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Abstract. The zeta function continuation method is applied to compute the
Casimir energy on spheres SN. Both odd and even dimensional spheres are studied.
For the appropriate conformally modified Laplacian A the Casimir energy $ is
shown to be finite for all dimensions even though, generically, it should diverge in
odd dimensions due to the presence of a pole in the associated zeta function ζA(s).
The residue of this pole is computed and shown to vanish in our case. An explicit
analytic continuation of ζA(s) is constructed for all values of N. This enables us to
calculate $ exactly and we find that the Casimir energy vanishes in all even
dimensions. For odd dimensions δ is never zero but alternates in sign as N in-
creases through odd values. Some results are also derived for the Casimir energy of
other operators of Laplacian type.

1. Introduction

The treatment of relativistic quantum fields in curved spaces is a notoriously
difficult problem which has only yielded partial results to date. In particular the
evaluation of the energy momentum tensor for free fields has an involved and
somewhat chequered history (for a review see Birrell and Davies [1]). A parti-
cularly useful tool in this regard is the heat equation for an elliptic differential
operator P and the corresponding zeta function ζp(s) (Gilkey [2]). The usefulness of
the heat equation for the determination of effective action in quantum field theory
was emphasised in Hawking [3]. An explicit evaluation of the zeta function is only
possible on spaces with a high degree of symmetry and it is worthwhile examining
such situations in detail in the hope of obtaining insights into its more general
properties. For example the zeta function regularisation method was used by
Dowker and Banach [4] for an evaluation of the Casimir energy on S3.

In this paper the zeta function will be explicitly evaluated at the particular value
of its argument s = — 1/2 and some of its properties will be examined for a class of
elliptic operators on N- dimensional spheres. The value s = — 1/2 is important
because it yields the Casimir energy of SN. We shall use the SO(N + 1) symmetric
metric on the sphere with radius α, and the elliptic operator considered will be the



140 B.P. Dolan and C. Nash

modified Laplace operator acting on massless scalar fields, φ,

Aφ = (-V2 + ξR)φ = 0 , (1.1)

where R = N(N — I)/a2 is the Ricci scalar and ξ a constant. It will be shown that
for even dimensional spheres zeta function regularisation can be used to obtain the
Casimir energy for any value of the parameter ξ. For the particular value

N

which corresponds to conformal coupling in N + 1 dimensions, the Casimir energy
vanishes. It is a maximum, as a function of ξ, if N = 2k + 2 and a minimum if
N = 2k for integral fe. For odd dimensional spheres zeta function regularisation
cannot in general be used to obtain the Casimir energy, due to the presence of
a pole at 5 = — 1/2. However, we shall show that for the particular choice (1.2) of
conformal coupling in N + 1 dimensions the residue of this pole vanishes giving
a finite value for the Casimir energy. This value alternates in sign being positive for
N = 2k + 3 and negative for N = 2k + 1.

It will also be shown that, if the zeta function regularisation method can be used
at all to obtain the Casimir energy on SN, then it is necessary that the trace anomaly
of the energy-momentum tensor in a related N + 1 dimensional Euclidean signa-
ture space-time, with topology RxSN, must also vanish. This will allow us to
evaluate the entire regularised energy-momentum in the N + 1 dimensional space-
time. In particular, we shall show that the regularised energy-momentum tensor
vanishes if N + 1 is odd and the conformal coupling (1.2) is used. The special
properties of the value (1.2) for ξ are related to the fact that the eigenvalues of the
operator (1.1) are perfect squares for this value and only for this value.

The layout of the paper will be as follows. In Sect. 2 we give a brief review of the
zeta function and the heat equation, and its use in calculating Casimir energies. We
also derive the condition that the trace anomaly must vanish in N + 1 dimensions
in order that the zeta function regularisation technique be applicable for the
evaluation of the Casimir energy in N dimensions, and show how this allows the
entire energy-momentum tensor to be evaluated from a knowledge of the Casimir
energy.

