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Abstract. We show that recently proposed generalized Chern-Simons action can
be identified with the field theory action of a topological point particle. We find the
crucial correspondence which makes it possible to derive the field theory actions
from a special version of the generalized Chern-Simons actions. We provide
arguments that the general coordinate invariance in the target space and the flat
connection condition as a topological field theory can be accommodated in a very
natural way. We propose series of new gauge invariant observables.

Topological field theories so far proposed can be mainly classified into three
classes: the standard Chern-Simons type, the action having a form of total
derivative, and the vanishing action with a specific gauge fixing like, flat connec-
tion, self-duality condition, etc. [1,2]. Here we propose a new type of topological
field theory. We start from a vanishing particle theory action and impose a particu-
lar gauge fixing and consider the corresponding field theory action, which turns out
to coincide with the generalized Chern-Simons actions derived in the previous
paper [3] which we refer to as paper I. The general coordinate invariance and the
topological nature of the actions are natural consequences of the formulations.
There have been several investigations to point out a particular connection be-
tween the three-dimensional Chern-Simons action and a particle mechanics [4]
and to clear up the various issues of the topological particle [5].

We first consider a point particle theory which is invariant under the following
transformation:

x"(τ)-*x"(τ) + α*(τ), (1)

where aμ(τ) is an arbitrary function of τ which parametrizes the world line of
a point particle moving in the ΛΓ-dimensional target space. An obvious candidate of
the action will be given by

S[1] - 0 , (2)

which is apparently invariant under the transformation (1) and thus has a vast
corresponding symmetry. As a gauge fixing condition we take

xμ(τ) = 0 , (3)
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where the dot denotes a derivative with respect to τ. The global symmetry
corresponding to τ-independent mode of xμ(τ) which we denote xμ is still left. Then
the residual transformation corresponds to the standard general coordinate trans-
formation

xμ -> xμ + afμ(x) . (4)

According to the gauge fixing condition (3) we can construct BRST invariant
gauge fixed action

S[

B

ί]=-$dτδB{ημ(τ)xμ(τ)}

= $dτ{pμ(τ)xμ(τ) + η μ ( τ ) θ μ ( τ ) } , (5)

where θμ(τ\ ημ(τ) and pμ(τ) are ghost, anti-ghost and auxiliary fields respectively.
The corresponding BRST transformation is given by

δBx
μ(τ) = θμ(τ\ δBpμ(τ) = 0 ,

Q, δBημ(τ)=-pμ(τ)9 (6)

where δB is BRST operator. The equations of motion given by the action (5) require
that only the τ-independent modes xμ, θμ, ημ, pμ for xμ(τ\ θμ(τ\ ημ(τ)9 pμ(τ) are
dynamical parameters. Then the first quantization of the equal-time commutator
leads to

{θ*9ηv} = iδ<:9 (7)

where pμ can be identified with — idμ. The BRST charge is then given by

QB = iθμpμ = θμdμ , (8)

where the nilpotency of the BRST charge is obvious. We note that the gauge fixed
action SB

i] is reparametrization invariant with respect to τ even after the gauge
fixing (3).

We now construct point particle field theory actions. In constructing field
theory actions, there are some freedoms for the characteristics of actions. We
consider a bosonic particle field Φ(x, θ) and a fermionic particle field Ψ(x9 θ\ which
are functionals of the coordinate xμ and the ghost coordinate θμ. We introduce
a certain gauge symmetry in such a way that the particle fields are gauge algebra
valued functionals, Φ = ΓαΦ

α, Ψ = TaΨ
a, where Ta is a generator of the gauge

algebra.
We then require that the field theory actions satisfy the gauge invariance and

BRST invariance and carry a quadratic kinetic term. As a gauge symmetry we
consider the following two types of gauge transformation:

δΨ = QBv + l Ψ 9 V ] , (9)

and

- {f,p} + [<M], (10)
where v(x, θ) and ρ(x, θ) are bosonic and fermionic gauge parameters, respectively.
The gauge transformation (9) is a standard one while the gauge transformation (10)
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is an unusual one in the sense that it includes the term {Φ, p}, which makes it
impossible to close the gauge algebra within the adjoint representation of Lie
algebra. We have to consider a gauge algebra which is closed under a commutator
and anticommutator. A specific example of the algebra is given by Clifford algebra
[6].

We find the following two types of particle field theory actions which satisfy the
above criteria:

SF = [_dχ-\ [rfθ]Tr ΨQBΨ + Ψ

p \
SB = J [ώc] [d0]Tr ί ΦQBΨ + ΦΨ2 - y Φ3 J , (11)

where [_dx~\ = dxl . . . dxN and [έ/θ] = dθN . . . dθ^and e2 = ±1. The trace is
taken with respect to the gauge algebra. The actions SF and SB are invariant under
the gauge transformations (9) and (10), respectively. The BRST invariance of the
actions in (11) is obvious because the BRST transformation (6) reproduces only the
total derivative terms, i.e., δBS

F = δBS
B = 0. The BRST invariance of the particle

field theory actions assures the remaining symmetry of the gauge fixing, the general
coordinate invariance.

