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1. Abstract. In the first part of this paper, we construct mod 2 elliptic genera on
manifolds of dimensions 8k + 1, 8k + 2 by mod 2 index formulas of Dirac oper-
ators. They are given by mod 2 modular forms or mod 2 automorphic functions.
We also obtain an integral formula for the mod 2 index of the Dirac operator. As
a by-product we find topological obstructions to group actions. In the second part,
we construct higher elliptic genera and prove some of their rigidity properties
under group actions. In the third part we write down characteristic series for all
Witten genera by Jacobi theta-functions. The modular property and transforma-
tion formulas of elliptic genera then follow easily. We shall also prove that
Krichever’s genera, which come from integrable systems, can be written as indices
of twisted Dirac operators for SU-manifolds. Some general discussions about
elliptic genera are given.

2. Introduction

Elliptic genera were first constructed by Ochanine [28], Landweber-Stong in
a topological way. Witten gave a geometric interpretation of them. More precisely,
he showed that the Lefschetz fixed point formula of twisted Dirac operator on loop
space gave the universal elliptic genera. Recently Krichever [20] derived certain
elliptic genera from the theory of KP equations. Their constructions work for
manifolds of dimension 8k and 8k + 4 or almost complex manifolds. Later
Ochanine constructed mod 2 elliptic genera for manifolds of dimension 8k + 1 and
8k + 2 by cobordism theory in [29]. This construction was conjectured by
Landweber [21].

In this paper, we construct mod 2 elliptic genera by the Atiyah-Singer mod 2
index formula. We take Witten’s point of view to give a geometric construction of
mod 2 elliptic genera. The method is quite easy. We lift the classical index formula
to a KO-invariant version, and check that it is equal to the KO-invariant in
cobordism theory. Hence we can borrow some beautiful ideas from cobordism
theory. Theorem 1 and Corollary 1 answer a question of Witten in [36], viz. the
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mod 2 index invariants for each eigenvalue of P (see [36]) sum up to a mod2
modular form or to a mod2 automorphic function. Theorem 2 is an integral
formula for the mod2 index, which answers a question of Atiyah (see [2]).
Hopefully, a geometric understanding of our construction can eventually give
a complete answer to Atiyah’s question, i.e. a “good” integral formula for the mod 2
index. We also hope that this construction may indicate a way to prove the mod 2
index formula by an analytical method (see the discussion in the preface of [1]). As
a simple corollary, we prove all invariants derived in [29] are spectral invariants.
This includes the result in [30] as a special case. Also we will prove some vanishing
theorems. These theorems show that our construction may give some new
topological obstructions to group actions on compact smooth spin manifolds. We
also put forward some questions about the geometric structure of the construction
used in the proof of Theorem 1.

In the second part of this paper, we construct some twisted elliptic genera, and
prove some of their rigidity properties. Then we consider higher elliptic genera, i.e.
the elliptic genera twisted by representations of fundamental groups of manifolds.
We also relate them to the higher Novikov conjecture. These results are closely
related to the results in Browder—Hsiang [ 12], Berstein [10]. We follow the ideas of
Atiyah—Hirzebruch [5] and Bott-Taubes [11]. It is interesting to notice that we
prove some vanishing theorems of higher indices by the Lefschetz fixed point
formula, and the topological condition naturally comes in. In a forthcoming paper,
we will prove some vanishing theorems of secondary characteristic classes by
combining our method with Conne’s technique.

Then, by directly checking the geometric expressions of several elliptic genera of
Witten, we write down the characteristic series for these genera. They are exactly
the corresponding ratios or normalized ratios of Jacobi theta-functions. These
expressions should be compared with the general Baker—Akhiezer functions in
conformal field theory. From these simple expressions and transformation laws of
theta-functions, several properties of elliptic genera follow immediately. For
example, the modular property and the transformation law of different elliptic
genera are natural consequences. Professor Landweber informed the author that
H. Tamanoi has also done this in his thesis. These expressions also indicate a way
to construct other elliptic genera and a way to explain the Witten rigidity theorems
of elliptic genera which we will discuss in a separate paper. What is also interesting
here is that even the anomaly factor in Witten’s formulas which came from
renormalizations of Feymann path integrals perfectly fits our theta-function for-
mulas. Another simple corollary is that we can interpret elliptic cohomology as
anatural deformation of classical KO-theory, or quantization of KO-theory. In this
part we shall also answer Krichever’s question in [20], i.e. give index formula
expressions of his genera which come from integrable systems. This is another
motivation for us to study elliptic genera with theta-functions. By a simple mani-
pulation in elliptic functions, we show that his genera give a continuous family of
elliptic genera in which Hirzebruch’s genera are included as a discrete family. But in
many interesting cases these genera still can be expressed as in the indices of twisted
Dirac operators and are rigid. So far all of the elliptic genera which are known to be
rigid can be written as the indices of elliptic operators. It is interesting to speculate
that all of the rigid genera should be the indices of some elliptic operators. We also
note that the characteristic series of Krichever in Sect. 5 is basically the same as the
function used in [38] by Zagier to get the generating function for Fourier coeffic-
ients of modular forms.
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Finall)} in the appendix we collect some known theorems in the theory of
elliptic genera and give some general discussions. We give the formulas of general-
ized Chern character from elliptic cohomology to de Rham cohomology or
K-theory. These formulas are quite similar to some partition functions in con-
formal field theory. Then as a simple application of the transformation formulas in
Sect. 5 we prove a duality property between different elliptic genera. This was
partially proved in [11] by a different argument. In a future paper we will study
relations between various properties of the elliptic genera and the geometry of
elliptic modular surfaces by using the results in Sect. 5.

Almost all of the results in this paper were obtained when the author was asked
to report on Ochanine’s paper [29] in Professor S.-T. Yau’s seminar during the
summer of 1990. The author would like to thank Professors Bott, Landweber,
Witten and Yau for their kind help and encouragement. Both Professor Landweber
and Professor Yau have carefully read several early versions of this paper and made
many useful comments. Without them this paper would never have appeared in
this form. The author is also very grateful to Professor Ochanine. His paper [29]
motivated one crucial idea in this paper. In some sense this paper can be viewed as
a simple step in trying to apply the beautiful elliptic genera theory which was
developed by Landweber, Stong, Ochanine and Witten to quantum field theory
and topology. Thanks are also due to Professor S. Stolz, a referee and the
participants in Yau’s seminar for their help in improving this paper. This research
was partially supported by DOE grant DE-FGO02-88ER-25065.

