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Abstract. For finite range lattice gases with a finite spin space, it is shown that the
Dobrushin—Shlosman mixing condition is equivalent to the existence of a logarith-
mic Sobolev inequality for the associated (unique) Gibbs state. In addition, im-
plications of these considerations for the ergodic properties of the corresponding
Glauber dynamics are examined.

1. Preliminaries

We begin by introducing the setting in which and some of the notation with which
we will be working throughout.

The Lattice. The lattice I' underlying our model will be the d-dimensional square
lattice Z? for some fixed de Z*, and, for je I', we will use the norm |k| = max; ;<4
|ki|. Given A < I', we will use A|: = ['\ A to denote the complement of A, |A4] to
denote the cardinality of 4, and j + A to denote the translate {j + k: ke A} of 4 by
jerI. Furthermore, for each ReR*, we take the R-boundary dx A to be the set

{keA[:|k —j| <R for some jeA} .
We will often use the notation A €I to mean that | 4| < oo, and § will stand for the

set of all non-empty A€I'. A monotone sequence &, = {A,: neN} = F will be
called a countable exhaustion if A, T

The Spin Space. The single spin space for our model will be a finite set Q with the
topology of all subsets, corresponding Borel field %, and normalized uniform
measure vo on (Q, Bg). Given a real-valued function f on Q, we define the

differential of of f by
of=f—vof,

where we have introduced the notation u¢ (to be used throughout) as one of the
various expressions for the integral of a p-integrable function ¢ with respect to
a measure [

* During the period of this research, both authors were partially supported by NSF grant DMS
8913328
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The Configuration Space. Given any non-empty subset A of I', we give Q4 the
product topology and use %,+ to denote the associated Borel field. In particular,
our configuration space will be the space Q= Q7, and, for each 0 £+ A =T,
we Qw4 eQ” will denote the natural projection mapping from Q onto Q4, #,
and A ,(Q) will denote the o-algebra of sets of the form {weQ:w,eA} with
A€ %y and the space of bounded, #,-measurable functions ¢ : Q — R, and C,(Q)
will stand for the continuous elements of A 4(2). When 4 = {k}, we will use wy, in
place of wyy; and when A = TI', we will drop the subscript entirely. Thus, for
example, W(Q2) and C(Q) are, respectively, the space of bounded, #,-measurable
functions and the subspace of continuous elements of A(Q2). Also, we will say that
@ eU(Q) is local and will write ¢ e Wy(Q) if e W, for some AeF (notice that,
because Q is finite, all elements of A, (2) are necessarily continuous); and, for any
0:Q2->1R, |¢l, will be used to denote its uniform (i.e. the “sup”) norm, and the
standard notion of convergence of functions in C(Q) will be the one induced by
[l + llu. On the other hand, the standard notion of convergence for measures will be
that of weak convergence. Thus, for example, if § + A4 = I"and {u,} ¥ is a sequence
from M, (Q4) (i.e., the set of Borel probability measures on Q) then we say that p,
converges to u and will write u, = p if u, @ — ue for every continuous ¢: Q04 - R.
Also, given ueM,(Q)and @ + A = I', we use p €M, (Q4) to denote the marginal
distribution of we Q> w,€Q* under pu. That is, if ¢, and ¢, is the Borel
measurable function on Q# determined by ¢(w) = ¢ ,(w,), then u, is the element
of M;(Q*) for which p, ¢, = ue. In keeping with our use of uf to denote the
integral of a function f with respect to a measure p, we will use

r(f, g) = u(fg) — u(f)u(g)

to denote the covariance of two functions f and g from L?(pu).
Finally, for each keI, we define the shift transformation 6%:Q — Q so that
(0*w); = oy , ; for every we Q and every jeT.

The Standard Gradient Operation. In order to describe a discrete gradient operator
on £, it will be convenient to introduce additional notation. In the first place, given
0+ A < I, we define

(x4, y) e Q1 x Qb s x4e yileQ
so that x4+ is the element weQ determined by
wy=x" and wg= yAal
and, for f: Q — R and y4te Ql, we define f(+|y4t) on 04 and f,(-|y“t) on Q by
x4eQt f(x*yM) = f(x"eyt)
and
weQ fy(@|y*) =f(o .y .

Secondly, for we Q, we write f,(+ |w) instead of f4(+|w4;); and, when 4 = {k} we
will use fi(+|w) in place of f;(+ | w). Since both

(x4 y")eQ4x QM — x1+ytleQ and (n,w)eQ’—n i wyeR

are continuous maps, all the preceding constructions preserve both continuity and
measurability.
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For fe'U and non-empty A < I, we define the gradient (V, f') with respect to the
coordinates in the set A by setting

(Vaflo) = (0f(-|))(wx) forkea .

In keeping with our earlier conventions, we take V= V; and Vi = V)y,. Also,

|VafI? (@)= Y VA (lo)* (w)e[0, o]

ked

Finally, we also introduce the semi-norm

A= % 1 Vif (@)l e [0, 0]

kel
and define C' () to be the space of continuous functions f for which || f]|| < co.
The Standard Logarithmic Sobolev Inequality. For any non-empty A < I' and

neM, (Q), we define the (standard) logarithmic Sobolev constant c(u; A) of L on A to
be the smallest ce[0, co] with the property that

SLS #f 2 logl fI < cpl Vaf1? + 1 S22 log 1 fll 2wy fEU4 -

When c(p; A)< oo, we say that u admits a standard logarithmic Sobolev inequality
on A, in which case, SLS with ¢ = c(u; A) is the standard logarithmic Sobolev
inequality for 1 on A; and when A = I', we drop all reference to 4 in the notation.
Thus, c(u) = c(u; I').

