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Abstract. This paper develops a new complex Hamiltonian structure for n-soliton
solutions for a class of integrable equations such as the nonlinear Schrόdinger,
sine-Gordon and Korteweg-de Vries hierarchies of equations that yields, amongst
other things, geometric phases in the sense of Hannay and Berry. For example, one
of the possible soliton geometric phases is manifested by the well known phase shift
that occurs for interacting solitons. The main new tools are complex angle repres-
entations that linearize the corresponding Hamiltonian flows on associated non-
compact Jacobi varieties. This new structure is obtained by taking appropriate
limits of the differential equations describing the class of quasi-periodic solutions.
A method of asymptotic reduction of the angle representations is introduced for
investigating soliton geometric phases that are related to the presence of mono-
dromy at singularities in the space of parameters. In particular, the phase shift of
interacting solitons can be expressed as an integral over a cycle on an associated
Riemann surface. In this setting, soliton geometric asymptotics are constructed for
studying geometric phases in the quantum case. The general approach is worked
out in detail for the three specific hierarchies of equations mentioned. Some links
with τ-functions, the braid group and geometric quantization are pointed out as
well.

1. Introduction

We begin by summarizing a few recent developments in the theory of geometric
phases that are relevant to the present paper. In [12] Berry considered a geometric
phase factor exp(zy) (in addition to the dynamical phase) for systems that are
slowly transported along a closed curve in a space of parameters. In [41] a class of
connections was constructed to obtain expressions for the Hannay-Berry phases
[14] (geometric angle shifts in the classical case) for some integrable problems in
terms of the non-trivial holonomy of these connections. In [41], Montgomery gave
an example of a phase that is linked with singularities in the case of a flat
connection. Symmetry and reduction were used to obtain a generalization of
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geometric phases to the non-integrable case in the form of the holonomy of the
Cartan-Hannay-Berry connection [37]. It was shown in [6] that geometric phases
for problems with singularities on hyperelliptic Jacobian fibrations can be connec-
ted with the symplectic representation of the braid group [3, 11]. The fact that
action-angle variables could be used for quantization of classical systems [33, 5]
leads to the introduction of semiclassical geometric phases [13, 6]. For algebraic
completely integrable systems [4], such variables can be obtained by generalizing
the definition of actions introduced for integrable systems on tori in the form of
periods of holomorphic differentials along the elements of a homology basis
[10, 31]. For discrete problems, action-angle maps were explicitly constructed in
particular, for the Toda lattice [26] and in the case of Calogero-Moser systems and
their corresponding relativistic generalizations [45]. In [20] and [35] it is shown
that possible obstructions to the existence of global systems of action-angle
variables on symplectic vector bundles are a nontrivial first Chern class and the
presence of monodromy at singularities.

All of the papers mentioned above deal with problems that have compact
invariant varieties. The goal of the present paper is to use complex varieties to gain
insight into the theory of geometric phases for nonlinear systems that have
noncompact varieties. Our general method will be demonstrated for specific soliton
equations.

In Sect. 5.2 we introduce the method of "asymptotic reduction" of the angle
representations on Jacobi varieties to obtain Hamiltonian integrable flows in the
noncompact case. In particular, it yields finite-dimensional Hamiltonians and an
angle representation for the n-soliton solutions of nonlinear systems; they are
defined on topologically nontrivial phase spaces. Then we obtain soliton geometric
phases in the classical case and relate some of them to the soliton phase shift.

In the context of phases one usually puts a given system in action-angle form
and considers a shift in the angle variables θ = (θu . . . , θn) after transporting the
system along a closed curve in the space of parameters. This change consists of two
parts,

Aθ = ADΘ + AGΘ

called the dynamic and geometric phases. The dynamic phase is due to the
dynamical evolution of the system and it is proportional to the period of time (T)
during which system is transported along the closed curve. To eliminate the
dynamical phase and to retain only the geometric part, the method of averaging is
usually used. In the soliton case, the period is infinite and so we use the method of
"asymptotic reduction" and the complex phase function instead of the averaging
approach.

There are three different approaches to soliton geometric phases described in
this paper.

1. The first approach uses the fact that our angle-representation is related to the
Abel-Jacobi map and that asymptotic reduction leads to the complex splitting of
the spectrum of the soliton problem. Time is considered to be a parameter of the
system.

2. The second method uses averaged differentials of the angle variables in the space
of parameters and analytic continuation of the soliton phase function into the
complex domain. Phases are then obtained as a monodromy at singularities of the
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phase function considered as a function of several complex variables. As a result, it
describes the geometric phase in terms of certain invariants of the Riemann surface
(corresponding to a conserved level set of the concrete integrable problem). This
phase is independent of the initial conditions.

3. The third way is to use a relation between the ^-function and τ-function, which
gives a link between the phase shifts of solitons, soliton geometric phases and
geometric phases for quasi-periodic solutions (see [6]). At the same time, this
enables one to introduce and investigate phases in the general case of soliton
solutions of Hirota equations [2] connected with the representation theory of
Kac-Moody algebras.

These methods enable one to introduce and investigate phases in the complex
case and yield a new class of geometric phase phenomena that can be also
understood in terms of the deformation of an associated π-dimensional noncom-
pact Jacobi variety. The phase space considered previously [14] in the context of
Hannay-Berry phases was usually foliated by a family of Jacobi tori.

