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Abstract. We consider a Calabi-Yau compactification paradigm with three light
generations and an .R-symmetry. From a special form of the Tian-Yau manifold,
we also construct a new three-generation model with markedly different phenom-
enology. The complete spectrum of all light matter fields is obtained in a universal
way and moreover in a physically suitable basis, allowing a straightforward
analysis of all their couplings. Here we discuss all the renormalizable Yukawa
couplings. This computation can equally well be repeated for all compactification
models based on Calabi-Yau complete intersections in products of homogeneous
spaces.

1. Introduction

The main purpose of this article is to provide a comprehensive presentation of the
cohomology techniques of exact and spectral sequences (TESS for short) [1-4]
with the aid of which the complete light matter sector for a large class of Calabi-
Yau string compactifications can be computed. In principle, this includes all the
couplings and here we exemplify this by discussing the renormalizable terms; more
general results and especially non-renormalizable couplings are reported in [5].

In this article, we focus on a construction that features a discrete jR-symmetry.
The reason for this is twofold. Firstly, it has been argued recently [6] that the
^-symmetry in this model ensures the existence of a flat direction in the field space
which allows a deformation of the model in which the initial E6 gauge-symmetry is
broken to 50(10) or even SU(5). Here we show that, upon inclusion of all light
matter superfields, this deformation indeed is possible; a more complete analysis
will be given in ref. [5]. In addition, we find two distinct three-generation models
obtained following the Tian-Yau construction [7], one of which exhibits several
phenomenologically interesting effects. They differ in the discrete symmetries of the
interactions among the matter superfields.

* On leave of absence from the "Ruder Boskovίc" Institute, Zagreb, Croatia
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Our technique, TESS, is universally valid for any complex compact manifold
Jt (Calabi-Yau or not) embedded in a product of so-called flag-spaces

U(N)

by means of a system of homogeneous holomorphic polynomial constraints. For
immediate physics application and to avoid challenging the readers' patience with
overly complicated notation, we discuss a particular Calabi-Yau manifold con-
structed as the space of solutions to a system of three constraints (2.2) in P* x P^
[7]. Members of this deformation class have been used to construct possibly
realistic string compactification models [8-10] and our present study is also meant
to provide further physically interesting information.

All heterotic superstring models in 3 + 1 -dimensional spacetime with an "inter-
nal" Calabi-Yau space Jt contain chiral superfields which are massless at the
compactification scale Mc. They come in 1-1 correspondence with certain har-
monic forms on Jί. In addition to the moduli superfields and the universally
present superfield containing the dilaton and the axion, compactification gives rise
to chiral superfields (and clearly their antichiral CPT conjugates also) which stem
from the Es Yang-Mills supermultiplet and which we collectively label as "matter."
Up to E6 symmetry breaking effects, the matter superfields occur in 27s, 27*s and
Is of £6, corresponding respectively to ̂ -, ̂ f-, and End ̂ -valued (Dolbeault)
1 -forms on M.

The matter superfields and their couplings have been analyzed in much detail
for several particular models, but only in part. Often, and certainly in the present
case, the 27s can be represented faithfully by the popular technique of polynomial
deformations, with which the (273) couplings [11] can also be computed. TESS
consistently generalizes this [3].

For the Tian-Yau manifold [7], the 27*s can be parametrized and the (27*3)
Yukawa couplings computed using the geometry of certain exceptional lines [12].
This is also true of some 45 similar examples [13] and several more models
scattered in the literature. Often much can be learned merely from symmetry
considerations, for which a cunning use of the "fixed point" and "hyperplane"
theorems of Lefschetz will do the trick [9], TESS is in complete agreement with
these special techniques but is much more widely applicable.

Until recently, the Is have eluded analysis and only a lower bound on their
multiplicity was known [14]. In describing them, polynomial deformations are
notoriously incomplete [15, 16, 17] and the Lefschetz theorems are of no use since
End ̂  is a self-dual bundle. Again, TESS is effective but, for complete results, we
have to go beyond the description in ref. [3, 4, 15] and, as in ref. [16, 17], employ
the identification

Γ / ( l ) x t / ( n )

and also make extensive use of the U(n) tensor algebra.1

The main concrete result of this article is the parametrization of all 27s, 27 *s
and Is - on the same footing and moreover in a physically suitable basis. Hence, all

1 This ingenious technique is remembered as "advanced magic" in Cambridge, England, where it
was conceived by Michael Eastwood [2]; we are grateful to the Master for teaching us
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the (273), (27*3), (I3) and (27 27* 1) Yukawa and also many non-perturbative
couplings can be analyzed easily. We determine many of these merely by using
symmetries and use this to check our generalization of the Yukawa coupling
computation of ref. [11]; the complete determination of all couplings requires
further study however [5].

Before we proceed, a remark is in order. Ultimately, all of the matter superfields
are supposed to acquire realistic masses and this is clearly a model dependent issue.
However, many of the Is are expected to become massive in a model-independent
way, through the world sheet instanton effects [18] whence their mass is schemati-
cally

m ~ Mcexp{- MP1/MC} . (1.1)

One would expect the Compactification mass-scale Mc to be roughly of the order of
the Planck mass and the Is would appear phenomenologically irrelevant. How-
ever, due to the exponential, m is very sensitive to the ratio MP1/MC; even a small
gap of just one or two orders of magnitude between MP1 and Mc (which is expected
anyway, for several different reasons) can bring m into a phenomenologically
interesting range. Since the Yang-Mills charged matter superfield 27-27* pairs
couple directly to the Is, the latter must not be ignored. Moreover, they may have
a desirable phenomenological impact [19, 20].

Understanding that spectral sequences appear novel, hence possibly intimidat-
ing and to avoid cluttering the main part of the article, we have deferred most of the
technical details and some instructive sample computations to the appendices.
A review of the basic notation, the definition of the particular Calabi-Yau manifold
considered here and an introduction to some of the basics of TESS is however
collected in Sect. 2. The skilled reader will no doubt skip this section but the
majority will, we hope, find it useful.

In Sect. 3, we use TESS to parametrize the 27 and the 27* matter superfields
while the Is are parametrized in Sect. 4. A brief discussion of the two distinct
three-generation models spans Sect. 5. For future reference, we also discuss the
restrictions which the β-symmetry puts on the Yukawa couplings.

In Sect. 6, we relate the TESS parametrization of 27s to the polynomial
deformations of Ref. [11] (see also ref. [9, 21]) and discuss the computation of the
(273) Yukawa couplings. In Sect. 7, we use symmetries to determine most of the
(27*3) Yukawa couplings and then relate the TESS parametrization of 27*s to the
exceptional lines used in ref. [12, 13]. Using this correspondence, we evaluate all
these Yukawa couplings, providing that a suitable generalization of the (273)
coupling formula [11] applies to (27*3) too.

In Sect. 8, we use the advantage of the TESS parametrization: we can use
discrete symmetries to determine many of the (13) and the (27 27* 1) couplings.
We also note the relation to the computation of ref. [11], providing a universally
applicable generalization. Section 9 contains our concluding remarks and dis-
cussion.

2. The Manifold and the Technique

The family of Tian-Yau manifolds [7] is constructed as a family of embeddings in



60 P. Berglund, T. Hϋbsch and L. Parkes

by means of a system of three holomorphic homogeneous equations. In this article,
we discuss the particular choice

/(*) = (x1)3 + (x2)3 + (x3)3 + (x4)3 = 0 ,

0W = (/)3 + (y2)3 + (y3)3 + (y4)3 = o ,
h ( x 9 y ) = x1y1 + x2y2 + xV = 0 . (2.2)

By xί (yl) we denote the homogeneous coordinates of the first (second) IP3 factor.
By Proposition 2 of [22], the choice (2.2) yields a smooth manifold; for the sake of
completeness, we include the proof in Appendix A. Interestingly, this choice
appears to have been omitted in the classification of ref. [23]; in fact it possesses
symmetries that none of the models in that classification do.

Our objective is to find suitable representatives of the matter 27s, 27 *s and Is,
i.e., the corresponding elements of Hl(J{, S^\ Hl(Jί, ^/) and Hl(J{, End^).
We will express these in terms of readily available geometrical data on if. To this
end, we have to (1) relate the bundles ̂ , fff and End^ to bundles over HT, (2)
determine the required cohomology on Jt in terms of that on Uf and (3) find all
required cohomology on ̂  The actual computation then proceeds in reverse
order.

2.1. 2Γj( from Bundles over Hf. The first of these tasks is accomplished by using the
short exact sequence

0 - ̂ ^r-^rlur-' lur - > 0 , (2.3)

where

e> def e> fτ\ & fr\ & f) Λ\
0 = 0 / (±) Og φ Oh IX T)

Each hypersurface in the bundle δ$ (over iff) is defined by a homogeneous
polynomial of the degree of /, while δg and δh correspond similarly to polynomials
of the degree of g and h, respectively. \M denotes the restriction to Jt. We will also
use the dual of (2.3),

0 - +**\M-+S'f\M-9'Jl - »0 (2.5)

and sequences obtained by tensoring either of these with various bundles over W.
In general, a sequence of maps and spaces is exact if the kernel2 of every map is

the image of the preceding one. Indeed, ί embeds ̂  in ZΓ^ and annihilates only
Oe^ (to preserve the additive group structure of tangent vectors), j is the
projection transversal to Jt and annihilates all vectors in ̂  \M which are tangen-
tial to Jt - precisely the image of /. Being a projection,; covers all of S \M - precisely
what the right-most map annihilates. The exactness of the sequence (2.3) is equiva-
lent to the assertion that δ\M = {̂ r L/^} Note: 3#r\^ is the direct sum of ̂  and
δ \jf only differentiably, not holomorphically; any metric in which yM and δ \M are
orthogonal invariably fails to be hermitian.

The kernel of a map consists of all the elements which are annihilated by it
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It is a basic fact (p. 40 of Griffiths and Harris in ref. [1]) that a short exact
sequence such as (2.3) induces an accompanying long exact cohomology sequence

O v U 0 / Λ/ tfτ~ \ i TJ 0 /> H \<M,yjι) > n (

-̂  . . . (2.6)

and this is what we shall be using throughout.

2.2. Harmonic Forms on Jί from those on W. The second task is to obtain forms
on Jt from the cohomology on W. Let Θ^ and GM denote the (sheaves of)
holomorphic functions (scalars) on Of and M, respectively. The restriction

Q

(9^ -> ®w\jι = Gjt will prove to be of key importance.
$f is a line bundle over P3. This means that to every point xeP3, it associates

a CMike vector space, which varies holomorphically as x sweeps through P3.
Now, S'f is chosen to correspond to polynomials φ(abC)Xclxl}xc\ of the same type as
f ( x ) . Then, at any particular point in P3, the fibre of δf is generated by the
(C-number) value of such cubics, each of which simply corresponds to another
point in CMike fibre. The number of inequivalent cubics φ(abc)Xaχbxc (considering
now the xa as global coordinates over P3) is a related but different issue, telling the
dimension of the space of global holomorphic sections of £f. Because of this
relation, one says that the line bundle δf is generated by its sections and is hence
represented by totally symmetric covariant tensors such as φ(αbc).

The dual bundle, $*, is then formally represented by contravariant tensors,
φ(abc\ such that we have the natural contraction (scalar product)

<(/>|φ> =f φ(abc}φ(abc)£®w Let φ(abc^ y(*βyϊ and ηa* be general elements of <f*,

<ί*, and ff%, respectively.
Contracting <?* with the triple ξ = (/*, g+, /z*),3 we obtain, for λ, μ, veC,

. (2.7)

Thus, in the sequence

gτ-^Gr-^Gjt - .0, (2.8)

the map provided by contraction with ξ = (/*,#*, h+) covers all of Θ^ where
ξ =j= 0, i.e., at all points of (if — Jί\ Therefore, ρ vanishes there and so does QM. At
Jί c: Uf however, the triple of polynomials ξ vanishes and the map ξ is null,
whence ρ identifies Θ^ with Φ^ ^, the restriction of Θ-^ to M.

To complete this sequence to the left, note that the map ξ has a kernel. In fact,
all complex linear combinations of

0, - <φ\f>η*\ (0, - <iί|Λ>y* <γ\g>η*)

3 In this section, we use the star "*" in the sub- or superscript merely to remind the reader of the
position of the indices; it must not be confused with the symbol *, which denotes the dual
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in <?*, are annihilated by contraction with ξ; such triples span ker(<ί * -̂  #V). The
very same elements of S * are also obtained from

by mapping through ξ. To see this, note that Λ2^* is represented by linear
combinations of

(the antisymmetry of the wedge product, Λ , accounts for the alternating signs).
Then, for example,

0 φ*y* 0 \
I

0 0 0 /

Iterating this procedure, we obtain the Koszul complex, represented by the (sheaf-)
exact sequence

r\ . 3 & * £ Λ 2 & * £ β> * £ /n /n Λ /Λ i n\

This sequence relates holomorphic functions (scalars) on Jt (Θ^} to quantities
defined entirely on W\ the analogous will also be true if we tensor the whole
sequence with a vector bundle over Hf, such as 3~w or <^

However, unlike (2.3) which accompanied by (2.6), (2.10) is not accompanied by
an exact cohomology sequence. The derived cohomology groups can again be
arranged in analogy to (2.6)

(2.11)

but there is no analogue of δq. Instead, there will now be maps ("differentials" dt)
that act i + 1 steps to the right and ί steps up the chart. The "horizontal" maps,
such as in (2.6), are the i = 0 case thereof. From the action of these maps, the
cohomology in the right-most column is determined in terms of the cohomology
groups which appear in the lower left quadrant of (2.11).