Local Specifications and Gibbs States. A local specification is a family € = {E;} 4.5
which consists of transition probability functions

Qowr—ELeM(Q2), Aeg,
satisfying E, fe U, () for all fe A and the consistency condition
E, =E, cE, whenever A = A",

where we have introduced the notation E, to denote the operator E ,: U(2)—
AWy (2) given by E p(w) = EF . When € admits an Re R with the property that

Q3w E3(f)is &, 4-measurable for every feU, and 4e§F,
we say that € is a local specification with range R; and when
Evig(fo0%)=(E f)o0* forall feA(Q), kerl, and AeF,

we say that € is a shift-invariant local specification. Given a local specification €, we
will say that ue I, (Q) is a Gibbs state for € and will write ue G(€) if, for every
AeF, weQ— EG e M (Q) is a regular conditional probability distribution of
u given §4;. That is, e ®(€) if and only if it satisfies the Dobrushin—Lanford—
Ruelle condition

DLR WE f)=u(f) forall AeF and feW(2);

Clearly G (€) is convex. Moreover, if C(R2) is invariant under E 4 for each 4 € §,
then it is an easy matter to show that ®(€) is non-empty and compact. In
particular, this will be the case when € has finite range.

In this paper, our local specification will come from a shift invariant, finite range
Gibbs potential @ = { Py }x. 5. That is,
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(1) for each X € §, @5 Cx(Q);

(2) foreach kel and X e, ®y x = Py 0%;

(3) there is an Re N (the range of @) such that ¢ = 0 whenever X € § and the
diameter of X is greater than R;

and EY is determined from & by

Efo = | o(x*|w)e Vs yi (dx 1),

where

Usxtlo)= Y, Px(x*ewy) for(x!, w)eQ”*xQ,

XeF
XnA£0

and Z 4(w) is chosen so that E is a probability measure. Obviously, the condition
(3) above guarantees that the corresponding local specification € has range R, and
therefore we know that (@) = 6(€) is a non-empty, compact, and convex.

Dobrushin—Shlosman Conditions. Let @ be a shift-invariant, finite range Gibbs
potential, and let € be the corresponding local specification. By the preceding
remarks, we know that ®(®) is necessarily non-empty, compact, and convex. In
order to provide a criterion which guarantees uniqueness, Dobrushin and Shlos-
man introduced what we will call the Dobrushin—Shlosman uniqueness condition,
namely: there exists a Y€ § and a matrix {o;,:je Yand k¢ Y} < [0, co) such that,
for each fe A(Q):

| OkEyf— Eyoufllu £ Y o 10;f | with
DSU(Y) Je¥
> Y o=y|Y| for someye(0,1).
k¢Y jeY
In fact, what Dobrushin and Shlosman showed (cf. [Dob & S, 1]) is that DSU(Y)
implies the existence of a constant M (0, co) with the property that, for each Se §,
one can find a constant Cse[0, oo) for which

oscy(E f) = sup  [EX(f) — ES(f) < Cslll flll e 464D

DSU (n, 0)eN2 (k)
for all >4 28, feUs, and ke g1,

where Q*(k) = {(n, )€ Q”: n; = w;for all j + k} and d(S, A[}) denotes the distance
from S to the complement of A. Since it is obvious that DSU is more than enough
to guarantee that, for each choice of feA(Q) and G(P), Fo4, T and
{w,}7 = Q:

uf=lim u(E,, f) = lim Egf,
it is clear that DSU, and therefore DSU(Y), implies that & (&) contains precisely
one element ug. Further, the condition DSU(Y) is stable under perturbations in
the sense that it holds for all sufficiently small perturbations of @ as soon as it holds
for @ itself. On the other hand, it does not imply that the Gibbs state ug depends in
an analytic fashion on the perturbation parameter. For this reason, the same
authors introduced (cf. [Dob &S, 2]) a stronger condition, referred to in our
articles [SZ, 1] and [SZ, 2] as the Dobrushin—Shlosman mixing condition, in which
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DSU(Y) i§ replaced by:

lowExf— Ex0cf < Y, o4 10/ lu forall X = Yand k¢ X,
DSM(Y) jeX

where Y Y o5, =7|Y| for some ye (0, 1).

k¢Y jeY

Obviously, DSM(Y) implies DSU(Y) and therefore the uniqueness of the Gibbs
state uy. Moreover, as Dobrushin and Shlosman show in [Dob & S, 2], DSM(Y)
admits a long list equivalent formulations. For our purposes, the most important of
these equivalent formulations (cf. Corollary 2.2 below) is the following strengthen-
ing of DSU:

oscy(E4f) = Cs| fll e ™% for all F24 2 S, fe Us(Q),
DSM and ke dg4 .

