via the formula,
2@ =eQe ™ (@Q € 4). 2.6)

By our assumption (2.5), vy, commutes with ap(-) and ﬂg( ).

We also consider the dual hamiltonian H__ and the time evolution ] determined
by

H =7(H)= Y roah), (2.7a)
lepz
Y (Q) = e Qe (Q € A). (2.7b)

Next we recall the standard definition of infinite volume ground states.
Let ¢ be a state of A. ¢ is a ground state of H iff

>0 (2.8)
=0

1d
7 EZSO(Q 7:(@))

for any @) in A which is differentiable with respect to ,.
Let ¢ be a periodic state with period q. We assume that ¢ is an integer multiple
of p. Then ¢ is a q periodic ground state if and only if

g—1 q—1
w(Z ak(h)) = inf{@b(Z ak(h)) 11 q periodic state} . 2.9)
k=0 k=0

See [4]. (2.9) implies the following lemma (cf. [9]).

Lemma 2.1. Take a selfadjoint local observable Q = Q* in A, and set

HE) =Y {o()+ 60, @} =H+6 Y o;(Q), (2.10)

JjEPZ jEPZ
where 6 is a small real parameter. Let 1) be a q periodic ground state of H() and
qg—1
e(8) =Y Play(h) + 60,(Q)) . (2.11)

§=0

Suppose that e(6) is differentiable (as a function of §) at 6 = 0. Then for any q periodic
ground state p of H, we have

(2.12)

d
(@) = b e(6) 5o
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Remark 2.2. This is a corollary of a theorem of Brattelli, Kishimoto and Robinson.
(See 6.2.58 in [4].) Lemma 2.1 is useful for showing uniqueness of the translationally
invariant ground state. If we are able to prove differentiability of e(6) for any
selfadjoint Q in A, the above lemma tells us the uniqueness of the ¢ periodic
G invariant ground state of H. For certain simple Hamiltonians, this program can be
carried out. See [5].

Next we consider mass gap of H and H_. In the infinite volume case, the
Hamiltonian H does not make sense in itself as it is a sum of infinitely many element
of A. The meaningful Hamiltonian is defined on the physical Hilbert space. If we have
a ground state ¢ of H, we consider the GNS representation of A and the effective
Hamiltonian on this Hilbert space is a selfadjoint positive operator which gives rise
to the same time evolution ;. More precisely, let F,, be the GNS Hilbert space, {2,
be the GNS cyclic vector in FQD,

<)0(62) = (Q¢; Q'Q<p)>

we have a selfadjoint operator H, on F, satisfying

H,>0, H,2,=0 (2.13a)
and
etfleQe= e — ~ (Q) forany Q in A. (2.13b)

The following results are known.
(i) H,, is uniquely determined by these equations.
(ii) H,, is affiliated with the von Neumann algebra generated by A in F,,

e'tHe ¢ A" (2.14)

(iii) ¢ is pure (the GNS representation is irreducible) if the multiplicity of zero
eigenvalue is one (cf. Proposition 5.3.19 of [4]).

Definition 2.3. H, (or the state ¢) has mass gap if and only if there exists a positive
constant m such that

Spectrum Hq, NQO,m)=4¢. (2.15)

We first state the relation between ground state of H of (2.3) and H_ of (2.6). Let
ES() be the projection from A to AS defined by

ECQ) = / dga,(Q), (2.16)

G

where @ is in A and dg is the normalized Haar measure (a finite sum in our case).
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A g periodic state ¢ of the C* algebra A is mixing if for any @, and @, in A,

limoo D(Q10,(@7)) = P(Qp(Qy) -

In|—

Proposition 2.4. (i) Let v be a q periodic ground state of H_. Let  be a state of A
defined by
Y@ =yoToEYQ), 2.17)

then v is a q periodic G invariant ground state of H.

(ii) (2.17) gives a 1 to 1 correspondence between the set of q periodic G invariant
ground states of H and those of H_. In particular H has a unique q periodic ground
state if H_ has a unique q periodic and G invariant ground state 1)() and the state ¢
defined by (2.17) is mixing.

