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Abstract. The purpose of this paper is to establish an intersection formula in equivari-
ant complex geometry, in the presence of an excess normal bundle. The contribution
of the excess normal bundle to the formula appears through an additive genus X R. In
a forthcoming paper, an infinite dimensional analogue of this formula will be shown
to be the result of Bismut-Lebeau on the behaviour of Quillen metrics under complex
immersions.
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Introduction

This paper is the second of a series of three papers, which include [B1] and [B3],
which are devoted to the role of excess normal bundles in complex intersection theory.

In [B1], we established a formula relating certain Bott-Chern currents associated
to non-transversal complex submanifolds of a complex manifold. With respect to a
similar formula which was established in [BGSS5], the formula in [B1] contains a
correcting term, which explicitly reflects the presence of an excess normal bundle
N. In [BGSS5], one could use the microlocal estimates of [B2] to take full advantage
of the transversality of the considered manifolds. In [B1], one uses instead a method
formally inspired by the proof by Bismut-Lebeau [BL1, 2] of a formula describing the
behaviour of Quillen metrics on the determinant of the cohomology under complex
embeddings.

In this paper, we solve a similar problem in complex equivariant intersection
theory. In fact let LX be a compact complex Kéhler manifold with Kéhler form
wIX let K be a holomorphic Killing vector field on LX, let X be the zero set of K.
Then a class of formulas, whose prototype is the Bott residue formula [Bo], relates
integrals of certain forms over LX to integrals over X. These formulas have been
made transparent in the context of equivariant cohomology by Berline-Vergne [BeV].

In [BS5], inspired by our proof of such localization formulas [B4], and also by
a loop space formulation of the construction of Quillen metrics, we constructed a
K-invariant current XS _;x on LX, which solves the equation of currents

OkOK kg | _K,1 (N Nx/Lx) § 01
—W WwEX =1 = e X/LX»9 )ox . 0.1
In (0.1), Ok Ok is a K-equivariant version of the operator 89, and ¥ ¢l (Nx/Lx,
gNX/LX) is the equivariant maximal Chern class of the normal bundle Nx,rx to
X in LX in equivariant Chern-Weil theory. The construction of the current XS rx
refines the localization formulas of [Bo] and [BeV].

Let now (LE, g“F) be a complex Hermitian equivariant vector bundle on LX,
let o be an equivariant holomorphic section of LE, which vanishes on a K-invariant
complex submanifold LY of LX. By imitating a construction of Bismut-Gillet-Soulé
[BGSS5], we exhibit an explicit Euler-Green K -invariant current X&LX(LE, g*) on
LX such that

OO KX (L1, 67P) = by — ¥ (L, "), 02)
In (0.2), Kcpax(LE, g"F) is the equivariant maximal Chern class of (LE,g
equivariant Chern-Weil theory.

In general X and LY have a non-empty intersection Y. Let NV the corresponding
equivariant excess normal bundle. Roughly speaking, we now want to give a formula
for the height pairing of the K-invariant cycles X and LY. Still the fact that X and
LY have a non-empty intersection and that the intersection is non-transversal makes
such a formula highly non-trivial. Our main result, which is contained in Theorems 3.2

LE) in
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and 3.4, is a refinement of the previous described localization formulas in equivariant
cohomology. It expresses a combination of integrals of currents over LX and LY
in terms of integrals of other currents evaluated over X and Y. The presence of an
excess normal bundle N is reflected in the appearance of a mysterious genus X R(IV)
in the final formula.

The formulas considered in Theorems 3.2 and 3.4 are of interest from several
points of view. They could be the prototype of formulas in a still non-developed
equivariant Arakelov intersection theory.

More surprising to us is the fact that as we will see in our next paper [B3], our main
result has a well-defined formal extension in infinite dimensions, which, if properly
interpreted, coincides with the main result of Bismut-Lebeau [BL1, 2] which concerns
the behaviour of Quillen metrics under complex embeddings. In [B3], i:Y — X is
an embedding of complex manifolds, and LX, LY are the loop spaces of X, Y. The
analogy between the present paper and [BL2] is valid not only for the final result,
but also for the intermediary steps. In fact, Sect.3 of this paper has been written by
strictly imitating the general organization of [BL2], so that a reader with a limited
knowledge of both subjects can immediately perceive the analogy.