In Sect. 3 we discuss odd dimensional spheres, and show that ξ is not arbitrary,
but zeta function regularisation only works for the operator (1.1) with discrete
values of ξ. Section 4 will then treat the case of even dimensional spheres, and it will
be proven that the Casimir energy, and hence the regularised energy-momentum
tensor, vanishes for the specific choice (1.2) of ξ. Section 5 discusses the situation
when ξ is not given by (1.2). Finally our concluding remarks are in Sect. 6.

2. The Zeta Function and the Heat Equation

We shall first briefly review some properties of the heat equation and the zeta
function for elliptic differential operators on a N- dimensional compact manifold
without boundary Jί with Riemannian metric g. Given such an operator P (e.g.
(1.1) above) with normalised eigenfunctions φn(x) and positive eigenvalues λn,

Pφn(x) = λnφn(x) , (2.1)
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the zeta functions for A is defined by

00 1

W s ) = Σ τ 7 (2-2)
n = 0 Λn

Provided the eigenvalues λn increase with n, this sum will converge for Re (5)
sufficiently large. For more general values of 5 analytic continuation is used to
define ζP(s); it then becomes a meromorphic function of s with only simple poles at
certain rational values of 5 as explained below.

ζA (s) is important for the calculation of Casimir energies on compact manifolds
which are space-like sections of N + 1 dimensional space time. Since the eigen-
values of the operator (1.1) are the possible energies squared of the quantum field,
λn = ωl and the Casimir energy, $, is the sum of the zero point energies of the
quantum field, we have

g = \ £ hωn = \hζΔ(-l/2}. (2.3)
L n = 0 Z

Of course this sum is formally infinite and must be regularised. There are various
methods of achieving this and analytic continuation of the zeta function is one such
method.

In order to gain more insight into the analytic structure of ζp(s) we introduce
the heat kernel, K(x, y; τ), defined by the differential equation

^K(x9y9τ) + P K ( x 9 y 9 τ ) = 09 (2.4)

where 0 ^ τ < oo, together with the boundary condition K(x, y\ 0) = δ(x, y).
(P acts only on x in Eq. (2.4). An explicit solution of (2.4) is given by

K(x9 y; τ) = £ exp[ - Aπτ] φn(x)φn(y). (2.5)
Λ = 0

It can be shown, DeWitt [5], that K(x, y; τ) has the asymptotic expansion for
small τ,

where σ(x9 y) is the geodesic distance between x and y and an(x9 y) are functions
which depend only on the Riemann tensor and its covariant derivatives on Jί. The
integrated heat kernel, Z(τ), is defined by

Z(τ) - J K(x, x; τ)^/gdNx , (2.7)

and has the asymptotic expansion

1 00

Z(t) = j4^p Σ 4.*" » (2-8)

where An = \M an(x, x)^/gdNx. The functions an(x, x) can be defined recursively in
n and are given up to n = 3 in Gilkey [2]. a4(x) are given in Amsterdamski et al.
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[10]; cf. also, in general, Avramidi [11, 12]. For future reference, the first three an

for elliptic operators of the type (1.1) are

*-(?-<)*•

«2 = ~ {RίjkιR
ίjkl ~ R,jRi} + 30(1 - 6ξ)2R2 + (3Qξ - 6)( V2)R } , (2.9)

where RίjM is the Riemann tensor on Jt and Rtj the Ricci tensor. An important
property of the an is that the numerical coefficients in (2.9) are independent of the
dimension of Jί. The importance of Z(τ) for the zeta function is that ζP(s) can be
expressed as a Mellin transform

ζf(s) = 1ίΓ ]τ'-1Z(τ)dτ. (2.10)
1 \s) o

Given this expression, it is easy to isolate the poles in ζp(s) since

ζP(s) = T^T } τ*-1 Z(τ)dτ + -±- ] τs^Z(τ)dτ . (2.11)
1 (s) o 1 (s) i

Due to the exponential fall off of Z(τ) for large τ, it is clear that the second term in
the above expression is perfectly finite as a function of complex s. Inserting the
asymptotic expansion (2.8) in (2.11) gives

part

Thus ζP(s) has a simple pole whenever s = N/2 — n for non-negative n, except at
s = 0 where any possible pole is cancelled by that of Γ(s). The residue of the pole is
given by

A"i2-' (2 13)
( '

(4πΓ2Γ(s)

Note that, for s = 0, the pole in Γ(s) means that the second term in (2.1 1) vanishes
and so

Thus a knowledge of AN/2 allows us to determine ζp(0) without any further
information.