3. Mod2 Elliptic Genera

Let X be an 8k + 1 or 8k + 2 dimensional compact smooth spin manifold. Let
A(X)=S°%X)® S'(X) be the Z,-graded spinor bundle on X, and let

D: §°(X) - S}(X)

be the Dirac operator on X. Let E be any real vector bundle on X. Then we can
form the twisted Dirac operator D ® E and obtain skew adjoint or skew Hermitian
elliptic operator, which gives

a) dimg KerD ® Emod 2, if dimX =8k + 1,
b) dim¢c Ker D ® E mod 2, if dim X = 8k + 2

as well defined indices which are topological invariants. We write them as
Ind,(D ® E). These indices can be naturally extended to a homomorphism from
KO(X) to Z, (see [7]). Now let

O,E) = ® (A_o-»E®SpnE),

nz1
OXE)= @ (A_y2vE® SpmE)
nz1
O_E)= @ (ApvERSHE),
nz1

OLE)= ® (ApnE® S,E)

n=1
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be elements in KO(X)[q], where
ME=1+tE+t*A*E+... ,

1

S,E =
Y A_LE

are two operations in KO(X). Here we take ¢ = ¢*™* with 1€ C and Im <t > 0.
These elements arose from quantum field theory (see [35]). We can expand
them as formal power series of . For example @,(E) = Y% , ¢**R;, then

Ro=1, Ry=E, R,=A’E®E, R,=AEQEQE)DE,

which are the eigenbundles of the operator P in quantum field theory for E = TX
(see Witten [35]). Here TX is the tangent bundle of X. First we like to consider the
virtual versions of the above elements. We take E = TX — dim X and expand them
into the power series of q. For example

0,TX —dimX) =Y b(TX)q'"?,

iz0

where all b;’s are elements of KO(X). In fact they are linear combinations of R;’s
above (see [29]). Let us consider the virtual indices

Ind,(D ® 0,(TX —dimX)) = Y Ind,(D ® bi(TX))q"*.

iz0

Similarly for Ind,(D ® @f(TX — dim X)) and Ind,(D ® @ _,(TX — dim X)). We
will discuss the elliptic genera associated to @,(7X — dim X)) later.
Let

r’Q) = {(c Z> ‘ b = 0(mod 2)}
a b
ry2) = {(c d) ¢ = 0(mod 2)}

)[R R K L

be three modular subgroups of SL,(Z).
Remember we call a holomorphic function f(r) on the Poincaré upper half
plane H a modular form of weight k over a modular subgroup I’ if for

a b
(c d)ef,

at+ b .
f(a - d>=(cr+d)f(r),

S}

Q

and fis holomorphic at the cusps of H/I".
We denote the ring of modular forms over I" with integral Fourier coefficients
by MZ(I'). From number theory (see [32]), we know that MZ%(I'o(2)) has an
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integral basis consisting of two elements (see below). As discussed in Sect. 5 I'°(2)
and I'y are conjugate to I'y(2). So we can consider the modular forms with integral
Fourier coefficients over these three modular groups modulo some prime number
p which are called mod p modular forms (see [32]). Concerning the question of
Witten in [35] we have:

Theorem 1. Let X be a dimension 8k + 1 or 8k + 2 compact smooth spin manifold.
Then the following mod?2 indices are mod 2 modular forms of weights 4k over the
corresponding modular groups

1) Ind,(D ® ©,(TX — dim X)) over I'°(2);
2) Ind,(D ® OF(TX — dim X)) over I'4(2);
3) Ind,(D ® O _(TX — dim X)) over I'y.

Proof. In the following we will identify our mod 2 indices as ring homomorphisms
from Q" the spin cobordism ring, to M%(I') ® KO*(pt), the ring of modular
forms over the modular group I' with coefficients in KO*(pt). Here I" denotes
I'(2), T °(2) or I'y. The proof is motivated by Ochanine’s proof in [29]. We give the
details and emphasize the analytical and the modular properties of these mod 2
indices.

We divide the proof into several steps.

Step 1. Consider the graded ring structure of KO*(pt); we know that it is gener-
ated by 7, a degree 1 element, w, a degree 4 element, and 4, a degree 8 element, over
Z with relations

M=nw=n>=0, w*=4u.

Note that KO*(pt) has period 8, i.e. KO**8(pt) ~ KO*(pt) (see [4]). One has

KO~ '(pt) =Z,n, KO *(pt)=Zow,

KO~ ?(pt)=1Z,n*>, KO~ ®(pt)=1Zpu.
Consider the following Gysin homomorphism

/i KO(X) = KO ™"(pt),
where n = dim X, which is defined as follows: Consider an embedding.
i X->S"8 k>0.
Let NX be the normal bundle of X inside S"*8, U(NX) be the KO-Thom class of
NX. Then for any E€ KO(X), we define:
J(E)=j*(EVU(NX))eKO(S""*) ~ KO™"(p1),

where j is the natural isomorphism DN/SN ~ S8*" and DN, SN are respectively
the disc bundle and sphere bundle of N = NX. We know f; is independent of i.

Lemma 1. (KO-version of Atiyah—Singer mod 2 index formula [7]). Let X be as
above. Then for any E€ KO(X),

Ind,(D ® E) = n(/E)(mod 2),

where m: KO~ (pt)Z,, KO~ 2(p,) 33 Z, are the isomorphisms sending n and n* to
1eZ,.



76 K. Liu

Proof. This is implicit in the proof of Atiyah-Singer mod2 index formula

(7). O

We define the mod 2 KO-index of an elliptic operator, written as ind,, as an
element in KO*(pt). Then the above lemma tells us:

ind,(D ® E) =f(E) .

The following discussion will show that we have the similar KO-index formula for
8k, 8k + 4-dimensional manifolds as a lift of the classical index to KO*(pt). We will
write them as ind.

Step 2. As a simple step, we will check the Gysin homomorphism defined above to
be equal to the homomorphism defined in Stong [33] for KO-characteristic classes
of X. This seems to be well-known, but we cannot find a good reference. We prefer
to give the details. Then we can borrow techniques in cobordism theory to prove
Theorem 1. Recall the definitions in [33].

Define KO-characteristic classes 7;(E), for a real vector bundle E on X, as:

Y micut =) t'-AYE — dimE),
iz0 i20
where u = t/(1 + t)?. Consider X € Q:Pi" as a homotopy class in 7, g, (TBspingy),

for k big enough. Here TBsping, is the Thom space of the universal bundle yg, over
Bsping,. And let

fx: S"*8% s TBsping,

be the representative of X. We define the KO-characteristic numbers 7;(X ) corres-
ponding to 7;(7X) as

m(X) = fr(m(TX)) = f#(m; 0 Upg, ) e KO(S"3%) ~ KO~ "(pt) ,

where Uysg, is the Thom class of yg, and 7; = 7;(ygi).

By Thom construction, we know that the pull-back of the zero section of
TBsping, by fx is the manifold X and the pull-back of yg, is NX. From this
description and the naturality of Gysin homomorphism, we know that if we take
the pull-back of the zero section of TBsping, as our embedding, then the above two
Gysin homomorphisms coincide for 7;(TX )e KO(X). So we have:

Lemma 2. ind,(D ® n;(TX)) =m(X) O

So we have proved that the indices of the Dirac operator twisted by KO-
characteristic classes are cobordism invariants.
If we write ©,(E —dimE) =) ;. , b;q"> by expressing:

O E —dimE)= @ (A_p-+(E — dimE)/A_ jn(E — dimE))

n=1

and expand it as the formal power series in g, we can easily see that every b; is
a polynomial in 7;(E). For example by, = 1, b; = —7;, etc. So we have

ind, (D ® O,(TX — dim X)) = fy,(0,(TX — dim X)) ,

where fy; is the Gysin homomorphism in Step 2, which is the same as f; in Step 1 by
the above discussion.
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Step 3. Now we lift the Landweber—Stong—Witten construction of elliptic genera
8k, for 8k + 4 manifold to KO-invariants. We first consider 1).
For an 8k, or 8k + 4 manifold X, we have the elliptic genera:

Ind(D ® 0,(TX — dim X)) = | A(X)ch(0,(TX — dim X) ® C)
X

eMA(I°Q2)) = Z[6° &°1,

where D is the pure Dirac operator on X, and 6° and ¢° are two integral generators
of the ring M Z(I" °(2)). Note that the elliptic genera we constructed here are slightly
different from those in [21]. So we get modular forms over I" °(2) instead of I'y(2).
The integral property of these genera come from their expressions as the indices of
an elliptic operator. The modular property will be discussed in Sect. 5 of this paper.