In practice, one starts from (2.11), called the 0th level of the spectral sequence.
The action of the differentials d{ is then found, order by order in z, and one passes to
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cohomology quotients
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in the lower left quadrant of (2.11). It should be obvious that this sequence
of approximations converges for some i ̂  3; when i > 3, even for the entries
in the left-most column, the maps would point out of the lower left quadrant
of (2.11).

Now, contributions to Hq(Jί) consist only of rfrclosed (modulo drexact) forms,
for all i. In practice, we advance order by order in i cancelling out all pairs dtoc = β.
What remains, abuts to Hq(Jί) according to

(2.12)), V/c : "drclosed/drexact", Vi}

Appendix C provides more details. The collection of such contributions does
not form a direct sum in Hq(Jί) but this will be of little consequence for
our purposes; nevertheless, following ref. [2], we shall use the ' + ' symbol instead
oΓΘ'

The astute reader will have noticed that computations employing the long exact
cohomology sequences (2.6), and even more so the spectral sequences (2.11), rest
upon the ability to discern the action of several maps. This otherwise hopeless taks
is however straightforwardly accomplished using the coset representation of IP3

(2.1) and 17(4) and 17(3) tensor algebra. (More details can be found in Appendix B,
ref. [16] and ref. [2].)

2.3. A Quick Example. Before we engage in the computations of H1(^ί, %#\
Hl(Jt,&j?} and H l(Jί, End^), let us quickly examine the spectral sequence
accompanying the "bare" Koszul complex (2.10).

To begin with,, we rewrite (2.10) in the Young tableau notation described in
Appendix B:

0 0 0

0 0 0

1

4

4

3

3

0 0 0\ / I

o o o λ Λ i

o o o γ*( o
o o o λ Λ s
0 0 0 \/_V 3

o o o j V o

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

The compound Young-tableau notation which we use specifies the homogeneous
bundles over P3 x P3 as follows. The upper (lower) row corresponds to P3 (P3).
Reading each of these from left to right, we list the (7(1) charge and then the
number of boxes in the lower, middle and upper row of the corresponding U (3)
Young-tableau.

Using the "tic-tac-toe" algorithm (Appendix B), we find that the cohomology
on P3 x P3 vanishes for most of the bundles occurring in (2.13). In fact, there are
only two non-vanishing contributions and the 0th level of the spectral sequence



64 P. Berglund, T. Hϋbsch and L. Parkes

accompanying (2.13) is

/ I
tU

Λ3<?*

0

0

0

0

0

0
1 1 1 \ ,
1 1 ij

Λ2<ί*

0

0

0

0

0

p... -
0

s*

0

0

0

0

..o.. ••••••
"" 0

0

tfv

/ O 0 0 0\

\0 0 0 o)'"
0

0

.., o
0

0

0

QM

> H°(Jί)

Hl(Jt]

H2(Jt)

*• E^(Jί}

Ξ θ

Ξ θ

Ξ θ

It is easy to see that there can be no non-trivial differentials dk here. (Acting k + 1
steps to the right and k steps up, for every k = 0, . . . , 3, all dfc's have zero domain
or zero image.)

Using the relation (2.12), depicted in the above diagram by the dotted arrows,
and that H° «(Λr) = Hq(JΪ, ΘM\ we recover

Moreover,
0 0 0 0

0 0 0 0
is represented by complex scalars while

1 1 1 1

1 1 1 1

Now we recall the formula from ref. [11]

p γα / / Y ^ /7γc //vΛ Λ Λ ^abcd ^ HΛ/ li A' IΛ Λ,
Ω = Φ Φ Φ

(2.14)

— (2.15)
fffgfh f(χ)g(y)h(χ,y)

for the holomorphic (3, 0)-form, where Γf is a contour in P 3 x P 3 around the
hypersurface /(x) = 0, Γg around g(y) = 0 and Γh around /ι(x, y) = 0. As a tensor,
Ω is represented by its tensor coefficient εabcd εΛβγδ. (The three-fold contour integra-
tion is necessary to reduce the (6, 0)-form on P3 x P3 to a (3, 0)-form on Jt while
division by /(x), g(y) and /z(x, y) creates poles precisely at Jί, so that the integrals
are non-vanishing and are readily evaluated by residues.)

Comparing the relations (2.15) and (2.14), we see that the duality between the
holomorphic (3, 0)-form and the antiholomorphic (0, 3)-form is reflected in the
contravariancy of the two respective tensor coefficients,

ε F VS eabcd pizβγδ

A remark is in order here. One of the purposes of finding explicit tensor
representatives of the various cohomology groups is to obtain their transformation
properties under the symmetries of M. Typically, the action of these symmetries on

stems from their action on F 3 x F 3 . Now, a symmetry of x P3 will be
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a symmetry of Jί even if the defining polynomials /(x), g(y) and /z(x, y) are not left
invariant but change only by a multiplicative complex number. It would thus
appear that we would always need to find the complete integral representation
such as (2.15) for the various forms. Fortunately, this will not be necessary, by
virtue of the fact that the coordinates of the embedding space are defined only up to
overall scaling. We have that, for example,

π^x1, x2, x3, x4) = (ωx1, x2, x3, x4) ̂  (ω2x1, ωx2, ωx3, ωx4)

^ (x1, ω 2x 2,ω/ 1 9 9 9 "^ 9 d. \= (x , ω x , ω x , ω x ),

and either of the three equivalent actions can be used. For all the symmetries of the
model we consider here, one of these equivalent actions will leave /(x), g(y) and
h(x,y) invariant. With this in mind, it should be clear that the various forms are
indeed unambiguously represented merely by the tensor coefficients which we shall
list. The interested reader should have no problem establishing the complete
integral formula in each case.

Finally, we shall also use Serre duality

Hq(X, Ό* = HdίmX~q(X, ΊT* ® jfTx),

where Jfx

 d= det ?Γ£ is the canonical bundle of the manifold X. Since in our case

[16] and
- 1 - 1 - 1

- 1 - 1 - 1

abcd\*_ί—d —c —b —a

^ β y δ) =(-δ -y -β -α

taking the dual of the Serre duality formula and replacing Ί/~ with

1 1 1 1

1 1 1 1

' *, we obtain

(2.16)

3. Charged Matter

We first determine representatives for the 27s and the 27 *s, i.e., for elements of
H^(Jt,yM} and Hl(Jί,^\ Now, the former of these and H2(Jt, yM\ which is
dual Hl(Jί, 3~jH\ occur in the sequence (2.6) and are related thereby to the ZΓ^-
and <ί-valued cohomology on Jt. These, in turn, are determined using the spectral
sequences obtained from (2.13) when tensored, one by one, with each irreducible
component in

0 0 0

0 0 0

0 0

0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

(3.1)

For each of these five bundles, repeated use of the "tic-tac-toe" algorithm in
Appendix B allows one to obtain the 0th level of the accompanying spectral
sequence. Following then the spectral sequence algorithm in Appendix C, it is
straightforward to determine the cohomology on Jt> valued in the five bundles
in (3.1):
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Bundle

/ — 3
1

/ o
/
\-3

/ - I

V - 1

(-1
I o

/ 0/
V - i

0 0 0\

o o oy

0 0 0\

o o oy

0 0 0\

o o oy

0 0 1\

o o oy

0 0 0\

o o ι y

Non-vanishing cohomology on M

n Γ / O 0 0 0\
H°= cokl

L \ o o o o y

Λ Γ / o o o o\
H°= cokl

L \ o o o o y

n Γ / O 0 0 0\
H°= cokL \ o o o oy

^0 / - l O O l λ 1 5

H ~ V o o o o / !

0 / o o o o \ 1

H = V - ι o o ι y 1 5

1

 f / - 3 0 0 0 \ 2 0 Ί

i \ ° 0 ° ° / ι J

1

 g ( 0 0 0 0 \ 1 Ί

i \ - 3 o o o y 20 J
1

 h / - i o o oyi
i \ - l 0 0 0 / 4 J

/ O O O 1 \ 4

fll"Vιιnλ

/ I 1 1 IV
H1 = 1

V o o o ι / 4

j / -2 0 0 0\

V mi)

1 ( 1 l 1 l ]
" ~(-200θ)

H> ( 1 1 1 1 Y
" - l i i i i j ,

2 / i i i ιy
H = V n ι ι λ

10

1

1

10

The cokernel of a map A -4 β, denoted cok(ξ), is defined to be the quotient

Plugging these into the long exact sequence (2.6), we immediately find

as expected, since b2,3 = 0. The rest of the sequence does not break up this easily:

- 1 0 0 1

0000

0000

-1000

-3001

0000

000 0\/ j-ί 000

0000J\ V - 1 0 0 1

0001

-3000

cok 3

0 0 0 1

1 1 1 1

1 1 1 1

0000

1 1 1 1

1 1 1 1

-2000

1 1 1 1

1 1 1 1

-2000

(3.2)
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To save some space, we often stack Young tableaux instead of writing a direct sum.
It is the explicit information encoded in the Young tableaux which enables us to

determine the action of the maps j'0 and y\. The action of j\ is discerned from
considering

0 0 0 l \ _ j ^ / - 2 0 0 0

1 1 1 ί) V 1 1 1 1

With our choice of /αbc, this clearly assigns φa^^φ(aa^ a = 1,2, 3, 4, annihilating
none of the φa. The analogous is true of the "other half" of/Ί and we conclude that
jι has no kernel, whence the long exact sequence (3.2) breaks up so that its second
row becomes

Ό O O l λ / - 2 0 0 0'

1 1 1 1 / V 1 1 1 1
-0, 0-

Ί 1 1 1\ / 1 1 1 1

0 0 0 ί) V - 2 0 0 0

On the other hand, the cokernel of jl

-2 o o oy° / / o o o ιy i (ί i i i ιy / / i i i ιy
i i i i Λ lj\ι i i ι Λ i 6

Θ t v - 2 θ θ o ; 1 0 / ^ V o o o ι J 4 J 6

contributes to H2(Jί, ϋ) along with 2 I 1 from the fourth row. Since

H2(Jί, &#) is dual to Hl(Jί, 3~J) = H^Λ(Jί\ we can derive our parametrization
of the (1, Informs on Jt by taking duals. For example,

:ι
- 2 0 0 (A1 0 / / O 0 0 1 \ 4

1 1 1 l Λ \\\ 1 1 l j ι

1 1 3\ 1 0 _^/0 1 1 1

0 0 O / ! \ 0 0 0 0

The results are collected in Table 1.

Table 1. Contributions to Hγ(M, ^*) = H^Λ(M} and representatives

Contribution to cohomology Representatives (total of 14)

/ I 1 1 3 V ° / / O i l IV
ker >\ {εφ( ''.fahrεφ(ab) = 0}6 % {εq

V o o o o / i V O O O Q / !

/ r v r j r \ Λ \ l /

ker

O O O O λ 1 / 0 0 0 0 \ 1

@ {Λ, Jy}2 (Kahler forms on W3

X xPj)
O O O O / , V O O O O Λ y ' x y
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Since kerjΊ = 0, the first part of the long exact sequence (3.2) breaks off:

1 0 0 1

0000

0000

1 0 0 0

-3001

0000

-1000

- 1 0 0 1

0 0 0 1

-3000

Jo cok3
0 0 0 0

0 0 0 0

Consider again "half" of the action of j0:

-3 0 0 0

1 0 0 1

0000

0000

-1000

-1000

'j(abcλ

d}

No component of λa

b is annihilated by both /and h and since the analogous is true
of the "other half" of j0, kerjΌ = HQ(Jt,%«) vanishes. H1^,^) is then the
combined cokernel of 70.