We now decompose the gauge fields Ψ, Φ and gauge parameters v, p into
fermionic and bosonic counterparts

Ψ(x, θ) = A(x9 9} + ει

Φ(x9 θ) = -ε2ψ(x9 θ) +

v(x9 θ) = ά(x9 θ) +

p(x9 θ) = &(x9 θ) - s1 ε2a(x, θ) , (12)

where ψ(x, θ\ A(x, θ), ά(x, θ) and α(x, θ) have even number of θ while ι//(x, θ),
A(x9 θ\ a(x9 θ) and α(x, θ) have odd number of θ. ε l 5 ε2 = ±1 is related to the
"quaternion algebra" which will be defined later. To be explicit, the gauge fields are
decomposed by

A(x9 0) =

(13)

where ^^..^(x) denotes a bosonic p-rank tensor while ψ(^a..μp(x) denotes a fer-
mionic p-rank tensor. The gauge parameters, ά(x9 θ\ α(x, θ\ a(x9 θ) and α(x, θ), can
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be decomposed similarly. Note that

J ίdx] IdθW . . - θ*»Φ(x) = sgn(μι, ...9μN)$ \_dχ-]θ(x}

= $dxμί Λ . . . Λ dxμ»0(x). (14)

Substituting the relations of (12) into the actions in (11) and integrating the ghost
variables, we obtain the following actions, Sb

0 and S{ from SF, and Sb and S/ from
SB:

* = J Tr 4A(dA - i

A2-

(15)

where the ghost variable θμ is replaced by dxμ\ A = A(x9 dx)9 A = A(x9 dx\
ψ = \l/(x9 dx\ and ψ = ψ(x9 dx). Thus the scalar gauge fields have just turned into
antisymmetric tensor gauge fields through the replacement.

The pure bosonic part of the action S% with N = 3 is equivalent to the standard
three-dimensional Chern-Simons action, where A is one form. In general S% is an
arbitrary odd-dimensional action, includes gauge fermions, and carries overall
bosonic statistics which was already discussed in ref. [7]. The standard three-
dimensional Chern-Simons action is thus a special case of the more general action.
S{ is the fermionic counterpart of the odd-dimensional action S%.

Sb

e is an even-dimensional bosonic action while S/ is an odd-dimensional
fermionic action. These actions 8b

e and S/ in Eq. (15) are exactly the same actions
and thus have the same forms of gauge invariance as those we obtained from the
generalized Chern-Simons action in paper I where "quaternionic structure" played
a fundamental role in the derivation. Here is a natural question how these two
different formulations lead to the same actions. To answer this question we first
summarize the previous derivation briefly and show that we can find a unified
treatment to include the particle field theory derivation.

To construct a gauge invariant generalized Chern-Simons action, we need two
types of gauge fields and parameters λ^^Λ^ and λkeAk which carry suffices of
a gauge algebra and satisfy the following three conditions:

i) ΛlAl ~ Λ I , A^Ak ~ Ak, AkAk ~ Λ^9
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where the first equation means the following: if λl9λ'1eΛ1 then λ1λ'ίeAί and
similar for the other two equations.

ϋ) {β, λk} = Qλk, [β, λj - Qλl9 where Q2 = 0 and βeΛ k

iii) Tr(λJkλ1) = Tr(A1Ak).

We can then construct a generalized Chern-Simons action

(16)

which is invariant up to surface terms under the following gauge transformation:

δλk = Qλ1 + lλk,λΛ. (17)

We use the quaternionic representation for a gauge field and a parameter and
the derivative operator

j/ = ψι + i + A] 4 keΛ f c , β =]deAk ,

TT = αl 4 ai 4 άj 4 αke/U , (18)

where d = dxμdμ. As a special case we also consider the following combination:

k, Q = }dεAk ,

. (19)

Here the gauge fields and parameters are classified into four categories by the
"quaternion algebra": A, a (bosonic even form); A, a (bosonic odd form); ψ,
ά (fermionic even form); ψ, α (fermionic odd form). The algebra is defined by

12 = 1, i2 = ε!l, J2 = ε2l, k2 = -

i j = - j i = k, j k = - k j = - ε 2 i , ki = -ik = -εj , (20)

where (ε l9 ε2) = (-1, -1), (-1,4-1), (4 l , -1), (+!,+!). In the case
(εi, ε2) = (— 1, — 1), 1, i, j, k satisfy the algebra of quaternion while the rest of the
three cases correspond to gl(29 R) Lie algebra. We symbolically call these algebras
"quaternion algebra."

Gauge fields and/or parameters, λk9 λί9 λk, and λι have the same "quaternionic
structure" as j/, ̂  s/, and ϊ^, respectively. As long as 1, i, j, k satisfy the
quaternion algebra, we can show that the corresponding conditions i) and ii) and
the following relations are satisfied:

j , (21)

where we pick up 1th, kth, ith, and jth components in the trace, Tr1? Trk, Tri? and Tη,
respectively.