We then use the Atiyah—Hirzebruch—Riemann—Roch theorem for differentiable
manifolds to get the following commutative diagram:

Koxm 2°S Hxx, Q)

1 s b A
ch®C
KO~ "(pt) 25, H*(pt, Q) ~ Q

and on KO*(pt), we have
ch(p®C)=0, ch(w®C)=2, ch(p®C)=1
(see [4]).

By a similar discussion as in Landweber [21], we know that
[x A(X)ch(0(TX — dim X)) ® C) = P(6°,¢°)e Z[6° ¢°], where P(6°¢%) is
a modular form of weight 4k or 4k + 2 depending on whether the dimension of X is
8k or 8k + 4 respectively. (From now on we will first restrict ourself to 8k + 2
manifolds, 8k + 1 case will be discussed later.) In fact, P(6° ¢°) is a weighted
homogeneous integral polynomial in §° and &°. The weight of 6° is 2, the weight of
¢® is 4. So we must have

fx(@,(TX — dim X)) = 3P(8°, &%)

because KO *(pt) = Zw and ch(w ® C) = 2. Since P(5° £°) always has even
coefficients for 8k + 4-manifolds, we get our KO-index elliptic genera for dimen-
sion 8k + 4 manifolds,

ind(D ® 6,(TX — dim X))eZ[5°, ] .

Step 4. Now we use a construction from cobordism theory to prove our theorem,
ie. for 8k + 2-dimensional manifold, ind,(D ® ©,(TX —dimX)) is a mod2
modular form. This contruction is due to Stong [33] and used by Ochanine in [29].
Following Ochanine and Stong, for any X € Qgy+,, we construct a manifold
T(X)eQgrt4. Recall that KO-invariants are spin cobordism invariants, so our
indices are also spin cobordism invariants. _
_ Since X xS'eQg;}; =0, we have X x S' = W for a spin manifold W. Here
S' is S! with the nontrivial spin structure. As 2S*' =0 in Q{Fi", 2§ = 0D. We
construct T(X)=(—2W)[[(X xD), by gluing along the common boundary
X x 28!, This is a well defined homomorphism from Qg+, to Qgrrs ® Z, (see
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Stong [33]). In fact, let I, be the ideal in Q"™ which consists of elements with
vanishing KO-characteristic numbers, ie. for X €l,, all 7;(X) = fx,(7;(TX)) =0
for any n; = m;, 7wy, . . . m;,. Then we have

Lemma 3 (Stong [33], Ochanine [29]): T: Q2% 5 /Igi+ 2 = Qonr o /lsks 4 ® Z is an
isomorphism, and the following diagram is commutative,

spin T spin
Qgir2/Isk+2 - Qgira/lgk+a ® Z,
fxl l lfxz 9
t
KO %(pt) — KO *(pt)®Z,
where t is the isomorphism mapping n* to @ ® 1e KO~ *(pt) ® Z,, i.e. we have
n(T(V)® 1 = t(x(V)) for VeQarra/lsrz . O

Let
04(X) =ind(D ® O,(TX —dimX)) for X e QP
and .
¢,(X) =ind,(D® O,(TX —dimX)) for XeQg, .
Then

?4(T(X) ® 1 = t(py(X)) in KO™*(pt) ®Z, .
It is easy to see that
@4(T(X)) = P(3° &%) .
Therefore we have that
@o(X) = n*P(8° ¢°) = n*P(5°, &°)

is a mod 2 modular form (or modular form modulo 2 by the definition) where 6°, £°
are the modulo 2 reduction of 6° and &°. This finishes the proof of Theorem 1 for
8k + 2 dimensional case.

Now let us prove Theorem 1 for 8k + 1 dimensional manifolds. We can
consider X x S! for X € Qgr+1. We have

qoq(Xxgl):(Pq(X).”'

Since the multiplication by # is an isomorphism from KO ~'(pt) to KO ~?(pt) and
¢,(X xS') is a mod 2 modular form by the result for 8k + 2 case, ¢ (X) is also
a mod 2 modular form. _

For another proof we can consider the multiplication by S' which gives
a morphism,

. ()Spin spin
S: Qg = gyt -

Then it is easy to verify that 7;(S! x M) = 5 7;(M) for any spin manifold M of
dimension 8k. By Stong [33] S induces a surjective homomorphism

§3 Qgiin/lsk - Q;F;ci: 1/18k+ 1.
It follows that
P28 1) = 0" @ (") .
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In other v'vords, for an 8k 4+ 1 dimensional manifold X, ¢,(X) is the modulo
2 reduction of the elliptic genus of some dimension 8k manifold. So it is a mod 2
modular form. This finishes the proof of 1) of Theorem 1. 2) and 3) can be proved in
the same way. Note that the modular properties follow from the theta-function
expressions of the elliptic genera in Sect. 5. %

The construction in the second proof of Theorem 1 for 8k + 1 dimensional case
is also due to Stong and used by Ochanine in [29].

Recall that we call a holomorphic function f(r) on the upper half plane
a (twisted) automorphic function over a modular group I if it satisfies the following
transformation law,

f<‘" * b) — S ()

ct+d

a b
= r
1= (2 h)er.

where y is a character from I' to some finite group in C*. If f has integral Fourier
coefficients we can consider its modulo 2 reduction which we call the mod2
automorphic function.

By combining the above proof and the discussion in Sect. 5 we can get the
following corollary which is the non-virtual version of Theorem 1.

for

Corollary 1. The following mod 2 indices are (twisted) mod 2 automorphic functions
over the corresponding modular groups

1) ¢7*?Ind,D ® O,(TX) over I'°(2);
2 ¢7*?Ind,D ® @ _,(TX) over T'y;
3 ¢ Mnd, D ® OX(TX) over I'y(2). O

In fact the automorphic functions in the above corollary are twisted by some
characters from those modular groups to the group {+i, +1}.
For
X, YeQpin

we have
OT(XxY)—dim(X xY))=0,(TX —dimX)® O,(TY —dimY).

Similar formulas are also true for @ _ (TX — dim X) and ©}(TX — dim X).

