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Abstract. The purpose of this paper is to analyze statistical properties of disconti-
nuities of solutions of the inviscid Burgers equation having a typical realization b(y)
of the Brownian motion as an initial datum. This case was proposed and studied
numerically in the companion paper by She, Aurell and Frisch. The description of the
statistics is given in terms of the behavior of the convex hull of the random process

y

w(y) = J (b(η) + η) dη. The Hausdorff dimension of the closed set of those y where
o

the convex hull coincides with w is also studied.

1. General Properties of Solutions
of the One-dimensional Inviscid Burgers Equation

Burgers equation is one of the most popular non-linear equations which appears in
many concrete physical problems. In this paper we study some properties of solutions
of the inviscid Burgers equation having as initial velocity a typical realization of
the Brownian motion (as a function of the space variable). This case was proposed
in a companion paper by She, Aurell, and Frisch [1] where one can find physical
motivations for this case as well as many qualitative arguments and numerical results.

We start with the geometric description of the process of construction of solutions
to the inviscid Burgers equation. This theory was already exposed in the pioneering
works of Hopf (see [2]) and Burgers (see [3]). We present here a slightly different
approach compared with [2] and [3]. The companion paper [1] also begins with this
analysis. The notations in the present paper and in [1] are slightly different but it is
easy to establish the correspondence between them.

We recall that the one-dimensional Burgers equation without force has the form

dtu + udxu = μd2

xu, —oo < x < oo .
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Here μ > 0 is the viscosity. The Hopf-Cole substitution u — —2μ -^— (see [1, 3])
shows that φ satisfies the heat equation ^

dtφ = μd2

xφ.

Using this fact one can write down for the solution u = uμ(x,t) the explicit expression

σo χ _ y ( γ
J dy——exp< - —F(x,y,t)

/ JΛ ~°° τ i zμ

- o o

dyexp< - —F(x,y,f)

Here F(x, y, t) = — h / u(η; 0) dη and u(η; 0) is the initial datum. The formula
2t 0

y

(1) works if / u(η; 0) dη = o(y2) as y —> ±oo. The expression of (1) appears often for
o

correlation function in statistical mechanics. In fact the theory of Burgers equation is
closely connected with the theory analysing statistical properties of directed polymers.

Hopf in [2] and Burgers in [3] discussed the behavior of solutions in uμ(x; t) under
the limit transition μ —> 0. In what follows we study the solutions uμ(x; t) for a fixed
value of t, say t = 1. Therefore we often omit t in our future notations. Consider

M(x) = min F(x, y, 1) = min h / u(η; 0) dη
y y 2 J

L o

χ2 . ί }• 1
— — + min < / l/uta 0) + 77] dη — XT/ > .

2 y {J J
^ 0 '

2/

Denote w(y) = J[u(η;0) + η]dη. The function ^ ( x ) = miny{w(y) — xy} is the
0

Legendre transform of w. We need the simplest properties of this transform. It will
be applied below to cases where (̂77; 0) = 0 for η < 0 and u(η; 0) is continuous for

t
2

w. It is a convex function, and Cw < w. Then Cw is the largest function having the
last two properties.

There is also another way of describing Cw. Fix x and take a straight line having
the slope x, i.e. a line given on the (y, u>)-plane by the equation w = xy + c. Then
for every x one can find such co(x) = c0 that for all c < c0 the lines w = xy -j- c
do not intersect the graph of u> while for all c > c0 such intersections arise. For
c = c0 the line w = xy + c0 is tangent to the graph of u> at one or several points.
Put M(x) to be the set of those y where the line w — xy + c0 is tangent to the
graph of w. Introduce m^(x) = min{̂ / | y G M(x)}, m* = max{̂ / | y G M(x)}. If
m*(x) = m^{x) then C^ίy) = w(y) for 2/ = m^ίx) = m*(x). If m^Cx) < m*(x)

—00 < η < 00. Therefore u>(?/) = — for y < 0. Introduce the convex hull Cw(y) of
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then Cw(y) = xy + c0 for all m*{x) < m*(x). In other words, the graph Cw is a
convex curve consisting of straight intervals and a closed set lying outside them. The

derivative F(y) = — Cw(y) is in general a non-decreasing Cantor devil staircase
dy

type function which takes a constant value on each interval where Cw is linear. In
these terms the Legendre transform can be written in the form

Lw(X) = C0

Consider the function G(x) which is the inverse function to x = F(y). However it
is not a well-defined object because G(x) is multi-valued for those x where the set of
y where F(y) = x is an interval. Since we are interested in a geometric picture it is
more convenient to consider G(x) as a continuous curve on the plane which consists
of vertical segments for those values of x9 where G is discontinuous. Now we can
formulate the following theorem by Hopf (see [2]).