Unlike the situation with H2(Jί,^\ this time there is an ambiguity. The
cokernel of the combined mapping y'0 =/+ g + h is parametrized by

Ψ(abc) = Ψ(abc) + θffabc + λ(a fbcd) ,

<Paβ = Ψaβ + θhkaβ + λa

bhbβ + Λ/Λ«α »

βγδ) (3.3)

We can use the three θ's and the two traceless matrices λa

b and λΛ

β to "gauge away"
a total of 33 components among the 20 + 16 + 20 in {φ(abc), φaβ, Φ(α/?y)} All
particular choices are equivalent and they lead to a variety of equivalent represen-
tatives for this cokernel; Table 2 lists one of them. Note that any two tensor
components which are equivalent representatives of the quotient (3.3) necessarily
transform identically under any symmetry of Jt. Indeed, this is a general feature of
all equivalence relations and follows from the covariance of the [/(n)-tensor
algebra. However, the opposite is not necessarily true, i.e. tensor components which
transform the same do not have to be equivalent.
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Table 2. Contributions to Hl(Jl, ^) « H2Λ(Jt) and representatives

Contribution to cohomology Representatives0 (total of 23)

- 1 0 0 1 \ 15

 f / - 3 0 0 0 \ 2 0 (φ(abc) ^ φabc + λ(a

dfbcd)}4 «

0 0 0 0 / - rX V 0 0 0 0 ) , {φ(123), φ(124),

/ O 0 0 0 \ 1

cok3
\ 0 0 0 0 / j

1/1 x - 1 0 0 0 λ 4

- 1 0 0

/ 0 0 0 0 \ 1 5 { ( / ) =(/) + >

- 1 0 0 1 Λ , Λ - 3 0 0 0 J , (φ(m],<f(lm,φ(ίίίr

The slanted h maps induce a variety of equivalent representatives; see text

4. Chargeless Matter

While conceptually the same as the foregoing, the computation of H l(
is much more tedious and involved for several reasons. Firstly, since End ̂  is the
bundle of traceless endomorphisms of ̂ , it is found in the product

C . (4.1)

Related to this, we quote the following general result

Theorem [24]. For a stable holomorphic vector bundle i/~ over a compact projectίve
manifold X,

Since the tangent bundle of a Calabi-Yau manifold is stable, HQ(Jί, End ̂ ) = 0.
Because End ̂  is self-dual and the first Chern class of M vanishes, (i.e., 3CM « <C),
by Eq. (2.16) Hq(Jί, End^) is dual to H3~q(Jί, End^) so q = 0, 1 suffices.
Then, by Eq. (4.1),

ff«(^,^®^*) = H«(^,End^ (4.2)

For q = 1, we have used that Hl(Jt, (C) = 0 for manifolds of precisely SU(3)
holonomy. In view of these relations, we shall compute the ̂  (x) ^"* -valued
cohomology and determined H*(Jί, End ̂ ) from there. We emphasize, nowever,
that our computations do not rely on the above theorem, in fact we prove it for our
particular case.

4.1. Polynomial Deformations. Before we proceed with the spectral sequences, let
us recall the deformation theoretic result for Hl(Jί, End5>). ^-valued 1 -forms
can (often) be represented by non-trivial deformations of the defining polynomials.
In view of the relation (4.1), End ̂ -valued 1-forms should feature an extra
yjf factor and could therefore correspond to non-trivial deformations of the
differentials of the defining polynomials. Deformations of

df(x) = dxafabcx
bxc



70 P. Berglund, T. Hϋbsch and L. Parkes

would be covered by differentials of the form

dxaφa(bc)x
bxc : φa(bc} + φb(ca} + φc(ab} = 0 .

(The totally symmetric tensor is used up to represent deformations f ( x ) for
).) Indeed,

φa(bc} and <pΛ(p7) (4.3)

are precisely the contributions to Hl(Jί, End 5 )̂ expected by the arguments of
ref. [10].

The result (4.3) already satisfies the lower bound dim Hl(Jί, End ̂ ) ̂  b2, i of
ref. [14] but from ref. [16, 17] we know that there are more End ̂ -valued forms
and we now proceed to describe the complete result.

4.2. The Outline of the Spectral Sequence Computation. By tensoring Seq. (2.3)
with yjt and Seq. (2.5) with δ and with ̂  respectively, we obtain three short exact
sequences which fit together into the diagram

0 0

1 , I

I
(β®

i
-> *\*®yj -» o

i i
0 0

with exact rows and columns. Thus the vector bundle yM (x) ZΓjf over Jί, intrinsic
to J(, is related to the restriction to M of various vector bundles over TjΓ.

The computation proceeds as follows: 1) using spectral sequences, determine
the 3~w ® $ *-, δ ® δ *-, ̂  ® F$ and δ ® ̂ /-valued cohomology on JH. 2) Use
the two vertical short exact sequences4 in the diagram (4.4) to determine the
^ ® yjt- and δ\j® ^-valued cohomology. 3) Use the short exact sequence in
the bottom row of diagram (4.4) to determine the yM ® ^-valued cohomology
and thus H*(J(9 End^), through the relations (4.2).

In the rest of this section, we shall try to describe this computation in accessible
detail (see also Appendices D and E), hoping to provide a useful templet for the
enterprising model builder, who will most unlikely be satisfied with the phenom-
enological specifics of the present choice (2.2). The less patient reader is invited to
consult Tables 5, 6, 7 and leap to Sects. 6, 7 and 8.

4 By common (ab)use of the term "using an exact sequence," we shall also imply that the
accompanying long exact cohomology sequence, i.e., the accompanying spectral sequence, is used
- without specifying explicitly
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4.3. The Bundles over P3 x P3. Firstly, we need the cohomology on Jί valued in
the following 18 irreducible bundles over P3 x P3:

0

0

0 0

0 0

2

0

0 0

0 0

°w
oΓl

M®
o j ®

g

'-3

3

0 0

0 0

' 3 0 0

.-3

(~l

( 3

/ O
n

\ 2

0 0

0 0

0 0

0 0

0 0

0 >u/
o j @ \

0\
θoy

M©
oΓ

0\ /
θ

I / ^

;

2

-i

/-]
I 2

f °
V i

' 3

v - 1

0 0

0 0

0 0

0 0

0 0 1

0 0 0

0 0

0 0

°w 1

θΓl-2

o\ /-
θoy v

ϊJ
0 \ / I

θι y v o

2

1

o o o^
o o oy

0 0 0

0 0 0

0 0 0\\

o o ιy '
0 0 0\ / O

®o o o y v o
- 1 0 1

0 0 0

0 0 0

0 0 1

- 1 0 0

- 1 0 0

0 0 1
(4.5)

The <? (g) J^-valued cohomology then can be obtained both directly and through
Serre duality from the ^(x) <ί*-valued one. Thus, sequence (2.13) needs to be
tensored one-by-one with each of these 18 bundles and the derivation of the 0th

level of the accompanying spectral sequence in each case should pose no problem.
Determining the actions of all dt is straightforward but rather tedious for some of

-3 0 0 0

0 0 0
these 18 cases. Appendix D presents a sample computation for the I

bundle.
To make a cross-check possible, we list the results of this stage in Table 3.

4.4. The End ̂ -Valued Cohomology. Next we use the short exact sequence (2.5)
tensored, one by one, with fff,$g9 $h and then ̂ x and yy\ these constitute the two
vertical exact sequences in the diagram (4.4). From the accompanying long exact
cohomology sequences, we obtain a list of cohomology groups (for a sample
computation, see Appendix E),

which are needed in the final step.
Lastly, we use the short exact sequence in the bottom row of the diagram (4.4).

The complete list of all contributions to the cohomology groups occurring in the
computation is rather long and little would be gained from a display without going
into the tedious details of the analysis. In fact, after some straightforward but
lengthy computations similar to those described so far, most of these contributions
cancel out anyway and only a few actually go into the yM (
cohomology.
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Table 3. The cohomology on M> valued in the bundles that occur in (4.5). The ones which are not
listed can be obtained by Serre duality (2.16) and/or the x<^>y flip

Bundle Non-vanishing cohomology on M

C

r;

ϋ

0 0 (Λ H o_
O O O /

' °°M H'-i o o o /

#2 =

^ o o o o λ 1

^ o o o o / ,

/ - 2 0 0 θ λ 1 0 "

/ - 2 0 0 0 λ 1 0 y*\ l l l l / i
ker C

V 1 1 1 4 / 2 0 N S ^ / _ 3 0 0 0 \ 2 0

/ - 2 0 0 0 V 0

\ 1 1 1 4 /2>^L / - 3 0 0 0 λ 20

cok ^̂
/ O O O O λ 1 ^^r\ ! ! ! 3 / 10

. O O O λ , Γ / 1 1 1 3 λ 1 0

Λ / 1 1 1 2 λ 4 Ί
H J = kerf -Mo o o y L V o o o o / , V - i o o o / J ,

17

17

Γ / I 1 1 3V° h ( 1 1 1 2 λ 4 Ί
H2= cok -ML V O O O O Λ v - ι o o o / j 7

C
(-;

c\ι

α

(-;

°°M H2 1
o o o / 1

^ 1 1 2 2 λ 6

 3 Γ / 1 1 2 3 λ 2 0 / l l l i y i

v o o o o / , H ~ L v ι ι ι ι / ι + V ι ι ι ι / ι J 2 i

O O l λ , Γ / I 1 1 I λ 1

 β / I 1 1 1 V Ί
H 2 = ker -̂

O O O ; L \ 1 H 4 / 2 0 \ l l l l / ι J ι 9

°°M H 2 - /
O O O / \

- 1 0 Λ Ho /
O O O / \

••-(

h / - l O O l λ 1 5 "

+ cok ( 1
\ 1 1 1 4 / 2 o \ ^ / 0 0 0 1 y

^ O O O l λ 4

 3 / l l l l λ 1

. l l l l / ! ^ = V l H l / ι

75

' o o o o y t / o i i i λ 4

 2 / o o o i λ 4

. o o o o / , H " V o o o o / , H " V i n i Λ

Ί 1 1 ιy
, 1 1 1 1 / 1

O O l λ 1 Γ / O O O l λ 4

 Λ / - 1 0 0 l λ 1 5 Ί / - l O O l λ 1 5

Hl= ker -^( +(
- 1 0 0 / L V 0 1 1 2 / 1 5 V 0 1 1 1 / 4 J 1 2 V O O O O / ,

/ l l l l λ 1 Γ / O O O l λ 4

 h / - 1 0 0 l V 5 Ί
+ cok »

V θ l l 2 y i 5 L \ 0 1 1 2 ; 1 5 V O l l l Λ 1
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We find H l(Jί, FM ® &J) = H l(M, End^) to be 98-dimensional and span-
ned by the following tensors (the P^<->Py flipped contributions are to be added to
the subsequent list):

-2 -1 0 0 \ 2 0

I t π\ v i/I f\\
f\ Γk Λ Π / ' \Ψa(bc)J2Q 9 \^ Ό)
0 O O O / i

which are the only contributions also found by deformation theory (4.3).

1 1 1 O 20

ker

/
1 1 1

1 1 /ι^— /O 1 1 2 \ 2 0

l l l l / i

: {εεφ ( Λ & c ): 0, 6, c different}4 (4.7)

is also easily represented. For the remaining 25 representatives (and their
25P^«->Py mirror pairs), the tensor constructions are quite more involved and it
would take too much space to present them in detail; a set of notes with comments
is however available upon request. Here we list the tensor representatives only:

{εψ^}3 {ε^,<iφ£}3, (4.8)

where the η(άS)f mixed tensor obeys

Notation. By a caret, we denote that an index has a restricted range, so that
α = 1, 2, 3 but α φ 4. The dot above the f in the tensor ^ in (4.8) denotes that this
index has to be treated as if lowered by hάά = δάά to that

Now ^/(ab)c|δ vanishes upon total symmetrization of α, b and c. The vertical "pipe," |,
simply tells that the rightmost superscript, δ = 1, 2, 3, doest not participate in any
(anti) symmetrization or trace-zero condition and is merely a free label. In (4.8)
then, the trace of η(άθψ occurs.

If the third defining equation h(x, y) = 0 in (2.2) is deformed into

xay* = 0 ,
α = α= 1

i.e., /i44 Φ 0, the 6 components in (4.8) become replaced by {sφ(ab\ a φ b}6. Lastly,

{ε(η(άb\lβ~ - η(6β\^')\ β = b, β' = V and α, 6, 6', α diίferent}3 , (4.9)

and special to the K-symmetric model and cancel out in the computation when the
.R-symmetry is broken, i.e., when rank[/zαα] = 4.
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5. Towards the Three Generations of the Standard Model

From the point of view of particle physics, the model we have descirbed so far is not
realistic. For one thing, it would predict 23 generations of light matter particles and
14 mirror generations. It is by now standard practice to pass to a suitable
Z3-quotient model and we now turn to describe the effect of process on the
complete matter sector.

5.1. The Two Three-Generation Models. Starting from the smooth Calabi-Yau
space Jί, defined in (2.2), we can define two distinct quotient manifolds by dividing
out two inequivalent Z3 actions given in Table 4. In the second part of Appendix A,

we prove that both Jl^ ά= Jt/w^ and J12

 d= Jt/w2 are smooth.
Both Jit and Jt2 have χE = — 6 and the same number of leptons, quarks and

their mirror particles. However, the particular tensors which become identified as
quarks and leptons on Ji^ are different from those on Jί2. Also, the 34 E6 1's which
descend to Ji± will be different from those on Jί2. Also, the structure of (pseudo)
symmetries of the interactions in the two associated models is rather different.