Since DSM obviously implies DSU, it certainly implies the uniqueness of Gibbs
states. In fact, as Dobrushin and Shlosman showed, it implies analytic dependence.
To be precise, if @ and ¥ are a pair of shift-invariant, finite range Gibbs potentials
and if DSM holds for the local specification associated with @, then thereisa é > 0
such that DSM holds for the local specification corresponding to each of Gibbs
potentials @ + t¥, |t| < d, and the mapping te(—9, 6) > Ug+,w € MM (Q) is real-
analytic in the sense that

te(—0,0) porw(@) R
is real-analytic for each ¢ € Ay (Q).

Stochastic Dynamics. Let @ be a shift-invariant, finite range Gibbs potential and
€ = {E,} 4c3 the corresponding local specification. In the course of this article, we
will be dealing with several stochastic dynamics which are all connected to @ by the
property that each is reversible with respect to every pe ®(®). In order to describe
these dynamics, we begin by saying how their generators act on 0, (£2). To this end,
let §> Y20 be given set, and, for each keI, A€ &, and we Q, define the operator
Lrhe A(Q) - A(Q) by
LYt o) = [Esna+n @) (Mac o) — @a(n|w) where Ego = ¢ .

Next, for we Q2 and A€, set

Fraep=% PP e, peA(Q).

kel

Because #4“ is a bounded, Markov generator, the operators
Pl4e = exp[t LY 4] (1.1)

are well-defined for each t€(0, c0) and form a Markov semigroup on (). In fact,
it is clear that U ,(Q) is invariant under { P/**®: t€(0, o0)}. Furthermore, because

~i</>(€) [L"4YT(E)EG(E) = 67" (o, ) where

EX (oY)

1

EkZ j({{(w(ﬂ) — @) (Y (n) — (&) Ein(k+m(d11)> E3dg), (12

ed Q2
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it is an easy matter to see that

[ o) [PI* Y1 () EZ(dE) = [ (&) [P 91() EZ(dE) (1.3)
Q Q

for all te (0, ) and ¢, Y e A(Q). In particular, by taking y = 1 in (1.3), one sees
that ES is { P}>*“:t€(0, o0)}-invariant, and elementary considerations enable one
to check that it is the only such measure.

So far we have described dynamics involving only finitely many sites, whereas
our main interest is in dynamics which involve the spins at all sites of I'. Thus, once
again, let > Y30 be given, and define £7: Uy (Q) » W, (Q) by

LYo =73 Lo where [Z) ¢](n) = [Exryol(n) — o).

kel

Although #7 is no longer bounded, it is nonetheless well-known (e.g., see Theorem
3.9 in [L]) that our assumptions about @ are more than enough to guarantee that
there exists precisely one Markov semigroup {P}:te(0, o)} on A(RQ) with the
property that

t
Plo—@=[PloPYpds, ¢eUy(R)andte(0, ). (1.4)
0

Infact, { P} :t€(0, 00)} preserves both C(2) and C*(Q); and so, after extending £*
to C1(Q) by continuity, one can show from (1.4) that

t
Plo—@=[%LYPlods, ¢eC'(Q)andte(0, ).
0
Furthermore, because of uniqueness, one can easily see that for any exhaustion of
I'by {4,}7 and {0,}7 < Q,
[P/ 4" p](n) - [P{ »](n) uniformly in (z,7) € (0, T]x Q

for each T > 0 and ¢ € C(RQ). In particular, if ue &(®), then after taking A = A, in
(1.3), integrating with respect to u, and passing to the limit as n— oo, we find that

[ e IP Y1) = [ W) [P ¢1(E) u(dE), te(0, ) and ueG(P) (1.5)
Q Q

first for continuous ¢ and ¥ and then for all ¢, Y € A(RQ). Conversely, if u is an
element of W, (2) for which the detailed balance condition

DB oL ) =pn( L), 0, YeWU(Q),
holds, then one finds first that

WL )= — &L (e, ¥), where
1
Ex(o, )= 3 Y [ (o) — (@) (Y(n) — Y(w)) sy (dn) p(dw) ,  (1.6)
kel 22

for all ¢, Y € Uy(R) and thence that ue ®(P). In particular, since (1.5) certainly
implies DB, we now known that, for any pe,(Q),

(1.5) < ue®(®) < DB.
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Finally, we remark that if ue G(®), then, because P} is a Markov operator and
(1.5) implies that u is PY-invariant, P} admits a unique extension as a contraction
operator on L?(u) for each pe[1, oo), and another application of (1.3) shows that

the extension Pf* to L?(u) is a self-adjoint contraction. Thus, for each ue ®(®),
{P":1e(0, o0)} is a strongly continuous semigroup of self-adjoint, Markov (i.e.,
non-negativity preserving) contractions on L(u), and (cf. (1.6)) &7 is the associated
Dirichlet form.

Hypercontractivity. In general, the L?-contraction property just mentioned is the
best one can hope for when dealing with reversible Markov semigroups on a state
space which is infinite dimensional. However, in special circumstances, it is possible
for such a semigroup to be mildly smoothing. To be precise, we will say that the
v-stationary, Markov semigroup {7,: t€(0, o)} is hypercontractive with respect to
the measure v if there is a ce(0, co) with the property that

“ th” La(v) é “f”LP(v) for al] (t’ P, q)e(09 OO) X (la 00)2
H satisfying p<g <1+ (p— l)e% .

When v is a probability measure which is {7;: te(0, c0)}-reversing and & is the
associated Dirichlet form, then L. Gross’s integration lemma (cf. [G] or, for the
general case, Corollary 6.1.17 in [DS]) says that H is equivalent to the logarithmic
Sobolev inequality

v(f2logf) S c&(£f) + I f Itz logll f 2
LS for all positive functions f .