HopΓs Theorem. Let x be such that M(x) consists of one point y(x) = G(x). Then
the limit lim u (x; 1) = lim u (x) = uo(x) exists and uo(x) = x — G(x). If G(x) is

μ—»0 μ μ—»0 μ

an interval of positive length then there exist the limits

UQ(X) — lim uo(x') — x — m*(x),
xf-+—0

UQ(X) — lim uo(x') = x — ra* (x).
x'^+0

In both cases the limits are taken over such x' that G(xf) is single-valued.

We can interpret this result as follows. The function uo(x) is discontinuous for
those x where G(x) is multi-valued. At these points there exist the one-sided limits
of uo(x) equal to x — m*(x) for the left limit and x - m*(x) for the right limit.
This jump is interpreted as a shock and its size is equal to the length of the vertical
segment of G(x).

We shall use the following definition.

Definition 1. Cantor-type function F(y) is complete if the union of intervals where
F is constant is a set of full Lebesgue measure or, better to say, its complement has
Lebesgue measure zero.

Let us prove now the following lemma.

Lemma 1. If F is complete then uQ(x) is differentiate a.e. and — 7 — = 1 a.e.
ax

The proof is simple. Indeed, another way to express the completeness of F is to say

that the image under F~ι of Rι\ (countable set of x such that G(x) is multi-valued) is

a subset of R[ of the zeroth Lebesgue measure. Put for convenience G(x) = ra*(x) for

all x. Then lim = 0 for a.e. x with respect to the Lebesgue measure.
x'->x X' - X

Since uo(x) = x — G(x) for all x except the above mentioned countable set this gives
the desired result.

Now we formulate the final conclusions of this section. The limit uo(x) is a
discontinuous function whose discontinuities take place for those x where the equality
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x = F(y) holds for a segment on the y-axis of positive length. Outside this countable
set uo(x) — x — G(x). The discontinuities of uo(x) are always negative, i.e. the limits
from the left are bigger than the limits from the right. If the devil's stair-case F(y)

d
is complete then uo(x) is differentiable a.e. and — uo(x) = 1.

(XX

2. The Case Studied in the Companion paper [1]

The motivation for this paper was to explain some numerical results obtained by She,
Aurell, and Frisch [1]. Among many cases considered by these authors there was the
case of u(x; 0) = b(x), where b(x) is a Brownian trajectory for x > 0 and u(x; 0) == 0
for x < 0. According to the theory described in Sect. 1 we have to construct the

y2 y

random process w(y), where w(y) = — for y < 0 and w(y) = f(b(η) + η) dη for
2 o

y > 0 and to study its convex hull Cw which is a non-linear and non-local functional
y2

of b. It is clear that for some y0 = yo(b) < 0 the convex hull Cw coincides with —
for y < y0. Therefore F(y) — y for y < y0 and for such y the function F is not a
devil's stair-case.
Theorem 1. With probability 1 the devil's stair-case x = F(y) is complete on the
semiline y > 0.

Proof. Fix y and consider the tangent line Γy to the graph of w(y) at y — y given by
the equation w = w(y) + (y — y) (b(y) + y). We shall say that y is a special point for
b = {b(y)} if one can find a neighborhood U of y depending on b and such that in
this neighborhood the graph of w lies above Γ-, i.e. if

w(y) > w(y) + (y- y)(b(y) + y), y eU.

We shall show that for any y the probability that it is a special point is equal to zero.
Let us derive from this statement the assertion of the theorem.

Fix Y > 0 and consider the probability space (C y , i *y ,P) x ([0,1^],^,/) =
( Ω , ^ , P). Here Cγ is the space of continuous functions defined on the segment
[0, Y], equal to zero at y — 0. &y is the Borel σ-algebra of the space Cγ, P is the
standard Wiener measure defined on βy. Further 3? is the Borel σ-algebra of the
segment [0, Y] and I is the normed length. Introduce the subset i c ί ] consisting
of such pairs (6, y) that y is a special point for b. It is easy to see that A e f . The
above mentioned statement implies

Y

P(A) = / dl(y) P{y is a special point for b} = 0,

o

and by Fubini's theorem

0 = P(A) = / dPφ) l({y I y is a special point for b})
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which gives l({y \ y is a special point for b}) = 0 for a.e. b.
In order to prove the main statement we shall show that the probability that for

some a = a(b) > 0 and all x, 0 < x < a,

y+x

w(y + x)- w(y) = / (b(η) + η)dη> φ(y) + y)x

y

is zero. Rewrite the last inequality in the form

> 0, 0 < x < α,

where b{(η) = b{η + y) — b(y). It is clear that b{(η) has the same distribution as b(η).
Put b2(η) = bλ(η) + η. Girsanov's theorem (see [4]) says that the probability measure
corresponding to the process b2(η) on any finite interval of η is equivalent tot he
Wiener measure.