The covering space Jί possesses the order-6 non-abelian permutation sym-
metry S3 which is generated by:

σ1 2: (x1, x2, X3; /, y2, /)h->(x2, x1, x3; j;2, /, y3) ,

σ2 3: (x1, x2, x3; /, y2, y3)^(x\ x3, x2; /, /, y2). (5.1)

Passing to the quotient M± breaks 53 down to the TL2 subgroup generated by σ12,
while M2 inherits the ΊL2 c S3 subgroup generated by σ23.

There is a subtle difference, though, in that σ23 actually commutes with cτ2,
while σ12 commutes with w± only up to an appropriate twist by π± and π2 (see
below). This distinction shows up in the symmetries of the interactions and is
eventually of physical importance. In particular, σ23 gives rise to a ΊL2 "matter
parity"5 in the three-generation model based on M2. In comparison, in a model
based on M^ we could only find a Zζ3 matter parity. For a recent analysis, see ref.
[26]. This difference does not happen to manifest itself among the (renormalizable)
Yukawa couplings but is bound to show up at the non-renormalizable level; for
more details, see ref. [5].

In Tables 5, 6 and 7, we list the tensor representatives of the E6 27s, 27*'s and
1's, respectively. Our notation for the quarks differs from the more usual one [9],
but reveals a nice pattern in the 27 27* 1 couplings (see Table 13). To save some
space, we have listed only one half of the 1's; the remaining ones can be recovered
using the IP3<-»P3 symmetry. In Table 7, the representatives are numbered (first
column), for easier reference in the σ12 and σ23 columns.

Table 4. The two inequivalent Z3 actions on Jί

Z3 Action on
x1

G7ι '. 1

πτ2: 1

x2

ω2

ω2

x3

ω
ω2

x4 y1

ω 1
ω 1

y2

ω
ω

y3

ω2

ω

y4

ω2

ω2

For this, σ23 needs to be twisted by a symmetry acting on gauge-indices; see ref. [25]
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Table 5. Transformation properties of the matter fields stemming from the 27s. To ensure the

0ιι + 022 + 033 = 0 equivalence, we have identified 2022 = (λη — λ6) and 2033 = — (λΊ + λ6).
Slightly different choices are found in the literature

Tensor

0(123)

0(124)

0(134)

0(234)

0(123)

0(124)

0(134)

0(234)

044

011

(022 ~ '

012

013

023

014

024

034

021

031

032

041

042

043

Fields

w\ G72 Norm πj

A! q2 N! ω2

λ2 λ2 N2 co2

61 λ, N2 ω2

42 fii N2 1
Λ3 Q2 Nί ω

λ4 λ4 N2 ω

4ι Λ-3 N2 ω
62 4ι N2 1

λ5 λ5 JV3 1

λ6 λ6 3JV4 1
Φ3l) λη λΊ N4 1

43 43 N5 ω2

Q4 44 N5 ω2

4β λ8 N5 1

Q5 Q5 N6 ω2

47 47 N6 1
^s 46 N6 1

63 63 ΛΓ5 ω
44 64 W5 ω
Q6 λg N5 1

4s 4s ^6 ω
67 Q7 N6 1
4 Q6 N6 1

π2

ω2

ω2

1
co2

CO

ω
1

CO

1

1
1

CO

1
ω2

1
ω2

1

co2

1
CO

1
ω
1

Table 6. Transformation properties of the matter

Tensor

(Λ + Jy

(JX - Jy

ε0(12)

ε0(13)

ε0(23)

ε0(14)

ε0(24)

ε0(34)

ε0(12)

ε0(13)

ε0(2J)

ε0(14-}

ε0(24)

eφW

Fields

G7ι G72 Norm

,)A/3 Ii Ii Ni

,)/V2 ^2 ^2 ^2

Ϊ3 44 ^3

- q3 - 13 JV3

-fi i - A 5 N4

44 fil ^4

A 5 Q2 JV4

λ6 Q4 A^3
42 63 NS

- fi3 - Λ4 N3

- 4ι -λβ N4

β4 4ι N4

λ4 q2 N4

Til

1

1

ω2

co2

ω

ω2

ω

ω

ω
ω
ω2

CO

ω2

co2

π3

ω2

1
ω2

co2

ω

1
CO

ω

1

1
1

1
ω
ω

1
1

ω2

1
ω2

ω2

1
1
ω

fields

π2

1

1

ω2

ω
co2

ω
ω2

ω

CO

ω2

ω

ω2

CO

co2

Symmetries

r* ry σ12

1 1 1

ω2 1 1

ω2 1 0(234)

CO2 1 0(134)

1 1 1

1 ω2 1

1 ω2 0(234)

1 ω2 0(i34)

ω2 ω2 1

1 1 02?

1 1 (0n — 033)

1 1 ~φ2ί

1 1 φfj

1 ω2 Ψ24

1 ω2 $14

1 ω2 Γ

1 1 φ12

1 1 03?
1 1 001

ω2 1 042
ω2 1 041

ω2 1 Γ

stemming from the 27 *s

Symmetries

^3 r* ry σ12

1 1 1 1

1 1 1 1

co ω 1 — 1
co2 ω 1 -ε0(23)

co2 ω 1 -ε0(13)

ω ω2 1 -ε0(24)

ω co2 1 -ε0(14)

co2 ω2 1 - 1

ω2 1 ω - 1
co 1 co — εφ(--'
co 1 co — εφ^--'

9 Λ 7 _f (?4Λco 1 co — ε0l--;

co2 1 ω2 -ε0(M)

co 1 co2 - 1

023

1

0(134)

0(124)

1
1

0(134)

0(124)
1

1

1
-1

013

Φi
032

1

034

024

031

021

023

1

043

042

σ23

1

1

-ε0{13)

-ε0(12)

- 1

-1
- ε0(34)

- ε0(24)

- ε0(12)

— ε0(i2)

-1

- 1
-εφ(^

-εφV-V
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For completeness, in these Tables, we shall list the transformation properties of
the various tensor representatives with respect to both σ12 and σ23. In addition, we
also list the transformation properties with respect to all phase symmetries

π f :

rx'-

ry:

ω2yl

x4h-» ωx4

(5.2)

(5.3)

(5.4)

Note that rxτ ~ * = π4, which is not an ^-symmetry; thus, there is actually only one

independent .R-symmetry which we may identify with R d= rxτy.

Remark. Note that the tensor representatives for the particles transform in such
a way that, for example, Φ(i23)χlx2x3 is invariant. This unfortunately is opposite
to the convention adopted in the recent literature, in which the particle transforms
the same as the corresponding polynomial (when a polynomial description exists).
This choice is of course irrelevant if one discusses only the 27 3 and (separately) the
27 *3 couplings. In our case, however, all matter fields are represented in the same

Table 7. Transformation properties of the 1 matter fields. Only half of them are listed here - we
omitted those that can be obtained from the listed ones through the IP V»jp3 symmetry. A "—"
entry in the third (fourth) column indicates non-trivial transformation and thus annihilation when
modding by

#

1.
2.
3.
4.
5.
6.

7.
8.

9.

10.
11.
12.

13.
14.

15.
16.
17.

18.
19.
20.

21.
22.
23.

Tensor
Fields

Component mt w2

(01|(22) -

(01|(33) ~~

(021(11) ~

(031(11) ~

(02|(33) ~

(031(22) ~

(041(11) -

(04|(22) -

(04|(33) -

(01 44 ~

(02|(44) -

(03|44) ~

01(23)

(02K13) -

04(12)

04(13)

04(23)

(01|(24) -

(01|(34) -

(02|(34) -

(εφ[ί4])
(εφ[24])
(εφW)

021(12)) — —

03|(13)) — —

01|(12)) — —

03|(23)) — 51

02|(23)) S2

01|(14)) — —

02|(24)) — —

031(34)) Sl —

04|Π4)j
JL Λ
04|(24)) — —

04|(34)) S2 —

53 —

03|(12)) S4 —

S5 S5

— s6

— —

02|(14)) S6 S3

03|(14)) — S4

031(24) — —

— s9

SΊ —

Symmetries

Norm

N,

NI
N,

Ml
N!
NI

N2

N2

N2

N3

N3

N3

3N4

N4

N5

N5

N5

N6

NG
N6

^7NΊ

NΊ

πi

ω2

ω2

ω
ω
1
1

ω
1

1

ω2

1
1

ω2

ω2

ω2

ω2

1

ω2

ω2

1

ω2

ω
ω

*2

ω
1

ω2

1
ω2

ω

1
ω

1

1
ω2

1

ω2

ω2

ω2

1
ω2

ω2

1
ω2

ω
ω2

ω

π3

1
ω
1

ω2

ω
ω2

1
1

ω

1
1

ω2

ω2

ω2

1
ω2

ω2

1
ω2

ω2

ω
ω
ω2

r,

1
1
1
1
1
1

ω2

ω2

ω2

ω
ω
ω

1
1

ω2

ω2

ω2

ω2

ω2

ω2

ω2

ω2

ω2

*,

1
1
1
1
1
1

1
1

1

1
1
1

1
1

1
1
1

1
1
1

1
1
1

σ12

3.
5.
1.
6.
2.
4.

8.
7.

9.

11.
10.
12.

(14.-13.V2
(3 13. + 14.)/2

15.
17.
16.

-18.
20.
19.

-22.
-21.
-23.

σ23

2.
1.
4.
3.
6.
5.

7.
9.

8.

10.
12.
11.

13.
-14.

16.
15.
17.

19.
18.

-20.

-21.
-23.
-22.

We have used 3φa(bc) = 2φa](bc) - φb](ac) - φcl(ab) and 2φal(bc)

d= φabc + φacb.
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Table 7. (part 2/2)

#

24.

25.

26.

27.

28.

29.
30.

31.

32.
33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.
45.

46.

47.

48.

49.

Fields
Tensor

Component w^ w2 Norm

ε(Zyi2).ι f ) 5g _ f}8

ε(Σ^(13) JO — — #8

ε(^V23) JO - s10 #8

(εεφ(123)) s9 — #9

\εε(f) j ^10 ^7 10

(εεφ ) — Sg -^"lo
(εεψ(234) — — #10

(εψ4^0[123]) Sll — #n

ε\Σ*ΐ] \ ) — — N \2

ε(Σ.η(22)'f) — sn #12

είl^33^) s12 s12 #12
0/M(41) |1 M(42) |1\ A Tε(τj 2 — r] j - j — — -^13
0^(41) |1 vι(43)~|l\ c AJ
o\rj .j V i / ^13 -^13

&\Y\ j ~ — Y\ < ~ ) ^13 N 1 3

ε(^(42Γ|2_^(43Γ|2) s^ _ jy i 3

ε(^/y ,~ — Y! i / — ^14 •''is
8^(42V" ~ ^(43V3) ~~ ~~ Nl3

ε^^y -j ~ — ?y _ ) — — ^ * i 4

ε(_^/ •> ~ Y\ i ~_) "^15 -^14

ε(?7 2 f/ j -) Sis 5j6 ^Vl4

ε(^y ( 1 2V2 - 77(13V-) — SIT #15
ε(^(12)Ίl _ ^(23Γ|3) _ _ fl?ιs

ε(/^ 4 ~ — ^y 4 ) s^6 — •''is

ε(^l42--^/24L) Sl7 — #16

ε(ί?ι42 — ^734i) — — #16
ε(^2

42 - η^2-) — — #16
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"language" and so a universal convention was needed. In view of the fact that the
27's may be viewed as the (slowly varying, spacetime dependent) coefficients of the
defining polynomials

f(χ\^(f _j_ φ )χa χb χc, (5.5)

we find it natural to have the φ(abc) transform oppositely to xaxbxc. This also agrees
with the routine argument that tensor coefficients and coordinates transform in the
opposite fashion. This then fixes our convention for the transformation of all other
quantities.

5.2. Yukawa Couplings. Without much ado, we record the general formulae for the
four types of Yukawa couplings amongst the chiral superfield 27's, 27*'s and Γs.

[f ̂
(y)Ω0ίβy 1 (5.6)
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is the 27 3 term, where dABC is the E6 <273|1> Clebsh-Gordan coefficient, and the
internal space integral in the second square-bracket is what is commonly called the
273-Yukawa coupling. The Φf(x)'s represent the 27 spacetime chiral superfields,
while φ//)α(y)'s are the corresponding harmonics over the internal space. Since Ω^β

is the same as ΩΆβy, merely with the indices raised with the Kahler metric, we note
that there are two Ω's in the above expression.

L.JI J

is the 27 *3 term, where d^sc is the conjugate oίdABC and the internal space integral
in the second square-bracket is what is commonly called the 27 *3- Yukawa cou-
pling. The Ψa(x)'s represent the 27* spacetime chiral superfield, while ^}()>)'s are
the corresponding harmonics over the internal space. Since Ωβ*β transforms oppo-
site from Ωα/?y, this coupling will transform as if having no Ω's; indeed, it can be
rewritten witout explicit use of Ώ's.