The smallest ¢ for which LS holds is called the logarithmic Sobolev constant for the
semigroup {T,:te(0, c0)} relative to v. An interesting and important aspect of
a logarithmic Sobolev inequality LS is that, in addition to being a coercivity
statement, it contains an ergodicity statement. In particular, as was noted by B.
Simon (cf. Corollary 6.1.17 in [DS]), LS implies the spectral gap estimate

SG V(L) S E(LS) o, cquivalently, [T~ 1 < e 011

Conversely (cf. Theorem 6.1.22 in [DS]),
v(f2log|f1) S el (£, f) + B S E2cy + IS 22 log 1 f |2y Plus v(£ ) < vE(£f)
=v(f2loglf) S+ (B+20ELS) + I flIEzmlogl fllzey - (17

With the preceding preliminaries in place, we can at last summarize the main
conclusions which we will draw in this article.

1.8 Theorem. Let € be the local specification corresponding to a shift-invariant,
finite range Gibbs potential ®, and use {P,:t€(0, 00)} to denote the associated
Markov semigroup determined by (1.4) when Y = {0}, and, for ue ®(®), let &, be the
Dirichlet form given by (1.6) when Y = {0}.

a) If DSU(Y) holds for some Ye & with 0€ Y, then (cf. (1.4))
WP A= NIflle= @711 for te(0, 00) and fe C*(RQ) . (1.9)
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In particular, (®) contains precisely one element u and

m, = inf{&,(f, /): u(f, ) =1} >0 (1.10)
or, equivalently,
mu= —‘lim Sup{”P,f— ,uf”LZ(#): ”f”LZ(u) = 1} > 0 . (111)
t— o0

b) If DSM(Y) holds for some Ye & with 0e Y, then (cf. (1.1))
P2 f Il < WS lle” ="M, te(0, 00) for all Ac§, fe U (Q), and weQ.
(1.12)

In particular, DSM(Y) not only implies DSU(Y) and therefore that &(®) contains
only one element, but also it implies DSM for some M €(0, o). Conversely, DSM for
some M € (0, oo) implies DSM(Y) for all sufficiently large Y e §.

c) For each weQ and A€, let c(w, A) be the standard logarithmic constant (cf.
SLS) c¢(ES) for ES. Then the following conditions are equivalent to each other:

(i) € satisfies DSM for some M €(0, )
(ii) inf{&1°(p,p): A€F, weQ, and ES(p, p) =1} >0
(iii) sup {c(w,A): AeF and weQ} <0

(iv) There is a ce(0, o) such that .
[P fl pagsy S I f | Logsy whenever g =1 + (p — 1)e<
for every Ae§, wel, pe(l, o), te(0, o) and feA(Q)

(V) There exist ¢ >0 and K < oo such that
[PO2ef—pufllu < K[lfllle”, te(0, )
for every Ae&, we, and fe C1(Q) . (1.13)

Moreover, if any one of these holds and  is the unique element of ®(®), then c(u) < oo
and, for each 0¢€(0, 1), there is a Ky (0, 00) such that

[P —uole < Kollolle ™', te(0, ) and peC(Q), (1.14)
where m, > 0 is the number defined in a) above.

1.15 Remark. As we will see in the following section, the contents of a) and b) are,
more or less, a re-iteration of results obtained by Aizenman and Holley in [A&H]
combined with results in [SZ, 2]. As for the equivalences in (1.13), we have already
shown in [SZ, 2] that the analogous assertions hold in the context of continuous
spin systems (i.e., when Q is replaced by a differentiable manifold and the dynamical
system is an interacting diffusion). However, we found that the argument which we
used in [SZ, 1] to check that i) implies iii) relies too heavily on Leibnitz’s rule to be
transferred to the context of discrete spin systems, and so we have been forced to
adopt here an argument which derives from the one used in [Z, 1] and [Z, 2] and
bears a close relation to ones employed recently by Maes and Shlosman in [MS];
and it turns out that this new argument is somewhat simpler than the one given in
[SZ, 1]. In particular, although we were unable to transfer the argument given in
[SZ, 1] to the discrete spin context, it is an easy matter to transfer the reasoning
used here to the continuous spin context in [SZ, 1].
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1.16 Remurk. The equivalenceii) <> iii) in c) brings up an interesting and, so far
as we know, unresolved question. Namely, although (as we pointed out in our
discussion of hypercontractivity) LS always implies SG, it is not at all clear under
what circumstances one can go the other direction. Indeed, the only examples (cf.
[KS]) when we know for sure that the logarithmic Sobolev constant fails to be
equal to half the reciprocal of the spectral gap are, in some sense, degenerate. Thus,
there is a possibility that ii) <> iii) is a special case of a much more general
phenomenon. In particular, is it possible that SG always implies LS in the context
of compact, connected Riemannian manifolds?

1.17 Remark. In a good deal of the earlier literature on the Glauber dynamics
associated with interacting systems of discrete spins, the authors have worked with
a slightly different choice of the dynamics. In particular, these authors have often
worked with the dynamics corresponding to an operator of the form

L =Y alw) Vi, where ¢ ()= exp[ Y Ux(w):l by(w) , (1.18)
kel X>sk

where, for each ke I', the b, is a positive function which does not depend on w.