Denote by P+(P_) the probability with respect to the Wiener measure that there

exists aλ = aλφ) > 0 such that f* b(η)dη > 0 (< 0) for all x, 0 < x < ax{b). By
symmetry, P + = P_. Remark now that the event whose probability we study belongs
to the σ-algebra depending on the behaviour of the process in one point and therefore
by the "0 — 1" law can take only the values 1 or 0. Since in our case P+ = P_ and
P + + P_ < 1 it can take only the zeroth value. Due to the absolute continuity of the
measure corresponding to b2 to the Wiener measure, this probability for b2(rj) is also
zero. Q.E.D.

Remark. The proof given above was shown to me by M. Yor (private communication).
My original proof was more complicated.

Return now to the function F and introduce the closed set Sφ) of all y > 0 lying
outside the union of intervals where F is constant. In other words, Sφ) consists of
such y e Sφ) that the tangent line w = φ(y) + y)(y — y) + w(y) intersects the graph

y

of the function w(y) = fφ(η) + η) dη only at the point (y, w(y)). In the next sections
o

we study the fractal properties of Sφ).
The main result of our studies is the following theorem.

Main Theorem. With probability 1 the Hausdorff dimension of Sφ) is equal to i .

The proof of this theorem is based upon the estimations of probabilities of small
fragments of Cw which we derive in the next section.

3. Estimations of Probabilities of Small Fragments of Cw

Consider on the plane (y,w) two vertical lines y = α1 ? y = α2, 0 < ax < α2,

and two strips Πγ = {(y,w)\ \ y - ax |< δx(a2 - ax)}, Δ2 = {(y,w)\ \ y - a2 |<

δ2(a2 — αj)}. In what follows a2 — ax will tend to zero while all δj will remain fixed



606 Ya. G. Sinai

but small. Take also a straight line Γ given by the equation w = βy + βx — l(y) and
such that the point (0,0) lies above Γ. Introduce the parallelograms

Πx = {(y,w)\ \y-ax\< δx(a2 - ax), \w - l(y)\ < S3(a2

Π2 = {(y,w)\ \y - a2\ < δ2(a2 - a{), \w - l(y)\ < δ3(a2

We need also the segments

Γ0 =

Γ0 1 =

- α l ) < V < α2

2 - α ^ < y < a{

= < (y, w) I α 2 — <52(α2 — ax) < y < a2 + δ2(a2 — ax),

the ray

Γ = {(y,w) I y < ax -δx(a2 -ax),w = /_(?/)}, l_(y) = β V + A

whose continuation passes through the points

and

and the ray

(α 2 - 5 2(α 2 - ax), l(a2 - δ2(a2 - aλ)) - δ3(a2 -

Γ+ = {(y, w)\y>a2 + δ2(a2 - ax), w = '+„. i ph-= β+y + β
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2δ1 (a 2- a i)
Fig. 1

282(82-^)

whose continuation passes through the points

(ax + δx(a2 - ax\ l((ax + δx(a2 - ax)) - δ3(a2 - ax)
3/2)

and

Let also

(a2 + 62{a2 — αj) ? l(a2 -f- 62(a2 — αj))) G I 1 .

iTf = {(2/,w)| |z/ — « Ί I < ^ ( α 2 - α ^ , -<S3(α2 - α ^ 3 / 2

Π2 =

All these segments, rays, parallelograms, strips are drawn in Fig. 1.

Lemma 2. Ifδx, δ2 < const then any straight line passing through a point inside iJ f

and through a point Π2 lies below Γ+ and Γ~.
Geometrically the statement of the lemma is obvious. Remark also that the whole

construction is defined as soon as Γ, Πv Π2 are given. Thus they can be considered
y

as determining parameters. Return now to the process w(y) = f(b(η) + η) dη and take
another small number δ4 > 0. 0
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Definition 2. A realization w has a right behavior (with respect to our construction)
if
A{) for

y < ax - δx(a2 — ax)

the graph of w lies above Γ_, i.e.

w(y) > l_(y) for all such y\

A2) l(ax — δx(a2 — ax)) < w(ax — δx(a2 — ax))

< l(ax — δx(a2 — ax)) + δ3(a2 — ax)
3^2;

β > w'(ax - δx(a2 - ax)) = b(ax - δx(a2 - ax)) + (ax - δx(a2 - ax))

moreover,
w'(ax -δx(a2 -ax)) < β~\

A3) for all ax — δx(a2 — ax) < y < ax + δx(a2 — ax)

w(y) > l(y) - δ3(a2 - axγ
/2\

and there is a non-empty subset of such y that

w(y) < l(y) - ^ ( α 2 - axγl2\

A4) l(ax + δx(a2 — ax)) < w(ax + δx(a2 — ax))

< l(ax + δx(a2 - ax)) + δ3(a2 - ax)
3/2;

A5) for all ax + δx(a2 — ax) < y < a2 — δ2(a2 — ax)

w(y) > l{y)\

A6) l(a2 — δ2(a2 — ax)) < w(a2 — δ2(a2 — ax))

< l(a2 - δ2(a2 - ax)) + δ3(a2 - axγ/2\

A7) for all a2 — δ2(a2 — ax) <y < α2 + ^( α 2 ~ aύ

w(y) > l(y) - δ3(a2 - axf
/2\

and there is a non-empty open set of such y that

A 8 ) l(a2 + <52(α2 — ax)) < w(a2 + <52(α2 — α 2 ) )

< l(a2 + <S2(α2 - ax)) + δ3(a2 - axγ
/2\

β < wf(a2 + <52(α2 - ax)) = b(a2 + ^ 2(α 2 - ax)) + (a2 + ^ 2(α 2 - ax))
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moreover,
w'(a2 + δ2(a2 - ax))> β+.