The I3 term is

[ ld2ΘΣp(x}Σq(x}Σr(x) ] \ J d6yΩ^S^\y)dlq

β

)γ(y)θ(^(y) 1 , (5.8)
L jt J

where the d6y-integral in the second square-bracket is what is commonly called the
I3- Yukawa coupling. The Σp(x)'s represent the 1 spacetime chiral superfields, while
ι9J£)/?(j;)'s are the corresponding harmonics over the internal space. We note that
there is only one £2 in the above expression.

[f d20Φί* (x)ΨΪ(x)Σr(x)-\δAS\ J ά?yΩ™φ?'(yW%\y)&$f(y) 1 (5.9)
\-M J

is the mixed, 27 27* 1 term, and the ί/6y-integral in the second square-bracket is
what is commonly called the 27 27* 1- Yukawa coupling. Again, there is only one
Ω in the above expression.

In fact, all four dey integrals can be rewritten in terms of the respective
harmonic H^(Jt, )̂-, tf1^, &J)- and H^(M, End ̂ )- valued (0, l)-forms and
the holomorphic (3, 0)-form Ω, whence all products become the skew-symmetric
"wedge" products. Since harmonic forms are closed, these integrals are rather
"topological" in nature and depend only on the complex structure (represented by
the choice of Ω\ except for (5.7), which are truly topological.

Because of this "topological" nature, these integrals have to be invariant under
all symmetries of the internal manifold M or M^ This includes the so-called
^-symmetries, which act both on the spacetime part (the first square-brackets) and
on the internal space part (the second square-brackets) of the above couplings.
Under an ^-symmetry, both d2θ and Ω transform with the same charge, which has
to be separately balanced by the spacetime chiral superfields and by the internal
space harmonics.

In our case, the ^-symmetry acts on the internal space as R d=f r^ (see Eqs.
(5.3), (5.4)). In view of Eq. (2.15), Ω is represented by £1234 £1234 and so transfrorms
by a phase ω2, ω2 and ω under γx,ry and R, respectively. The requirement of
in variance under R (and also r X t y ) of the d6y-integrals representing the various
couplings will provide a very important selection rule and help us establish our
generalization of the Yukawa coupling formula of ref. [11].
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6. The 273 Yukawa Couplings

Having obtained tensor representative corresponding to 27s, we now wish to use
this to compute their various couplings and we begin by discussing the (273) terms
in the superpotential. To see how this can be done, we first note the straightforward
relation to polynomial deformations of ref. [11].

6.1. Relation to Polynomial Deformations. In ref. [11], ^-valued 1 -forms were
related to deformations of the defining polynomials modulo the Jacobian ideal (the
set of equivalence relations generated by coordinate reparametrizations) of the
embedding space F3 x F3. For the manifold at hand, these are (see also ref. [9, 21])

q^ql + X a ( x ) d a p l + Ya(y)dΛp
l + V ,

pl=f(χ),g(y),h(χ,y), 1 = 1,2,3.

Here Xa(x) are components of a 4- vector of linear combinations of x's, while Y*(y)
are components of a 4- vector of linear combinations of /s. da and 5α are partial
derivatives with respect to xa and y", respectively. The variables ql are polynomials
of the degree of f ( x ) 9 g(y) and h(x9 y) for i = 1, 2, 3 respectively.

When contracted with homogeneous coordinates xa and j;α, the tensor repres-
entatives from Table 2, with the complete equivalence relations presented in (3.3),
are precisely the polynomial deformations ql. Thus, our TESS computation ex-
plicitly verifies the results of polynomial deformations as also found in ref. [3]. Our
aim is now to make use of this correspondence for a translation of the Yukawa
coupling algorithm in ref. [11] into the TESS language and then possibly to
generalize it.

6.2. Yukawa Couplings as Traces. When Hγ(Jί, ^//) is faithfully represented by
polynomial deformations, a formula for the 273 Yukawa coupling has been derived
in ref. [11]. The basic result is that, because of the equivalence relations in (3.3), the
product of three polynomial representatives ql

9 r
j and sk turns out to be a multiple

of a unique polynomial Q(x, y), modulo the Jacobian ideal:

Xa(ij(x, y)dap
k} + Y«(ij(x, y)dapV + Z^\(x9 y)pl , (6.1)

where X, Y and Z are tensors of homogeneous polynomials of appropriate degree.
For any particular choice of polynomial deformations ql

9 r
j and s fe, κqrs is the

corresponding Yukawa coupling.
Given our choice of defining polynomials p = (/, g9 h) in (2.2), it is straightfor-

ward to determine that

Q(χ, y) = Qχ1χ2χ3χ*yίy2y3y4 ,

where Q is some uninteresting overall constant (only the relative ratios of Yukawa
couplings have physical meaning).

More generally, for other (smooth) choices of the defining polynomials, i.e.,
different members of the Tian-Yau family of manifolds,

Q ( x 9 y ) = βdet [/"(*)] det[0"(y)] , (6.2)
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where the double prime denotes second partial derivative with respect to the
arguments. As h"(x, y) is a matrix of constants, det[/z"] has been absorbed in the
numerical factor Q.

On writing (6.2) out, we have

β(x, y) = Qdabcd x
a xb xc xd daβyδy« y» y* yδ , (6.3)

dabcd = εef9hεijklfaejfbfjfcgkfdhι , (6.4)

, (6.5)

where again we buried all uninteresting numerical factors into the prefactor Q. It is
straightforward to verify that

1 a, b, c, d are all different;
otherwise

The analogous is true of daβyδ.
Let us write

πl _ m(q) v« γb vc r3 _ fn(r) v« vβ ~2 _ fn(s) ,.α ..β .γQ. — Ψ abc X x x j r — φ aβX y , s — φ χβyy y y

and we can choose these tensors φ among those listed in Table 2.
It is now not hard to see that the Yukawa coupling κqrs in (6.1) can be rewritten

as the contraction

\ (f\ ( e ) /χ χ \

abcψ dδψ aβγ > (O.O)

where we have defined

1 α, fo, c, d are all different;

0 otherwise .

As a matter of fact, Eq. (6.6) is the only possible non-vanishing trace of a triple
product of φ's from Table 2 that one can obtain using the available tensors
/ < : & abed zβ ocβχδ f anr| L \
\ua ) babcdι fc •> u <xι ^txβχδ-ί fc tjabci Uixβγ Λliu rιaβ)•

Of course, in view of the relations (3.3) generated by the mappings in Table 2,
one has to check if a particular triple product with "wrong" indices for contraction
with dabcdd"βyδ has no equivalent form in which the contraction can be performed.

In a way, this result was expected. The Yukawa coupling had to be a scalar
quantity, obtained from the triple product of the representative tensors from
Table 2. To obtain a scalar quantity, the indices had to be contracted and, given
that φ(q) φ(r} φ(s} has only lower IP3 x lP3-indices, this is possible only with the
tensors dual to dabcd and dΛβyδ which, in turn, are defined in (6.4) and (6.5),
respectively.

The tensor algebra on P3 = (7(4)/[(7(l)x C7(3)] consists of tensors with
covariant and contravariant indices; these we can symmetrize and antisymmetrize
and one can take traces with the U(4)-invariant tensor, the Kronecker δb. Further-
more, as discussed in Appendix B, we can also factorize εabcd and sabcd even though
they are not l7(4)-invariant; they transform only by a multiplicative (7(1) c (7(4)
phase. Once we pass to the hypersurface f ( x ) = 0 in IP3, the tensor algebra is
endowed with a new "invariant" tensor, fabC9 and we may use it to contract indices.
The analogous is true of the hypersurface g(y) = 0 in P3,. Indeed, *dabcd and
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daβyδ may simply be viewed as an abbreviation for the more bewildering expressions
(6.4) and (6.5).

It would follow that the algorithm [11] for computing the 273 Yukawa
couplings is correctly generalized to arbitrary Calabi-Yau complete intersections
by the formula

r̂β = Tr/f...[^VrVβ)], (6-7)

where Tr/ 5... stands for obtaining the trace with the tensors associated to the
defining equations, the Kronecker δ- and the Levi-Civita ε-symbols. This is
examined further in ref. [5].

7. The 27*3 Yukawa Couplings

The representatives for Hl(M, &jf\ in Table 1 resemble qualitatively the basis of
ref. [12]. The six symmetric, off-diagonal tensors φ(ab) account for the six excep-
tional divisors £*, . . . EX

6 and similarly for the y-part; the Kahler forms Jx and Jy

occur both in our parametrization and in that of ref. [12].
Indeed, using the discrete symmetries of the manifold, the correspondence

between our tensors and the exceptional divisors can be made precise and is given
in Table 9; for each tensor, the corresponding linear combination is unique; no
other combination has the same symmetry properties.

The 27*3 Yukawa couplings were computed in ref. [12] using the exceptional
divisors. Clearly, given the correspondence in Table 9, we can translate this into the
tensorial notation, obtaining the couplings in Table 10. Actually, owing to the very
high degree of symmetry of Ji, most of the 27*3 couplings can be determined
through symmetry considerations. Note that we may use all of the phase symmet-
ries (5.2)-(5.4). Also, viewing the manifold M as a hypersurface in the product of

Table 8. Matter couplings stemming from 273

Value Couplings on M± Couplings on <M2

- 3κ (47674), (4ι6ι4) (47674), (444)

(45654), (42624), (444), (45654), (4ι6ι4), (42624),
(4ι4243), (42644), (42654), (436ι4), (4461^4), (616265),

-2κ (616263), (46βι4),(476ι4), (4ι634), (444), (47624),
(44624), tel66>U), ( A 2 A 3 A 8 ) , (41 64^2), (^3^4^

(4562^1), (4167^1), (λ^λ9) (41424s), (4267^3), (

(4365^2), (qiqeqil (^βi^β). (4365^2), to/CMβ),
(4367^4), (4562^9), (4ι4*4s), (4367A), (qiQe^l (4564^3),
(616465), (4763^2), (4266^8) faQsλil (4763^2), (ίβfii^λ
(4164^9), (4563^4), (626667) (44664), (4563^4), (4167^9)

(434547), (4465^9), (46674), (434547), (646566), (4eQM,
(q5QM, (636567), (4760^9), (444s46), (636567), (4760^9),

K (qιQιλ6\ (λ6λsλ9\ (4363^5), (47674), (46664), (43634),
(4464^5), (466ό4), (444), (44644), (^s44), (444),
(4ι6ι4) (444)

3/c (444), (444) (46664), (444)
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Table 9. The tensor representatives in terms of the basis of

ref. [12], related to the exceptional divisors; yξ = —= e5ίπ/β and

Tensor <-> Exceptional divisors

ί + ω2Ex

5

ϊ + EX

2 + Ex) + ω2(Ex

4 + EX

5

ω2£* + ω£x)

ωEx

5 + Ex)
ω2(El + EX + Ex] + ω(£* + Ex

J 2 '

- ωE*2-

Table 10. Matter couplings stemming from 27*3

Value Couplings

_

, (λ2λ4λ6), - (λ2Q^l (λ2 Q3qιl - (λ2 Q2 q4),

-(λ,λ2λ2)

two cubic surfaces {/(x) = 0} x (g(y) = 0} and that we are wedging (1, l)-forms, it
is straightforward that non-vanishing Yukawa couplings must be of the form

Except for the relative ratio <N/2:Λ/3, the results in Table 10 follow from the
permutation symmetries σ12 and σ23.

Note that the fields in Table 6 were identified so that Table 10 is valid for both
Jt± and Jί2- Recalling Wall's classification theorem [27], one might suspect that
the two manifolds and hence the two "low" energy models also are equivalent.
Suffice it here to point out that Wall's classification theorem assumes simple
connectedness, while both M± and M2 have Πl = Z3. In fact, it is precisely the
differently warped action of this Z3 on the Yang-Mills charges of the matter fields
which makes all the difference.

Having obtained all the matter fields in these two models in such a unifying way,
we expect that the 273 Yukawa coupling computation of the preceding section
should somehow apply for the 27 *3 also. Consider one of the couplings on J?2,
expressed in terms of our representatives of Table 6:
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Tracing with faii^fckifdi^ we obtain

Now, comparing with

the relative ratio ^/2:^3 follows since d1234 and ^1234 have the same numerical
value, labeled k in Table 10. It is not hard to see that all couplings listed in Table 10
(and also the vanishing of all the others) are covered by a general formula such as
(6.7), except for the last two. The ratio between these two and the others reflects the
relative "size" of the Kahler form compared to the exceptional divisors in Table 9;
this is an extra input for our computation.

8. Other Yukawa Couplings

We have seen that the same general formula as in Eq. (6.7) produces both the 273

and the 27 *3 couplings. It is quite natural then to expect it to be completely
general, producing all possible couplings - even beyond the renormalizable level.
Unfortunately, for any coupling other than 273 and 27*3, we have no independent
means of computation to check this. The rich symmetry structure of our paradigm
will therefore serve as the only available check. It will be gratifying to learn that our
general formula indeed passes this test. In fact, as is also generally the case with the
273 and 27 *3 couplings; there will be relations and restrictions for which we could
find no symmetry "reason."