Our general approach is demonstrated for the rc-soliton solutions of the Non-
linear Schrodinger (NLS), sine-Gordon (SG) and Korteweg-de Vries (KdV) hierar-
chies of equations. In particular, in case of the focusing NLS equations, asymptotic
reduction of the angle representation yields a term that describes the remaining
interaction after the asymptotic splitting of the n-soliton solution. It makes the case
of the (focusing) (f)NLS equation different from other soliton equations and might
have applications in nonlinear optics.

Complex geometry related to the ^-functions was previously studied in the
KdV case by McKean and Ercolani [39, 21]. In [28], the class of soliton equations
associated with the AKNS eigenvalue problem was shown to be generated by
a family of commuting infinite-dimensional Hamiltonians on a subalgebra of the
loop algebra of 5/(2). The modulational Poisson structure [22] for the sine-
Gordon system was derived in terms of conformal ingredients such as differentials
on Riemann surfaces and ^-functions and a possible link with the Hamiltonian
theory was investigated.

The finite dimensional complex Hamiltonians and phases obtained in this
paper can be also used for investigating modulation equations.

Lastly, our soliton Hamiltonian structures lead to the introduction of
presoliton geometric asymptotics and using the results described above, we obtain
a link with geometric phases in the quantum case.

2. Preliminaries

This section reviews some results from the theory of soliton equations. Recall that
w-soliton solutions or reflectionless potentials were first obtained as a special class
of solutions of the Korteweg-de Vries (KdV) equation

Ut + 61/17, + Uxxx = 0 (2.1)

and that these solutions allow the collision of solitons. Collisions are special
because after collision the solitons are, as is well known, of the same form as before.
The only parameter in the multi-soliton solution which is changed is the so-called
phase of the kth soliton, namely the change of the coordinate of the center of the kth
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soliton after the collision that is additional to the constant velocity motion. The
formula for the phase shift of the soliton was obtained using asymptotic methods
[1,2,17].

In [2, 44] soliton solutions were investigated for the nonlinear Schrδdinger
(NLS) equations

iQ + ~ β" - QQ2 = 0, the defocusing case: (d)NLS

and

iQ + x 6 " + QQ2 = 0, the focusing case: (f)NLS ,

and for the sine-Gordon (SGE) equation [29]

Uxx-Utt = smU, (2.2)

which have important applications in nonlinear optics (see [30, 34]).
We start by recalling some of the different methods available for constructing

many-soliton solutions. First of all, they can be obtained by the inverse scattering
transform in the form of reflectionless potentials [2]. Second, they can be con-
structed in terms of τ-functions from quasi-periodic (algebraic-geometric) solutions
[39, 38, 40] of the integrable problem as a result of a special limiting process
applied to a quasi-periodic potential represented in terms of ^-functions. This
limiting process and τ-functions on the Jacobi cylinder were investigated in detail
by McKean [39] for the KdV equation. The geometry of ^-functions in the periodic
case for KdV was studied in [21]. (For details about ^-functions see Mumford [43]
and for the limiting process in the NLS case see [44]).

On the other hand a connection was established (see [47]) between modulation
theory [27] and the small dispersion limit [36]. Moreover, the ^-function of the
periodic theory was obtained [48] in the form of a singular limit of the Dyson
determinant.

3. Complex Quasi-Periodic Hamiltonian Systems

It is known [38, 40, 9] that there are finite dimensional invariant tori in the phase
space of completely integrable nonlinear problems. Solutions lying on these tori,
called quasi-periodic solutions, can be described using a pair of commuting
Hamiltonian systems written in configuration variables (λu . . . ,λn) and mo-
mentum variables (Pu . . . , Pn) with Hamiltonian of the form

and
• (Pj + C(λj))

kuihKV" (3 4)
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where thfe functions C(λ) and F] and Fj are specified below. Both these Hamil-
tonians have a common set of first integrals, i.e., associated conservation laws,

) =?) = - C(λj) = - Π (λJ - ™k)> J = 1, - , n . (3.5)
k=l

Note that these Hamiltonians have terms quadratic in their momenta and can be
written in the form

\t (3.6)
1 7 = 1

We regard Hamiltonian systems as defined on the complex phase space C2n with
the complex symplectic structure

Ω= Σ dPjΛdλj,
j=i

and with the Hamiltonian and the integrals depending on the parameters
ml9 . . . , mN. Here

/ i 2n + 2 \

N = In + 2, FJ. = 1, F j = - X λι + - X mfc for the NLS case ,
\ ι±j 2 k=i )

1 2n

Fsj=l + Gn-U Fj = 1 - G,,-!, C(λ) = - [ ] (λ - mk)for the sine-Gordon case,

/ i 2 « + l \

N = In + 1, F] = 1, Fj = 2 - £ ^ + - X mfc /or ί/ze KdV case

The sine-Gordon case will be discussed in detail in Sect. 6.4.
We can regard each expression (3.5) as being defined on the Riemannian surface

9 ί : P 2 = -C(λ). (3.7)

Considered together, they determine an n-dimensional complex Lagrangian mani-
fold

Γ:(5Rx . . . x«)/σ«, (3.8)

where σn is the permutation group on n letters and with generating function

(3.9)

The λj are the so-called root-variables, which in the real case vary along cycles /,-
over basic cuts [m 2 j , wiij-i],

m2n + i < Win < . . < m l 5 mk = const . (3.10)

on the Riemann surfaces (3.7). Here we consider the general case of complex
polynomials and regard λj as being defined on the Riemann surfaces. In terms of
these variables, one can reconstruct the potentials U and Q described above. For

S = Σ ί Pjdλj = Σ ί y/-C(λ})dλ} .