A9) for all y > a2-\- δ2(a2 ~ a\) m e graph of w lies above Γ+9 i.e.

w(y) > l+(y) for all such y.

Figure 2 shows the right behavior. Also one can easily see some symmetry in
the properties (A2)-(A9). The reasons for our scaling will become clear from further
estimations.

Theorem 2. Let U = U(Γ,Πι,Π2,δ4) be the event consisting of such b that w has
a right behavior (see Definition 2). Then for any b £ U the graph of' Cw contains an
interval which has endpoints inside Πι and Π2.

a2

Fig. 2

Proof is simple. Consider the straight line Γβ given by the equation w = βy + c
for c < 0, \c\ is large, such that Γβ does not intersect the graph of w. Start steadily
to increase c. Then there will appear such c that for all c < c there are no such
intersections and c is the upper bound of c having this property. The straight UneΓβ δ

is tangent to the graph of w at one or several points. If among these points there are
points inside Πx as well as inside Π2 then our statement is proven.



610 Ya. G.Sinai

Suppose that all common points of the graph w and Γβjδ lie inside Πl9 the case

of points inside Π2 is considered in the same way. For β' > β sufficiently close to β

take the analogous line Γβ^-Cφf). Then all common points of w and Ίβ',c(β') n e inside

Πx. One can find β > β such that for all β\ β < β' < β we shall have the same

property while for β the straight line Γβ^φ^ will have common points inside Πι and

outside Πx. From the right behavior (A4)-(A6) it follows easily that these points lie

inside i7j~ and Π2 .

Lemma 1 and (A1)-(A9) imply that there are no common points of w and Γβ c ( ^

outside the strip ax — δx(a2 — ax) < y < a2 + δ2(a2 — ax), Q.E.D.

One of our main estimations is given in the following theorem.

Theorem 3. Let δj} 1 < j < 4, be sufficiently small, and ax,β be fixed. Then for all

sufficiently small a2 — ax the probability (with respect to the Wiener measure)

where F(δι,δ2,δ3)δ4,aι) is a positive constant and Q(5 3,ί 4 ?/?,/3 1,α l ία 2) is the
probability that

b(a{ ~ δx(a2 - a{)) G (-(a{ - δx(a2 - ax))) - δ4(a2 - aγ)
ι/2;

( - (ax - 6x(a2 - aλ)) + δ4(a2 - aλγ
/2)

w(ax - δx(a2 - ax)) G (l(ax - δx(a2 - ax))) - <53(α2 - axγ
12

l(ax - δx(a2 - ax)) + <S3(α2 - ax)
3/2) .

It is clear that for any compact set of values of β,βx the probability Q is

proportional to (α2 — ax)
2 δ3 δ4.

Proof Denote by z1,z2, z3iz4 the values of b(ax — δx(a2 — ax)), w(ax - δx(a2 — ax)),
b(a2 + δ2(a2 — ax)), w(a2 + δ2(a2 — ax)) respectively, and introduce also their
dimensionless values through the rescaling

z2 = l(ax — δx(a2 — ax)) + Z2(α2 — ax

z4 = l(a2 + δ2(a2 - ax)) + Z4(α2 - ax)
3/2 .

In the case of the right behavior, i.e. b G U, we have 0 < Zx < δ4, —δ3 < Z2 < δ3,
0 < Z3 < <54, — δ3 < Z4 < δ3. We need also some rescaling of y, i.e. we put
y = ax + (α2 - ax)Y.

Using the fact that the pair (b(y), w(y)) is a two-dimensional Markov process we
can write

P(U) = / dzx dz2 dz3 dz4 p(0,0; zx, z2\ ax — δx(a2 — ax)) p(zx, z2\ z3\ z4,
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ax - δx(a2 - ax), a2 + δ2(a2 - ax))

• P(AX I b(aλ - δx(a2 - ax)) = zx,w(ax - δx(a2 - ax)) = z2))

• P{A3,A4,A5,A6,AΊ I b(aλ - δx(a2 - ax)) = zu

w(ax — δx(a2 — ax) = z2 ,

b(a2 + δ2(a2 - ax)) = z3, w(a2 + δ2(a2 - aγ)) = z4}

• P{A9 I b(a2 + δ2(a2 - ax)) = z3,w(a2 + δ2(a2 - ax)) = z4} . (2)

The domain of integration is determined by A2 and As and was written down in terms
of the dimensionless parameters ZJ;p(uι,u2;vι,υ2;s,t) is the transition density of
the process (6, w) from the initial state ux, u2 at the moment of time s to the final state
vλ, v2 at the moment t, the written probabilities describe the conditional probabilities
of the corresponding properties Ay

We study the inner factor

P{A3, A4, A5, A6, AΊ I b(ax - δx(a2 - ax) = zx,

w(ax - δx(a2 -aι)) = z2, b(a2 + δ2(a2 - ax)) = z3,

w(a2 + δ2(a2 - ax)) = z4} .