However, because of the estimate in (2.4), it will be clear that all the estimates which

we will derive here apply equally well to the semigroups corresponding to the

operators in (1.18) so long as the b,’s in (1.18) are uniformly positive.

2. The Proof of Parts a) and b) of Theorem 1.8

We begin with an argument which goes back to W. Sullivan [Sul] and has since
then been adapted to various situations in [HS] and [A & H]. However, the proof
which we give below has some new features which we believe clarify what is
happening.

2.1 Theorem. The condition DSU(Y) and DSM(Y) imply (1.9) and (1.12),
respectively.

Proof. Let Ye & with 0€ Y be given, and, depending on whether DSU(Y) or
DSM(Y) holds, let A =T or, respectively, we 2 and Ae F be chosen and fixed.

Next, for je I', define
LEj+yel1(n) if A=T
. = i
LE; @1 (n) {[EAn(j+Y)§0](71A°CUA|;) if Aeg,

and, recalling that Ey is the identity, set
Lo=Y Lo, where Zo=E¢p— o

jer

for g e C!(Q). Tt is then a relatively easy matter (e.g., see Theorem 3.9 in [L]) to
check that there is a unique Markov semigroup {P,: ¢ > 0} on C(Q) with the
property that

t
P.og—¢=[PoZLpds, te(0,00)and peWUy(Q).
0
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In fact, C'(Q)is { P,: t > 0}-invariant, and, when A e &, W,(Q) is also {P,: t > 0}-
invariant. Thus, one has that

d
g Fif=ZPfand|IPfll < el flll. t€(0, ) and feC!(Q),

for some xe(0, o0).
Now let ke 4 be given, note that
ﬁkgjlp=—5k(/) when kEj+Y,

and conclude that
d
Zl?(@uPtf) = LW (0xP.f)—|Y|0kP.f+ RiP.f,

where
Vo= Y Lo and Rio= Y (GE—-FEd)e.

¢ —k+Y it -k+7Y

In particular, £ ® determines a unique Markov semigroup {P®: ¢t > 0} on C(Q)
such that

t
PPy — o= [PRog®qepds, te(0, )and peUy(Q);
0
and so, for each t€(0, o0),
d
%[elylspgk—)s(akpsf)]=3'Y|SP§I‘—)S°RR°Psf, se(0,1),

from which it is an easy step to

t
MO P Sl S N0 Nl + [ ™ [ Reo Pofluds .
0

Finally, assuming that fe %, (2) n A ,(2), summing the preceding over k e 4, and,
depending on which hypothesis has been made, applying DSU(Y) or DSM(Y), we
arrive at

eMHIP LIS AN+ 1Y e P Sl ds
0

from which the required estimate is an immediate consequence. [

2.2 Corollary. DSU(Y) (and therefore also DSM(Y)) implies that &(®) contains
precisely one element p. In addition, DSM(Y) implies DSM.

Proof. From (1.9), it is an easy matter to see that, for any fe C!(Q),
lim sup [P/ f(&)— P f(n)]=0.

t—> oo &neR

Hence, if o, f€ M, (2) are a pair of { P}: t > 0}-invariant measures, then

af = Bf=JJ (P! f(&) — PI f(n)a(d&) B(dn) >0 as t—c0;

and because every element of ®(®) is { P/ : ¢ > 0}-invariant, this proves that there
is only one such element.
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In ordér to prove that DSM (Y ) implies DSM, we apply Lemma 1.8 of [SZ, 2]
to the semigroups { P}>*“: ¢ > 0} for two different w’s and thereby conclude that
DSM follows immediately from (1.12). O

In oder to complete the proof of part a) in Theorem 1.8, we will use a simple
comparison lemma which will also serve us well in the sequel.

2.3 Lemma. Thereis a k €(0, 00) such that, forany Ye &, we Q, and A€ §, (cf. (1.2))

e—xIYIéaY,A,w(f’f) < E9| VAflz < |Q||Y|"1e"‘Y|<§Y’A“”(j;f) . (2.4)
In particular, for each pe ®(®), (cf. (1.6) and the statement of Theorem 1.8)
e MENL NS ELNH S0 e TSN (L ) 2:3)

Proof. Because of the detailed balance condition DB, it is clear that (2.5) follows
from (2.4). Similarly, if we show that there is a k €(0, o0) such that, for each X e §
and ke X,

Ex(f— Exf)* <e"*I'y Ex(5;f)* and

Ex(0f)? Q1171 XX Ex (f— Exf)?, (2.6)

then (2.4) will follow with this choice of x plus 1. But, by elementary comparison of
the measures E$ [ QX with v¥, we see that (2.6) reduces to proving that

vo (f=v8 )2 1X1 Y v8(9if)% and v§ (8 f)* < 1QIX IS (f = v )? (27)
jeX
for all fe Wx (Q). Finally, to prove the first assertion in (2.7), let {j;, . . ., jix|} be an
enumeration of the elements of X, set Xo =0, X,, = {j1, . - - »Jm} for L Em < | X,
and X,, = X\ X,, for 0 <m £ |X|, and note that

(= = 3T~ F)? v (@) v an)

| x
<12 Z [[Gyf (Ex, ) v (dE)VE (dn)

= |X| Z Ve (0,1)% .
jeX
On the other hand, to prove the second part of (2.7), note that