Remark 2.5. We remark that if one wants to show the exponential decay of correlation
of ¢ one must show the exponential decay of correlation ¢ for GG invariant observables
in A% and exponentially fast convergence of

im0 7(Q10,Qp) =0, (2.18)

where Q,Q, is in a® and for a non-trivial irreducible representation 7() of G,

B,@Q) = (9 Q, -

Note that @), (Q,) can be highly non-local.

Proposition 2.6. Let 1)() be a periodic ground state of H_ and ¢() be the ground
state of H determined by (2.17). Suppose that ¢() is mixing. Then, ©() has mass gap
if and only if (2.15) is valid for ().

Remark 2.7. Proposition 2.4 may not be valid for non-translationally invariant ground
states. A counterexample is the quantum Ising model (n = 2 in the example (1.11)).
If A = 0 the ground state is unique while the A = oo case has non-translationally
invariant ground states. See [1].

For certain models (models of [7] and the AKLT model (1.13)) we can also consider
another definition of ground state. A state ¢ may be called a ground state if it satisfies
the following equation for any integer n:

q+n q—1
go(Z ak(h)> = inf{¢<z ak(h)> Y state}
k=n k=0

q—1
= inf spectrum of Z oy, (h). 2.19)
k=0

A state satisfying (2.19) may not exist. If it exists, it is a ground state in the sense
of (2.8). Examples of non-translationally invariant ground state satisfying (2.19) can
be constructed by the technique of [7]. Results stated in Propositions 2.4 and 2.6 are
valid if we replace g periodic ground states by ground states satisfying (2.19).
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Proof of Proposition 2.4. (i) follows from our assumption (2.5) and (2.9). In fact, by
G invariance of h,
p(h) = oroES(h) =4(r(h)). (2.20)

The right-hand side of (2.9) is independent of the choice of a ¢ periodic state ¢() and
we may call the right-hand side of (2.9) the ground state energy of h. The inf can be
taken in G invariant ¢ periodic states in (2.9). As 7 is an automorphism of AC | the
ground state energy of h and 7(h) are same.

The first statement of (ii) is obvious. The second statement follows from the fact
that any ¢ periodic mixing state is extremal among g periodic states (see Theorem
4.3.17 of [4]). If w is a ¢ periodic ground state, w o EG = ( so we have w = ¢.

Proof of Proposition 2.6. Let F,, (respectively F},) be the GNS representation space
of ¢ (respectively 1) and (2, (respectively (2,,) be the associated cyclic vector. By
G invariance and periodicity of states, there exist the unitary operators V, and W
implementing automorphisms 3, (g in G) and .

WQW™'=a,(Q), WQ,=0 (2.21a)

@ ]

V,QV, ' =6,Q), V,2,=0,. (2.21b)

Furthermore V is a representation of G and the Hilbert space F,, is decomposed

into A invariant subspaces F, labeled by irreducible representations x of the (finite
abelian) gauge group G,

(&3]
F,= Z F,. (2.22)

XGC’

We call each F., a sector following the convention of quantum field theory. By £
we denote the sector for the trivial representation and we call it the vacuum sector.
§2,, belongs to Fj,. By the G invariance of state the operator H,, of (2.13) commutes
with V, and H, is diagonal with respect to the decomposition (2.22). To prove our
proposition, we must consider two points, (i) the mass gap of H,, restricted to the
vacuum sector and (ii) strict positivity of H,, in other sectors. Restricted to AC | the
C* dynamical systems <, and 7] are mutually conjugate so H,, restricted to the
vacuum sector has mass gap if and only if H,, restricted to the vacuum sector has
mass gap. Proposition 2.6 follows from the following lemma.

Lemma 2.8. If ¢ is q periodic and mixing, H, cannot have mass gap on the vacuum
sector if (2.15) is not valid for H o in a non-vacuum sector.