Soif we let ¢, (X) = ind(D ® @,(TX — dim X)) for dim X = 8k or 8k + 4, and
@,(X) =1ind,(D ® O,(TX — dim X)) for dim X =8k + 1 or 8k + 2. We define
Y,(X) and ¢,(X) for the elliptic genera associated to @ _,(TX — dim X) and
0 (TX — dim X) respectively in the same way. Then

(X X Y) = @g(X) y(Y);
DX X Y) = ¢g(X) " dy(Y) ;
lpq(X xY)= wq(X)"/’q(Y) .

By combining the above discussion and the results in Sect. 5 we have
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Corollary 2. We have the following graded ring homomorphisms

1) g QS"‘“*KO*(Pt)@MZ(F"@)),
2) Yt QP > KO*(pt) @ M%(Iy);
3) ¢q Qsp‘“*KO*(pt)®MZ(Fo(2)) O

Here the gradmg on Q5" is given by the dimensions of manifolds. The gradlng
on KO*(pt)is the degrees of the elements {#, w, u}. The gradmg on MZ%(I') is given
by the weights of its elements. The grading on KO*(pt) ® MZ(I') is the sum of the
gradings on KO*(pt) and MZ(I"). Note the periodicity of KO*(pt)

From number theory [32] we know that MZ(I'o(2)) is generated by two
elements which we denote by J,, &,. Then

s=-1-243 (£ d)or.

nx1 din
dodd
o-3( 1 @)
nzl n/d(odd)
Obviously
5o = 1(mod?2) .

Since I'y and I'°(2) are conjugate to I'¢(2), the rings of integral modular forms
over them are also conjugate to MZ(I'y(2)) by the transformations S and ST
respectively (see Sect. 5). If we replace t by 27 then ¢, is changed to ¢,. The change
of the modular properties can be easily seen by the formulas in Sect. 5. Similarly if
we change 7 to T 4+ 1 ¢, is changed to y,.

Presumably Ind,(D ® 4(X) ® ©,(TX — dim X)) should come into play. But
this genus is not a “good” one for spin cobordism. With slight modification this
genus can be defined for non-spin manifolds. We conjecture that this genus is
a mod 2 modular form for any (non-spin) manifold X of dimension 4k + 1.

Now we consider the cohomology theory induced by ¢,. Similar results are also
true for the other two elliptic genera.

When g = 0, we have ¢,(X) = (X ) where

ind, D X has dimension 8k + 1 or 8k + 2

SH(X) —
Hx) {indD X has dimension 8k + 4 or 8k

is the classical -invariant and we know
KO,(X) = Q" (X) ® g KO4(p1) ,

where we use KO, (pt) to replace KO*(pt) as suggested by Landweber. We know
they are isomorphic (see [18]). We consider KO, ( pt) as a Q:P'" modulue through
A =ind D or ind, D

Hence it is natural to consider the refined elliptic homology (see Hovey [19])

ElL(X) = Q5™(X) ® g (KO, (pt) ® M*(I'0(2)) [(64(33 — £0)) ']

as a “quantization” of KO, (X ') in some sense. Here we view KO, (pt) ® M (I'v(2))
as a Q5P™ module through ¢, above. This point of view is more interesting if we



On Mod 2 and Higher Elliptic Genera 81

look at the projective schemes of the above graded rings. For example for a com-
pact Lie group G it tells us that the elements in Ell*(BG) should be sections of
a sheaf on the modular curve of I'4(2). We do not pursue this point here.

For a manifold X we know K*(X) = K, (Co(X)), where Cy(X) is the algebra of
continuous functions on X with compact support. Can we deform Cy(X) to get
a new algebra C,(X)[h] as people are doing in quantum groups, such that

K (Co(X)[h]) = ElI*(X)

with g = ¢"? This is another reason that we consider elliptic cohomology as
“quantization of KO-theory.”

By Serre [32], we know that &, is a generator of the ring of mod 2 modular
forms for I'4(2).

Consider ¢, mod 2, and write

¢q(X) =aqq + algO + -+ ams_g(modZ)

in KO*(pt) ® Z,[&,], where m = 2k for dim X = 8k + 5,0 < s < 4, and g;€ KO*
(pt). We have

Corollary 3. All the a;s above are spectral invariants. This is, in particular, true for
the KO-Brown—Kervaire invariant. If X admits a metric with positive scalar curva-
ture, g (X) = &olay + ** * + ap€s ') (mod2).

Proof. By Ochanine [29], we know that the so-called KO-Brown—Kervaire invari-
ant is defined by

o(V)u n = 0(mod 8)
k(S'x V)y n=1(mod?8)
k(V)n? n = 2(mod 8)
(a(V)/16)w n = 4(mod 8)

F(V) =

modulo 2. Here o(V') is the signature and k(V") is defined as k(V') = o(U)/8(mod 2)
where 0U = S' x V. It is equal to a,, above. The second statement follows from
d)o(X) =dg = indz D. O

Here by spectral invariant we mean that this invariant can be derived from
elliptic operators. For example the index of an elliptic operator, analytic torsion
and n-invariant are spectral invariants (see [8]).

The proof of the following Theorem 2 is a direct corollary of the proof of
Theorem 1. But considering the discussions in Atiyah [1, 2 and 7], we would like to
single it out as a theorem and will study it in another paper.

Theorem 2. For X a compact 8k + 2 dimensional smooth spin manifold, let T(X ) be
constructed as above. Then

Ind,D = AX) = [ A(T(X))(mod?2). &

T(X

NI*—‘

In fact, we can get a similar formula for a dimension 8k + 1 manifold by
crossing X by S!, and also we can get a general formula by twisting D by m;(X)’s
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above. It is also possible to get formulas for D twisted by general real vector
bundles.

Mod 2 index is a very subtle invariant (see [2, 7]). This is because of the absence
of a cohomological formula as in 8k and 8k + 4 dimensional cases. The above
Theorem 2 gives us a cohomological formula. But because the relation between the
geometric structure of X and that of 7(X ) is not very clear, it is still difficult to handle
it. It may be interesting to study the relation between the mod 2 indices of X and
those of T(X) by using #-invariants which appeared in the construction of [8].

Considering the discussions in Atiyah [1, 2], this integral formula deserves
further study. Its topological meaning is very simple. In fact, it is nothing but the
Toda bracket in homotopy theory. But a geometric understanding of this formula
may be useful for the computation of mod 2 index and an analytical proof of mod 2
index formula.

Instead of proving this theorem we would like to explain the homotopic
background of the above T-construction. Let f $"*8% — TB sping, represent M,
h: Sn*8k+1 _, gn+8k the suspension of the Hopf map, and 2: §"*8k*+1 _, gn+8k+1
a degree 2 map. We deform 2 and h to be transverse regular on every point other
than the base point, the inverse image of any regular value of ho2 in S"* 8 being
2S'. If fis also transverse regular on B sping, then f°ho2 is transverse regular on
B sping, and defines the spin manifold 25* x M. Considering the cobordism U, V as
given by maps u: D"*#*1 — TB sping, and v: D"*8*2 — §"*8k (} being a framed
cobordism of 2S? to zero) extending fo h and h° 2 respectively. uo 2, fo v fit together
along their boundary to define a map of n + 8k + 2 sphere into TB sping, which
represents T(M). For more detail see Stong [33].