222 M.S. Alber and J.E. Marsden

example, the quasi-periodic potential (2.1) in the KdV case has the following form:

U=-2 t λj(x,t) + 2n£mk. (3.11)
7 = 1 fc=l

Here, λj(x, t) is defined as follows. The functions Hs and Hd generate two commut-
ing Hamiltonian flows describing the spatial and temporal evolutions. In other
words, one gets a solution λj starting at a particular value (xo> ^o) for all values of
(x, t) by flowing successively by the flow of the Hamiltonian vector field of ifs and
then Hd or vice versa.

In what follows, we consider certain limiting systems obtained from quasi-
periodic systems of equations and introduce a new soliton phase space together
with a system of action-angle variables and describe the corresponding finite-
dimensional soliton Hamiltonians. The results obtained give an example of a sys-
tem with action-angle variables, but without invariant tori and yield the soliton
symplectic structure. This provides a setting in which we can introduce soliton
geometric phases by investigating the behavior of such systems of coordinates in
the neighbourhoods of singular points in the space of parameters. This problem is
defined on the generalized Jacobi variety of the symmetric product of n logarithmic
Riemannian surfaces in place of the Liouville tori.

4. Soliton Hamiltonian Systems

Here we introduce the soliton phase space and, on it, define new finite-dimensional
soliton Hamiltonians. In what follows we describe the NLS(d) and KdV cases in
detail and then state the corresponding results for the NLS(f) and sine-Gordon
equations.

To obtain the soliton problem we shrink the so-called allowed zones [39]

[m 2 f c + i ,m 2 f c ]->α f c , ak = (ϊ(α f c))2, k = 1, . . . , n

K d V : m 1 -> a0 = 0 , an + 1 = 0, an< . . . < aγ < a0 = 0 ,

1 ^ f e 1 , m 2 n + 2 ^ b 2 , (an + 1 = b 2 ) < an < . . . < ax < ( a 0 =

As a result of the limiting process (4.1), the expression (3.11) yields the following
formula for multi-soliton solutions:

U = ~ 2 t λl(x> 0 + 2 Σ α* + ao + *» + i ( 4 2)
i=i fc=i

From the Hamiltonian systems with Hamiltonians (3.3) and (3.4) we obtain
equations for the soliton root-variables {λj} as

dλj ^ j ^ U l ^ i j , ) .
ΊΓ = 2 Γ f — Π Γ\ ' J=h ->n> 4 3

I Φ j k = 0
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Here
KdV: M(λj) = J -λj )

r1 (4.5)
(d)NLS: M{λj) = J - (λj - bi)(A, - b2)

Theorem 4.1. The systems (4.3) and (4.4) are soliton Hamiltonian systems with
Hamiltonians

and

niJLj-A-Σi^i + Σk-v ~ V i — _ — (4.7)

and with first integrals

Here C(E) = (M(E) Y\n

k=1(E — ak))2 is a polynomial with constant coefficients
obtained as a result of the shrinking the basic polynomial C(E) of the Riemann
surface. The expression (4.6) can be considered as a constraint for (4.7).

Proof Substituting the expressions (4.8) into the first part of the Hamiltonian
system

£ f ( %%)

we get the systems (4.3) and (4.4).
The first integrals (4.8) define a Lagrangian submanifold of the phase space C2n

in the form of the symmetric product

Γ:(9tx . . . x5H)/σn (4.11)

of n copies of the Riemann surface

Y? Aog(λ-ak)

*•"= 2M<» • ( 4 1 2 >

Notice that if we took a formal limit of the Hamiltonian structure, we would
produce a phase space with singularities (i.e., a pinched torus). The Hamiltonian
structure obtained here is presumably a regularisation of the pinched torus in an
appropriate sense, but that aspect is not discussed here.

Remark 4.2. A special class of the solutions of the KdV equation corresponding to
the case when some of the parameters ar are positive can be obtained using the
same approach. These solutions by analogy with the (d)NLS equation are called
"dark-hole" solitons for the KdV equation.
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5. Angle Representations on Noncompact Jacobi Varieties
and Asymptotic Reduction

Now we construct systems of action-angle variables on the soliton phase space and
obtain the corresponding soliton geometric phases.

5.7. Angle-Representations and Noncompact Jacobi Varieties. There are no invari-
ant tori in the soliton case and therefore we cannot use the usual actions [10, 31].
Nevertheless, it is possible to introduce variables that linearize the soliton Hamil-
tonian flows on the phase spaces described in the previous section.

To do so, we consider the action function

and introduce conjugate variables Ik and θk as follows:

Γ _ a _ dS _dS _ " I λ{ dλj
h-ak, θk--Wr--^-^mλMλ^. (5.2)

Definition 5.1. We call a complete set of variables θj9 j = l9 . . . ,n9 an angle-
representation of the multi-soliton solution on the associated n-dimensional complex
Lagrangian submanifolds. It describes a map ofAbel-Jacobi type determining a non-
compact Jacobi variety.

Theorem 5.2. In terms of the variables ( 4 , θk\ the soliton Hamiltonian flows are
linearized on the noncompact Jacobi variety.

Proof. In what follows we show that θk are linear in x and t. Differentiating (5.2)
with respect to x and t and using (4.3), (4.4) one obtains the following system:

5 3>

n+1

(5.4)

The right-hand sides of (5.3) and (5.4) are identically equal to 1 (or ak respectively)
for all k = 1, . . . , n. After integrating (5.3) and (5.4) the following system results

θk = x + vkt + φk9 Γk = ak9 vk = ak k = 1, . . . , n , (5.5)

which proves that (θk9 Γk) are really action-angle variables of the problem in the
sense that the soliton flow linearizes in them.