Now, in order to determine the Casimir energy on Jί we must set s = — 1/2
and we have a pole with non-zero residue if AN + i Φ 0. If N is even then AN + 1 = 0
automatically and zeta function regularisation can always be used to determine the
Casimir energy on Jt. If N is odd, zeta function regularisation cannot be used
unless AN + i = 0, and this must be checked in each specific instance. The generic
presence of a pole at s = — £ when the dimension of space is odd is reflected in
other regularisation procedures. For instance, the regularised energy momentum
tensor on space-times with the topology of space being R3 x SN was calculated in



Zeta Function Continuation and Casimir Energy 143

Candelas and Weinberg [6] and Birmingham and Sen [7] and found to be finite
only if N had the correct parity.

These conditions for the successful implementation of the zeta function regular-
isation method can be related to the trace anomaly of the scalar field in N + 1
dimensions. Hawking [3] has shown that, in N + 1 space-time dimensions with
Euclidean signature, the energy-momentum tensor of conformally coupled quan-
tum fields develops a trace anomaly

T$ = U+1(0) , (2.15)

where the subscript N + 1 on A is to clarify the fact that the zeta function here is the
one appropriate to the elliptic operator for quantum fields in N + 1 space-time
dimensions (μ = 0, . . . , N). In particular suppose we have a massless scalar field,
in N + 1 dimensions with metric

xj (2.16)

on R x SN which obeys the equation

- V2 + ξR\φ = 0, (2.17)

(here gtj is the ί-independent SO(N + 1) symmetric metric1 on SN with
ίj = 1, . . . , N). Then the trace anomaly is

As mentioned earlier, the numerical coefficients in an(x, x) do not depend on N and
it is easily seen (from (2.9) with - V2 replaced with - d2/dt2 - V2 and noting that
Rμvpσ is independent of ί) that aί9 a2 and α3 are identical both for the metric g^ on
SN and for the metric (2.16) on RxSN. This is a special property of the trivial
product structure of the metric (2.16) and would not be true of a more general
metric. It persists for the higher an(x), n > 2. Hence we see that the condition
A j + ι = 0 for the pole at s = — i in the AT-dimensional zeta function on SN to

vanish is identical to the condition that the trace anomaly vanishes in N + 1
dimensions with the metric (2.16).

With this observation, the entire renormalised energy-momentum tensor can be
determined on R x SN. Let V be the volume of SN and p = δ/V be the Casimir
energy density. Then, since the trace anomaly vanishes and the spatial part of the
energy-momentum tensor must be SO(N + 1) symmetric, we must have

(2.19)

1 Strictly speaking one should use a finite segment of the real line, rather than R itself, in order to
have a compact N + 1 dimensional manifold, and invoke the heat equation on a manifold with
boundary, (Moss [8], McAvity and Osborn [9]). However the form of the metric (2.16) is so
simple that all the boundary terms vanish, either because the second fundamental form for the
boundary vanishes or because the opposite orientations of the two copies of SN at either end
cancel. Thus there is no need to introduce any boundary terms and we can use the whole real line
without ambiguity
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3. The Casimir Energy of Odd Dimensional Spheres

We now turn our attention to odd dimensional spheres N = 2p — 1. For odd
dimensional spheres, the residue of the pole in ζΔ(s) at s = — 1/2 is proportional to
the coefficient AP9 and we must demand that Ap = 0 in order that zeta function
regularisation yield a finite answer for the Casimir energy. Ap can be calculated
explicitly for low values of/?, using the formulae (2.9) and the explicit form for the
Riemann and Ricci tensors on SN in an orthonormal basis,

RW = jϊMi ~ SM RiJ = ~2(
N ~ l)*ϋ > (3 !)

and noting that Rijkι is covariantly constant.
For S3 we find from (2.9),

a2 = 6(1 - 6ξ)2 - (3.2)

Thus A2 = 0 if and only if ξ = 1/6, which is the value for conformal coupling in
four dimensions and the value which makes the eigenvalues of the elliptic operator
(1.1) into perfect squares.