Under the described rescaling and the rescaling of the Wiener process

6(2/) = b(ax - δx(a2 - ax)) + yja2 - axB(Y),

w(y) = w(ax - δx(a2 - ax)) + (α2 - ax)
3/2 W(y),

we see that the properties (A2)-(A7) are expressed only in terms of the dimensionless
variables and the rescaled processes B, W. Therefore for all values of zv z2, z3, z4

under consideration

A4,A5,A6,AΊ I b(ax - δx(a2 - ax)) = zx,w(ax - δχ(a2 - ax)) = z2,

b(a2 + δ2(a2 - ax)) = z3,w(a2 + δ2(a2 - ax)) = z4}

The most crucial part is the estimation of

P{AX I b(ax - δx(a2 - ax)) = zx,w(ax - δx(a2 - ax) = z2}

and

P{A9 I b(a2 + δ2(a2 - ax)) = z3, w(a2 + δ2(a2 - ax) = z4} .

Consider first the last probability. Now it is better to change slightly the rescaling
and to consider

b(y) = z3 + (a2 - ax)
ι/2Bx(Y - (1 + δ2)),

w(y) = z4 + z3(y - (a2 + δ2(a2 - ax))) + (α2 - ax)
3^2Wx(Y - (1 + δ2)),

Y > 1 + δx .
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The probability distribution of the processes BX(Y), WX(Y) does not depend on
(α2 — ax). Write down the equation for Γ+(y) in the form l+(y) = βx

+ + β+y,
y > a2 + S2(cί2 — ax) Then the inequality

w(y)>β+ + β+y, y > ax + 62(a2 - ax) (3)

can be rewritten as follows. Since

y

w(y) = / (b(η) + η) dη

o

= w(a2 + δ2(a2 - ax))

+ b(a2 + δ2(a2 - ax)) - (y - (a2 + δ2(a2 - aλ)))

+ (α 2 + <52(α2 - α x)) (y - (α 2 + <52(α2 - ax)))

/ φ<"
0

i + α2 + δ 2 ( α 2 - α 1 ) ) ( y - ι

0

where 61(?7) = b(η + α2 + ^ 2(α 2 — α^) — z3, the inequality (3) takes the form

(α2 - ax) (y -

+ (α2 - aγγ/2 y (&2(i7) + (α2 - α^ 1 /^) dry > 0, (4)

for all Y such that Y > l+δ2, b2(η) = (α2 — α1)
1/2&1((α2 — G^)"1??) and has the same

distribution as the initial Brownian motion. Now we see that all terms in (4) are of
order (α2 — a^fl1. Indeed,

zA - (βt + β+(a2 + δ2(ax + α2))) - Z4(α2 - axγ'2 ,

2:3 + (α2 + <S2(α2 - ax) - β+) = z3+a2 + δ2(a2 - ax) - β + (β - β+)

= (α2 - axΫ'2(Z3 + C) = (a2 - ax)
xl2Zf ,

where C depends only on δx, δ2, δ3.
All these relations explain the reason for our rescaling. Thus we come to the

dimensionless expression of (3) and (4)

y-α+«52)

Z4 + Zψ(Y - (1 + δ2)) + ί (b2(η) + (α2 - ax)^2η) > 0. (5)
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It follows from (A8) that Zψ > 0, Z4 > 0. The probability (5) was in fact estimated

in [5] and it was shown in [5] that it is not less than const(α2 — &1)1/4 (one should

put σ = (α2 — ̂ i) 1 / 2 in Theorem 7 in [5] where const depends on δ , 1 < j < 4.

The estimation of the conditional probability of (A^, provided that

w(aι — δγ{a2 — «i), b(a{ — <51(α2 — aγ) are given, is done in a similar way (see

Theorem Ί' in [5]). It is also bounded from below by const (α2 - a^1/4.
The probability Q arises from the integration over z l 5 z2 in (2). Thus the theorem

is proven.

Remark. The function F(δl1 £2, <53, <54,04) shows in fact some dependence between δ4

and δx,δ2. The meaning of this dependence is quite clear. If <53 is relatively large
and we integrate in (2) over a domain of large values of z2 and z3 then it becomes
highly probable that w(y) intersects the low side of Πι or Π2 and thus the conditional
probability of the right behavior inside the interval aλ + δλ(a2 — aλ)9 a2 — δ2(a2 - ax)
becomes small.