The linear dependence of θk on x and t demonstrates the fact that the x and
t flows commute with each other. D

Corollary 5.3. A complex soliton symplectic structure is given by

n

Ω= Σ dθjΛdTj, (5.6)
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where Γj t= a$ are first integrals of the problem.

This topic will be pursued in a forthcoming paper.

5.2. Asymptotic Reduction. The existence of singularities in the system (5.2) results
in the multivaluedness of the system of action-angle variables and represents one of
the possible obstructions to the construction of a global system of such variables.

In what follows, we use the angle-representations for different problems to
deduce the associated phase functions φ on the noncompact Jacobi varieties and
we shall introduce and investigate geometric phases in the complex case. These
functions also have important applications in the theory of evolution equations
(specifically the Whitham equations).

Now we show that the angle-representation allows one to determine the
limiting behavior of the n-soliton solution and to describe a system of soliton
geometric phases. We call the procedure described below the "soliton analysis."

Note that in the general case, basic points λ° of the angle map (5.2) are different
from the initial points λj(O, 0).

Theorem 5.4. As (t —• oo) or (t —• — oo) the system of angle variables of the n-soliton
solution (5.2) splits into n 1-soliton angle variables. We shall call this process
asymptotic reduction.

Proof. We consider the expression for the n-soliton angle-variables

for the particular choice of initial values of the root-variables

AJ(0,0) = A? = flj-1

2

+flj. (5.8)

We pause in the proof for a remark:

Remark 5.5. Note that term vrt will generate a dynamical soliton phase

ADθr = vrT.

Here T is in the context of Hannay-Berry phases a period of time during which
system is transported along a closed curve in the space of parameters. ADθrisa, shift
of the angle variables due to dynamics. Averaging of the angle variables is usually
used to eliminate this term and to calculate additional (geometric) phase. Our case
is special since we are dealing with the infinite period T. Instead of averaging we
will use the method of asymptotic reduction.

In what follows we will investigate (5.7) as (ί -> oo) (or (t -> — oo)).
Now we define a direction in the (x, ί) plane by fixing

x + vkt = dk = const (5.9)
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for some r = k. Then we transform the kth equation from (5.7) adding and subtract-
ing integrals along different intervals on the real axis to obtain a complete integral
from 0 to λk

2

2 ̂

dλ

(M(λ)(λ-
; άλx

(Miλ^iλi

Ok)) '

1

2

^ i <
dλ

M(Wλ

λj)(λj~

j

i - «*))

1 m°
«fc))

Here φ°k is a term chosen to be consistent with the initial data (5.8). Notice that in
the real case (when all λj and Pj are real), every λj is varying once along the cycle lj
over the basic cut [α7 , α7 - i ] on the Riemann surface (4.8) with the P/s treated as
constants.

The rest of the (5.7) can be described for a fixed dk as follows:

n 1 λj dλ-
Σ o ί a/n \nJ ΰ = x + vrt = dk + (υr - υk)t, r + fc, r = 1, . . . , n .

A22

Jo(M(^)(^-^))
(5.11)

Here (ι?r — ι;fc) > 0, r < k, and (t?r — ι?fc) < 0, r > k.
System (5.11) yields the following limits

1. t -• GO: λr -• ar-ι for r > k and λr -> αr /or r < k 1

2. ί -^ — GO: λr -> αr /or r > k and Ar -> ar_ i /or r < k . J

5.13)

This transforms (5.10) into the expression for the 1-soliton angle variable

- 1 λk dλ
Θ L Φ k l- 2 J

0 ( M ( A ) μ - « k ) ) - • - " - • • • ' " '

w h e r e

φk = φk + φ°k. • (5.14)

6. Soliton Geometric Phases

(5.7. Different Approaches to Soliton Geometric Phases. Now we investigate a link
between the angle-map obtained above, the Abel-Jacobi map, and geometric
phases. There are three approaches: complex splitting of the spectrum, averaging
and method of complex phase function φ, and the τ-function approach. The latter
will be discussed in Sect. 7.

Definition 6.1. We define soliton geometric phases as follows:

Δφ = §da{φ) . (6.1)
c

Here da is the differential and C is a closed curve in the space of parameters (a).

The integral in (6.1) depends on the choice of a connection in the space of
parameters. For example, in case of a flat connection, we get the following result.
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Theorem 6.2. Some of the soliton geometric phases coincide with the phase shift of the
kih soliton of the multi-solίton solution and can be described by the singular integral

Here Lk is a cycle over the cut [0, αfe] on the Riemann surface.

Proof In what follows we consider time (t) as a parameter of the problem and our
curve in ί-space is a curve from (— oo) to (oo).

Lemma 6.3. Asymptotic reduction results, in particular, in the splitting of every
element of the discrete spectrum ak into a pair of pure imaginary points ( — iαfc, iak).
The phase function φk is defined on the covering space of the generalized Jacobian.

In what follows we demonstrate the general approach using the (d)NLS and
KdV equations as examples.