For S5 the expression for α3 can be found in Gilkey [2] (it is α6 in Gilkey's
notation). We do not reproduce it here, but merely quote the result for the operator

(1.1),

(3.3)

Thus zeta function regularisation works for two values of ξ, ξ = 1/5 and ξ = 1/10.
The former is the value that gives conformal coupling in six dimensions.

For S Ί the expression for α4 can be found in Amsterdamski et al. [10] (it is bs in
their notation). Again we merely quote the result for the operator (1.1),

a4 = ̂ -(1728720ξ4 - 1152480£3 + 277144£2 - 28056£ + 981) . (3.4)

If we define x = 14£/3, since 3/14 is the value of ξ which gives conformal coupling
in eight dimensions, this simplifies to

α4 = ?Z (X _ l)2(405x2 - 450x + 109). (3.5)

This polynomial has four roots, and we find the critical values of ξ to be

(3.6)

Again, for our purposes, the value 3/14 is the most interesting.
To the authors' knowledge there is no explicit formula for a5 in the literature

(and even if there were, we would baulk at the calculation for S9), but clearly the
condition that the pole vanishes for SN will give a polynomial in ξ of order p and it
is tempting to conjecture that there will always be a root at the special value
ξ = (N — i)/4N which gives conformal coupling in N + 1 dimensions and simul-
taneously renders perfect squares for the eigenvalues of the elliptic operator. To
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prove this conjecture, we shall now abandon differential geometric techniques and
turn to a direct construction of the analytic continuation of the zeta function.

First of all let / denote the identity operator so that the operator A is of the form

A= -V2 + λI, where λ = ξR = -= - - . (3.7)
a2

For convenience we now set the radius a of the sphere to unity and we also
implement our "conformality condition" ξ = (N — i)/4N. Hence for λ we now
have

- l - ϋ . (3.8.

Next note that the ordinary Laplacian — V2 on SN has eigenvalues λk and
degeneracy Γk given by

, = 0,ί,2,.... (3.9)
K —

This means that the zeta function ζ^(s) is given by

00 Γ

where the reader will notice that we have completed the square in the denominator
on the right-hand side. The expression for the degeneracy must be made more
explicit: we have

N + k - 2^

N j

(k + N)(k + N - 1) . . . (k + 1) (k + N - 2)(k + N - 3 ) . . . (k + l)fe(fc - 1)-— _

{(k + N)(k + N - 1) - k(k - 1)}
N!

(k + N - 2) . . . (k + 1)
AΠ

2

(2N/c + N(N - 1)}

(fc + JV - 2). . . (Λ + l){/c + (N - l)/2} . (3.11)
(N-l)l

With this expression for the degeneracy we can write ζΔ(s) as

2 » (fc + AT - 2) . . . (k + l){fe + (N - 1)12}

^Δ^ ~~ (N - 1)1 ̂  {k + (N

2 « (/c + N - 2) . . . (k + 1)

(ΛΓ -
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Now since N is odd we write

N = 2m + 1

and obtain

2 ft + 2m - 1) . ft + 1) ~

Next we use the variable

k' = k + m (3.14)

so that

(fc + 2m - 1) . . . (k + 1) = (k' + m - l}(k' + m - 2) . . .

x(fc' + l)fc'(fc'- 1). . . ( fc '-m + 1)

m-l

= fc' Π {(k')2 ~ i2} (3.15)
i = l

Using this factorised expression we find that

2 - ΠΓ.V k2 - ί2

But since the product expression on the right-hand side of (3.15) is a polynomial in
k' we can expand it as (we also drop the prime)