In particular, as we shall see in [B3], the infinite dimensional analogue of the
mysterious genus X R is exactly the genus R introduced by Gillet and Soulé [GS1] in
their conjectural formula of Riemann-Roch-Grothendieck in Arakelov theory. Using
the main result of Bismut-Lebeau [BLI,2], Gillet and Soulé [GS2,3] have in fact
proved the conjectured Riemann-Roch-Grothendieck formula.

This paper is organized as follows. In Sect. 1, we construct a form B(E, F, g
associated to an equivariant exact sequence of holomorphic Hermitian vector bundles

0-E—-F—->G—0, 0.3)
i J

)

and we calculate this form modulo 8 and & coboundaries. This way, we produce a
genus X D which is closely related to the genus ¥ R of our final formula. In fact,
Sect. 1 is the finite dimensional analogue of our paper [B6], where a genus D, closely
related to the Gillet-Soulé genus R [GS1] was exhibited. This section relies on finite
dimensional results of [B6, Sect. 9], where the analogy with previous infinite dimen-
sional results of [B6] had been partly worked out. The organization of the proofs
of the results of Sect.1 is such as to allow the reader to grasp at least the formal
resemblance with [B6].

In Sect.?2, we recall the construction in [B5] of the current % S,rx. Also by im-
itating [BGSS5], we construct the equivariant Euler-Green current XXX (LE, gL F).

Finally, in Sect. 3, we establish our intersection formula. As explained before, the
general organization of this section is closely related to the organization of the paper
of Bismut-Lebeau [BL2]. In particular a rectangular contour " in Ri, which played
a crucial role in [BL2], reappears here, as it also did in the preceding paper of the
series [B1]. The role of the contour I" in [B1] and in the present paper is to overcome
the presence of the excess normal bundle V.

I. Equivariant Short Exact Sequences and Bott-Chern Forms
The purpose of this section is to construct and to calculate certain Bott-Chern forms
B(E, F, g*') which are naturally associated to a short exact sequence

0-E—->F—->G—-0
i J
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of holomorphic Hermitian vector bundles. Part of the technical machinery was already
developed in [B6, Sect.9], to which the reader is referred when necessary.

This section is organized as follows. In a), we introduce our main objects, and we
describe the forms 7, T' > 0 already introduced in [B6, Sect. 9]. In b), we recall the
results of [B6] on the asymptotics of xp as T'— 0 or T' — +o0. In c), we construct
the form B(E, F, g¥') as the derivative at O of the Mellin transform of x7. In d), we
calculate B(E, F, g¥') in terms of a Bott-Chern class in the sense of [BGS1], and of
an additive genus X D evaluated on G. Finally in e), we introduce a closely related
genus K R.

This section should be considered as the continuation of [B6, Sect. 9]. Our formula
for B(E, F, g¥') is in fact a finite dimensional analogue of the main result of [B6].

a) Equivariant Exact Sequences and Differential Forms

Let B a connected complex manifold.

Definition 1.1. Let PP be the vector space of smooth forms which are sums of forms
over B of type (p,p). Let P50 be the set of w € P? such that there exist smooth
forms «, § for which w = da + 0.

Let
0O-FE—->F—->G—-0 (1.1)
i J
be a holomorphic acyclic complex of vector bundles over B. E will be considered as
a holomorphic subbundle of F', and G is identified with F'/E.

Let g¥ be a Hermitian metric on F. g¥ induces a Hermitian metric g% on E.
By identifying G to the orthogonal bundle to E in F, g¥ also induces a Hermitian
metric g% on G. Let VZ, V¥, and V¢ be the corresponding holomorphic Hermitian
connections on E, F, and G, and let RE, RF and RC be their curvatures.

Let JF be a holomorphic skew-adjoint section of End F', which preserves E. Let
JE be the restriction of JF to E and let J& be the natural action of J¥ on G.
Then JP and JC are also holomorphic skew-adjoint sections of End F and End G.
Mgreover JE, JF and JC are parallel with respect to the connections VE, VF and
V&,

The connection V¥ defines a natural splitting of T'F into

TF=FoTHF, 1.2)

where THF is the horizontal subbundle of TF. We define THE and THG in a
similar way.

If z € F, we identify z with Z = z + z € Fg. In particular |Z|> = 2|z|%. Also
JFZ € F. Using (1.2), we consider J¥Z = J¥z + J¥z as a vertical holomorphic
vector field on F. If T'B is equipped with a Hermitian metric, we can lift the metric
of TB to THF. We equip TF = F @ TH F with the orthogonal sum of the metrics
on F and TH# F. Then J¥' Z is also a Killing vector field on F. Similarly, if Z € E
or Z € G, J¥Z and J%Z will be considered as holomorphic Killing vector fields on
E and G.