We use the change of variables

ξj(x) = - λj(x), otk = ~ ak, pk = 2ock (6.3)

in the KdV case, and

= J(b2-ak)(ak-b1) (6.4)

in the NLS case, to formally integrate the basic expression occurring in the
right-hand side of (5.10):

2M(λj)(λj - ak) 2Pk αk)

Lastly we obtain (6.2) as a sum of values of the (5.13) for dk -• oo and dk -• — oo.
Note that we take the integral in (5.13) with different signs since for dk -• oo and
dk -• — oo it is defined on different sheets of the Riemann surface

For the splitting approach, we want to define limit points λ) (or ξj) of the
angle-map so that (6.5) and (5.14) are real-valued for every j = 1, . . . , n.

There are two choices, namely

ξ j+1 = — oLj for j = 0, . . . , k — 1 where α0 = 0 ,

ξ}=aj for7 = fc+l,...,n, (6.7)

and

ζ}+1= OLj for j = 0, . . . , k — 1, where α0 = 0 ,

ξ} = -aj ϊoτj = k+ 1, . . . , n, (6.8)

which we take for (dk -• — oo) and (dk -• oo). This gives two different relations

^ (6-9)
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and

log ft ^ ^ - l o g Π ^ ^ ! ^ , - (6.10)

between the phases of the solitons (φk, φk~) and the scattering data (parameters of
the system), namely the discrete spectrum α,-. Thus for the integral (6.2), we get the
following expression

Δψk = Ψk - Ψk , (6.11)

which coincides with the asymptotic formula given in [2] for the soliton phase shift
if one sets

ocj = χ n - j , 7 = 1 , . . . , n . D

Remark 6.4. If some of the points from (6.7) and (6.8) coincide with each other, then
we obtain an interaction between only some of the solitons of the π-soliton solution
(partial phase shifts).

Realizing the soliton phase shift in the general context of geometric phases
takes the mystery out of this phenomena and gives an example of a phase in the
case of infinite period.

The second approach is based on consideration of the complex phase function
φ. We return to the basic expression for the soliton angle representation (5.13) and
consider the spectrum ak as being complex and dependent on t. It is evident that the
averaged value of θk (for t = 0) equals the phase of the soliton

1 x

<0fclί = o> = lim — f xkdx = φk9 k = 1, . . . , n . (6.12)

Using the dependence of the system (5.13) on the parameters of the problem
(namely the discrete spectrum ak\ we can obtain the shifts Aθk (geometric phases)
along closed curves in the neighborhoods of singular points in the space of
parameters. (See [41] for another instance of the same phenomenon.)

Namely, switching α,- and — α,-, the ends of the cycles /,- (over the basic cuts
[α7 , oίj- x ] on the Riemannian surface) by means of motion along a half circle in the
complex plane centered at zero, we go over from the first type of the points (6.7) to
the second (6.8). This corresponds to a loop C = YjCj in the space of parameters
since (iocj)2 = (— ίocj)2 = α,-. Finally, integrating the equation

Δ$* = Σ §daj<θk> = Σ § dajφk = Δφk (6.13)
J = l C j=l Cj

we get a formula for the soliton geometric phases related to the invariants of the
Jacobi varieties of the n-soliton angle representation. In this way, we get a new class
of classical geometric phases for systems defined on noncompact Jacobi varieties.

In conclusion, we note that phases in the case of so-called "solitons with
a finite-gap background" (when only some of the permitted zones on the Riemann
surface collapse) and umbilic solitons were obtained [8] using a combination of
action-angle variables for quasi-periodic solutions and for the soliton problem.
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6.2. Complex Geometric Phases. So far all of our examples have dealt with the real
case. Here we apply the general method of the previous section to complex systems
and use methods of complex analysis to yield information about geometric phases.

The main idea is to investigate the phase function (which is a part of the angle
representation of the nonlinear problem) in the complex domain. In this way the
geometric phase can be considered as a certain invariant of the Riemann surface (a
level set in the phase space). On the other hand, it is a natural extension of the
results obtained in the real case using averaging techniques. This approach is
demonstrated using the angle representations for the rc-soliton solutions of the
focusing NLS equation and for the breather and kink-kink solutions of the
sine-Gordon equation. The importance of the complex angle-representation is
demonstrated already in the case of the (f)NLS equation where it describes new
effect of a residual interaction between 1-soliton solutions after the asymptotic
splitting of the rc-soliton solution.

6.3. Geometric Phases for the Nonlinear Schrδdinger (/) Equation. To obtain
rc-soliton solutions of the (f)NLS equation, we consider the following limiting
process: y/C(λ) -> C(λ)

2, wufc_3 ~» ak, k = 1, . . . , N , (6.14)

applied to the basic polynomial present in the first integrals

pj = - c(λj) = - Π ( h - Mr), j=U-..,g (6.15)
r = l

of the quasi-periodic (NLS) Hamiltonian system. Here N = (g + l)/2, g is odd and
g is the genus of the limiting Riemannian surface.

We obtain from the quasi-periodic case, the following differential system:

dλj ^ .ΠiL^-"*)( '•;-«*) . < ™ , .,,„
1Γ = 2 ' =;— — , j=ί,...,g; g = 2 N - l , ( 6 . 1 6 )
OX l ( λ λ)

3t~ j n^Mj-λ,) ' ( 6 1 7 )

describing an n-soliton solution of the (f)NLS equation. Here

k=ί

Theorem 6.5. The systems (6.16) and (6.17) are soliton Hamiltonian systems with
Hamiltonians

H\ = π (λ -n ( 6 ' 1 8 )

and

"- TCM»
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(6.20)

defined on the cotangent bundle Γ*((5R x . . . x $l)/σg)9 where the Riemann surface
has the form

Σ - ak)(λ - άk) . (6.21)
k=i

Theorem 6.6. The Hamiltonian system (6.19) has a system of action-angle variables.
As (t -> oo) or (t -> — oo), the system of angle variables of the n-soliton solution splits
into n 1-soliton angle variables.