As a simple application of Theorem 2, we have

Corollary 4. Suppose there exists an S action on an 8k + 2 dimensional compact
spin manifold X, and this action can be extended to T(X) above, then

Ind,D =A(X)=0. O

In fact, we only need that this S' action can be extended to W, where
OW = X xS! as above.

Lawson-Yau [22] proved that an SU(2) or SO(3) action on an compact spin
manifold leads to the vanishing of 2. We also note that there exists a homology
sphere of type M x S! and dimension 8k + 2 with U = 0 (see Milnor [24]). Also,
Ochanine proved that an odd type S!-action on an 8k + 1 or 8k + 2 dimensional
manifold leads to the vanishing of the elliptic genera. He also conjectured that
elliptic genera are all of the obstructions to the existence of an odd type S*-action
on an 8k + 1 or 8k + 2 dimensional manifold. Stolz’s result [34] may be useful to
prove this conjecture.

In many cases, we can draw some information of elliptic genera by considering
the corresponding elliptic operators. For example, Theorem 1 together with Corol-
lary 1 (for ¢,) completely answers a question of Witten in [35], which was derived
from quantum field theory and formulated in terms of analytic indices. We can also
get some vanishing theorems of the above elliptic genera under certain group
action. For 8k + 1 manifolds we have proved that the existence of an odd type
involution results in the vanishing of their mod 2 elliptic genera. We would like to
give the details of this discussion as well as some other results in a separate paper.
In that paper we will also study some vanishing properties of the abO\{e elliptic
genera when there exist vector fields on the manifold.
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It is interesting to study the relations between the elliptic genera in Theorem
1 and Corollary 1 through elliptic modular surfaces over Z,. See the discussion in
Sect. 5 for the classical cases.

4. Higher Elliptic Genera

We still let D be the pure Dirac operator on a compact smooth spin manifold X.
Let G be a compact Lie group acting on X. For a complex vector bundle on X we
say that G acts on E trivially if the G action can be lifted onto E and E is
equivariantly trivial on each G orbit. For simplicity we assume that G is S* in this
section. But the results in this section are still true for general connected compact
Lie groups. When G is S* and acts trivially on E, the induced action of G
on E restricted to the fixed points of G is trivial, i.e. the exponents of a genera-
tor of G are zero. See below for the definition of exponent. We take
Ind(D ® ©,(TX — dim X)) as an example. The same conclusions hold for the other
elliptic genera discussed in Sect. 5.

Theorem 3. Let X be a connected compact smooth spin manifold with an S* action.
Let E be a complex vector boundle on X. Assume the S* acts on E trivially, then

a) Ind(D ® E) = 0;

b) Ind(D ® O,(TX — dim X ) ® E) is rigid.

Remember we call an index rigid if its corresponding Lefschetz numbers are
constant as a character on the action group.

Proof. Let g be a generator of the S* actioon and L(Dy, g) be the Lefschetz number
of g. Then we have the Atiyah—Segel-Singer fixed point theorem (see [6])

L(Dg, g) = Y. (local term on F,),
{Fg}
where {F,} are the fixed point submanifolds of g. The normal bundle N to F, has
an S' invariant decomposition
N=@N,,
meZ
where each N, carries the structure of a complex bundle and g acts on N, by scalar
multiplication by t™ = ¢™. The m’s are called the exponents of g.
For any given k-dimensional complex vector bundle N, we define the function
! 1
F(N,t)=]]
j=1
where x;’s are the formal roots of the total Chern class of N. If the action is trivial
on the given bundle E, up to sign the local term above can be reduced to

[1F (N, t")A(F,)ch(i* E)[F,],

tred%i _ pThe X

where i,: F; M is the inclusion map. On the other hand since the Lefschetz

number is the character of g acting on a finite dimensional vector space,
N

L(Dg,g) = Z nt*

k=-N
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is a Laurent polynomial. It is evident that the local expression in the fixed point
formula is zero for t = 0 and ¢t = o0 and the Laurent polynomial expression can
only have poles at t = 0 and t = 00. Hence L(Dg, g) must vanish identically. Then
note that when ¢t = 1 L(Dg, g) is Ind(D ® E).

For elliptic genera, we only need to note that if the group action on E is trivial,
the crucial trick, “transfer formula,” in Bott-Taubes [11] still works. We omit the
details here. b

Corollary 5. Let X be as in Theorem 4. Assume the induced S*-action on n,(X) is
trivial. Then

a) Ind(D ® E) = CA(X)chE, X» =0,

b) Ind(D ® @,(TX — dimX) ® E) = (A(X)chO®,(TX — dim X)chE, X ) is
rigid, where E is a flat (infinite dimensional) vector bundle associated to a unitary
representation of n(X), and our index and Chern character are in the sense of
Mischenko-Fomenko [25].

Proof. What we need to do is to carefully define the Lefschetz number for the
elliptic operator in Mischenko—Fomenko’s category (see [25]) and show that the
fixed point formula is true in this case.

Let A be a C*-algebra with unit and G be a compact Lie group. Assume there is
no action of G on A. Let Dy be an elliptic operator twisted by an 4-module vector
bundle E (see [31]). Since G is compact, we can assume G commutes with Dg. Then
for some G-invariant compact operator K Ker(Dg + K) and Coker(Dg + K) are
A-modules of finite rank with G-actions (see [25 or 31]). We define

Ind¢(Dg) = Ker(Dg + K) — Coker(Dg + K)e Kg(A) ~ Kq(4) ® R(G)

as our G-index with value in Ky(4) ® R(G). Here K;(A) denotes the K-group of
G-equivalent A-modules. Since there is no G action on A4,

Kg(A) ~ Ko(4) ® R(G) .
For gegG, let
Indg(Dg)(9)€ Ko(A4)[1(9)]

denote the Lefschetz number of g which is obtained from Indg(Dg) by taking trace
on the R(G)-part of Ks(A). Here x(g) denotes the character of g and Kq(4)[x(g)]
is the polynomial ring in y(g) with coefficients in Ky(4). Then we have the
following

Lemma 4. Let X be a d-dimensional compact smooth spin manifold with an S* action.
Let Dy be an elliptic operator twisted by an A-module vector bundle E on which the S*
acts trivially. Let ¢ = 6(Dg)e Ks:1(TX, A) be the symbol. Then for a generator geS*,

ch, (i o)

mA(Fg)z} [TF,]. O

Inds:(De)(g) = (—1)* {

Here i,: F,5 X is the inclusion map and K (TX, A) is the K-group of
S'-equivariant A-module vector bundles on TX with compact support. Since g is
a generator of S', the S* actions on F, and on A are trivial. One has

i*oceKgi(TF,, A) ~ K(TF,) ® Ko(4) ® R(S) .
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The Chern character ch, is given by
chy: Y o ®a; ® xi — Y, chaya;xi(g)e H*(TF,, Q) ® Ko(4)[1(9)] »

where o;€ K(TF,), a;€ Ko(A), and y;€ R(S').

The proof of this lemma is the same as in Atiyah-Segal [6].