E is a complex submanifold of F. The vector field J¥Z restricts to the vector
ﬁeéd JEY on E. Also, the projection map j: F' — G maps the vector field J¥ Z into
JY3(Z).
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If U € TrF, let UV € Fg be the projection of U on Fr with respect to the
splitting (1.2) of TrF. Let (J¥'Z) be the 1-form on F,U € TxF — (J¥Z,U").
Also, we identify J¥ with the 2-form

U, U e TyF — (UV,JFUY). (1.3)

Let i,r, denote the interior multiplication by J¥Z acting on A(Tj F) and let
L;r, be the Lie derivative operator associated to the vector field J¥Z. Then the
operators d, i ;r, and L ;r, act on the set of smooths sections of A(Tj F') over F.
Moreover

LJFZ :(d+iJFZ)2- (1~4)

Let 7 be any of the projections E, F, G — B. If w is a form on B, we identify
w with the form 7*w on E, F, or G.
The following result is proved in [B6, Proposition 9.1].

Proposition 1.2. The following identities hold:

Lt Utz = B (RFJFZ zy+Jr,
2 7z 2 (1.5)
Lyr,(JFZY = 0.
Definition 1.3. Let Ka(F, g¥') be the smooth form on F
K F |JFZ|2 F 1F F
a(F, g ):exp{ > (R JZ,Zy+ J } (1.6)

The form X o(F, g¥') was introduced in a different context in [B4, Proof of Theorem
1.3].

Theorem 1.4. The form K a(F, gF) lies in P¥. Also
(d+izry)EaF ¢F)=0. 1.7

Proof. This result has been proved in [B6, Theorem 9.3]. It follows directly from
Proposition 1.2. O

Observe that since J¥ is a holomorphic skew-adjoint section of End(F’), then
@+ir,) =0, @+imr,)=0. (1.8)
Using (1.4) and (1.8), we find that
Lipy,=[0+1i,r,,0+ir;]. 1.9
Of course, similar identities hold for L ;r, and L ;¢ .
Definition 1.5. Set
KRE =RF+JP, KRF=RF+4+JF, KRY=RC+JC. (1.10)
Let JC be the complex structure of Gg.

We now use the formalism of Mathai-Quillen [MQ], which is briefly described in
[B1, Sect.3a)].
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Definition 1.6. For T > 0, let Kar(G, %), Kcr(G, g€) be the forms on G
K pG 712
Kar(G,g%) =det | — R expd — T 1212 +*R%™) 4,
2im 2

0
K Gy _ _
er(G,g7) = % [det (

2
exp{ ——T(% +(KRG +27erG)"1) H .
b=0

We recall a result of [B6, Theorem 9.5].

1.11
2im ( )

Theorem 1.7. The forms Xar(G, %), Kcr(G, g€) lie in PC. For any T > 0, the
following identities hold.:

(d+i,6,)%ar(G, g% =0,
(1.12)

D Kp(G, %) = — Bt iy0) @ +iyes) T (G, g%)
ar T\ 9 )= 5 0T G, tiz) Tp (g

Since J¥ is a holomorphic skew-adjoint parallel section of End F', one verifies
easily that F splits holomorphically and orthogonally into

F=@p F*,

AeA

where A is a finite set of locally constant distinct purely imaginary numbers, and the
F*’s are nonzero holomorphic vector bundles. Moreover for any A € A, J¥ acts on
F* by multiplication by A.

The acyclic complex (1.1) splits into a direct sum of holomorphic acyclic com-
plexes

0—-E>F*=G*—o0. (1.13)
i j

Again J? and J€ act on E* and G* by multiplication by \.
We now make the basic assumption that 0 ¢ A.
Therefore, for any T > 0, the forms

Ka(F,gFyj*®ar(@G,¢%), KaF,g")i*Eer(G,g%)

on F are Gaussian shaped, i.e., exhibit a Gaussian like decay as |Y| — +o0.
In the sequel, f denotes integration along the fibre of 7: F' — B.
F

Definition 1.8. For T" > 0, let 6(T"), x(T') be the forms on B,

b7 = / K o(F, g")* K ar(G, ¢%)),
F

Xt = / K o(F, gF)i* K er(G, 4°)).
F

(1.14)

The following result is proved in [B6, Theorem 9.7].
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Theorem 1.9. The forms 07, xr lie in PB. The forms 0 are closed and their coho-
mology class does not depend on T'. More precisely, for T > 0,

0 00
Set
KRE
Kcmax(Ea gE) = det < - . )
i
K pE
KB, g%) = det™ (— i ) ,
2
(1.16)

0 KRE
ot = 35 9 (=55 +2)],

K pE -1
Kl y (B, g% =2 [det( R -|-b)] .