"ff {fc2 - i2} = ΐ Ejk2J (3.17)
i= l j=0

for suitable coefficients Ej. This in turn allows us to write the zeta function as

(3 18'The final stage in the calculation of the Casimir energy is to peruse the right-hand
side of (3.18) and see that it is closely related to the classical Riemann zeta function
ζ(s) which we recall is defined by

C ( s ) = Σ i (3-19)
fe=l *

If we start the summation defining ζ(s) at m rather than at unity then we obtain
a function which we shall denote by ζm(s). Clearly we have

™ = Σ π andalso ζl(s) = ζ® (3 2°)
fc = m K

Using the definition of ζm(s) in (3.18) we find easily that
Λ m— 1

W*-^2). (3.21)
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But ζm(s) may easily be related to the classical zeta function since we can write

m — 1 ι 001 m — 1 i

f (s) = Σ 7ϊ + Σ τ. - Cm(s) = C(s) - Σ π (3-22)
fc=l /v fc = m /i fc=1 K,

Hence our completely explicit expression for ζA(s) is therefore

Λ m— 1 Γ m — 1 i "̂

Σ C(2S ~ 2j ~ 2) ~ Σ ^ (123)

and, since the Riemann zeta functions ζ(2s — 2j — 2) on the right-hand side all have
meromorphic analytic continuations, we have achieved our goal of constructing an
analytic continuation of ζA (s).

The poles of ζA(s) all come from the ζ(2s — 2j — 2) terms: the zeta function ζ(s)
has only one pole this being at s = 1 with residue 1. Thus the poles of ζA(s) are all
simple and occur at the values were

2s-2j-2=l j = 0, . . . , (m - 1)

=> s =j + 3/2, j = 0, . . . , (m - 1) recall N = 2m + 1

or s = N/2-n, n = 0, 1, . . . , (N/2 - 3/2). (3.24)

The pole locations listed in (3.24) above are in complete agreement with the general
theory of Sect. 2 which allows for poles at

s = N/2-n, n = 0,1,

However we note the vital point that in (3.24) there is no pole at 5 = — 1/2 (though
it is generically present) and thus the Casimir energy is finite as promised.

Passing to the Casimir energy itself means setting 5 = — 1/2 and, doing this, we
obtain

m-l

k = l

J m — 1 m — 1 m— 1 ~}

V F Π — ?/ — Vi — V F V k2j+3\ Π ?5Ϊi ) L ^M 4 J) L ^j L κ f V ^)
• L 7 = 0 7 = 0 k=l J

But the second term on the right-hand side of (3.25) vanishes for interchanging the
finite summations we have

m — 1 m — 1 m — 1 m — 1

Σ Z7 X""1 1 2 / + 3 X™1 \~* 17 / 21 + 3
J Z-ί Z-ί Z-i J

7 = 0 k=l k=l 7 = 0

- V k3 V F Ar2^'— Zj ^ Zj ^J^
k = l 7 = 0

m— 1 m — 1

= Σ k3 Π {k2-i2}, using Def. (3.17)
k = 1 ί=l

= 0, since one term in the product is always zero (3.26)

Thus for the Casimir energy we have the simple expression

h "Σ Ejζ( - 2j - 3), N = 2m + 1 . (3.27)
(2m)! ,to
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Before commenting on & for general (odd) values of N we give $ for a few
specific values of N. We find that

fc/240, N = 3

-31/Z/60480, N = 5
(3.28)

289 ft/604800, N = l

We note that the sign of δ alternates as N increases.
In fact we shall now prove that, for a general value of N — 2m + 1, the sign of

δ alternates as m increases. The proof follows from two simple facts:

(a) The signs in the sequence {£( - 3), ζ( — 5), . . .} alternate because ζ(s) has
simple zeroes at { — 2, — 4,. . . }.

