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Abstract. A convergence theorem for the method of artificial viscosity applied to

the nonstrictly hyperbolic system vt + (vu)x = 0, ut + \^u2 + J s(s + δ)r ~ 3ds)x = 0

(δ > 0, r > 3) is established. Convergence of a subsequence in the strong topology is
proved without uniform estimates on the derivatives using the theory of
compensated compactness and an analysis of progressing entropy waves.

1. Introduction

In this paper we consider the existence of global weak solutions for nonlinear
hyperbolic conservation laws

ί vt + (vu)x = 0,
1 r (1.1)

with initial data

,WoW), (1.2)

where δ,r are positive constants and r>3. When (5 = 0, (1.1) is motivated by the
isentropic equation of gas dynamics for a polytropic gas. The global weak
solutions of which had been solved for the case of 1 < r < 3 by using the Glimm
difference scheme [1]. In the present paper, we shall study the system (1.1) with
bounded measurable initial data (1.2) by using the established technique of
compensated compactness given in [2, 3]. Through an analysis of progressing
entropy waves, we establish a convergence theorem for the method of artificial
viscosity applied to the system (1.1) and obtain the existence of the global weak
solutions for the Cauchy problem (1.1), (1.2).
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Let F be the mapping from E2 into E2 defined by

then two eigenvalues of dF are

^ = M - φ + ̂ ( r - 3 ) , λ2 = u + v(v + δ)*(r-3) (1.3)

with corresponding right and left eigenvectors

and

Therefore, it follows from (1.3) that λx=λ2 at line t; = 0 at which the strictly
hyperbolicity fails to hold.

In this paper, we mainly obtain the following existence theorem.

Theorem 1.1 (Main theorem). Let the initial data (vo(x), uo(x)) be bounded
measurable and vo(x) ̂  0. Then there exist a subsequence (vEn(x, t), uBn(x, ή) of the
viscosity solutions (vε(x,t),uε(x,ή) given by (2.1), (1.2) and the bounded measurable
functions v(x, t) and u(x, t) (v(x, t) ̂  0) such that

vεn(x, t) ->v(x, t), uεn(x, t) ->u(x, t), a.e. on Ω,

where ΩcR*R+ is any bounded, open set. Therefore, (v(x, t), u(x, t)) is an admissible
solution of the Cauchy problem (1.1), (1.2).

The program of this paper is as follows: In Sect. 2 we consider the existence of
viscosity solutions for the system (1.1) which is based on a priori-L00 estimate given
by using the framework of positively invariant regions [4]. In Sect. 3 we construct
four families of entropy-entropy flux of Lax type which we use to prove in Sect. 4
that the compactly probability measures v are indeed Dirac ones.

2. Viscosity Solutions

In this section we consider the Cauchy problem for the related parabolic system

with the initial data (1.2).
In the paper [4], the authors have given the existence of the solutions of the

Cauchy problem (2.1), (1.2) when δ = 0. In their framework, the basic difficulty is to
induce a priori-L00 estimate on solutions.

By the general invariant regions Theorem 4.3 in [4], it is easy to get the
following results:

Theorem 2.1 (A priori bounds theorem). // vo(x), uo(x) are bounded measurable and
vo(x)^0, then

Σ = {(v, u): w(w, v) ̂  const, z(w, v) ̂  const, v ̂  0}
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z = const

\

Fig.l r w = c o n s t

is invariant regions (Fig. ί), where w = u + \(r — ί)(v + δ)*{r υ and
z = u — i(r— l)(t; + ̂ ( r ~ 1 ) are ίwo Rίemann invariants of the system (1.1).

From Theorem 2.1, the solutions of the Cauchy problem (2.1), (1.2) have a
priori-L00 estimate

0 ^ vε(x, t)^M, | ιφ, t)\^M. (2.2)

Here M is a positive constant depending only on the initial data. Therefore, the
following global existence of solutions is obtained.

Theorem 2.2. Let vo(x), uo(x) be bounded measurable and vo(x)^O. Then for any
fixed ε>0, the Cauchy problem (2.1), (1.2) has a unique global solution
(vε(x,t),uε(x,ή) that satisfies (2.2).

Noticing that the system (1.1) has a strictly convex entropy

εί/2dxv, ε1/2dxu are uniformly bounded in L2

0C(R*R+). (2.3)

From (2.3) and the boundedness of (vε, uε\ we have the following Theorem 2.3.

Theorem 2.3. For any C2 entropy pairs (η(v,u\q(v,u)) of the system (1.1),

η(v\uε)t + q(v\u% is compact in H^R^R^. (2.4)

Proof. It follows immediately from Theorem 3 in [10].
The above theorem guarantees (4.1) in Sect. 4 to be true. Equation (4.1) is the

soul of the theory of compensated compactness and we will use it with the
progressing entropy waves constructed in the next section to prove Theorem 1.1 in
Sect. 4.