2 b=0

We make the convention that if £ = {0}, then
Kem(B,9%) =1,  Kepu(B,9")=0,  (Kp)(B,¢%) = (1.17)

Note that since J is parallel with respect to the connection VE , the forms in
(1.16) are closed. Of course they lie in PB. Similar forms can be defined which are
associated to (F, g¥'), (G, g©).

b) The Asymptotics of the Forms 01 and xT

The following result is proved in [B6, Theorem 9.9].
Theorem 1.10. As T' — 0,
Or = max(F 9" X emax(G, 99 + OD),

(1.18)
X =~ o (F, g7) ¥ 0 (G, g) + O(T).
As T — o0,
1
Or = Kcmu(E, g%) + O( ) ,  XT = O(T) . (1.19)
Set
Xo = lim xr. (1.20)
The form xp is calculated in the right-hand side of (1.18).
c) The Form B(E, F, g*)
Definition 1.11. For s € C, 0 < Re(s) < 1, set
1 +00
A(s / T 'xrdT. 1.21
=7 X (121)

Using Theorem 1.10, it is clear that A(s) is a meromorphic function of s, which
extends to a holomorphic function near s = 0.
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Definition 1.12. Set 5
B(E, F,g") = P A0). (1.22)

Then B(E, F, g¥') is a smooth form on B.
Proposition 1.13. The following identity holds

1 +0o
dT dT
B(E, F,g") = /(XT —Xx0) 7+ / XT 75— I'(Mxo- (1.23)
0 1
Proof. Equation (1.23) follows from Theorem 1.10. O
By [BGSS, Theorem 3.15] or by [B1, Remark 3.7], the current on G

K pG 2
_9 [det ( - i, - b) Log (ﬂ + ¥RC + 27erG)-1>] (1.24)
2w 2 b=0

is locally integrable.
Theorem 1.14. The following identity holds
[JFZ)? 1

B(E, F, ") = / exp{ -+ (RTITZ,2) + JF}
F

A P
][ ob det 27 b

2
Log (% + (KRG + 27erG)_1>] ] . (1.25)
b=0

Proof. Equation (1.25) follows from (1.11), (1.14), (1.21). O

Remark 1.15. Note that the local integrability of the current (1.24) on G plays a key
role in making sense of the right-hand side (1.25).

Theorem 1.16. The form B(E, F, gF) lies in PB. Moreover the following equation
holds

00 _ _

25 BB, Frg") = % e (B, g7) = emax(G, g) ¥ can(F g7 (1.26)
Proof. Equation (1.26) follows from (1.15), (1.18), (1.19). O
Remark 1.17. Equation (1.26) can also be considered as a consequence of [BGSS,
Theorems 3.14 and 3.15], of Proposition 1.2 and of Theorem 1.14.

d) Evaluation of B(E, F, g¥') in PB/PB?

If A € A, let g% be the Hermitian metric induced by g% on E*. Let VE* be the
holomorphic Hermitian connection on (E*, g%") and let RE” be its curvature. Then

_)_ RE*
Kool (B, %) = [ det™ (—A—L> .

5 1.27)
A€eA wm
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Therefore K¢l (E, gF) is obtained by a usual constructlon m Chern-Weil theory. Of
course similar considerations apply to Xc.L (F,¢*) and K¢, L (G, q%).
By the theory of Bott-Chern classes developed in [BGSI Sect. 1f)], there exists a

uniquely defined class X cpi(E, F, g¥') € PB/PB such that

Z(:_ Cmax(E F, F) = max(F gF)_ max(E gE)K max(G gG) (1.28)

—_—

The class K cpi(E, F, g¥) is normalized by the two conditions:
e ]t is functorial with respect to pull-backs.

o K c,}éx(E, F, gF ) vanishes when the equivariant exact sequence (1.1) splits holo-
morphically and metrically. This exactly means that for every A € A, we have an
identification of holomorphic Hermitian vector bundles F* = E* @ G*, and i and j
are the obvious injection and projection maps.