Now for our case A = C*(rn) (the completion of L!(rn) in the greatest C*-norm,
see [31]). Because the induced S* action is trivial on = = 7;(X), S! acts trivially on
i¥E. So after reduction the local terms are also given by

[] F(N,, t™)A(F,)ch(i*E)[F,] ,

where ch(i¥E) is in the sense of [25 or 31]. On the other hand globally
Indg: Dp(g)e Ko(A)[t, t ~1] by the above definition of Indg: Dg(g). Both the local
and the global expression are rational functions in ¢ with coefficients in Ky(A). The
same argument as in the proof of Theorem 4 gives us the required result. The only
difference is that we are considering functions with coefficients in K(A).

The case of elliptic genus is the same. We also omit the unpleasant detail
here. &

In a forthcoming paper we will give a simple proof of the Witten rigidity
theorems. We would like to give the details of the above proofs for the cases of
elliptic genera in that paper. Note that there exists an S* action on a torus which
induces non-trivial action on the fundemental group. We also know that some
higher -indices of a torus are non-zero. So the assumption that the S* action on
the fundamental group is trivial is necessary in Corollary 5.

It is worthwhile to remark that the above method is simple, but it may be used
to give the deep theorems in Browder—Hsiang [12], Berstein [10], who proved
them in totally different ways. [12] used equivariant surgery and [10] used
category theory. There are two points to be noted here. First, the method we used
above also works for some vanishing theorems of secondary characteristic classes
for group actions on foliations of manifolds. This requires cyclic cohomology
formulation of the index theorem. Second, the twisted elliptic genera may give new
invariants relating the fundamental group to the topology of a manifold.

Now, we define higher elliptic genera of a manifold X with fundamental group
m, as

@,(X,a) = CA(X)ch ©,(TX — dimX)® C)uf*a, X ),

where f X —» K(r, 1) is the induced map and ae H*(K(x, 1), Q) is any element.
Then a proof following Rosenberg [31] gives an easy corollary.

Corollary 6. If the strong Novikov conjecture is true for =, then for any compact
smooth spin manifold X with fundamental group n and a compact connected Lie group
action which induces trivial action on 7, then

a) all higher A-genera vanish,
b) all higher elliptic genera are rigid. [

We remark that the Novikov conjecture is true for many known groups.
Following the discussion in Sect. 5 below, we can easily see that the above
higher elliptic genera are sums of modular forms with different weights, with the
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highest weight < 3dim X. Also, we don’t need to restrict the dimension of X. In
fact, higher elliptic genera make sense for manifolds of any dimension.

We can also define elliptic genera for families of elliptic operators, and KO-
higher elliptic genera and KO-elliptic genera for families. In fact, we can formulate
elliptic genera with values in a general C*-algebra. This will include both the case
of families of elliptic operators and the case of higher elliptic genera.

5. On Characteristic Series of Elliptic Genera

In this section, we will write down the characteristic series for the elliptic genera
defined by Witten in [36], so that we can see the properties of elliptic genera very
clearly. We use the cohomological form of the Atiyah—Singer index theorem for
twisted Dirac operators. These formulas will be used to derive some properties of
elliptic genera and to get some interesting corollaries in the appendix. We will also
answer a question of Krichever [20]. The basic idea of this part is motivated by
Brylinski [13], but the similarity of our formulas to the general Baker—Akhiezer
functions in conformal field theory and integrable systems is another motivation.
Now, let us consider the Jacobi theta-functions. There are several different
expressions of them; we will use the product expressions to fit our purposes

03(1}, ‘L') = H (1 + qn—éeZniu) H (1 + qn—%e—Zniv) ,
n=1

n=1

02(0, ‘(,') = 1_[ (1 _ 2mv H 1— qn-%e—Zniv) ,

n=1

91(0, T) = Cq1/8e1tiv 1_[ (1 + qnean H (1 + qn—le—Zniv) ,
n=0

n=1
(v, 1) = qu/82sin w 1—[ (1 - 2mv H - q"e_z"i”) ’
n=1 n=

where ¢ = [[,2,(1 — ¢"), ¢ = €*, and Imt > 0. Note the slight difference be-
tween the g here and the g in [15]. We also have the following transformation
formulas for theta-functions

iv2 1
ﬁ 05(v, 7) = e~ "I, (9, _ _) ,

! T T
2 1

\/ 0,(v, 1) = e~ ™G, <v >
1
2 1

E (U ‘L') =e —(miv )/16 <E _>
T 1

2 1
f@(v 1) = je~ @AY <2 ;>

~.

H
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05(0,7) = fe (0, - 1) ,
T T
i 1

92(09‘[):\/:61 <07‘_),
T T
Jeos(o-2)

91(0, T)= _92 07 I Y
T T

Jiron=to(o-3)

-00,7)=-0 (0, ——),

1 T T

where (0, ) means taking the derivative with respect to v.
We would like to write down more formulas to show that some properties of
elliptic genera easily follow from these formulas:

0w+ 1,7)=—0(v, 1),
H(Ua T) = *0(_—0’ T) s
H(U +71, T) = _q—%eZRivg(v’ T) :

l}
and at v = 0, we have

Similar formulas for 6,, 8,, 05 are also true (see [15]).
We write the formal Chern roots of 7X ® C, the complexified tangent bundle
of a compact smooth manifold X of dimension 2k, as

27Tiﬁ1, —27Ziﬁ1, .. 2niﬁk9 —Zﬂiﬁk .

Recall that one calls a formal power series f(v) a characteristic series of a genus
¢ on a manifold X, if

HX)=fB1) -« f(B) XD .
Then we have

Theorem 4. For a dimension 2k compact smooth spin manifold X, we have the
Sollowing correspondences of characteristic series to elliptic genera:

01 (U’ T)
0(v, 7)

2miv 209D 148 10d(D @ ©4(TX)) |
0(v, 7)

2mio B89 8 1d(D @ 0_,(TX)),
0(v, 1)
27Ii 92(1), 21)
"8, 21)

2miv

—IndD®4(X)® O0,(TX)),

g *Ind(D ® O}TX)),

and

; 0(v,7) 0'(0, 1)

"0, 1) 6,0, 1)
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for j =1,2,3 together with

in 0,(v, 27) 6(0, 27)
0(v, 27) 6,(0, 27)

exactly correspond to the virtual genera, i.e. we replace TX by TX — dim X and omit
q "8 or q7** in above correspondences. &

Remarks. (i): If we replace © by 27 or 7 + 1 in the expression of the characteristic
series of Ind(D® @,(TX —dim X)), we get the characteristic series of
Ind(D ® O}(TX — dim X)) or Ind(D ® O _,(TX — dim X)) respectively. Similarly
for the nonvirtual elliptic genera.

(ii): It is interesting to note that even the anomaly factor ¢ *® in Witten’s
formulas in [35] and [36], which come from renomalization of the Feynman path
integral perfectly fits our theta-function expressions. For compact almost complex
manifolds with ¢; = 0(mod N) we can express the characteristic series of the elliptic
genera as

i O(x + o, 1)
x 0(x, 7)

or
0(x + a,7) 0'(0, 1)

2ix O0(x,7) O(a, 1)

with e2™* an N'® root of unity. The transformations of these expressions by the
elements in SL,(Z) give all of the elliptic genera on complex manifolds with
¢y = 0(mod N). We omit the details here.