Now we are going to obtain a similar estimate from above. Assume that as above
the strips Πι, Π2, the line Γ and two parallelograms Πι, Π2 are given (see Fig. 3).

w

Fig. 3

Remark that for the fixed ava2,Γ the determining parameters for the whole
construction are only <51,<S2,<S3. Also we have to assume that (0,0) lies above Γ.

Theorem 4. Suppose that aλ,a2,Γ are given. Then for all sufficiently small δv δ2, δ3

the probability P that Cw has a segment whose left endpoint belongs to Πι while the
right endpoint belongs to Π2 satisfies the inequality

(α2 - ax
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for all sufficiently small (α2 — ax). Here Fx(δx,δ2,δ3,ax,Γ) is a positive constant.

Proof. We use the same notation l(y) = βy + βx for the straight line Γ. Introduce

also the ray Γ+ passing through the points

(ax + δx(a2 — ax), l(ax + δx{a2 — ax)) + δ3(a2 — o>xΫ'2)

and
(α 2 - <52(α2 - ax), l(a2 - δ2(a2 - ax)) - δ3(a2 - ax)

3/2),

y >a2 - δ2(a2 - ax),

and the ray Γ~ passing through the points

(ax + δx(a2 — ax), l(ax + 6x(a2 — ax)) — δ3(a2 — ax) ' J

and
(α 2 — δ2(a2 — ax), l(a2 — δ2(a2 — ax)) + δ3(a2 — ax)

3^2) ,

y <ax +δx(a2 - ax).

Also Γo is the straight segment given by the equation

w = l(y) — δ3(a2 — ax)
3/2, ax + δx(a2 — ax) < y < a2 — δ2(a2 — ax).

Geometrically it is also clear that if Cw has a segment with the endpoints in Πx and
IΊ2 then w lies above Γ+ for y > a2 — δ2{a2 — ax), above Γ~ for y < ax + δx(a2 — ax)
and above Γo for ax + δx(a2 — ax) < y < a2 — <52(α2 — ax). Now we denote
z[,z2, zx ,z2,z3iZ

f

4,z3\z'l the values of b(ax — δx(a2 — ax)), w(ax — δx(a2 — ax)),
b(ax + δx(a2 — ax)), w(ax + δx(a2 — ax)), b(a2 — δ2(a2 — ax)), w(a2 — δ2(a2 — ax)),
b(a2 + δ2\a2 — ax)), w(a2 + δ2(a2 — ax)), respectively. Using again the Markov property
of the two-dimensional random process b(y), w(y) we can write

P < I p(0,0;z[,z'2\0,ax - δx(a2- ax)) p(z'x,z2;zx,z2;ax - δx(a2 - ax),

ax + δx(a2 — ax)) p(zx, z2; z3, z'A\ ax + δx(a2 - ax), a2 — ̂ 2(α 2 - ax))

• p(z3, z'A\ z", z'l\ a2 - δ2(a2 - ax), a2 + ^ 2 ( α 2 - ax))

Γχ\Zχ , /C2) ±2\4,χ , &2^ 4,χ , Δ2 ) JΓ3y/Cχ , Δ2 , 63^ Δ^)

• ^4(^3, 4 ' z"i Zh a2 - ^ ( α 2 " αl)> α2 + ^( α 2 "" α l))

Here Px(z'χiz2) is the conditional probability that w(y) lies above Γ for y <
ax — δx(a2 — ax) under the conditions b(ax — δx(a2 — ax)) — z[, w(ax — δx(a2 —
aχ)) = z'2\ P2(z[,z2,zx,z2) is the conditional probability that w(y) lies above the
corresponding part of Γo and intersects the upper side of Πx under the conditions
b(ax - δx(a2 - ax)) = z[9 w(ax - δx(a2 - ax)) = z2, b(ax + δx(a2 - ax)) = z",
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w(ax + δx(a2 — ax)) = z2, P3(z",z2,z3,z4) is the conditional probability that w(y)
lies above Γo for ax + δx(a2 — ax) < y < a2 — δ2(a2 — ax) under the conditions
b{ax + δx(a2 - ax)) = z", w(aι + δ2(a2 — ax)) = z2, b(a2 + δ2(a2 — ax)) = z3,
w(a2—δ2(a2—ax)) — z\\ PA ι s m e analogous conditional probability with respect to Π2

as P2\ P 5 is the conditional probability that w(y) lies above Γ + for y > a2+δ2(a2—ax)

under the conditions b(a2 + <52(α2 ~
 α i)) — ZΊ > w(β2 ~ a\)) — ZA-

Introduce again the dimensionless values:

z'2 = l(ax - δx{a2 - ax)) + Z'2{a2 - ax)^\

z[f = β + Z['(a2-axγ/\

4 = l(ax + δx(a2 - ax)) + Z'2\a2 - axγ'2,

z'^β + Z^-a^2,

z'i = l(a2 - δ2(a2 - aj) + Z'4(a2 - ax)
3/2,

zrl = β + ZΪ{a2-axγ/2,

z'l = l(a2 + δ2(a2 - ax)) + Z%(a2 - ax)
3/2 .