We first list tables of couplings as restricted by the various symmetries of the model
and will then comment on further results obtained using our general formula (6.7).

The reader will have noticed that there are many more values of unrelated
couplings which involve the E6 singlets, st and si9 in contrast to the case of the 273

couplings. The relations among the various couplings in the 273 case are provided
by the equivalence relations (3.3). Similar relations do occur among candidate
representatives for sf and si9 but in a much lesser number, whence more of the
coupling values remain unrelated at this stage.

Generalizing the arguments of Sect. 6.2, we know that a general trace formula
such as (6.7) simply must be valid for all couplings. Once the matter fields are re-
presented in terms of tensor-components from the Ux(4) x Uy(4) tensor algebra (pro-
jected in various ways by using the "defining" tensors fabC9 gaβy and /ιflα), a physically
measurable quantity simply cannot be anything else. The adventurous reader is
invited to provide a more direct derivation, perhaps alongjhe lines of ref. [11].

As a sample computation, compare the couplings (λιλ3λ5) on JP2, from
Table 10, and j5 from Table 14:

(Ws) = Tr Γ -^=(Λ + J,)(- δι«V(23))(- β123V14)) 1 , (8.1)
L v J

(λ,λs§9) = TΓ[(^)(- el"4^(14) ) ( e1234^[lfl ) ] . (8.2)
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Firstly, the left-hand side of the latter of these expressions must be multiplied by
£1234^234 for the one Ω in Eqs. (5.9) and in view of the formula (2.15). To complete
the trace in the first of these expressions, we must still multiply it by
/in /222 /333 /444 The available indices can be contracted in precisely 1 way, so
that

£ _ f f f f (R ϊ\
κ "Jill J222 /333 /444 (°'3)

To complete the trace in the second coupling above, we must multiply it with
hn_. There are precisely 12 distinct and non-vanishing ways to contract the avail-
able indices, so that

75 = - 12/iπ . (8.4)

The relative value, is therefore

(~λ~λ~λ M(λ ~λ ~ \= ~ ̂ 111 ̂ 222^333 ̂ 444 (Q 5\
1 3 5 5 5 9 " 1273V

which in our case equals — l/(12.N/3). More generally, however, one can see that

the relative combinatorial/normalization factors, such as 12^/3 here, may improve
on the structure in the pattern of Yukawa couplings.

Unfortunately, the exact value is however deceiving in part, since the various
spacetime fields would have to be renormalized by the respective norm-factors,
listed in Tables 5, 6 and 7 in the column "Norm." These factors are unknown, apart
from the restrictions imposed by symmetries, and this was already used in labeling
them.

An explicit evaluation of all relations among the various couplings listed in
Tables 8,10,11, 12,13 and 14 is now straightforward. Given that the rather simple

Table 11.
vanishing

Value

ζ

Γ2

[3

Ϊ4

ϊ5

Ϊ6

ϊl

ΐs

Γ9

Γ10

;~,

f 2

ζ4

Ϊ15

["

έl

Matter couplings stemming from I3

couplings. The other half is obtained

Couplings

(S3S258), -(S4S2S8)

(*l*6*δ)

(S2S5S13), -(S2S5514)

(S256S13), -(S2S6S14)

(S355516), 3(S4S5S16)

(S4S6S16), -(S3S6S16)

(S8585i6)

(S5S10S10)

(s10s10s15)

(s10s12s12)

(s8s13s13), — (s8s14s14)
(!13SlβSl6λ -(Si4Si6Sιe)

(s3s8s12), 3(s4s8sI2)

(S3S9S11), - ( S 4 S 9 S l l )

(s3s10s17) 3(s4s10s17)

(Ssslgί)*)! Sίvΐβ^*)

on Jίt. This only
by using σ,,,

Value

Γl9

ΓM

Γ21
Γ22

Γ23
Γ24

[25
'~26

["
Γ28

Γ29

§0

^32Γ33

[3*

Γ36

represents half of the

Couplings

(£1*7*15)

(52*8*11)

(*2*9*15)

(*2*11*12)

(*1*10*12)

(S4*12*13), (*1*12*1,

(*6*8*9)

(S6S8S17)

(*6*12*is)

(*6*ll*lό)

(S7S8513), -(s7S8Sί

(57^0^11)

(*7*12*17)

(*8*15*17)

(*9*12*ia)' (*9*12*14

(3 « «ί W? s: ?
V ύ 12 ώ 13 ύ 17/ ' V ώ 12 ύ 14 ύ

non-

0

4)

)

17'
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Table 12. Matter couplings stemming from I3 on M2. The couplings in the last row vanish only
to first order in σ-perturbation theory. Note also that we listed only half of the non-vanishing
couplings; the other half is obtained by using cxy

Value

Ί
12

h

'4
'5k
17

k
19

Ίo
'u',2

Ί!',5

Table 13.

Value

jϊ

Ϊ2

h

ΰ

f s

~
1

„

k2

k~3

k<

£5

Couplings Value

(*3*6*lθ), — (S4S5Sιo) 'l6
(S1S6SΊ1(S2S5S8) / i7

(S!S4S7), (S2S3S8) /18

(SlS5S17), (s2S6Sι7) /19

^SιSgSι7J, V'^2'^5'^17/ ^20

v l^l 1^3'^17/5 \ * 2 *4 *1 7 / ^21
(S1S4S17),(S2S3S17) /22

(S10SlθSl7) ί23

(s7s7s16), — (s8s8Sιs) /24

(s7s8s13), -(s7s8s14) 125

(SgS11s11), (s7s12s12) /26

(sίίs12s1Ί) 12Ί

(510513513), — (510514S14) /28

( *" ^ ( ~ \ 1
Sl2 s16 si6Λ ~V S11 S15 S15/ 129

(S13sllsπ), ~ (514517517) ^3Q
(s3s7s7),(s4s8Sg)

Matter couplings stemming from 27 27 * 1 on M±

Couplings Value

/ 1 τ~ \ / T y~ ~ \ ~
^ΛιΛ 2 S 9 J, — ^Λ 3 Λ 2 S 9 j Jg

\A± Λ3 Si 2)y \A $ Λg Sj 2 ) J7

( 1 Y \ ί 1 Y " \ ~(A2A2S10), — (A4A2S1Q) J8

(λ5λ4S7).>(λ5λ5SΊ) jg

(λlλl^l), -(λlλlΐ^ Jι°
(4ι4ιsi2\ (4244*12), r

(6ι6ι5ι2), (6264^12)
-(4ιtί3S15)9(q2q2Sι5)9 ~

~ Ί

-(444ι*ιβ), (4644*16), r

-(6461^6), (6664^16) 8

(6462^12), (6663^12) 9

(6463^8), (6662^8)

Couplings

(^SjS8S9J, — ^S2S7S9J

^SιSιoSι2J5 \5 2 S^QSιι^

(SιS7Si5j, (^2^8^16)
(sjSsSis), — (s2s7s14)
(Si58S14), — (S2S7S13)

(SιSi6Sι7), — (^2^15^17)

(s3s9si2), (s5s9s11)
(S4s9s12),(s6s9s11)
(s3s10s16), (s5Sι0s15)
(s4s10s16), (s6s10s15)

(*3*11*15), (*5*12S16)
(s4s11s15), (s6s12s16)
(595ι0513), — (5951Q514)

(s9s11s16\ — (s9s12s15)

(575105ll)'(58510512)

Couplings

(/I6l3s8),(/I6l6s8)

(λ6λ4s16)

(λ7λ3S8),(λ7λ6S8)

(λΊλ4sί6),(λΊΣ5sί6)

(λ8λ4sί2),(λ9λ5~sι2)

(4542*i),(4i43*i),

(6562^7), (676357)
(<Ϊ5^2Sl4), (<?7^3S13),

(6562^14), (6763513)

(^5^2^13), (<?7<?3Si4),

(6562^13), (6763^14)

(e?£'!')!(β!£L,
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•1 on Jt2. The couplings in the last row

Value

h

J2

h

U

J5

k2

k*

k4

k5

.*>

Couplings

StSltίΐί'
(A1I2s8),(A2I257),

— V 3 2*8/, \y^4y^2*7/

(.Λl/^SigJ, (,^2 ̂ 4*1 5 /,

(λ3Z3S16)9(λ4Z3S15)

(It TV \ ( 1 TV \
^ Λ j Λ 5 ύ j 2 / , \^2 ^5 "1 1 /,

(/,5/l5S9), (/Ls/lgSc))

(6l63*16), (6l 24*15)

(6161*12), (6lβ2*ll)

(6264*12), (6263*11)

(6361*17), -(Q4β2*17)

(6363*10), (6464*10)

(6364*11), (6463*12)

(6664*5), -(6723*6)

Value Couplings

(^5 ̂ 5*1 3), (^5^5*14),

]η (ΛβΛsSio), (/^ 6/'-4*lθ)

7s (^-7^5*17), (^7^6*17)

(/t8Λ3Sι2), (Λ 8 Λ4Si j ) ,

J9 ~ ~ ~

(λBΣ5SB),(λBZ6SΊ)

JίO — ~ ~

kη - ' -

I (^6^3*14), (^7^4*13),

(6563*14), (6764*13)

k" (6562*12), (6761*11)

kί° (2661*10), (6762*10)

11 (β6β3*9), (β7β4*9)

O ί X ) (^6^4*16), (<?7<?3*15)

(6664*16), (2763*15)

choice (2.2) probably does not lead to reasonable phenomenology, we shall not
evaluate these ratios here.

9. Concluding Remarks

To summarize briefly, we have shown on an explicit 3-generation Calabi-Yau
compactification model that all of the light matter superfields can be parametrized
by a single method. The representatives turn out to be various U(4) x U(4) tensor
components, which allows us to generalize the 273 Yukawa coupling formula of ref.
[11] to the complete matter sector. This general formula simply turns out to be
a generalized trace of the product of field representatives in question, possibly
multiplied with a number of "special" tensors which include the usual Kronecker
<5's, Levi-Civitta ε's and in particular the tensors defined through the defining
equations. For example, our choice (2.2) defines

fabc —
1 a = b = c = 1,2, 3, 4,

0 otherwise
(9.1)
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0 otherwise

U' (9.3)

The tensor algebra on the Calabi-Yau manifold is thus seen to differ from the
tensor algebra on its embedding space in that there are "new" tensors, fabC9 g^y and
hΛβ, with which one can take traces, project components, etc.

The harderst part in employing the presented technique is undoubtedly the
application of spectral sequences in obtaining the tensorial representatives in
Tables 5, 6 and 7. It would appear that the entire calculation would have to be
redone for each different choice of defining equations. One would appreciate
a computer-mechanized version of this task.

However, if one is interested merely in the transformation properties with
respect to the various symmetries, the present tables can be used straightforwardly.
This follows since the defining equations can be varied continuously, while the
"charges" with respect to the various symmetries cannot. We emphasize again that
the number of E6 singlet fields, in Table 7 however will vary but in a very simple
way and depending only on rank[/2fl/?]. The representatives 31.-49. and their
P*<-»Py counterparts will vanish from the light matter spectrum if rank[/zα/s] = 4
rather than 3 as was the case considered here.

This enables an easy correspondence with a number of models found in the
literature [6, 9, 21, 22, 23] through simple relabeling of coordinates and shifting
Eqs. (2.2) by a few parameters. Treating these different parameters perturbatively,
one may even use the representatives in Tables 5, 6 and 7 as they are, to the lowest
order.

Finally, we remind the rader that little is known about the world sheet
instantons effect on the I3 and 27 27* 1 couplings or about the normalization
factors, so that our results have to be taken with a grain of salt in these respects.
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Appendices

Spectral sequences prove to be quite indispensable in our analysis but are still
mystifying most of the physics audience. In the following appendices, we hope to
provide at least a set of working rules and algorithms, in an accessible form
sufficient to reproduce our present results. We refer to ref. [3,4,16,17] and,
ultimately, ref. [1] for more details. Several computations in full detail, which have
been omitted from the main part of the text, are also appended - the undertaking
reader may use them to strengthen his understanding. First of all, however, we
prove that the Calabi-Yau spaces discussed here are indeed manifolds, i.e., smooth;
this extends the results of ref. [23].
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A. Smoothness

In this appendix, we prove that the two three-generation Calabi-Yau manifolds,
i and Jllw2, are indeed smooth.

A.I. The Covering Space Smoothness. We first prove that the system

f ( x ) = (x1)3 + (x2)3 + (x3)3 + (x4)3 = 0 ,

9(x) = (y1)* + (y2)3 + (y3)* + (y4)3 =0,

h(χ, y) = x1 j;1 + x2y2 + ηx*y3 = 0 (2.2η)

has a smooth space of solutions Jt c IP3 x P3 precisely for η3 Φ 0, — 1, — 2.
We first introduce some notation. Let

A _ f xα for 4 = α = 1, 2, 3, 4

~ j / for 4 = α + 4 = 5, 6, 7, 8 .