V())((akf)2 _” (f (e Nx\¢ k}) —f(’l Vo (d&y) v (dﬂ)

= %f( { [ @ —fm)*¥ (d§)> v& (dn)

&y = Mxvw )
SO (f—vi ). O

2.8 Corollary. DSU(Y) implies (1.10) (and therefore (1.11)). Moreover, DSM(Y)
implies that

inf {12 (g, 0): AeF, weQ, and ES(¢, ¢)} > 0. (2.9
Proof. From (1.9) and elementary spectral theory, we know that
inf {&} (0, 0): (o, 0) =1} 2 (1 —p)| Y| .
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Thus, by the left-hand inequality in (2.5), we see that m, = (1 —y)|Y|e *!"L
Similarly, (1.12) and the left-hand inequality in (2.4) lead to (2.9). O

3. Proof of Part ¢) of Theorem 1.8

We have already seen in Corollary 2.8 that i) = ii) in part c¢) of Theorem 1.8. In
addition, the implication iii) =>iv) is nothing by Gross’s integration lemma, and
the implications iv) => v) as well as v) =>1) and v) = (1.14) are proved in exactly the
same way as the corresponding implications in [SZ, 2] (cf. Lemma 2.9 and Lemma
1.8 in that article). Hence, all that remains is to prove that ii)=>1) and that i) &
il) = iii); and the first of these is contained in the following.

3.1 Lemma. Set

12l =) lloxl. (3.2)

X0

and let ¢ > 0 be given. Then there exists an M = M (g, R, || @) €(0, 00) such that for
any Ae§ and w e Q satisfying

&4 (g, 0) = ¢ whenever ES(p, ¢) =1,
any non-empty subsets X and Y of A, and any fe Ux(Q2) and ge Wy(Q), one has
EZ(£9) SIS Ngle™Man, (33)

In particular, there is a C = C(R, M) e (0, co) with the property that, for each k¢ A,
0+ X < A, and fey(Q) (cf. DSU)

sup {|E%Lf — EZf|:(n, w)eQ?(k)} < Ce M®X| £, (34

Proof. Let n be the largest element of N with the property that d(X, Y) = 2nR, set
Ay ={jeA:d(j, X) £nR}, and take A, = A\A,. Next, take P, = P{" 4
P! = P{®41.9 and P2 = P{®42:© By Lemma 1.8 in [SZ, 1], we know that, for
any fe Uy (2) and ge Wy (Q),
IP.(fg) — P! fPglla < el(COII falll,
IPf) = Pifllu S en(COIISI,
and ||P,(9) — P?gll. < e(C)IIgI , (3.5

where Ce(0, oo) depends only on R and || @] and
n—1

s™ se\"
——ées <_> '
meo M! n

en(s)=e— )
Starting from (3.5) and the fact that E$ is { P,: t€(0, c0) }-invariant, we obtain:
E2(f9) = EZ(P.(f9)) < EX(P! fP2g) + e.(Ct) Il fo
S EZ(PfPg) + e(COULSNalll gl + NANM gl + 1S9l
SERfERG + 1P f— EQf | ey 191l 2y
+e(COULSNallgll + WA gl + WA -
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Hence, because
[P f—EZSf] LA ES) = e Il f=EZf| L2(E2)

and, without loss of generality, we may assume that f(w) = g(w) = 0 and therefore
that || f[l. = I /Il and [lgll. < llgll, we conclude that

EZ(f9) = (e + 3e,(CONISI Mgl
which, by taking ¢ proportional to n, leads to

ER(fg) e SN gl

for a choice of 6 > 0 which depends only on C. Thus, we can take M = §/2R.

Finally, let k¢ 4 and set Y = {jeA:|j—k|<R}. If Y =0, then there is
nothing more to do. On the other hand, if Y # 0, then for any (w, 1) € Q2(k) there is
a positive g € Ay (2), with ||| g||| bounded independent of A, k, and (w, #), such that
E"f= E°®(fg) for all fe A(Q). Hence, (3.3) implies that

|ESf — ELfI = 1E° (£ @) = llgllle” ™ XD fll for all fe Ax(Q) ;
and clearly (3.4) follows from this. [J

In view of the remarks preceding Lemma 3.1, the proof of part ¢) of Theorem
1.8 will be complete once we show that i) and ii) together imply iii). Thus, from now
on, we will be assuming both that DSM holds and that there is an ¢ > 0 such that

EY10 (g, 0) 2 eE® (@, @) forall AeF, we®, and peWA(Q).  (3.6)

We begin with the observation that, without any changes, the argument used in
Lemma 3.5 of [SZ, 1] applies equally well here and proves that one has, for each
Ae@ and O + X < A, a standard logarithmic Sobolev inequality with (cf. (3.2))

C(EG; X) < coe*! I e, (3.7)

where ¢, is the standard logarithmic Sobolev constant for the measure vy on Q.
That is, ¢, is the smallest ¢ with the property that

vo(9210g|]) < cvo(ld9|?) + vop>log(vep?)?

forall ¢: Q —» R. (That ¢y < 0 is, perhaps, most easily seen as an application of the
criterion given in (1.7).)