Definition 1.18. Let X D(G, g¢) be the smooth form on B

G G\ !
KD(@, g% = Tr [— (J—Z%TR—> (I'(1) — Log(—J&" — JGRG))J (129

We can write X D(G, g©) in the form

G\ 1
DG, g% =) [— (A—+R—) (I'(1) = Log(~\* — ARG*»} . (130)
= 24

It is clear that K D(G, ¢©) is a closed form which lies in PB. Also if ¢& varies
in the class of metrics on G such that the G*’s remain mutually orthogonal in G, the
class ¥ D(G) of K D(G, ¢%) in PB/PB 0 does not depend on g¢

S1m11ar1y, we denote by Kepu(E), Kcpl (E) the classes of K Cmax(E "),

Ke 1 (E,g®) in PB/PBO. These classes do not depend on the metric g% as g®
varies in the class of metrics preserving the mutual orthogonality of the E*’s.

Theorem 1.19. The following identity holds

B(E, F,g") = —Kcmax@ 0% Kcal(E, F, g)
Kl (B)XD(@G) in PB/PBY. (1.31)

Proof. We proceed exactly as in [B6, Proof of Theorem 8.5].

Let P! be the one-dimensional complex projective plane equipped with two dis-
tinguished points {0} and {co} and with the meromorphic coordinate z. By [BGSI,
Theorem 1.29] or by the Grassmann graph construction of Baum-Fulton-MacPherson
[BaFMa] which is explained in detail in [BGS3, Sect. 4], we can construct over B x P!
an acyclic complex of holomorphic vector bundles

0—-F —>F -G -0, (1.32)
l/ jl
which is a direct sum in A € A of the holomorphic complexes
0—E* > F*>G*—0 (1.33)
Z’ jl

and which has the following two properties:
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o The restriction of the complex (1.32) to B x {0} coincides with the complex (1.1).
e On Bx{oo}, the complex (1.32) splits, i.e. for each A € A, we have an identification
of holomorphic vector bundles

A _ A A
Bx(oo} = ElBu{oo} ® GlBx(oo} » (1.34)

and 7' and j' are the obvious injection and projection maps.
Let gF' be a Hermitian metric on F’, which is such that the F'*’s are mutually
orthogonal in F’, and which has the following two properties:

o The restriction of g¥ to B x {0} coincides with g¥ .
e On B x {oo}, for any X € A, the splitting (1.34) is orthogonal.

As in Sect. 1a), from the metric gF /, we construct metrics gE/, gGI on FE', G'.
Clearly, on B x {0}, g%, g% coincide with g%, g€. Also for T > 0, let X/ be the
associated form (1.14) on B x P! associated to the complex (1.32).

Over P!, we have the equation of currents

00
25 (Log 2%) = 610y — 6o} - (1.35)
Set
BEF',g") = BE', F', gF") + K (G, 6OV K ol (B ', gF) . (136)
By (1.26), (1.28), it is clear that
00 ]
o BE F',gF)y=0. (1.37)

Also
é@_ 2 /ot FIN 2 5_8 TN o
~ (Log|2) B(E', F',g™") — (Log |2") > BB/, F', ")
_i_ 2 1 F! i 2y 5 ! gt F!
= 2ix (O(Log|2[)B(E", F', g7 ) + 2im ((Log|2[)OB(E", F',g7)) . (1.38)

If x is a smooth form on B x P!, let ko, ko be the restrictions of & to B x {0},
B x {00} respectively. We will consider ko, ko as forms on B.

Using (1.38) and integrating along the fibre of the projection map B x P! — B,
we get

BE', F',g" ) — B(E,F', g7 ) € PE. (1.39)
Clearly
B, F', g™ = B(E, F,g")
+ K emax(G, g%) Kcndi(E, F,g¥) in PB/PBO. (1.40)

Also by construction

Kel (B F g% ) =0 in PB/PBO. (1.41)

We now calculate B(E', F’, g¥"')o. In the sequel, all our constructions will be done
on B x {oo}.
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Since the complex (1.32) splits on B X {co}, we see that if Z € F, |B><{oo}’ Z =
Y4+Y,Ye Ele{oo}’ Y' e G|B><{oo}’ then over B x {0},

i YP

Ka(F’,gFl)zexp{ 3 2(RE/JEYY)—I—JE}

G"Y/Z , ,
exp{ |J2| (RGJGY’ Y')-l—JG} (1.42)