Proof. Suppose that (2.15) is not valid for H, in a sector F, , namely, for any small
e >0,
Spectrum Hw on F, N(0,¢) #*o. (2.23)

We now use the spectral theory of operator algebra (cf. Chap. 3 of [4]). By (2.23) we
have an element X, of A which has spectrum (with respect to 7,) in (0, ) and has
the following properties:

ay (X)) =x(@X,, (2.24)
X.2#0. (2.25)
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The vector X2 is in the spectral subspace of H,, for (0,¢). Let m be the order of
7 in the dual group G of G. Set

I = Byn, (X By, (X By (X)X, 02. (2.26)

niny...Nym 1

. has spectrum in (0,¢) and it belongs to the vacuum sector, so if for
is nonzero, we get Lemma

NN Ty

arbitrary small € ther exists nn, ... suchthat I, ., ..
2.8.

To prove that (2.26) is not zero we use our assumption that ¢ is factor and periodic.
We first show that there exists n such that

I, = B, (X)X 2 #0. 2.27)

As our state is mixing we can find a subsequence of integers n such that

n—oo 21
m=—n

w— lim — ( > BrgX, *XE)) = (X, * X)1. (2.28)
Then

) 1 n ) ) 1 n
lim %{ > ||Im||} lim %{ > (Xeﬁ,ﬁmq(Xs*XE)Xeﬁ)}

m=—n m=—n

=X, * X_). (2.29)

Hence by (2.25) there exists n such that I, does not vanish.
We can repeat the same procedure to conclude that [ is nonzero for

NN Ny |

some n’s. The end of proof of Lemma 2.8.

3. String Order

In this section, we consider the condition for purity of states after duality transforma-

tion. In this context, the notion of string order appears. The string order is introduced

by den Nijs and Rommelse in the study of quantum antiferromagnets (cf. [10]).

Kennedy and Tasaki argued that the string order characterizes the Haldane phase of

the 1 dimensional antiferromagnetic Heisenberg model. We will see that the existence

of string order is not sufficient for existence of mass gap. We need another condition.
We first recall the duality map of Kennedy and Tasaki:

V.= [[ Y (3.1a)
k=—m
Y, = {E, exp(irS¥) + (1 — E})}, (3.1b)
k—1
1
_ : (]
Ey=5|1-exp <27r l;m 54 )J , (3.1¢)

Ter(@ = lim V, QV . (3.2)
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V., is a selfadjoint unitary. If the spin is an integer, we have
[exp(imS,),exp(imS,)] =0, 3.3)

thus V,, is G(= Z, X Z,) invariant. It is easy to see for m with |j| < m,

V. SOVl = 5Wexp (iﬂ’ Z Sg”) , (3.4a)
k=j+1
j-1

V, SOV = 50 exp (m > Sg’”) : (3.4b)
k=—m

j_l m
SR (5 ST P (5 o RS

k=—m k=j+1

As a consequence if 7 < j,

j—1
Tp(SPSP) = lim V, SOSPV 1 = 5P exp <m > S;“) 89 (3.5a)
k=i+1

j—1
Trr(SPSY)) = 5O exp (m SQ“) 2 (3.5b)
k=i+1

7—1 j—1
T (SPSD) = 5P exp (m > S;’@) exp (m > Sﬂ”) SO (350

k=141 k=i+1

Definition 3.1. Let () be a translationally invariant state of A. () has the string
order in the x direction iff the following quantity does not vanish.

j—1
lim <p<5§;> exp (m > S;’“’) S;ﬁ) #0. (3.6)

o
li=gl—o0 k=it1

The string order in the y and z direction is defined in the same manner.

As 7%, = identity, ¢() has string order iff the state ¢)() = ¢ o T 0 EY() has
the ordinary long range order. As 7, defined on A® cannot be extended to A we
have no relation between purity of states () and (). However it seems important
to know criterions of purity of ¢() in terms of () for the study of deformation of
AKLT Heisenberg models (see Sect. 5.3 of [5] and Sect. 4 of this paper).

For a state () of A we denote the restriction of ¢() to A® by % ().