3.8 Remark. We next have to describe a procedure which will allow us to make
effective use of the mixing guaranteed by DSM; and, in order to avoid confusion
arising from overly complicated notation, we will restrict our attention to the proof
that DSM implies that the standard logarithmic Sobolev constant c(u) for the
unique ue ®(®) can be estimated in terms of the dimension d, the range R, the
quantity || @ || in (3.2), and the positive number M in DSM. We will then leave it to
the reader to check for himself that our argument applies equally well to the Gibbs
potential on Q4 given by

P(w, A) = {Pxa(-l0): 0+ X = A} .

Indeed, the only concern that one might have comes from the loss of shift-
invariance. On the other hand, it is not hard to dispel any such concern by simply
checking that the only use of shift-invariance which we have made has been to
simplify the statement of our hypotheses.
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Unfortunately, we must begin with the introduction of some more notation. In
the first place, let {e,}3" ! be the enumeration of {0, 1}%in which r = ¥'¢_ ¢i2¢7",
Next, let L be a fixed (to be specified later) element of Z*, and set

I,=(L+2R)e, +2(L+2R)Z% Y,=k+[0,2(L+R)]*NT, and
Ar= U Yk

kerl,

Although the sets A, are infinite, because the blocks out of which each A, is built are
separated from one another by a distance greater than the range of interaction, it is
an easy matter to check that the transition probability function

weQ—ES = ] ELeM,(Q) (3.9)

kel»
satisfies
ES (Exf)=ES f, forall weQ, feA(Q),and O £ X < 4,

and is therefore a regular conditional probability distribution of any u e &(®) given
F 4,1+ In particular, this means that

WE4f) = pf for all feA(Q) and pe®(P), (3.10)

where we have adopted the notation E,, to denote the Markov operator deter-
mined by the transition probability in (3.9). Moreover, because it is a product
measure, a fundamental property of logarithmic Sobolev inequalities (cf. [G])
together with the estimate coming from (3.7) Lemma says that

co=sup{c(Eg; A,):weQand 0<r<2— 1)< . (3.11)

In order to get beyond the conclusion reached in (3.11), we introduce the
Markov operators IT,,: A(Q2) — A(Q) defined inductively so that IT is the identity
map and, for neZ*,

M,,,=E,°I, where A,=A,ifn=rmod2?.
As is easy to check, for each A€,
II,: Wy(Q2)> Wy 5,4 Where K=2L 4+ 3R+ 1.
In addition, by repeated application of (3.10), we know that
u(Il,f)=uf forall neN, fe A(Q), and ue®(P).

Moreover, if fis a positive element of () and we set f, = (11, f 2)%, then, by (3.10)
and (3.11), we have that

p(fi1logfo_1) = u(Eq,_ (fi21logf,-1))
< p(eEar | Viay Joo1|? + Eay fi2 1 108 (Eay fi21)?)
=cu(IVaoy fum1l?) + pn(fi2logf) ;
from which we obtain

u(f*logf) < ey "i 1|V (T f2)2)1?) + p (1, £ log(1,£2)2)  (3.12)
0

m=

for all neZ™ and positive feWy(Q).
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It is now possible to explain the strategy which underlies our proof. Namely, we
will show that, as a consequence of the exponential mixing provided by DSM, the
L can be chosen so that there exists a Ce(0, o0) and 1€[0, 1) with the property
that, for all positive fe Wy (Q),

p( VT, f2)2]2) < CA"u(|Vf]?), neZ*, (3.13)

where p is the unique element of G(®). Notice that, in conjunction with (3.12) and
the fact that m, > 0, (3.13) is all that we need. Indeed, given a positive fe Wy (L), it
not only shows that

#(anz’nan)é #(|V(an2)|2)—’0 asn— oo,

1
mll
but also that
i L C
Y (Vi (T f 2)71%) < 7= #UVIP) 5
m=0

Ccp
— i
The main step in the proof of (3.13) is taken with the aid of the following
somewhat tedious computation.
3.14 Lemma. For A€, define p,: Q%+ (0, 00) by (cf. (1.2))

_exp[—Uulnalo)]

and therefore, after letting n— oo in (3.12), one finds that c(u) < I

paln|w) = Z.(@)
Next, for j¢ A and yeQ, set
i
olw*
Ry;(wly) = Pa(@|w*y)
palw|w)

where y is the element of Q which coincides with w on I'\ {j} and has j"™ coordinate
equal to y. Finally, for § + X < A, define

R4, X, j)
= sup {| Ex(R4,;(+19)) — EX(Ra,;(+|¥)|: y€ Q and (&, )€ Q> with &ap = nag} -

Then, for any positive fe Wy () with the property that, for each weQ, f,(-|w)e
W 4\ x (L), one has that (cf. (3.6))

2R(A, X, ) _,
—, Ei(tS)r.

(3.15)

Nl

| V(ESf2)2] < 2210 ([(Ey + E;) o E4l V; £12] (@))? +

Proof. Note that
ILV(EAS?)1(@)] = | [ [ELL2 @) — (Eaf ()21 vo(dy)
Q

< { Eaf (@) = Eaf*@*)
T (B @) + (EafH ")

vo(dy) S I4(f, ) + J4(f, ),
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where

L) = [ 2L DD 4y ang g, g = [ EAEEDL, )

Q DA(f;w’y) Q DA(f;w9y)
with

A0, y) = [ pa(xtloty) [f2(x40) — 2 (x4 o y)] vé(dx?)
Q/l

Bi(f,0,y) = [ [pa(x*|w) — pa(x*| 02 y)1f2 (x4 w) v (dx?),
QA

and

Dy (f, 0, ) = (Eof?(@))? + (Eaf 24 y))? .