So, over B x {oo}, for T > 0, we get

E'v |2
X = / exp{ 17 2Yl (RE’JE’Y Y) + JE’}

E(
~R% |JG'Y’|2 O Gt o
/det( i ——b)exp{ > (R JUYL Y
GI

0
TIY’|2
-+

b

JC — 1% + RS + 27bJ¢')! }} . (1.43)
b=0

By an easy calculation (which is done in [B4, Egs. (1.21)—(1.23)]), we see that

E' 2
/ exp{ 1/ 2Y| (JE REY,Y) + JE/} Kol (B, g7y. (1.44)

E/

Also one immediately verifies that

XRY EY'E L e pery
/det(— im —b)exp{ > (J RY'Y")
Gl

T|y/|2

+JY — 1% + R% + 27bJ')! }

—JG + T(JC + R + 2mbi)~! )

! ! det<
. G G :
— @M G det ( _ J_i — b) _ 1 ___
247 det(—JG” + T — RG' JG"

_ det(—J" + T — J(RY + 2mbi))
© de(—JS?+T - JFRG)

(1.45)
From (1.45), we get

o K RG' ]JG'Y'|2 & Gt o
%I:/det<— ¥ —b)exp{— 3 (R JUY Y

GI

lellZ

ot JC — 1% + RC +27bJ¢')! }J

b=0
= 2 TeiJ (—JC* + T — J¢ RE Y (1.46)
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Now by an elementary calculation which is made in [B6, Appendix, Eq. (7)], we
know that for s € C, 0 < Re(s) < 1, then

1 +oo 'JGI
— [ 7 ¢ ] dT
F(S) ! l:__JGa + T _ JGIRGI
=I'(1 - 8)Te[iJC (—J¢* — JO'RG")s-1]. (1.47)
From (1.43)—(1.47), we deduce that over B x {00}, then

A($)oo = (21K L (B!, gBYT(1 — 8) Te[iJC (=T — JERE YDy, (1.48)
Using (1.48), we see that

’ ’ G G\ !
B, F', g% Yoo = Kol (B, 7)o Tr [— ("—*—R—)

21w
(I'(1) — Log(—JC" — JG'RG'))] . (1.49)
Equivalently,
BE', F', 9" oo = K can (B, 87 )oo D(G', 67 oo - (1.50)
Clearly

8o
55 (Loglz K e E, g7 X D@, g%)
=—[a(Log|z| YK (B, ¢"YEDW@, g9N). (1.51)

Using (1.35), (1.51) and integrating along the fibre of the projection map B xP! — B,
we get
K enm(B,9") X D(G, %) = KB, )" D@, ¢)oe € PP (152)
From (1.39)=(1.41), (1.50), (1.52), we get (1.31). O

e) The Genus KR

Definition 1.20. Let ¥ R(G, g%) € PB be given by

G, pG

KRG, g% =Tx [— ("——*.R—
2T

The considerations we made for X D(G, g%) also apply to X R(G, g%). In partic-

ular KR(G, ¢%) is a closed form. We denote by & R(G) the class of ¥ R(G, ¢©) in

G,g9%)
PB/pBO, Similarl "‘a"( ) denotes the class of L n PB/pBO,
/ Y K eman(G) e @rg®) " T

Proposition 1.21. The following identity holds

-1
) QI'(1) — Log(—(J%)* — J°R%))| . (1.53)

max (G)

1.54
enen(@) (154

KR@G) =*D@G) + F’(l) e
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Proof. Clearly,

Kl (G, g%) JS+ RO\

Equation (1.54) follows from (1.29), (1.53), (1.55). O
Definition 1.22. If u € R*, z € C, set

RMx) = (u+ )" <2F’(1) —2Log|2mu| — Log (1 + %)) . (1.56)
i1
In the sequel, we make —=0ifj=0.
k=1 k
Proposition 1.23. For z € C, |z| < p, the following identity holds
1 XX 1 -z
Ri@) =~ <2F’(1) —2Log[2mu| + Y —) (—) : (1.57)
P il ®

Proof. Equation (1.57) follows from a trivial calculation which is left to the
reader. O

We identify R* with the corresponding additive genus.
_JG

Let M C R* be the spectrum of

2T
Proposition 1.24. The following identity holds
KR@G) =Y RHG™). (1.58)
pneM

Proof. Equation (1.58) follows from (1.53), (1.56). O

II. Equivariant Bott-Chern Currents

The purpose of this section is to recall the construction in [B5] of the equivariant
Bott-Chern current ¥ S,Lx, and also to construct the equivariant Euler-Green current
KeLX(LE, g"F) by extending results of [BGS5].