To verify smoothness, we need to check that the volume form of the normal bundle
is non-vanishing wherever the polynomials vanish, i.e., on the space of solutions.
This volume form is

dV= VABCdzA Λ dzB Λ dzc =f df/\ dg Λ dh ,

where the gradients of the defining polynomials are

df=dzAdAf, dg = dzAdAg, dh = dzAdAh, SA=-A

The following is a list of 12 x 4 non- vanishing components of VABC\

[(x2)2/ - (x1) V](y)2, [(χ3)2/ - η(χl)2y*l(yΛ)2, UxΎy'

(χ-)2[χ2(/)2 - x1^2)2], (χΛ)2[^3[(/)2 - * V)2], - (*α)

(x*)2|>x3(/)2-x20;3)2], -(xα)2[x2(/)2], -(xfl

Since not all xα and not all y" can vanish, for άV = 0, it must be that the
quantities in the square brackets vanish. This yields the following twelve equations

(x2)V-(x1)V = 0, (

(x3)2yl — η(xl)2y3 = 0, (.

(x3)2y2 — ?/(x2)2y3 = 0, η(.

X 2 (y 1 ) 2 -x 1 (y 2 ) 2 =0, -x

> 7x3(/)2-x1(y3)2=0, -x

»/x3(y2)2 - x2(y3)2 = 0, -ηx

y1 = o,

y2 = o,

y3 = o,

)2 = o,

)2 = 0,

)2 = 0.

(A. 1,2)

(A.3,4)

(A.5,6)

(A.7,8)

(A.9, 10)

(A. 11, 12)
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Now, Eqs. (A.2), (A.4), (A.6), (A.8), (A. 10) and (A. 12) enforce x4 = y4 = 0. The
only other possibility is xά = / = 0, with α, ά φ 4, which however yields /, g, /z Φ 0.
Thus, we set x4 = y- = 0 and proceed solving the remaining six equations patch by
patch.

Let UaΛ denote the patch where xα, y* Φ 0. In fact, by choice of coordinates,
xa = y* = 1 in UM and it remains to (a) solve Eqs. (A.1)-(A.12) for the remaining
four coordinates and (b) verify that the solutions satisfy the defining equations
(2.2η ). Because of the xa<^>yΛ and the x1, y1<-^x2, y2 symmetries, it suffices to study
the patches Un_, t/^, t/13_ and 1/33.

We present the details for the ί/u patch only and leave the rest of the proof as
an excercise for the diligent reader. In L/u, Eqs. (A.I) and (A.7) become

This implies that either x2 = y2 = 0 or

x2 = ω

fc, y2 = ω2\ k = 0, 1, 2, ω = e2ίπ/3 .

Equations (A. 3) and (A. 9) become

(x3)2 = ̂ 3, ηx3 = (y3)2.

This yields that either x3 = y3 = 0 or

x* = ηωl, y3 = ηω21, I = 0, 1, 2 .

The remaining equations are satisfied identically. We then have four possibilities

Γ(0,0) =

) (0, W) =
(A. 13)

(ωfe, 0)

*, i/ω1) => f ( x ) = g(y) = h(x, y) = 2 + η* .

Equations (A. 13) and the corresponding results in the remaining patches show
that dVand /, g, h can vanish simultaneously only if η3 = 0, - 1 or -2. (The case
η 3 = 0 is not covered by the foregoing analysis, but is easy to complete along the
lines above.) In other words, the space of solutions ^off=g = h = Qis smooth
unless η2 = 0, -1 or -2. Q.E.D.

In particular, for η = 1, Jt is smooth and possesses an S3 symmetry, the
simultaneous permutation of the three pairs (x1, y1), (x2,y2) and (x3, y3). This
case was omitted in ref. [23], but is covered in ref. [22].

A. 2. The Two Smooth Quotients. Given that Jί defined in (2.2) is smooth, we now
prove that the two distinct quotients Jίγ = Jί /®ι and Jί2 = Jt Ί®2 are also
smooth.

Z3 Action on

07! I

x1

1
1

x2

ω2

ω2

3 4

ω ω
ω2 ω

y1

1
1

y2

ω
ω

y3 /

ω2 ω2

ω ω2
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The fixed point set of m1 in P3 x P3 can be written as

{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, x3, x4)} x {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, y\ y4)} .

Quite manifestly, except at (0, 0, x3, x4; 0, 0, y3, y4\ /(x) or g(y) cannot vanish at
these points. At (0, 0, x3, x4; 0, 0, y3, y4\ we have that h(x, y) = x3y3 vanishes only
if x3 or j;3 does; then however

3 = 0 => x 4 ~ l = » / ( χ ) ~ l φ O ,

= o => / - 1 => g(y) ~ 1 φ 0 .

Thus, neither of the w^ -fixed points satisfies the defining equations of Ji, so that w±

has a free action on Jί and the quotient space Jί^ d=f Jί/w^ is smooth.

The fixed point set of w2 in P3 x P3 can be written as

{(1, 0, 0, 0), (0, x2, x3, 0), (0, 0, 0, 1)} x {(1, 0, 0, 0}, (0, y2, /, 0), (0, 0, 0, 1)} .

Again, except at 0, x2, x3, 0; 0, y2, y3, 0),/(x) or g(y) cannot vanish at these points.
By the symmetries of the problem, it will suffice to examine the two patches in
which the remaining fixed points can be parametrized as

^((U^O; 0,1, );,()),

j>2 = (0, 1, x, 0; 0, y, 1, 0) .

Now, at both of these,

So, for /(x) and g(y) to vanish, we must have that

But then

χ=-ω\ y=-ωl,

h(p2) = ωk + ω

lή=Q,

and none of the G72-fiχed points lies in Jί either. Thus, the quotient space

Jt2

 d= Jtjw2 is also smooth.

B. Projective Preliminaries

Here we explain the Young tableau notation and include the "tic-tac-toe" algo-
rithm that implements the Bott-Borel-Weil (BBW) Theorem [2].

Using the fact that P3 = {£7(4)/£7(l)x £7(3)}, irreducible representations of
£7(1) x £7(3) are labeled by Young tableaux which we denote by (a \ bι, b29 b^). Here
a is the £7(1) charge and hi is the number of boxes in the ith row (counted from the
bottom), which stick out to the right (left if bι < 0) of the vertical "spine" of the
tableau. Likewise, ( fc l 5 b2, fo3, b4) denote £7(4) Young tableaux. Note that (1, 1, 1) is
the totally antisymmetric tensor εijk, which is not £7(3)-invariant, but can be
factored out; for example,

(1,1,4) = (1,1, 1)®(0,0,3). (B.I)
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Since ί/(3) - C/(l)det x Sl/(3) locally, one could say that (1, 1, 4) and (0, 0, 3) are
equal up to the ί/(l)det charge. We use this to associate tensors to the (b 1 ? fo2> 63)
notation and adopt the convention that

(-1,0,0)-^, (0,0,1) -(/>', i = l , 2 , 3 . (B.2)

Note that the correspondence between Young tableaux and tensors is unique only
if we meticulously keep track of the Levi-Civita alternating symbol. For example,
(0, 1, 2) can be represented by φa(bc\ which is symmetric in b9 c but vanishes upon
total symmetrization, but also by the traceless φa

b. Actually, their relation

φa(bc) = £abdφcd + εacdφbd = g

is merely the explicit form of

(0,1, 2) = (1,1,1)® (-1,0,1).

The two tensors, therefore, differ by a unit of ί/(l)det charge. The reader unsettled
by "negative boxes" in the above notation can use this factorization property to
obtain, e.g.,

(-1,0,0) = (-1, -1, -1)® (0,1,1), φi = εijkφw. (B.3)

The BBW theorem relates, in a 1 — 1 fashion, a U ( l ) x £7(3) Young tableau
(a\bί9b29b3) to each homogeneous vector bundle on P3. Furtheremore,
Hβ(lP3, (a I i?ι, Z?2» 63)) Φ 0 for only one q and to this cohomology group the BBW
theorem assigns a 17(4) Young tableau (cί9 c2, c3, c4). For a given homogeneous
bundle (a\bί9 b2, b3)9 we have the following "tic-tac-toe" algorithm [2]:

1. Add the sequence 0, 1, 2, 3 to the respective entries in (a\bί9 b2, b3).
2. If any two entries in the result of Step 1 are equal, all cohomology vanishes;

otherwise proceed.
3. Swap the minimum number (= q) of neighboring entries required to produce

a strictly increasing sequence.
4. Subtract the sequence 0, 1, 2, 3 from the result of 3, to obtain (cl9 c2, c3, c4),

where ca ^ cα + l ϊ for α = 1, 2, 3, 4.

The only non-vanishing (a\bl9b29 fc3)-valued cohomology on P3 is
3, (a \ bl9b29 &3)) = (C l, c2, c3, c4) . (B.4)

For more details, see ref. [2, 16].
As an illustration and for orientation with the more standard notation, we list

a few typical bundles on P3 . We have

corresponding to /cth order polynomials, the tangent and the cotangent bundle on
P3 . Other examples are easily found by the usual Kronecker product of Young
tableaux and then projection to irreducible components. For example,

Also,

Ωi3®^P3 = ( l | - l ,0,0)®(-l |

which is simply a rewriting of Eq. (4.1).
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C. Spectral Sequences

The spectral sequence computation associated to the Koszύl complex such as (2.10)
is perhaps the most uncommon of the techniques used in this article. To the best of
our knowledge, available references in book form require a rather advanced
understanding of algebraic geometry [1]; in fact, they do not cover this particular
application. Griffiths and Harris (ref. [1], p. 438-445) give a general discussion of
spectral sequences, which we shall adopt here to suit our present calculations.

Definition. A spectral sequence is a sequence {Eh dj (i ̂  0) of bi-graded groups

together with differentials

di

such that

= Hd.(Ei)

In practice, dt = 0, i > K for some finite K, whereupon Eκ = Eκ+1 = . . . and Eκ is
called the limit of the spectral sequence, written E^> The sequence of Ej's may be
regarded as a sequence of successive approximations to E^ and that is, in fact, how
we use it.

For our particular application, we consider a manifold Jt embedded in
IP3 x P3 by means of a system of three (K = 3) defining polynomial constraints.
Each defining polynomial corresponds to a line bundle, the direct sum of which we
have denoted by δ. The associated Koszul complex (2.10), tensored by (the sheaf of
holomorphic germs of function of) some vector bundle if over P3 x P3 is then

o — > Λ3<f*®-r-i-> Λ2^*®^-^-^*®-^^— Q-+if\jt — > o .

We then define

E£*(τr ) =f HJ(V* x IP,3, ΊT ® Λfc<f *) ,

and have the differentials, dt induced from the maps ξ.
The practice of discerning the action of all djs and computing the drcohomol-

ogy

j ,fc ^ 0

is exemplified in Appendix D. Roughly speaking, we keep on identifying and
cancelling out elements α and ω which are related by ω = d^ throughout each level
Ei(r ) and level-by-level for i = 0, 1, . . . , K = 3.

Once £00 (i^) has been reached, we obtain the ^-valued cohomology on
Jt through the combined action of maps induced from ξ and ρ (2. 1 2)

{Hq+k(ΊP3 x P3, Λfe<f * ® if\ V f c : "drclosed/drexact", VJ =>Hq(Jΐ, if) .
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The precise mechanism and derivation of this approximation process is described
in much more detail in ref. [1].

D. Computational Details 1

We would rather not bother the reader with all the tedium of the complete
calculation of Hl(J^, End^\ but present in this and the next appendix some
instructive examples.

To begin with, consider

-3

3

0 0 0

0 0 0

We tensor the resolution (2.13) with this and use the "tic-tac-toe" algorithm to
obtain the 0th level of the associated spectral sequence:

/ - 2 0 0 0\ / - 2

V 7 o o oy V 4
/ I 0 0 0\ / I 0 0 0\ / - 3

\ 7 o o oy \ 4 o o oy V 6

/ O 0 0 0\ / O

\ 6 o o oy \ 3

0 0

0 0

O f\0

o Λ""-^->

0 0

0 0

0 0

0 0 0\

o o oy

0 0 0\ / - 3 0 0 0\

o o oy V 3 o o oy

0 0 0\

o o oy

0 0

o ...'•••"0
0 . . . * " f\... u

B '"" 0

0 0

0 0

0 0

*/®4*u

ti \*/vl ^ of Q^ on )

^ TJ 1 / ^ β> /o> jf ΊS \
~ 11 ^ e/ί̂  , 0 /• VΛ' βfl /

k . z u 2 / x / «> / ε > * \/ί (Jl,όf®6g )

ill (<y^, 0 r ^y 6O )

Ξ o
Ξ = 0

= 0

(D.I)

where A stands for

10- 2 0 0 0

1 1 1 4 / 20

o o o oy
1 1 1 3 ) 1 0

-2 0 0 0 1 0

1 1 1 l

- 3 0 0 0

1 3 10

(D.2)

The sub- and superscripts denote the dimensions of the upper and lower factor
Young tableaux, thus the product thereof is the total dimension.
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It is immediately clear that the only differential which is effective in the lower
left quadrant of the above chart is the d0 labeled explicitly by). From Eq. (2, 12), we
see that there will be no contribution to H°(J(9 δf ® δg*) and H3(^, Sf ® δg*)\
therefore, these vanish. Now, ker(j) is the subspace of A which is annihilated by
j and hence remains in the dfc-cohomology; as a subspace of A, it contributes to
Hl(Jΐ,δf®δg*) through Eq. (2.12). Likewise, cok(j) contributes to
H2(Jί, δf ® δg*). We therefore analyze in turn the actions of the components ft, g
and / of the mapping j.