(b) The signs in the sequence {E0, El9 . . . } alternate as is transparent from their
definition (3.17); the sequence will start with a positive or a negative sign
depending on the parity of m.

A moment's thought now shows that the terms Ejζ( — 2j — 3) of (3.27) are
(depending on the parity of m) either all negative or all positive. Thus we have
indeed proved the sign of δ alternates as m increases. In particular, in contrast to
what happens in even dimensions, δ is never zero. We now turn to the even
dimensional case.

4. The Casimir Energy of Even Dimensional Spheres

We can start with the expression (3.12) which is valid for even and odd dimensions
so that we have

r n _ 2 " (k + N - 2) . . . (k + 1)

^ - - 2 s ~ 1 ' ( }

With N = 2m this becomes

2 * (k + 2m - 2) . . . (k + 1)

- 2s~ 1 ' ( }Δ ~ (2m - 1)! ktΌ (k + m- l/2)2s~ 1 '

Now using a similar technique to that employed in odd dimensions we define

k = k + (m-l/2) (4.3)

_ 2 » (fc + (2m - 3)/2}{fe + (2m - 5)/2} . . . {k - (2m - 3)/2}

To deal with the product we define the coefficients D7 by writing

"Π {k2 - (2i - l)2/22} = "Σ Djk2j, (4.5)
ί=l .7 = 0
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and then we obtain

1 oo m-1 r\

V °J

DJ Σ -J—J ^ I 2s- 2ι- 1(2m - 1)! ;f0

2 -"-1

where the functions ζm ' (2s — 2/ — 1,1/2) have a similar definition to the functions
ζm(s): more precisely ζm(s, 1/2) is denned by

oo 1

(4.7)

The functions ζm(s, 1/2) are in turn simply related to the Hurwicz zeta function
ζ(s9 1/2) whose definition is just

00 1

^-fc ι/2) = C
After using these definitions the expression we obtain for ζA(s) is

9 m-l r m-l ι

-^- (49)

Now the Hurwicz zeta function ζ(s, 1/2) can be expressed in terms of the Riemann
zeta2 function by the equation

. (4.10)

The result of using this fact is the equality

m-l

This then is the analytic continuation of ζA(s) for even dimensions and we see that,
as guaranteed by the general theory for even dimensions, there is no pole at
s = — 1/2; passing to this value and supplying the factor h/2 we get the Casimir
energy which is given by

m-l ι

(2m-l)!^0

 J Γ i = ι

Some useful references on the Riemann zeta function are [13-15]
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But the second term on the right-hand side of (4.12) is zero in an analogous way to
the result of (3.26); we have

m— 1 m — 1 ι m — 1 m— 1ι m — 1 m— 1 i

Dj{(2i - l)/2}2'

m — 1 m— 1

- {(2;

= 0 , (4.13)

where of course we used (4.5). This means that

h m~1

~
0

: y - 2 ) (414)

But

ζ(s) = 0, s = -2, -4, -6 , . . . , (4.15)

and it follows immediately that

g = 0, for AT = 2m (4.16)

as claimed in the introduction.

5. The Casimir Energy for ξ Φ (TV - l)/4/V

Now we would like to turn to a matter alluded to in the introduction namely the
value of the parameter ξ. Unlike the odd dimensional case, in even dimensions the
parameter ξ can be varied without encountering a pole in the zeta function. This
means that we can consider the Casimir energy $ as a function of ξ. More precisely
we write

N = 2m. (5.1)

Thus far we have found that

(N - I)2

w h e n λ = - - — —L-, N = 2m . (5.2)

We shall now see that

dδ(λ)
dλ

- 0, N = 2m (5.3)

so that λ = (N — l)2/4 is a critical point. In fact as N increases this critical point
strictly alternates between being a maximum and a minimum. For the lowest value,
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N = 2 we have a maximum. The verification of this is a routine application of the
methods developed above; the key point is to realise that

i Λ\ ίc Λ\+ 1). (5.4
dλ

We can give the formula that results from this critical point calculation and
quote some actual values for specific N. For the second derivative we find that