Proof From the system (6.17), we obtain the following system:

2i{λj-ar){λj-άr)
 = Dj Yl^λλj-λi) ' r = 1 "

1 λj

2i{λj-ar){λj-άrλ

r =

(6.22)

(6.23)

Summing up the above equations with respect to j from 1 to (2iV — 1), we obtain

1 1
θr==~ 4lm(ar),?, /; V (λj - Or) (λj - άr)

and

dλj = x + t;Γί,

1

(6.24)

^ a - j

~ 2i(ar-άr+1) y t Ί /. V (λj - air) ~ (λj - άr~) J™'

= x + υrt, r=l,...,N-l. (6.25)

Here

Now take the real parts of the expressions (6.24) and (6.25),

Re(θr) = dk + (vr - υk)t, r*k,r=l,...,N,

(6.26)

Re(θr+N) =

(6.27)

t, rφk,r=l,...,N-l, (6.28)

and apply asymptotic reduction along the direction dk = X + vkt (1 ^ k ̂  N) in
a way similar to Theorem 5.4. We use the following expression:

1

 : Σ
j - α r (6.29)
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This yields the splitting of (6.24) into N 1-soliton angle representations with their
corresponding phase functions. Therefore, the angle representation (6.24) describes
Λf-soliton solutions.

Remark 6.7. The Eqs. (6.25) describe the interaction between 1-solitons that remain
after the asymptotic splitting of the n-soliton solution. It makes the case of (f)NLS
equation different from other soliton equations and might have important applica-
tions in nonlinear optics.

To deal with the limit argument part of (6.24), we return to the formulae connecting
U to the solutions Q from Sect. 2,

u= - 2 Σ λJ+ Σ (<*k + άk)9 U = i^\ogQ. (6.30)
7 = 1 fc=l CfX

Integrating this expression and considering limit (6.29), we obtain an arbitrary
constant in the phase of the exponent. We put this constant equal to the argument
part of the phase function corresponding to (6.29).

In what follows, we describe the action variables conjugate to the variables
(6.25). We introduce the action-function

^ Σ ί Pjdλj = I- Σ ί Σ logμ, - ak)(λj - άk)dλj, (6.31)
J = l λ°j Z l j = l λ°j k = l

and define conjugate variables Ik and θk as follows:

/ f c = - ( I m ( f l k ) ) 2 , k=l9 . . . , i V , (6.32)

θk=~^ (6.33)

6.4. Geometric Phases for the sine-Gordon Equation. In case of the sine-Gordon
equation, the associated quasi-periodic system [22, 9] has the form

2 ( 1 G W _ 1 ( A , ) ) Π ^ ^ , (6.35)

defined on the symmetric product of the n copies of the hyperelliptic curve

p2 = _ cψt w h e r e C(λ) = r ] ^ i ( λ _ mj) -

N = Nι = 2nγ. kink-kink solution . (6.36)

N = N2 = 4n2: breather solution

Here

GN-Λλ)= Σ Qi^'1'1 (6.37)
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with the coefficients from

G(λ) = Π (λ - λj) = Σ OrλN~r . (6.38)
7=1 r=0

Using different limiting processes •sJC(λ) -> C(λ):

- * a k , a k = ( i ( a k ) ) 2 , k = 1, . . . 9 n ί 9

(nx) kink-kink solution , (6.39)

ak, m 4 / c _ 2 , m 4 f c _ 3 -> α k, fc= 1, . . . , n 2 ,

(n 2 ) breather solution , (6.40)

we can obtain different soliton solutions.

Theorem 6.8. The system (6.35) is a Hamiltonian system with the Hamiltonian

( 6 4 1 )

Π M ί ) ' { }

and the complete system of first integrals

logC(λj)
P = , 7 = 1, . . . , TV , (6.43)

which has a system of action-angle variables. Here n = nx or n = n2.

Proof. Corresponding action-angle variables can be described as follows in the
kink-kink case:

* , k=l,...,nl9 (6.44)
χ

Ik ak, θ k ^ \ i ) \ ft
όίk 2j=i λ° (λj - ak) ^J - χ .

in the breather case:

1 n2 λj 1 dλ
h = ak, θk = - Σ ί 71 : r^— = wfcx + vkt, k=l,...,n29 (6.45)

2j=l λ°j (λj - Ik) y/ - λj

1 "2 λj 1 dλ
h+n2 = a* θk+n2 = - Σ ί 71 ^ T /—!— = W/c* + ^fcί? fe = 1, . . . , n 2 •

2 j l 4 0 ) / A

(6.46)

Here

O i ) ( i ) (6 47)

Corollary 6.9. The soliton (kink-kink) angle representation for the sine Gordon
equation is equivalent to a particular case of the KdV and (d)NLS representation
(nλ = 2n2).
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Corollary 6.10. The soliton (breather) angle representation for the sine-Gordon
equation is transformed into the kink-kink representation if one takes (nx = 2n2) and

->bk, k = 1, . . . , n 2 , and then bk^>(ak,άk).

A remaining question is: what separates these cases? In the 2-dimensional case,
this question was addressed in [16, 25] where special real action-angle variables
were used to describe the breather-kink-antikink transition through a homoclinic
orbit.

Below we introduce angle-representations for such orbits in the rc-dimensional
case.