3. Entropy Waves

This section is concerned with entropy waves for the system (1.1). We recall that a
pair of real-valued maps (η, q) is an entropy for (1.1) if all smooth solutions satisfy

Vη(v,u) VF(v,u)=Vq(v,u). (3.1)

We are going to introduce progressing waves for the entropy equations (3.1) in
the method given by DiPerna in [3].

The entropy equations are equivalent to

ηm. (3.2)
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If k denotes a constant, then the function η = h(s)eku solved (3.2) provided

h = 0. (3.3)

Equation (3.3) may be transformed into a standard Fuchsian equation using the
2k

change of variables a{υ) = {υ + δ)^-r\ s=—^{υ^δf{r~ι\ Then h = a(v)φ(s)
solves (3.3) if and only if . / s

1 ' φ"-(l+μs-2)φ = 0, (3.4)

where μ = ( 4 - ( r - l ) 2 ) / 4 ( r - l ) 2 > - | . Using (3.1) we have

qu = vηv + uηu, (3.5)
and a progressing wave of the system (1.1) is provided by η = h(v)eku,
q = uη + {vh'-h)eku/k. Let h = a(v)φ(s), then

q = η(u + v(v + <5p" 3 ty'/φ - ((r + l)ι; + 4<5)/4fc(ι; + 5). (3.6)

We may use the method of Frobenius to give the solutions of the Fuchsian
equation (3.4) with a series of the form φ(s)= Σ enf.

Then two independent solutions of (3.4) are=

φ+(s) = sj+ Σ ens
n, φ4s) = sJ- Σ W, (3.7)

«=0 w=0

where j+,j- are two distinct roots of the equation j(j—l) = μ (j+>j-) and

Cn=(2n+j+)(2n+j_-l)-μ> dn= (2n+j-)(2n+j--ί)-μ9 "-1'

By using the comparison theorem [11], we have ψ-(s) — φ+(s)>0 as s>0 for
any given constants c o >0, do>0. Moreover, we may especially choose positive
constants co,do such that [11, 3]

2), (P'2/(P2=-1+O(s-2)

as s approaches infinity, where φ1 = ψ-, φ2 = ψ- — φ + .
Let ^ = α(t;)φ1e

kM, then

ηl = a(v)φie-sekw = ekw(a + O(k~ 2)) (3.9)

on ι?^0 and the corresponding flux function is of the form

- ((r + l)t> + 4δ)/4k{v + 5) = ijί (A2 -h O(fe"L)) (3.10)
on i ^O.

In a similar way one shows that the entropy

on v^O and the corresponding flux

(3.12)
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on v}£θ. The entropy pair (η2,q2) satisfies

ηl = aφ2e-ku = aφ2e
sekz = ekz(a + 0(k~2)) (3.13)

on v2zθ and

ql^ηliλi + Oik-1)) (3.14)

on v^O. The entropy pair (η^^q2.^ satisfies

ηlk = aφ2e-k" = e-kw(a + O(k-2)), qlk = η2-k{λ20{k-')) (3.15)

on v^O.
If we further analyse the property of (Q,ql), we have from (3.8)—(3.10) that

and so

3-r) + Ur-W (3.16)

The latter property (3.16) is basic to our analysis in the next section.

4. The Proof of Theorem 1.1

Consider a compactly supported probability measure v on R2 such that

<^ηi><v,q2}-<^rj2}(v,qί) = (v,ηίq2-η2qί) (4.1)

for all C2 entropy pairs {r\bq^ (i=l,2) of the system (1.1). Then the proof of
Theorem 1.1 is reduced to prove that v is a point mass by the well-known
framework of the theory of compensated compactness.

Let Q denotes the smallest characteristic rectangle

As done in [2], we introduce probability measures μ^ on Q defined by

<Λ

+,Λ> = <v,H1>/<v,^1> (4.2)

and

<μfc-, Λ> = <v, V-*>/<v, η2-k>, (4.3)

where h = h(v, u) denotes an arbitrary continuous function. As a consequence of
weak-star compactness, there exist probability measures μ± on Q such that

<μ±,/z>=lim<μfc

±

5/ι> (4.4)
fc-> oo

after the selection of an appropriate subsequence. We observe that the measures
μ+ and μ~ are respectively concentrated on the boundary sections of Q associated
with w, i.e.

Qn{(v,u): w = w+} and Qn{(v,u): w = w~}.
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Pay attention to that (ηl,ql) and (η2Lk,q
2Lk) satisfy

T ))> «2-* = */-^2 + 0(k~*)) (4.5)

on υ^O, we have as given in [2] that

<μ+,λ2η-q} = <μ-,λ2η-qy (4.6)

for any C2 entropy pair (η, q).
On account of

k»+/k (4.7)

from (3.16), where cl9 c2 are positive constants, so (4.7) deduces that w+ = w~ from
(4.6). In the same fashion we conclude that z+ =z~. This completes the proof of
Theorem 1.1.
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