For Z'r Z'- = 0(1), 1 < j < 4, we can use the same arguments as above. In particular,

Px{zf

v z'2) = O(l) (α2 - axγ/\ P5(z'3, z\) = O(l) (α2 - ax)
ιlA (see Theorem 7, 7'

in [5] with σ = (a2- α^ 1 / 2 ) .
In order to estimate P2(z[, z^z^ z\) consider two cases:

In the first case, c < z2 < l(a1 — δx(a2 - ax)) + 2δ3(a2 — ax)
3/2, where c is the

vertical coordinate of the intersection Γ~ and y — ax — δx(a2 — ax). It is easy to
see that P2(z[,z'2\z",z2) decays faster than exponentially as a function of Z2. In the
second case z2 > l(ax - δx(a2 — ax)) + 2δ3(a2 — ax)

3/2 and the conditional probability
decays faster than exponentially also as a function Z[. More exact estimations of
the remainder terms which together with the estimate const (α2 — ax)

2δx δ3 of the
integral over z[, z2 lead to the statement of the theorem. They will be given in another
publication.

Theorem 5. Let two intervals be given Ix = {y : \y — ax\ < δx(a2 — ax)},
J2 = {y : \y — a2\ < 62(a2 — ax)}, ax > const, and the corresponding vertical
strips Δx = {(y,w) \ y e I2}, Δ2 = {(y,w) | y G I2}. Then the probability P
that Cw has a segment whose endpoints lie inside Δx and Δ2 respectively satisfies the
inequalities

where F3, F4 are positive constants.

Proof. The estimation from below follows easily from Theorem 3 by summation
over parallelograms 771, Π2. In order to get the estimation from above cover the
vertical line passing through ax by equal intervals Uj of the length δ3(a2 — ax)

3^2
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and cover the axis of angles by equal intervals Φs of the length 64(a2 — α^ 1 / 2 . In
both cases the coverings are chosen so that each point is covered by at most two
elements of the covering. Having the centers u- of tf- and β3 of Φs we can construct
the corresponding parallelograms Π1,Π2. If Cw has a segment with the endpoints
inside Δx and Δ2 then these points lie inside at least one pair ΠX,Π2 if δ3 and δ4

are sufficiently small and δ4 is smaller than δ3, i.e. δ4 <C δ3.

The estimation of P follows from the estimation of Theorem 4 by summation over
j and s.

We use the results of Theorem 3-5 in the next section for the estimation of the
Hausdorff dimension of S(b). However they are of more general importance because
they describe some statistical properties of small shocks in solutions of the Burgers
equation. One can find in [1] numerical results which are in a perfect agreement with
the estimations of Theorem 4 and 5.

4. The Hausdorff Dimension of the Set S(b)

Take a realization
y

= /

its convex hull Cw and the closed set Sφ) of such y that the tangent line w =
φ(y) + y)(y — y) + w(y) intersects the graph of w(y) only at the point ?/, w(y). In this
section we study the Hausdorff dimension of Sφ) Π [α', α;/] for any segment [α;, α"],
0 < a' < a" < oo.

We begin with the estimation of the fractal dimension from above, which is usually
simpler. Our arguments are based upon the following lemma. Let S be a closed subset
of [af,af/], O = [a\a/f] \ S be its open complement. Assume that the Lebesgue
measure l(S) = 0 and O- are open connected components of O. Denote by Nk the

number of those Oj9 for which - ^ < l(Oό) < -^, k = 0,1,2, . . .

Lemma 3. If for some c, 0 < c < 1, and any δ > 0 the numbers Nk < 2fc(c+<5) for all
sufficiently large k, then the Hausdorff dimension d(S) < c.

Proof. Fix δ and take all sufficiently large k. We define ^ coverings of S in the

following way. Denote

where 0 ( / c ) = | J Oy The set 5 ( / c ) is the union of closed segments. Two

neighboring open components of each segment consisting of deleted segments O-

have lengths not less than —^. Cover each segment of £ ( f c ) by intervals of the length

T in such a way that each point is covered by at most two segments. Denote the
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intervals of our covering by U^\ Then for any cλ > c + δ,

(3 2 f c ) c i - 1

2 k

.7 = 1

The last term appears because we must take into account the lengths of parts of

belonging to 0{k\ Since 1{S) = 0,

Also

1 * - ^ , τ const

2& Δ^ 3 — 2k^~c~δ) '

This yields (see (6))

as fc —> oo. Therefore d(5) < cx and d(5) < c because δ is arbitrary. The Lemma is
proven.

Return to our set 5(6) Π [af,a/f]. Lemma 4 shows that in order to estimate its
Hausdorff dimension from above we have to estimate the numbers Nk.