It is now straightforward to reproduce the actions in (15) by using the general
procedure to construct generalized Chern-Simons actions and the corresponding
gauge transformation (16) and (17). Substituting λk = s$ and λ1 = V into Eqs. (16)
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and (17), we directly obtain the generalized Chern-Simons actions: 8b

e (kth compon-
ent of the trace), S/ (1th component of the trace) and the corresponding gauge
transformation, which are the same as given in paper I. Substituting λk = stf_ and
A! = ΊT into Eqs. (16) and (17), we obtain S* (jth component of the trace), S/ (ίth

component of the trace) and the corresponding gauge transformation. We have
thus obtained all combinations of dimensions and statistics.

We now consider how to derive the particle field theory action following to the
general procedure using the quaternion representation. First we find the following
crucial correspondence:

x, θ) -» — v — i^A ( χ > j~rτ <

/ k \
κ,θ)-+iAlx9—dx\9

\ 1*1 /

kA(x, θ) -> -y^Tki (x, — dx ) ,

(22)

and thus

θ^^, (23)

where |k| = •>/— ε^. We then classify the ^-dependent gauge fields and para-
meters as

θ) + i Ψ ( x , θ ) E Λ ί ,

-Tθ = lv(x9θ)eAe

1 , (24)

where we have the correspondence, j/θ(x, θ)-* —ε^ ^/ — εlε2£#(x, dx) for example.
We obtain the corresponding relations i) for Λθ and Λθ systems and

Trk(AM ) = Trk(4 λg), Tri(λ^? ) = Ίτ{(λl lθ

k) . (25)

It is important to observe that the BRST charge falls into the class Λθ

k and Λ%9 and
corresponds to the differential operator

A'k)-+Q=jd. (26)

A point particle field theory action SF in (11) can be obtained by substituting
Λ* = 3* = ̂ θ into Eq. (16) and taking the ith component of the trace. The action SB

in (1 1) can be obtained by substituting λk = λ{ — s/θ into Eq. (16) and taking the kth

component of the trace. The gauge transformations (9) and (10) can be obtained by
the corresponding substitutions into Eq. (17).
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In this way, we have derived the topological particle field theory actions directly
from the special versions of the generalized Chern-Simons action. Although the
derivation is straightforward in this way, we need the arguments of the topological
particle theory given in the beginning of this paper to understand the meanings of
the ^-representation.

The curvatures of the generalized gauge field stf and j/θ are, respectively, given
by

& = Q^ + J/2, ^e = Q^θ + (^θ)2 . (27)

The vanishing curvature conditions, 2F = 0 and ^θ = 0 are nothing but the
equations of motion of the generalized Chern-Simons actions.

We can now show the following relations which are familiar in the standard
gauge theory:

= ττi(QΩ2n.l)9 Tr^") = Tr j(βO2l l_1) ,

1 ) . (28)

It should be noted that the terms in the trace belong to Λl or Λ\ and the gauge
invariant sectors are the above mentioned sectors of the trace. We obtain the
similar relation for the pure fermionic case. In case n = 2, Ω3 and ΩΘ

3, respectively,
coincide with the generalized Chern-Simons action and the particle field theory
action. We now propose the series of gauge invariant "physical observables"

$ π - ι , (29)

where Ob

e and 0{ are bosonic even-dimensional and fermionic odd-dimensional
observables, respectively, while Oθ is the field theoretical counterpart depending on
the dimensions. We claim that these are new "observables" which can be found
easily through the current formulation. We can construct similar recursive rela-
tions for the gauge invariant "observables" as in refs. [1] and [8].

It is interesting to note how the general coordinate invariance is accommodated
in the current formulation. The general coordinate invariance of the generalized
Chern-Simons actions is naturally built in because the actions accompany only the
exterior derivative operators and thus possess no explicit metric dependence. On
the other hand those generalized Chern-Simons actions have been derived from
the topological particle field theory actions which are BRST invariant and thus
possess the general coordinate invariance as a residual transformation of the gauge
fixing for the vanishing action of a point particle. We may provide the following
heuristic arguments to understand the general coordinate invariance and topologi-
cal aspects of the formulations.

Let us first imagine a closed particle path in ΛΓ-dimensional target space which
is parametrized by the coordinate xμ(τ). The general coordinate invariance can be
understood as identifying homotopically equivalent closed loops in the base
manifold. Let us then consider a closed loop which can be deformed to a point by
a general coordinate transformation. The holonomy along the loop vanishes if we
move on the vanishing curvature surface, i.e., if the equations of motion are
satisfied. In other words, the non-trivial topological nature of the base manifold
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can be reflected to the non-trivial holonomy over the flat connection of a certain
gauge algebra. We thus claim that the topological nature is naturally built in
because the flat connection condition is nothing but the equations of motion of the
generalized Chern-Simons action and the particle field theory actions.

We claim that the topological particle field theory formulation together with
the generalized Chern-Simons formulation provide a new type of topological field
theory. Since the general coordinate invariance is very naturally accommodated,
we can actually show that even-dimensional topological gravity can be elegantly
treated by the current formulation [6].
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