This section is organized as follows. In a), we recall results of [B4,5]. In b), we
construct the current XS x on LX. In c), we introduce the equivariant holomorphic
Hermitian vector bundle (LE, g“F). In d), using the formalism of Mathai-Quillen
[MQ], we introduce equivariant Thom forms and we prove equivariant double trans-
gression formulas. In e), we construct an equivariant Euler-Green current on a K-
invariant complex submanifold Y”, which is denoted X&Y' (LE, g“F). Finally in f),
we establish some properties of the current XelX(LE, g7F).

a) Holomorphic Killing Vector Fields and Localization

Let LX be a compact complex manifold. Let JTXX be the complex structure on
TrLX. Let g7L%X be a Hermitian metric on T'X. Let w™X be the Kihler form of
LX,ie. if U,V € TRLX, set

WX (U, V) = (U, JTEXV). 2.1

Then w’X is a (1,1) form on LX.
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In the sequel, we assume that the manifold (LX, g7~%) is Kihler, or equivalently
that the form w’X is closed.

Let VT'LX be the holomorphic Hermitian connection on (T'LX, g7 £%). The con-
nection VI'LX induces the Levi-Civita connection on TrLX. Let RTEX be the cur-
vature of VT2X,

Let K be a holomorphic Killing vector field on LX. Then the form w™X is K-
invariant. Set

X ={ue LX;K(u)=0}. 2.2)

Then X is a complex totally geodesic submanifold of LX. Let f be the embedding
X — LX. Set

wX = frotX . 2.3)

The form w¥ is the Kihler form of the metric g7 induced by ¢g7*X on TX,
and wX is closed, i.e. the manifold (X, g7%) is also Kihler.

Let Nx/px be the normal bundle to X in LX. We identify N, x to the orthog-
onal bundle to T'X in TLX,x. Then TLXx splits holomorphically into

TLX;x =TX ® Nx/x - 2.4)

Also TX and Nx,px are orthogonal subbundles of T'LX|x. Let gNX/LX be the
metric induced by the metric gTLXIX on Nx/rx.

Let VTX, VNx/LX be the holomorphic Hermitian connections on (T'X, g7%),
(Nx/Lx5 gN X/LX). Then with respect to the splitting (2.4) of TLX|x, we know that
VIEXix = yTX o vNx/Lx Let RTX, RNX/LX be the curvatures of VIX, VVx/Lx

IfU e NX/LX9 set

JNx/Lx U = 0xX ). (2.5)
ou

Then JVX/LX is a skew-adjoint invertible endomorphism of N/, x, which is parallel

with respect to the connection VNx/LX In particular over each connected component

of X, the eigenvalues of J Nx/Lx are nonzero and are constant. The vector bundle
Nx /1 x then splits holomorphically and metrically as the direct sum of the various

eigenbundles of J Nx/LX | We will use freely the notation of Sect.1 with respect to
the couple (Nx/,Lx, JNX/LX).
Let K19 KO.D be the components of K in O X, TV X respectively, so that
K =K%9 4+ KOD_Set
Ok =0 +igon, Ok =0+igao. (2.6)

Since K is holomorphic, then

0% =0, &% =0. Q.7
Let Lg be the Lie derivative operator with respect to K. Then
Lx = (d+ix). (2.8)
From (2.7), (2.8), we deduce that
Lk = 8x Ok + 0k Ok . 2.9)

Definition 2.1. Let % PLX be the set of smooth forms on LX which are K -invariant
and are sums of forms ot type (p,p). Let X PLX0 be the set of smooth forms o €
K PLX guch that there exist K -invariant forms (3, v on LX for which a = 0 3+0xk7.
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Clearly w™* € K PLX QObserve that by (2.9), if a is a K-invariant form, then
OxOxa = — Ok Ok a. (2.10)

Therefore, when actjng on K-invariant forms, the operators dx and Ok anticommute
as the usual 9 and O operators.
Let K’ be the 1-form on LX which corresponds to K by the metric g7~%. Clearly

LxK' =0. (2.11)
Since wlX is a closed form, dw™X = 0, dw™X = 0. By [BS, Eq. (14)], we get
< —(d+ig) K’
OOk V=Tl = —(J’;—K)— 2.12)

Definition 2.2. For ¢t > 0, set

K (éKaK\/_l(JJLX)
¢ = €Xp _—t— )

K 27l'wLX (51{8}{\/ —1wLX)
M= exp n .