Let ©,() (o = z,y, 2) be the automorphism of A determined by

0 0
Q,(Q) =exp (i?T Z Sfp) Qexp (— i Z Sfp) QeA a=uz,z, (3.73)

k=—o00 k=—o0

0,@Q =6,00,Q). (3.7b)
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Proposition 3.2. Let () be a translationally and G invariant state of A and () be
a state of A defined by () = poTgpo EC(). We assume (i) p©() (hence ¥°()) is a
pure state of A® and (ii) ©() has the string order in xy and z directions. Then ¢() is
pure iff all the states (), (1 o Qa)G( )(a = z,y, 2) are mutually disjoint, namely,
any two of these states yield mutually disjoint representations.

The proof of this result will be given at the end of this section.

Remark 3.3. We can also obtain criteria for the cases that the string order parameter
of only one or two directions is nonvanishing or no string order in any direction.
For example, we assume that goG() (hence 1,bG()) is pure. Then when () is a pure
state of A, the string order is absent in all the directions. In this circumstance, ¢()
is pure iff all the states (), (¢ 0 ©,)%() (a = z,v, z) are unitarily equivalent. The
conditions of other cases can be stated by equivalence of states. See the proof of
Proposition 3.2.

Remark 3.4. In the same spirit as duality of Kennedy and Tasaki, we can introduce the
notion of string order for Kramers Wannier duality for quantum Potts models. Here
G is Z,, and recall definitions (1.4), (1.6) and (1.8). A G invariant and translationally
invariant state ¢() (by the action of 3()) has string order iff

lim VOV | yE=by®y £, (3.8)

i—j—o00

In case of Kramers Wannier duality, we don’t need the string order condition to
describe of purity of state. More precisely, let =() be an automorphism determined
by

0 0
z@= ] v [ v®'. (3.9)

k=—o00 k=—o0

Let () be a G invariant and translationally invariant state of A and set ¥() =
@ o Trew © ES(). Suppose that () (so () is a pure state of A®. Then () is
pure as a state of A iff any two of ¥ and (¥ 0 E¥)9(k = 1,2,...,n — 1) are
mutually disjoint.

The proof of Proposition 3.2 and the above remarks are based on the following
lemma.

Lemma 3.5. Let ¢ be a G invariant state of A, F, be the GNS representation space
of ¢ and {2, be the GNS cyclic vector. Let V, be the unitary representation of G
implementing automorphisms 3, (g in G).

VoQVy ' =B,Q), Vo2, =12, (3.10)

We decompose FLP to the factor representations of G,

(&)
F,= Z F,. (3.11)
x€G
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On each F,, V, acts as x(g9)1, where x(g) is the character of G (I dimensional

representation of G). Let , () be the representation of AC restricted to F,. m()
for the identity representation is referred to as vacuum representation (denoted by
().

(i) If m,(-) is irreducible, all the other representations 7, () are irreducible.

(ii) The G invariant state @ is pure if and only if m,(-) is irreducible and any two
representations 7TX('), 7rX,(-) appearing in (3.11) are mutually non-equivalent.

The proof of above lemma for the case of G = Z, is given in Lemma 4.1 and
Lemma 8.1 of [1]. The proof can be applied in the present situation with a minor
modification; we omit the details.

Proof of Proposition 3.2. We apply Lemma 3.5 with the group Z, x Z,. The elements
of G are again denoted by (o, B) (o, 3 = + or —). Let G, (respectively G, and G5)
be the subgroup Z, of G generated by (4, —) (respectively by (—,+) and (—, —)).
The existence of string order in the x direction implies that 1)() has the long range
order in the x direction. ‘
Clim SS9y £o0. (3.12)
[i—j|—o00
We have also long range order in y and z directions. We consider the GNS
representation associated to ().

Claim 1. Representations 7, , 7w, _,7n_, and m__ of A€ are all unitarily equivalent.

To see this claim, take the representation of A1, By G invariance of ¥(), (3.12)
tells us that () is not pure. By Lemma 3.5, the representations of A1 restricted to
F,, ®F_, and F__ @ F, _ are unitarily equivalent. So the representations of AC
restricted to F),, @ F_, and F__ @ F__ are unitarily equivalent. 7 is equivalent
to either m,__ or m__.

Suppose that 7, , is equivalent to 7, _. Then we look at the string order in the y
direction and the same argument as above implies the equivalence of 7, @, _ and
m__ ®m_,. As a result, Claim 1 is valid.