(iii): From our formulas and transformation formulas of theta-functions, we
have

v _1
1 v 1) Ot + 1) 05(v,7)

@mﬂ_1m<
0w, 7) 0<9 _1)’ 0t +1) 000
T

b

T
and
v 1

0s(v,7) 1 03 <;’ B r) 0,(v,t+1) 0,7

ewn)'?9<g_j)’ 0z + 1) "8

b

T T
with yg, x5 8™ roots of unity. Furthermore

v 1 ' 1

(v, 7) 0,(0,7) Tt 0<2’ _l> 0. <0, _1>,
T T T

03(v,7) '(0,7)  O,(v,7+1) 60,7+ 1)
0(v,7) 05(v,7) O, T+ 1) O, T+ 1)

<
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v 1\ 1
05(v,7) 0(0,7) 1 05 <€’ '?) 0 <O’ _¥>

0, 7) 0:0,7) = 9<9, _ 1> 6 <0, _l> ’
T T T

01(17, T) 01(0’ T) _ 01(17, T+ 1) 0/(0’ T+ 1)
0w, 7) 0:(v,7) Owt+1) O(v,t+1)"

Corollary 7. Let X be a compact smooth spin manifold of dimension 2k. Then

i) the following elliptic genera are modular forms of weight k with integral Fourier
coefficients over the corresponding modular groups:

a) Ind(D ® 4(X)® O,(TX — dim X)) over I'4(2);

b) Ind(D ® O©,(TX — dim X)) over I'°(2);

c) Ind(D ® O_,(TX — dim X)) over I'y;

d) Ind(D ® OF(TX — dim X)) over I'o(2).

ii) the following elliptic genera are (twisted) automorphic functions with integral
Fourier coefficients over the corresponding modular groups:

a) Ind(D ® 4(X)® O,(TX)) over I'o(2);

b) ¢ ¥®Ind(D @ O,(TX)) over I'°(2);

¢) ¢ ¥ Ind(D ® @ _,(TX)) over Iy;

d) ¢ *Ind(D ® O©F(TX)) over I'y(2). O

In fact since

and

T:t—1+1, S:rr—»—%
generate SL,(Z) and T, ST?ST generate I'o(2), it is easy to get the modular
property of Ind(D ® 4(X)® @,(TX — dim X)) over I'4(2) by using the above
formulas, similarly for the other elliptic genera. These formula can be used to prove
the rigidity of D ® ©,(TX) or D ® @ _,(TX) from that of D ® 4(X) ® O,(TX).
(See the discussion in the appendix.)

If we note that I'°(2) and I'y are conjugate to I'o(2) by S and ST respectively,
the modular properties of the other elliptic genera also follow easily from
the above formulas. In fact the other elliptic genera are conjugate to
IndD®A4(X)® O, (TX —dimX) by S and ST. This observation is due to
Brylinski. It is also amusing to prove Corollary 7 directly by using the transforma-
tion formulas of theta-functions.

The above equalities mean that these three virtual elliptic genera patch together
to give a section of a holomorphic line bundle on an elliptic modular surface. They
correspond to the three cusps of this elliptic modular surface. The nonvirtual
elliptic genera patch to a meromorphic function on this elliptic modular surface.
Many of the properties of these elliptic genera can be derived from the geometry of
this elliptic modular surface. We will come back to this point in a forthcoming
paper.

Now we consider Krichever’s genera in [20], for which the characteristic series
are given by

5 _0E =% rox—kox
¢(x’ Z, kO) - O'(X)O'(Z) e B
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where o(z), {(z) are Weierstrass functions (see [15]). Following [20], we take x as
variable, z as parameter. Concerning Krichever’s equation, we have

Theorem 5. For SU-manifold X, 2ixd3(x, z, ko) is the characteristic series of a twisted
Dirac operator D @ R, (TX — dim X), where

R(TX —dimX)= @ A_,pu(TX* —dimX) ® A_,-1,(TX — dim X)

n=0 nz1
® Sp(TX* —dimX) ® SpH(TX — dim X)
nx1 n=1

with y = e?™=,

Proof. By SU-manifolds, we mean the structure groups of their stable tangent
bundles can be reduced to special unitary groups. Now we consider the formula in

[15]

o) = O, 7) ——— o1

| 60,7
where {n + mr} is the lattice of the elliptic curve, and n; = {(3). Then we have
é(x, z, ko) = _B(Z_i:[)_ e(C(Z)—Zmz—ko)ng(O, 7).

" 0z, 1)0(x, 7)

Since for SU-manifolds, the term @@~ 2mz=ko+Hx can be omitted in computing
genera, we can apply the Atiyah-Singer index theorem to D ® R,(TX — dim X ) to
get our result. &%

If {(z) — 29,z — ko + % is an integer k for some z, then 2ix®(x, z, ko) is the
characteristic series of D ® L* ® R, (TX — dim X), where L = det TX, even with-
out the assumption that the manifold is SU. If {(z) — 25,z — k, is_an integer and
the manifold has an almost complex structure, we can express 2ix®(x, z, ko) as the
characteristic series of a twisted d-operator. It is interesting to note that in these
cases the genera are rigid (see [20]). But we do not know whether these genera are
still rigid without the assumption that {(z) — 29,z — ko or {(z) — 21z — ko + %
are integers. Because in this case, it seems to be impossible to express them as the
indices of elliptic operators. Note the interesting similarity between @(x, z, ko) and
F.(u, v) in [38] where Zagier used this function to get the generating function for
the Fourier coefficients of modular forms.

These genera are more general than those of Hirzebruch’s. In [17] y is only
a root of unity; here we get a continuous family of elliptic genera. The interesting
point is that for those manifolds on which they can be written as the indices of
elliptic operators these genera are still rigid by Krichever [20]. Of course the
rigidity can also be proved by transfer formula in index theory. In fact, Krichever
used transfer formula in cobordism theory.

It is interesting to notice that so far all of the genera which have rigidity
properties can be written as the indices of elliptic operators. This should be related
to the homotopy invariance of the indices of elliptic operators. Recently, Morava
. and Shimizu [26] have constructed some topological generalization of the elliptic
genera. It is quite difficult to see whether these new genera are rigid or whether they
can be written as the indices of elliptic operators. From the point of view of physics,
only the rigid genera are interesting (see Witten [36]). This should be an interesting
problem for further study.
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Krichever’s formula come from KP-equations for elliptic curves. This may
indicate that it is possible to get more general elliptic genera and to give geometric
explanations of elliptic cohomology from integrable systems.

6. Appendix

In this appendix, we collect some known facts in the theory of elliptic genera for the
convenience of readers. We also give some general discussions about elliptic
genera.