Theorem 6.11. Soliton (kink-kink) and breather angle representations for the sine
Gordon equation are separated by the following singular class of "resonant solu-
tions":

1 1 dλ
Σ ί * 1 ( 6 - 4 8 )

k=l,...,n2, (6.49)

obtained from (6.45). The phase function can be obtained using the fact that

Θk+n2 = ^ . (6.50)

Here bki k = 1, . . . , n2 are negative real numbers and N1 = 2nγ = 4n2.
We finally combine (6.44) and (6.45) to obtain the angle representation for the

(Nλ + N2)-soliton solution of the sine Gordon equation.
Investigating this representation, one obtains the corresponding geometric

phases.

7. Soliton Geometric Phases and the τ-Function

The importance of the angle variables for the investigation of soliton geometric
phases can be demonstrated using the connection between the Riemann theta
function ΘN and the τ-function, which play a basic role in the description of
quasi-periodic and soliton solutions of the KdV equation [38]. (Here N is the
genus of the tori, which is a level set in the phase space of the quasi-periodic
problem.)

These solutions can be described as follows:

^UN=-2^\ogΘN and C/s = - 2^1ogτ , (7.1)

oo / i N N \

ΘN= Σ exp - Σ AuMkM, + £ M(v, , (7.2)
Mί,...,MN= ~ oo \ Z k , l = l 1=1 J

τ = Σ expf £ ΓuM.M, + Σ M,β,) . (7.3)
M 1 , . . . , M N = 0,l \k<l 1=1 /
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Here, Akl are elements of the symmetric matrix of real periods of holomorphic
di rentials,

1 kl =
* + cci) J

and vz, βι are angle variables in the quasi-periodic and soliton cases respectively. It
can be shown [38] that ΘN is transformed into the τ-function as a result of the
limiting process (4.1). Moreover, the principal part of ΘN (singular theta-function)
which generates τ-function is defined by the following choice of indices
( M l 5 . . . , MN = 0,1), and it can be described using angle variables of the quasi-
periodic problem [6]. At the same time a correspondence is established between
matrices A and Γ, which enables one to define geometric phases in the quasi-
periodic case by mapping the signiture of the phase shift of the soliton

back into the

Aθk =

singular

n

Σ A

N-l

Σ crk

n

Δφk= Σ
j = k+l

theta-function

kj ~

n

Σ

k-1

Σ Λjk-Akk

j=o

Γ
 Aj 12

j I ClAj -

k-1

r, - y r ,
kj / i jk

j=o

n

= Σ AJk ~

N-l

k-1

•Σ
j = o

k-

Ajk

0, .

- Λkk

An interesting fact is that A θk phases constructed in this way coincide with those
connected with the braid group [6].

These last phases can be described briefly as follows. Introduction of the
angle-representation in the quasi-periodic case enables one to consider integrable
systems as systems associated with a torus bundle with the base SN (where
N = In + 1), moduli space of complex polynomials

Q(λ)=-F(λ)M(λ)= - Π U-tt)
j=i

having no multiple roots, and a fiber J (the n-dimensional complex Jacobian)
defined by the Abel-Jacobi map. In [6] it is shown that systems of this type provide
an example of a new class of (nonlocal) geometric phases. The idea is to show that
transporting the system along certain closed curves in the base of the torus bundle
(the space of parameters), could lead to a change of the homology basis, resulting in
nontrivial shifts of the averaged angle variables of the problem. Such a change is
realised under the action of the element from the symplectic representation of the
braid group BN

The phase shifts considered above are related to the generators of this representa-
tion.

The τ-function is a solution of the Hirota equation and has an important
interpretation in terms of Kac-Moody algebras. Therefore, using the approach
described above, geometric phases can be introduced in the general case of
integrable systems.
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8. Soliton Geometric Asymptotics

Another application of the machinery developed here is to geometric asymptotics.
In particular, the quantum and classical phases are linked.

In what follows, we study the quantization of Hamiltonians that are quadratic
in P since the quantization procedure in the exponential case (as with our soliton
Hamiltonians above), is not clear. However, the work here suggests that this can
nevertheless be done, at least on the level of geometric asymptotics and phases. We
demonstrate our approach using the KdV equation.

To obtain soliton geometric asymptotics, we first consider the quantum prob-
lem corresponding to the finite gap (quasi-periodic) Hamiltonians [9] for the KdV
equation,

us v (Pj + Cin + Λλj)) (ΛUH = - Σ - Γ T τ\ ττ-> (8-1)
7=1 lίr*Mj~λr)

and

H = - L π — a — Γ Ϊ • ( '

These are quadratic Hamiltonians

H = \ Σ gjjP3+V{λu...,λn) (8.3)
Z 7 = l

defined on the Γ*(($Rx . . . xR)/σΛ). (Here Ή is the Riemann surface (6.36).) In
accordance with [5, 6, 7] we use the functions gjj given by

and

,, _ (~Σ,Φ^-Σ t-i m>)
9 " X[t+μ,-K) ( 5 )

as components of the Riemannian metric and construct an operator of
Laplace-Beltrami type and then the stationary Schrόdinger equation

VjVjU + w\E - V)U = 0 , (8.6)

defined on the n-dimensional Jacobi variety. (Here Vj and V } are covariant and
contra variant derivatives defined by the tensor gjj and w and E are parameters.)

Theorem 8.1. The quantum equation (8.6) corresponding to the Hamiltonian (8.1) (or
(8.2)) can be reduced to a system ofn ODE's connected with each other by means of
n constants.