By Schwarz’s inequality, the triangle inequality, and the fact that R ; ; < e2/I®ll,
we see that

1

§ palxAlety) [fA(xAlef(xAnwiy)Jzvé(dxA))
QA

[A4(f, @, ¥)| é(

1

2

><< [ palxt|0*y) La(x*0) — fu(x|0* y)]? VoA(dxA)>
o4

< (1B, 2(@)) + (Eaf (@ y))?)

1

x( [ pa(x)0ty) [(Vif)a(x4 @) — (Vif )4 (x4 0* )12 vé(dxA))i
QA

< e!®ID, (f 0, y) ([E4| Vif 1215 (@) + eI [EL |V f 1?17 (04 y) .
and therefore, since py;,(+|w) = e~ 21?1, that
1,(f ) < eI [E, | Gif121(@) + 21PN [Eo E, | Gif1?T (@) . (3.16)

Turning to the estimate of J, (f, w), note that

|B4(f, @, y)| =

§ Loalx4 o) — pa(xot )] L2 (x4 @) — (E21)?] voldx)
QA

!j) [Rai(mly) = 1LfZ (lw) — (EZf)?] E‘A"(dﬂ)!

S sup |ER(Ry(-1y) = DIEZ(1f* — (EZf)?]),

n

where, in the final line, we have used the fact that £, (- | w) € 2 4, x(R2). Next, again by
Schwarz,

ES(1f? — (ESS)2) < 2(ES 2 ES(S, )7 < 2D, (f, o, y)ES(f f)7

whereas

[EX(Ra,i(+,y) — DI = |EX(Ry,;(+ 1)) — E4(Ry5(- 1 y))]

= || [EX(Ry4,i(- ¥) — E3(Ryai(-, )T EA(dE)| < R(A, X, j) .
2 !

N=
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Hence, we have arrived at
Jalf ) S 2R(A, X, )ES(S /)2
which, in conjunction with (3.6), completes the proof of (3.16). O
The form in which we will apply Lemma 3.14 is given in the following.

3.17 Lemma. There is a K = K(s, | @], M, R)€(0, o0) (cf. (3.6) and DSM) such
that, for all neN, j¢ A,, and positive fe Wy(Q),

ule(H"“fz)%lzéK( ) ,u|Vi(an2)%|2+€_2M" Y .U|Vi(H,.f2)%|2>

li—jl<p li—il<2L+3R
(3.18)

for every peN. In particular,
pl Vi, f222<K Y ul VU222, (3.19)

li—jl<2L+3R

Proof. First observe that, by construction, there is a unique le I',, such that je dg Y.
Next, let f be a positive element of Ay (R2), choose A€ F so that l¢ A = I', and

1,f*=E °Eyf?, where Y=Y and 4= () Y,

ked

and set g = (IT,f2)%. Because R(A, 4, j) = 0, (3.15) applied to g (with X = 0)
leads to

Vi1 f2)217 < 864190 | G(Eyg?)22 . (3.20)

Next,set X = {ieY:|i—j|<p}and h = (Exgz)%. Then, again by (3.15), but this
time applied to h (with A = Y'), we see that

K| \7,'(Eygz)%|2 < 16"l | Vih|? + 8e T R(Y, X, §) 2 u(Ey(£,.f)) . (321)
At the same time,
uIVih|? < 8e*1%1 1| Vigl? + 86 Lo 12l | Vg 2
and
1l Vyh|? < 16e*1°10 % (4] Vgl + 1o, (1) 1| Vxg1?) .

ie Y\X
Finally, since
|0rX| < R(p+R)*™" and R(Y, X,j) <IN,

it is an easy matter to combine ii), (3.20), (3.21), and the preceding to arrive at (3.18).
Moreover, (3.19) follows easily from (3.18) with p =0. O

Proof of 3.13. As an application of (3.19) we see that, for any ne N,
il V(01 f2)H1? < KQL + 3R) | VUL, £2)312 .

Thus, in order to prove (3.13), it suffices for us to show that L can be chosen so that

1 1
ulV(szf2)2|2§§,u|Vf|2. (3.22)
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To thisend, set p = andlet j¢ A,a_, be given. Then thereisan1 <1 <29 — 1

2d+1’

L
such that {i: [i—jl = E} < A;_;. After repeated application of (3.1), we obtain

P V(e f D72 < K270 Y u| (I, f2)3)2

li—ijlslp
241 .
+e My K" )} ulVilllzap f2)2]?
n=1 i~ jl £ L + 3R)n

< (4KQL + 3R))"2dexp[——M—L] Y ulVifI%,

d
2 li—jl < QL+ 3R)2¢

where, in the passage to the last line, we have first used the fact that V;(II, f 2)% =0
for all |i—j|<Ilp <L and then applied (3.19). Hence, after summing over
j¢ Aya_y, we arrive at

1 V(IToaf )7]* < (4K QL + 3R)“* D2 exp [—%} mIVEI%

from which (3.22) is an easy step. [

As we said in the discussion containing (3.13), once we know that i) and ii) imply
(3.13) for some A€[0, 1), the proof that i) & ii) = iii) is easy. Hence, we are done.
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