If w,, is equivalent to 7 we consider the string order in z direction and we
again have our claim.

We now turn to criteria for purity of ¢. We denote the representation associated
with ¢ (respectively 1) by m#() or wgﬂ( ) (respectively 7% () or ﬂfﬁ( )). Due to Lemma
3.5 we have only to find conditions for disjointness of ﬂiﬁ( ). The representation 75, ()

of A% is disjoint from n%_() if and only if representations of AC associated with

Ju—

©% and ¢ are disjoint provided cp(S;j)z) is non-zero where

P(S9) . 59

p(59”) e

¢S () =

Claim 2. There exists j such that ¢(S9)) is non-zero. In fact, if go(Sg)z) vanishes
for any j, ¢ is the ground state of the trivial Hamiltonian H,

H=Y 59, (3.14)

Jj€Z
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Equation (3.14) has a unique ground state which is the infinite tensor product of a
vector state of M,;(C). It is easy to show directly that this ground state has no string
order.

Claim 3. Representations of A® associated with ¢ are gof are disjoint if and only
if < () and (¥ o QE)G() yield mutually disjoint representations of AC.

To see this claim, we recall that 7, is an automorphism of A€ so ¢ and ¢
are disjoint if and only if ¢ o T and ¢ o Ty are disjoint.

By definition, ¢ o Ty = (). Then

0% 0 Tir(Q) - o(SY") = oSV i@ SY) = lim_ p(SPV,,,QV,,59)
= lim o(V2S9V, QV, S9V2), (3.15)

where V, is defined in (3.1). By use of (3.4) we have

—1
Sk

izl J
N2 DY S;k) —iw Y, Sy )
=¢<S§g>e =0T O (Q)SPe k=0 S;J)). (3.16)

By Claim 1 the states () and 1| SPe =0 =~ .SWe k=0 = SO ) restricted
to A® are equivalent. As a consequence we have Claim 3.

We have the same type of results for 1% (), 9% o Oy() and ¥ o ©,(). Claim 3
and Lemma 3.5 lead us to Proposition 3.2. End of proof for Proposition 3.2.

4. An Application

In this section, we consider the spin 1 model with the following Hamiltonian:

H= Z JilS; - Siy1 = B(S, - i) 4.1

with J;, =l if siseven and 0 < J, = 6 < 1 if % is odd. In [5] it was proved that the
ground state of this model has string order in the region where |3 + 1/3| and 6 are
small. However the uniqueness of the periodic ground state and existence of mass gap
were not proved for this model. Our results imply uniqueness of the periodic ground
state and the existence of mass gap.

We have nothing to say about existence of the non-periodic ground state.

Theorem 4.1. There exists positive small constants €, €,, €, such that for 6 and 3
with |8+ 1/3| < &, €; < 6 < &, the Hamiltonian (4.1) has a unique periodic (period
2) ground state p() - @() has mass gap and exponentially fast decay of correlation.

The proof of above theorem is as follows. The model has Z, x Z, symmetry (by
the action of (1.14)). Due to Lemma 2.1 and Remark 2.2 and polymer expansion, the
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Zy X Z, s&mmetric periodic ground state is unique so this state is SU(2) invariant.
We show that this Z, x Z, symmetric periodic ground state () is mixing. In fact
two point functions for () decay exponentially fast. This was stated without proof
in [5], so we sketch the proof here. After having established the mixing property, we
can use Proposition 2.6 of (for ¥()) of this paper and [5]. Then Theorem 4.1 is a
consequence of Proposition 2.6.

We now consider the exponential decay of the correlation. What is not standard
in this computation is the following type of expectation value:

Pla_ (@) ST ™ S0 (Q0)
. LD VR -
=w<a_m(Q1>S§;m>e et ng)am@z)), (4.2)

where a = z,y,2 and Q; € A%2*%2, Q, = Tp1(Q,) (i = 1,2). As the state ¢() is
SU(2) invariant, we have only to consider the case o = z. For simplicity of exposition
we only consider

—1

(( o T, <)>
1 -m k=—m+1 m
m11_r)r1Oo P\ S, ™e S ).
The general case can be considered in the same way.