Proof. We substitute a solution of the form U = Π"=i ̂ Ah) m t 0 ^q (8.6) and
divide the result obtained by Uw2. This results in the following formula:

Σ f r 71 J-j = - E . (8.7)
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Here Gj = 1 and Gj = (— Σ / Φ j Λ — X ^ V mκ) in cases (8.4) and (8.5) respectively.

At the same time the following system of equations is satisfied:

J + ™2c2n+Λλj)uλ = Rj(λj) j = 1, . . . , n . (8.8)

The expression (8.7) is an interpolation formula and thus shows that the functions
Rj(λ) are the same polynomial

Rj(λ) = R(λ) = w^"'1 + w2λ
n~2 + . . . + wn9 wx = - E (8.9)

with constant coefficients.
Thus, the system (8.8) is the desired system of ODE's connected with each other

by means of separation constants (wk) which are coefficients of the polynomial
R(λ). D

Now we establish a link between Eq. (8.6) and the initial nonlinear problem by
means of geometric asymptotics. Let

U = YjAr{λu . . .,λn)expliwSr(λl9 . . . , 4 ) ]
r

= Σ Π Vrj(λj) = ΣU {Aj(λj)exvliwSrj(λjm , (8.10)

which is a function of several complex variables defined on the covering space of
the Riemann surface of the problem. Substituting (8.10) in (8.8), equating coeffic-
ients for w and w2 and integrating, we obtain the system of equations

= c o m t ' ( 8 n )

n λΊ

S°=Σ S'jWj) = Σ ί s/C2n + 1 ( λ j ) d λ j , j=ί,...,n, (8.12)
.7=1 J = l λ°

which result in the following form of geometric asymptotics [5]:

U Σ
Γ e x P Γ iw Σ ί JC2H+i(λj)dλj + /ΛS J . (8.13)

Let us consider the special class of quasi-periodic solutions of the initial KdV
equation defined by the following choice of basic polynomial:

C2n + 1(λ) = ( - λ) Π (λ - ak)
2 + R(λ), (8.14)

which depends on exactly In parameters (αr, vvk).

Definition 8.2. We call solutions from this class presoliton solutions.

Theorem 8.3. n-soliton solutions correspond to the case when all coefficients wk of the
polynomial R(λ) from (8.14) are equal to zero.
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Proof When R(λ) = 0, the action function has the form

^ Π (h ~ «k))dλj (8.15)
fc=l /

corresponding to the standard soliton Hamiltonian defined on the
Γ*((9Ϊ x . . . x 9i)/σn), where 9ΐ is a degenerate Riemann surface (pinched torus)

P2 = (-λ)f\ (λ-ak)
2. (8.16)

k=l

On the other hand if we set R(λ) = 0 in the quantum system (8.8), then every
equation can be considered independently. It is clear that as λj approaches α,- (or
aj+ί) the7 t h equation is dominated by the term (λj — α,-) (or (λj — aj+1))9 meaning
that the system (8.8) splits into n copies of 1-dimensional soliton quantum equa-
tions. Thus the initial equation (8.8) (with R(λ) = 0) corresponds to the class of
rc-soliton solutions of the KdV equation. D

Corollary 8.4. If R(λ) = 0, then formulae (8.13) describes soliton geometric asymp-
totics with

Y n
 ^J

 n "1
ίw Σ ί M<<λjϊ Π (λj-ar)dλj .

L j=lλ° r = l J
(8.17)

Definition 8.5. In what follows, we consider the coefficients wk of the R(λ) to be
action-variables of the problem. In this case angle-variables (conjugate to wk) have the
form

3 o n λj χn-l-k

fl> = - r = - Σ ί r1 =dλj, fc = 0 , . . . , ( n - l ) (8.18)

We call wk and Sk presoliton action-angle variables.

Note that wk are exactly quantum numbers of the system (8.8). Condition R(λ) = 0
results in the particular form of variables 9k denoted θk9

π , ;dλJ> * = 0 , . . . , ( « - 1) (8.19)
Y\r=1(λj-ar)

which are directly connected with the soliton angle variables (5.2) as follows:

θ k = Σ b*rb> k = 0,...,(n-i), (8.20)
r = l

where bkr are constants.

Corollary 8.6. Since the matrix B = (bkr) is uniquely defined with respect to the
parameters ar a link between geometric phases (8.18) in the case of standard soliton
Hamiltonians and phases in the case of Hamiltonians (4.6), (4.7) (described in Sects. 5,
6) can be expressed as follows:

AΘ = BAΘ. (8.21)

Investigating the dependence of the soliton geometric asymptotics (8.17) on the
slowly changing parameters ah one can also obtain geometric phases in the
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quantum case. In particular, using presoliton geometric asymptotics (8.14) and

presoliton phase P° = wS° one can define soliton phase shifts in the quantum case

as follows:

k = 1, . . . , n , (8.22)

which yields the following link with geometric phases in the classical case:

ΔΘk= --(AGP
SO% fc=l,...,π. (8.23)

w
We note that the methods of this paper were recently applied [8] to the

investigation of umbilic solitons and homoclinic orbits of the nonlinear equations.

The umbilic solitons provide a geometric model for homoclinic orbits that ap-

proach low dimensional tori instead of homoclinic points as t -• oo. It is also shown

that the Hamiltonian flow associated with homoclinic orbits introduced by

Devaney [19] for the C. Neumann problem, coincides with the soliton x-flow of the

KdV equation. This leads to the introduction of homoclinic Hamiltonians and

geometric phases.
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