, , ί -2 0 0 0\ / - 3 0 0 0 \ . . ,. J ,
The ft: I i i i 4 ) ~M 1 1 ^ 7 maPPιnβ 1S realized by equating

Φ(ab

(xβy)hc}y = φ(abc}™ , (D.3)

which is a system of 200 linear, inhomogeneous equations. The kernel of the
mapping ft: {φ} -> {φ} is, by definition, spanned by the components of φ(ab)(Λβy)

which are annihilated by the map - regardless of the choice of φ (αbC) (α/?) Similarly,
the cokernel of the mapping is, by definition, spanned by the components φ(abc)(Cίβ\
modulo the ideal generated by Φ(ab

(0ίβγ}hc)y. Roughly speaking, we need to establish
which of the φ's are equated with which of the φ's; the remaining </>'s span ker(ft)
and the remaining φ's are non-trivial quotient-representatives of cok(ft).

Note first of all that the ten components of ψ(αfc)

(---) do not occur in the system
of equations (D.3) since ftC4 = 0. These are annihilated by the map ft and are in its
kernel. Likewise, precisely nothing is mapped to the ten components of φ(444)

(α/?)

whence they are in cok(ft).
Since hcy = δcy while c, y = 1, 2, 3 and vanishes otherwise, a suitable "splitting"

of the indices is in order; indices labelled by a caret will take values only over 1, 2
and 3 while the value 4 will be explicitly written. We then rewrite these 200
equations accordingly in nine groups. In the first one, all indices are restricted to
take values 1, 2, 3 and the assignment is

It is quite straightforward to see that to each of the 6 10 φ's a linearly independent
combination of the 10 6 </>'s is assigned, so that this sector of the mapping ft is an
isomorphism; there is no kernel or cokernel here.

Next, let α = 4 (to distinguish from values of Latin indices, we shall underline
the values of Greek indices), so that we have

Φtf^δn^φw^. (D.5)

In this sector, ft maps a 6 6-component subset of φ's to a 10 3-component subset
of φ's and so cannot be 1-1. It must annihilate at least 6 (linear combinations) of
components of φ. However, there is no unique set of 6 such elements and we must
make some choices. With a little foresight, we eliminate 30 of the φ's in terms of the
30 φ's leaving
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to span this sector of ker(/z); they will occur in later mappings.6

Proceeding in this fashion, let now α = β = 4:

P.6)

Again the mapping h must have a kernel in this sector, since (D.6) is a system of 10
equations in 6 3 variable φ's. Considering the γ index being lowered with <5φ we
rewrite the above relation as

Thus

i44' d= P^fe44' - ̂ ίΓ -

are annihilated by h and span this sector of ker(Λ). We denote

Consider next the α = 4 case. We now have

a system of 36 equations in only 30 variable components of {φ^(&^]}- One expects
that this completely determines these φ's in terms of the φ's; indeed, it can be
verified that these Jacobian matrix of the φ -> φ transformation is of maximal rank
(30). Thus, the mapping has a 6-dimensional cokernel, a quotient spanned by the
equivalence classes

fn ~ (&β) ~ ,n , (άj8) j_ JL Λ*βϋX
<P(4bd) = <P(4bc) -Γ Φ(4b °c}y

Clearly, there are many equivalent choices for representatives of this quotient; with
the foreknowledge of the mappings that will come later, we choose the following:

Collecting all such contributions, for various other arrangements of the ranges
of the five free indices in (D.3), we find that the kernel of the map h is spanned by

= 0}8 ,

= 0}3 , (φ(^: φ(ά^δί]. = 0}6 (D.7)

6 The situation here is a little like solving a simple relation x + y = α, knowing that later another
relation, x = b, will be encountered. With this foresight, we use the first relation to express
y = y(x, a) and leave x free (for the later relation to fix it). More properly, when the later relation
is encountered, we should backup and combine the relations into a system and then solve this
complete system. However, in practice, we would have to back up several times and the resulting
analysis grows beyond reasonable means of presentation in published form. It is however not hard
to check our calculations in this way and verify that no loss of generality in the end result was
incurred through our somewhat sinuous procedure
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while

+ VS/%r }6 (D.8)

span the cokernel.
Next in discussing the combined mapping in (D.2), we consider the
/ - 2 0 0 0\ / - 2 0 0 0\

0: . 1 1 . -> . . . . map, realized by setting
1 1 1 4 7 V 1 1 1 1

N / \ /

Φ(ab]

(*βγ}g«βy = κ(ab} . (D.9)

Because of the symmetric choice (2.2), only the φ's with α = β = y can be mapped
by g acting as above. Among these, the </>(α&)(άάά)'s have occurred in the domain of
h in (D.3), where it was invertible (no kernels in those sectors). Thus, we denote
loosely φ(ab)

(ά™} = h~l(φ) and substitute in (D.9) to obtain

the right-hand side of which vanishes only for special choices of the φ's. Thus, no
component of φ(ab)

(---) is annihilated by g and ker(gf) = 0.
Since ker(#) = 0, g must be 1-1 and since furthermore the dimensions of the

spaces being mapped, {φ(ab)(~--}}ιo and {κ(ab)}10, are the same - g must be an
isomorphism. More explicitly, consider the equivalence classes

K(ab) = K(ab) + Φ(ab)(m} + Λ'Hφ) >

which span cok(g). Quite clearly, the ideal generated by the φ(ab)
(---} is sufficient to

render all TC'S equivalent to zero: using these ψ's, we can gauge away all TC'S.
The 8 + 3 + 6 elements from (D.7) are however annihilated by the map g (D.9)

and so they span the kernel of the combined mapping (D.2). Since there are no
other maps, these contributions survive into the final level of the spectral sequence
(D.I) and filter directly into Hl(Jί, δf ® δg*\ Likewise, only the 8 + 3 + 6 com-
ponents from (D.8) remain to span H2(Jί, $f ® $g*}.

An analogous procedure is then exercised with the resolution (2.10) tensored
with the remaining 17 irreducible bundles found in (4.5).

E. Computational Details 2

This appendix contains another sample computation along the lines described in
Sects. 3 and 4, aiming to illustrate the straightforwardness of our calculations,
albeit being technically laborous.

Having determined the cohomology groups on Jί valued in the various
bundles (4.5) as described in the previous appendix, we can now proceed to
compute Hq(Jί, End^) in two steps: first, determining all the relative cohomol-
ogy for the row exact sequence in (4.4) from the column exact sequences and then
Hq(Jί, End<%0) from that row exact sequence.

Our sample computation will concern a component of the right-most column
exact sequence in (4.4), involving the δf component of δ\

o -> δf ® <$ * -> δf (x) ̂  -*δf ® yjt -> o . (E.i)
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This was clearly obtained from the sequence (2.5), by tensoring with Ss. As usual,
the short exact sequence (E.I) induces the long exact sequence of cohomology
groups

0

0. (E.2)

Using the results obtained thus far, we have an explicit representation for all
Hq(Jt,gf®9~£) and Hq(Jί,S{®S*\ We now discuss this row by row, for
q = 0, 1, 2, 3.

For q = 0, we have

0-
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

-2 -

0 0

i ooy° i
o o o Λ J

(E.3)

The map jo here is clearly the identity and cancels the two 1-dimensional Young
/ _ 2 - 1 0 0 \ 2 0

stableaux, so that i0 takes I 1 over into HΌ(Jt,$f® yjf). Ten-

sors corresponding to this Young tableaux are easily seen to be of the type
Φa(bc) (which vanishes upon total symmetrization) and will give rise to the contribu-
tions also found by deformation theory (4.3).

The situation in rows q = 2, 3 is particularly simple, since Hq(Ji,^f® ^/)
vanishes there. The maps i2 and ΐ3 thus have nothing to map into
H2(Jί,Sf®^) and H*(Jt,<$f® 2Γ^\ respectively. Therefore, the only contri-
bution to the first one comes from H*(Jί,$f®έ*\ through the dimension-

changing map <52, and equals I

With this established, we remain with

- 2 0 0 0

0 0 0 0

<5o

L B J .
h

7-ι -i/

( i i
c

o o \ 6 "
1

i i λ

•0, (E.4)

where we need to discern the precise action of the combined map in the middle.
Contributions to HQ(Jt, δf ® yjf} will then be the leftmost Young tableau and
the kernel of the combined mapping, while Hl(Jί,$f® ^/) will be built up from
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the cokernel of the combined mapping and the rightmost contribution, D and E.
The four labels above denote:

- 2 0 0 0 V 0

I 1 1 ί),
- 3 0 0 0 y °

i i i 3;10 l7

(E.5)

- 2 0 0 0 \ 1 0 "

1 1 1 l / i I T
(E.6)

def

10

0 0 0 0^ 1

0 0 0 0

cok

- 3 O O O
l l l l , 74

3 0 0 0 '

o o o o Λ J19Ίi Ji

3 0 0 0\ 2 °

1 1 1 3 J 1 0

17

(E.7)

(E.8)

-2 0 0 0\ 10

(E.9)

where we have underlined the Young tableaux which are the source or the target of
the maps.

We now turn to study the combined mapping and begin with the map g. The
assignments are determined by the Koszul complex and correspond in tensorial
notation to

i

4 tt
_ 2 0 0 0 1 0

2

where δδ

Λ is the 4 x 4 Kronecker delta-symbol. The subtraction on the left-hand side
ensures tracelessness, as dictated by the Young tableau represented by the $'s.

It will be useful to break up the ranges of the free indices into three groups as in
the list (D.7) and we now discuss these in turn.
a) g ffiφ(fiS)^ι->3(άb)f4 Using the various constraints on the components of φ and

9 from before,

LΦ(άάΓπ + </>(y?Γαα]3 g

Γ i 4?yA

Ί
LΨ(άbΓ J3
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where a, b and f are all different. Clearly, the map has its image only in the first
summand on the right-hand side, and in fact maps out

b) ^444</>(αί)"7ι-^5(α6)47 Again, by various constraints on φ and 3 from before, in
this range of indices,

/A - 44? /A 44fe //» - 44« g * Q - y Q & Q - «<Pw — 3<P(w 3Φ(tfΓ~ - M 3^)4 "3^)4 —3^)4

(E.ll)

This map is clearly an isomorphism and has no kernel or cokernel among the
displayed components.

c) #444 </>(4fe)--fr-> 5(4g)4yA. With the various constraints on φ and 5 from before, we
now have

Again, the map is clearly an isomorphism and has no kernel or cokernel among
the displayed components.

This has completely annihilated A and has cancelled 17 components of C.

( — 1 — 1 0 0 \ 6

1 . With the 7 components of
1 1 1 1 / i

B, we have

{(φt

Λ - Vλ ΦS, ΦS} — { V]. ^[^4]} (E.13)

The only possible assignment here is φ\_^h£^\-^S^ά^ leaving {5[44]}3 in the
cokernel and {φa-}^ in the kernel.

Finally, we consider the map B — ̂  C, substituting what has been left of these.
The involved components are:

The three components φά- are clearly mapped out of the first $, while φ4- gets
mapped out of the second A This leaves no kernel in this sector and the cokernel is
described by the "mod-/ι(</>Λ-)" equivalence classes of the two respective $'s.

Collecting all these results, we now have Hq(Jί, $f®$~jf\ For q = 0, this
cohomology follows from Eq. (E.3) and is spanned by the 20 components of </>(αb)c,

/ - 2 - 1 0 0 2 0

corresponding to

Q ^For q = 1, we obtain a large collection of different contributions:

hb)b}9-3 = 6> {Φ(46)|Γ/^4~^ίf}9-l=8j {Φ(44)\6~i3

{ Φ ( ά ί ) \ f 0(ff)|ό"}3> {Φ(4b)\i — Φm\S /9> {Φ(άb)J.δ}24 ,

Φw}3, {Φ(al,c)/λfabc}19,

(E.15)
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Finally, H2(Jί, $f (x) 3~jf) equals I J and is represented by a constant

multiple of ε1234ε1234 and H*(J{, δf ® ^J) vanishes.
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