_ h l V
= ̂ ~ ~22 (2m -1)! Adλ2

~ >>)• i=ι

and for various N this gives the table

- fiπ2/8, N = 2

= I + fiπ2/192, N = 4 . (5.6)
dλ2

This result about the criticality of £(λ) at the "conformal value" λ = (N - l)2/4
(means that we have now extended our knowledge about the Casimir energy to
a neighbourhood containing this special value. Denoting the size of such a neigh-
bourhood by ε we can summarise this in the statement

0, if λ = (N - l)2/4

• = I > 0, for 0 < μ - (N - 1)2/4| < ε and N = 2, 6, . . . . (5.7)

< 0, for 0 < μ - (N - 1)2/4| < ε and N = 4, 8, . . .

We can even move "further away" from the point λ = (N — l)2/4 and work out
the Casimir energy for λ = 0; this corresponds to the pure Laplacian case where
A = — V2. We have done this. However, since the eigenvalues are no longer
perfect squares, this requires a much more delicate treatment of the analytic
continuation. The continuation no longer takes such a compact form and is
expressed as a (convergent) infinite series. Fortunately this series can be bounded
both from above and below and this enables us to determine the sign of the Casimir
energy.

For example, if TV = 2 and λ = 0, the analytic continuation takes the form

Us) = Σ Bk(z)ζ(2z + fc - 2) + R(z), where s = - 1/2 + z. (5.8)
k = 0

In the above the Bk(z) are known expressions and are finite at the "Casimir energy
point" z = 0, #(0) is the infinite convergent series referred to above. If we evaluate
at z = 0 then we find that the Casimir energy obeys the bound

- 0.3226 ̂ <^(0)< -0.22734^ (5.9)
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so that <ί(0) is negative and this suggests that there are no zeroes of $(λ) between
0 and (N — l)2/4. We conjecture that this is so.

This more powerful continuation method is also applicable to the case of odd
dimensions where it should turn up a pole at s = — 1/2 in ζA(s) away from
λ = (N — l)2/4 This indeed happens and a formula for this residue is obtained:
the residue is, in fact, a polynomial in λ with a root at λ = (N — l)2/4. This latter
result is quite gratifying since it agrees exactly with what we calculated from the
differential-geometric heat equation formulae earlier, cf. for example, (3.3) and (3.4).

6. Conclusion

We have shown that zeta function regularisation can be successfully implemented
for the calculation of the Casimir energy of spin zero fields on both even and odd
dimensional spheres. This has been done by coupling the scalar curvature to the
fields with the parameter ξ. For odd dimensional spheres ξ must have discrete
values one of which is the special value (N — 1)/4JV, which results in the con-
formally coupled wave equation in N + 1 dimensions. For even dimensional
spheres any value of ξ can be used, though the Casimir energy vanishes for3

ξ = (N — 1)/4ΛΓ. In both cases ξ = (N — 1)/4ΛΓ is special, in that the eigenvalues of
the AT-dimensional elliptic operator are perfect squares and the trace anomaly of
the N + 1-dimensional theory vanish for this value only. For odd dimensional
spheres it is necessary that the trace anomaly in N + 1-dimensions vanishes in
order that the zeta function can be applied. Knowing the Casimir energy and the
trace anomaly allows the calculation of the complete energy-momentum tensor.

For conformal coupling in N + 1 dimensions the sign of the Casimir energy
alternates as N increases in the sequence —, 0, +,0, —, 0, +, 0, . . . for N = 1, 2,
3, . . . . In even dimensions we can vary ξ and conformal coupling gives an
extremum being a maximum for N = 2 mod 4 and a minimum for N = 0 mod 4.
This suggests stability (instability) of the theory of N — 0 (2) mod 4. For ξ = 0 upper
and lower bounds on the Casimir energy can be obtained for even N and it is
conjectured that it never vanishes between ξ = 0 and ξ = (N — ί)/4N.

Acknowledgement. We are grateful to J.S. Dowker for sending us a preprint with some similar
results.
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