We first discuss dimensions 8k and 8k + 4 cases. In these cases elliptic
genera are given by the characteristic series in Sect. 5. The modular properties
of elliptic genera follow easily from the formulas there. In fact, Zagier [37]
gives some of the equivalence relations in elliptic genera which were first dis-
covered by Landweber—Stong, Ochanine and Witten (see [21]). We take
¢,(X)=Ind(D ® O} (TX — dim X)) as an example. Here recall

OXE)= ® (A_gmn-1E® S;nE) .

nz1

Then everything is compatible with [37 and 28].
First we have

x dt
X)= e
at £~/1-—25t2+8t4
where
0 x2n+1
= Cp?") ——
90 = X 9uCP™) 3

is called the logarithm of the formal group law of ¢, and

f,v)=g""(gw) + g(v))

is called the formal group law of ¢,. Here ¢ is the same as the ¢, in Sect. 3 and
85 = . The characteristic series of ¢, is also equal to x/g~!(x) which can be
derived from the Lagrange formula in elementary function theory. So by Theorem
5 in Sect. 5,

1) = 7 0(x, 21)0,(0, 27)
g =T (x, 2000, 20)

From Zagier [37], (or from Sect. 5 of this paper) we also know that for any
compact spin manifold M, ¢,(M) is a modular form over I'y(2).

Theorem Al ([21]). ¢, Q" = Z[165, 85)% ¢]. o

This ¢, kills the torsion elements in Q" as well as 8k + 1 and 8k + 2
dimensional elements. Ochanine refined this result. He defined KO, -valued elliptic
genera f3, and obtained.

Theorem A2 ([29]).
1) If n = 4s, B,(Q5F™) is the set of all modular forms of degree n and weights 2s
over KO,.
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2) If n=8m +r,(r = 1, 2), then B, (Q:™) is the set of all modular forms of degree
n and filtration < 4m over KO,

3) B,(QsP™™) is the subring of modular forms over KO, generated by 1, wdo, 63
and c&. &

For the meanings of weight and filtration, we refer to his original paper [29].
B,(X) is a lift of ¢4(X) to KO, when dim X = 4s.

Hirzebruch and Slodowy [17] proved that for a compact spin homogeneous
manifold M

0 dim M = 4k

$a(M) = {c-a" dimM = 8k’

where ¢ is the signature of M. This extends Landweber—Revenel-Stong’s com-
putations for HP". A pure cobordism proof of Hirzebruch and Slodowy’s results
may be very interesting. We do not know any similar results about the mod 2
elliptic genera for compact spin homogeneous manifolds of dimension 8k + 1 and
8k + 2. We like to point out that the vanishing theorems of characteristic numbers
in Landweber—Stong and Ochanine (see [28]) can also be proved by Bott residue
formula by constructing explicit holomorphic vector field on CP?"** (see [23]).
This proof is very elementary.

The elliptic cohomology

Ell*(X)=Q°X)®Z [%:] [d,¢ (6% —e) ']

was constructed by Landweber—Ravenel-Stong (see [21]). It is interesting to
consider the following generalized Chern character:

chg: EII*(X) > H*(X, Q[4,¢ (62 — &)~ ')

which was developed by Buhstaber [14] to extend the usual Chern character from
K-theory to de Rham cohomology.

Generalized cohomology theory tells us that Ell*(CP ®) = Ell*(pt)[u], where
u is the Chern class of the universal line bundle over CP* in elliptic cohomology.
Similarly H*(CP*, Q) = Q[2rix] with 2zix the Chern class of the universal line
bundle in de Rham cohomology. For ¢, we have

chg: El*(pt)[u] — Q[4, &, (6% — &)~ ][ 2nix]

065, 200,(0,27)
"8,(x 2000, 27) "

For Ind(D ® 4(TX) ® @3(TX — dim X)), we can get

H(X, 1)01 (Oa T)

hp(u) = .
M) =", (x, 900, )
Similar formulas also hold for the other elliptic genera in Sect. 5. So chg is quite
similar to some partition function in holomorphic conformal field theory. We can
also lift chg to K*(CP*)® Q to get similar formulas.
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Now lét us briefly sketch an interesting corollary of the theta-function expres-
sions of the elliptic genera in Sect. 5. This is the “duality” property between the
rigidities of different elliptic genera. We consider the virtual versions and only give
a sketch here. The detailed discussion as well as an algebro-geometric explanation
of the Witten rigidity theorems will be given in a forthcoming paper.

Let X be a compact smooth spin manifold with an S* action. Let g = e*™*eS!
be a generator of the action group. Let {p} = X be the fixed points of g. For
simplicity we only consider isolated fixed point case. Let

1
TX|,=E @ @F, k=3dmX

be the decomposition of the tangent bundle into the Sl-invariant.Z—planes when
restricted to the fixed points. g acts on E; by multiplication by e*™™" with m;e Z.
Choose the orientation of E; compatibility with the orientation of X. Let

9/
g = [ (W 200.0),

0(m;t, 7)0,

e 5 (020mt, 160, 7)
Fp(t,t)=m Z U (W)

B ke (050m;t, 7)6'(0, 7)
Fop(t,)=n" XP: 1 <W)

where d; = D ® A(T) denotes the signature operator and D denotes the pure Dirac

operator.
Then the Lefschetz fixed point formula for D ® ©,(TX — dimX),
D® O_,(TX —dimX) and d; ® @,(TX — dim X) tell us that

F, (t, ©) = the Lefschetz number of d;® ©'(TX — dim X)),
Fp(t, 7) = the Lefschetz number of D ® @,(TX — dim X)),
F_p(t, 7) = the Lefschetz number of D ® O _(TXS — dim X)) .

Here we use the same notations as in Sect. 5. It is easy to verify that F(t, 1),
Fp(t,7) and F_p(t, ) are elliptic functions in ¢t on C*/g>. In fact, this is a simple
corollary of the transformation formulas of theta-functions.

The rigidity theorems are equivalent to that F_p(t, t), Fp(t, 7) and F, (¢, 7) are
independent of ¢.

Corollary Al. For a compact smooth spin manifold X the rigidity of one of the above
three elliptic genera implies the rigidities of the other two.

Proof. By the transformation formulas of theta-functions, we have

t 1
Fds<—’ __>=FD(t’T)'Tk
T T

Fpt,t+ 1)=F_p(t, 7).

and
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If X is spin F, (¢, 7) independent of ¢ the above formulas tell us that Fp(t, t) and
F_p(t, 7) are also independent of t. [

We like to call this corollary the “duality” property of elliptic genera.

Consider the first terms in the g-expansions of F,_(t, t) and Fp(t, 7) which is the
Lefschetz number of d, and D respectively. Then the above corollary means that d;
and D are also “dual” to each other.

The general fixed point case of this corollary can also be proved in this way. We
will give the details in a separate paper in which we will study the elliptic genera
twisted by general vector bundles and elliptic genera on complex manifolds. In that
paper we will relate all of the properties of the elliptic genera to the geometry of
elliptic modular surfaces. The theta-function expressions of the elliptic genera will
play important role in that paper.
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Communicated by S.-T. Yau

Note added in proof. After the author has submitted this paper, he was able to give a simple proof
of the written rigidity theorems by using theta-functions. The same method can be used to prove
more general rigidity theorems and to construct new elliptic genera, especially elliptic genera of
level 1.