Lemma 4. For any δ > 0 with probability 1,

for all sufficiently large k.

Corollary. With probability 1 the Hausdorff dimension d(S(b)Γ) [a1\a/f]) < | .

Corollary follows directly from Lemma 3 and 4.

Proof of Lemma 4. Fix k and choose a sufficiently large M. Decompose the segment

[a'', α"] onto equal segments T̂  of the length and consider the pairs T̂  , T̂

such that the distance between their centers is

p 1 M-\
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Let also Cj j be the event consisting of such Brownian trajectories 6(77), such Cw

has an interval whose endpoints have projections in V-χ and V- . If χ • (b) is the

indicator of the event CJιJ2 then

^3\32

It follows from Sect. 3 that the expectation Eχc. . < — — and thus

22

k

ENk < const M 2 2 2 .

From Chebyshev's inequality
k

P{Nk > 22(1+<5)} < constM2 2 " = constM2 2 " ^

Therefore for any δ > 0 the series

In view of the Borel-Cantelli lemma for a.e. 6 one can find fco(6) such that for all

k > ko(b) we shall have Nk < 2* (l+δ\ Q.E.D.

The estimation of the Hausdorff dimension from below is based upon Frostman's
lemma. For the convenience of a reader we give its formulation adapted to our case.

Frostman's lemma (see [6]). Assume that one can find a finite measure μ
concentrated on 5(6) Π [ar, a"] and such that for some t > 0,

dμ(y1)dμ(y2)

l2/i-2/2l*

Then the Hausdorff dimension d(S(b) Π [a', a"]) > t.
We need some extra notations. Let Okj be such components of O that

γk < KOkJ) < φr, •

Also Sjk) are closed components of S(k). Introduce the measure μk which is the

normed uniform measure on S(k). Then for some subsequence {kj} the measures

μk. converge weakly to a limit which we shall denote by μ. Our purpose now is to

show that for any t < \ the integral

' dμ(yι)dμ(y2

x-y\ι



Statistics of Shocks in Solutions of Inviscid Burgers Equation 619

Certainly it is sufficient to show that for any δ > 0

dμ(x)dμ(y)

II τ-y\ι

\x-y\>δ

where a constant A does not depend on <5. In our case

max diam(S'^ )) = p i —• 0 as i —» oo .
3 J

We shall show that

dμrn{x)dμrn(y)

5 , G 5

for all sufficiently large i (It needs some extra efforts to show that it is sufficient for
our purposes.) The last sum can be written in the following way:

p=\

ίί//
7/

\χ-y\t

Now we remark that different S^, S^ lying inside a segment S^ are separated form

each other by at least one interval O^~ι\ Therefore

. . const r rA\ /? \
\x — V\ > for x G *S , y G S •

— OV 3\ υ 32

and

i

j£} < const V 2pt S^iμίSf))2 . (8)

We shall need the following three statements which we shall formulate as separate
lemmas.

Lemma 5. For a.e. b and any δ > 0 one can find ko(b, δ) such that

for all k > koφ, δ).

Lemma 6. For a.e. b and any β > 0 one can find such io(6, β) that for all i > io(6, β)

the length of each S* is not more than ^)ι^ι~^\
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The next lemma gives a possibility to compare μk(S^) with the length l(S^).

Denote by Np(S^) the number of intervals Opk C 5 ^ , p > 1, and write

Np(Sf) = 22 . /(S'^ ))2 i/2(1+ε)7p(57

( i )), where ε > 0 will be chosen later.

Since O^f C SlP~1^ for some i and ΓLUC(P) C 5 ^ has measure zero we conclude
J p bk J

that for each p the length of the union over k of all Sk C Sj is equal to the sum

i 1

Σ y ^ 1(0 n i) < const l(S^) 22(1 + ε) V^ 2~ϊPι 7^ (Mi:>)
P 1 > P Q CS^ Pl>P

= const Z(^ι)) 2^<L+ε) 2" t . Σ 2 ~ ^ 7 P l ( S f ) .

From Lemma 5 it follows that

< const 2̂  V+f^ l(Sf) ^ 2 ^ ^ 7 p i ( 5 f ) .
Pl>P

Putting this inequality in (8) and using Lemmas 5 and 6 we get

i-p)

J« < constX)2«* 2 ^ + ^ ^ M f e ( 5 f )/(5f) ^ 2

< const Σ 2~(11^ Σ2tq •
V\>P q=ι

Choose β and ε so that

Then
i (Pi-P)

4?} < constVδq V 2 2 V^

Lemma 7. There exists such a constant B depending on ε such that for any p, px > p,
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From Lemma 7 it follows that

^ f λ const B•

Using Fatou's lemma we can find infinite subsequences {l3} and {p^} that

q=\ px>p

is finite. This gives a desired result.
The proofs of Lemmata 5, 6, 7 are straightforward but lengthy. They will be

published elsewhere.
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