We now look closely at the polymer expansion of [5]. We use the notation of [5]
S0 w4(-) or wﬁ‘w(-) is a finite volume Gibbs state. As the observable A_, is Z, x Z,
invariant we don’t have to consider pure ground states of H._ and we have

gm - fim was() =90 @.3)
We set
i K5 S;k)
A, =8Me k=mmit TG 4.4)

and we use the expansion

DECHED DD

n>0 x(Am),X1X2---Xn
X Wy XA DWW - W) VXA, X - Xp) - (4.5)

W4(x), W4(O), WA(C') and p 4 (C) are defined as in Sect.5 of [5]. The support of
weights W ,(x), W 4(C), W 4(C) contain the support of A. For simplicity we set the
shape of the block as the cube (7 = L).

In the present case, Lemmas 5.2-5.4 of [5] are replaced by

Lemma 5.2'. Given a > 0 we can choose L, 3, large and e small enough such that
for B> (3, and || < g,

2 2
Wan00 <o (—a(i =22 ) Jew (<0%7),  @o
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where X is the connected support of a polymer which intersects the support of A, and
C is a positive constant.

Lemma 5.3'. Given a > 0 we can choose L, 3, large and €,n small enough such that
for > By and || < g,

2m 2m
i, O] <exp| —al|x]|—— ) )exp( —n— ). 4.7
L L
Lemma 5.4'. There exist constants C and K independent of L, T, 3 such that
- 2m
> Wy, (C)] < Cexp <K<|x| - T)) . (4.8)
s(C)=x

Lemma 5.2 and (4.5) implies decay of correlation. The crucial difference in the above
estimate appears in (4.7) so we only give a proof of Lemma 5.3" here.

Sketch of proof of Lemma 5.3'. We set T = exp(inS,) ® exp(imS,) and let
{€x k=12, .. s} be the basis of appendix of [5]. Then

Te,=e,, Te,=¢e, Tez=¢e,, Te,=e;3, @.9)

Te,=¢, fork=5,69, Te, =—¢, fork=738. ’
Equation (4.9) may read that if a bond at the time ¢ = 0 is in a ground state of V;;
the bond is another ground state in the subsequent time and the string of exp(inS,)
has zero matrix elements between unperturbed ground states and excitation.

The key point of estimate (4.7) is the number n of blocks b,b,...b,, in x such
that b;b, ...b,, do not have any block in common. Each block contributes the small
factor e~ as is the case of proof of Lemma 5.3 of [5].

In general, if a polymer x has the boundary O,

Ix| —19x| | [ox|
n> o (4.10)

The denominator of the second term is smaller than that of the first term because the
face of a block on the boundary of x cannot touch any other blocks in .
Now consider a possible support set x for p4(C). Then

(i) Atz = +m with ¢ = 0 we have either exicted sites (for V,,, .., or V__, )
ore; e, with ¢ 5% j, 1 <4, j < 4, so the sites x = +m with ¢ = 0 are connected
with x.

(i) Let v be the intersection of x and the segment [—m, m] at t = 0. On v we get
small factors like e~/*! because if a bond at ¢ = 1/N is not a ground state for Vi
it is not either at ¢ = 0 due the string of exp(i7S,) and (4.9).

(iii) If we take into account the curves in the boundary of x which are connected to
the segment [—m, m] at t = 0, we have |v| + |Ox| > 2m.
More precisely a connected part of the boundary which starts at the segment

[—m,m] at t = 0 and which hits the ¢ = 3 wall or the end of the volume A is longer
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than 2m because both (> ;) and A are large, so a connected part of boundary with
length less than 2m must return to the segment [—m, m] at t = 0.

By (i), (ii) and (iii) (4.10) for a possible support set x for p4(C) is

M- (7 M) -7
+ 10X 2 + <25 (1] + [ox)

"= 25 20 25)9X1= 755 100
-2
L 1 2m
> — 4 —— .=, @
- 25 + 100 L (4.11)
Thus we have (4.7) with n = % m. The end of proof of Lemma 5.3'.
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