(2.13)

Theorem 2.3. For any t > 0, the forms ¥ oy and K+~ lie in K PLX . Moreover the
following identities hold

ot 't um
Proof. These results were already proved in [B5, Proposition 5]. In fact using (2.7),
(2.10), we obtain the first identities in (2.14). Also

) 1 -
5 Koy = — t—zaKaK(\/—leX)Kat

aKKOlt = 0, 5KKat = 0,

Ye. (2.14)

=— 215 OOk [V—-1wtX Koy, (2.15)

The third identity in (2.14) follows. O
Let &'(LX) be the set of currents on LX. Let ,@N;«(/LXR(LX ) be the set of

currents on LX whose wave front set is included in N; JLXR"
Then by [H, p.262], T}« (LX) can be naturally equipped with a family of
X/LX,R

semi-norms. In fact, let V' be an open set in LX which is holomorphically equivalent
to an open ball in CHmEX o R24mLX Qyer V, we identify Ty LX with V x R?dimEX,
Let I" be a closed cone in R*™ X such that on VN X, 'N Ny, p = {0}. Let ¢
be a smooth current with support in V, and let m be an integer. Let * denote Fourier
transform.
If a € D} (LX), set
X/LX R

»

PV, Iyp,m(@) = sup [§|™ |pa(§)] . (2.16)
ger

Take ae,@;\,* (LX). We will say that a sequence of currents «, €
X/LX,R

- (LX) converges to « in 2y« (LX) if:
X/LX,R X/LXR
e «,, converges to « in Z'(LX).
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e If V,I', o, m are taken as in (2.16), then py, r,, m(an — a) — 0.
Definition 2.4. Let % PLX be the set of K-invariant currents on LX which are sums

of currents of type (p, p), whose wave front set is included in N; JLXR" Let K P)L(X 0
be the set of currents a € ¥ PLX such that there exist K-invariant currents b, c,

whose wave front sets are included in N% /Lx g and for which a = Oxb + Oke.
We equip X PEX, K PL™° with the topology induced by Do (LX).
X/LXR

Let | [lg1Lx) be a norm on the Banach space of forms p on LX which are
continuous with continuous first derivative.

Theorem 2.5. There exists a constant C > 0 such that for any t €]0,1], for any
smooth differential form p on LX, then

/ p{ay — Kb (Nx/px, g™ XX 8x H < CVE|pllorex) - 2.17)
LX
If V, T, p,m are taken as in (2.16), there exists C' > 0 such that for any t €10, 1],

pv.rpm(os — K eph (N Lx, g™ X/2%) 6x) < C'VE. (2.18)
Proof. By (2.12), we know that
OO v/ —1wkX d+ig)K'
pexp| ———— ) = pexpl — — ) (2.19)
LX LX

t

By [B4, second proof of Theorem 1.3] and [B5, Theorem 2], we know that as ¢ — 0,

5 —7,,LX
/uexp (m> —-»/ H . (2.20)

t JNVx/Lx + RNx/Lx
LX X det ( — - )
2w

More precisely, the techniques of [B4] easily show that (2.17) holds. The proof of
[B4, Theorem 1.3] is closely related to the proof of [B2, Theorem 3.2]. By proceeding
as in [B2, Egs. (3.121)—(3.127)], we obtain (2.18). O

Remark 2.6. From the proof of (2.17), one also easily finds that there exist currents
61, ..., Ok, ... on LX, which lie in ¥ PLX and are concentrated on X, such that as
t — 0, for any k£ € N,

51{61{\/ —1 wLX 12
pexp t = Nx/Lx Nx/Lx
det ( _J +R )

LX X i

k

+>° / pht? + o(t*y . .21)
3=l rx

The main point in (2.21) is that only integral (and no half-integrals) powers of ¢

appear, essentially because the integral of an odd polynomial on R™ with respect to

a Gaussian distribution vanishes.
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b) An Equivariant Bott-Chern Current

We now recall the construction in [B5] of an equivariant Bott-Chern current on LX
associated to the embedding f: X — LX.

Theorem 2.7. For any smooth form p on LX, for any k € N, as t — 0,

1
/ pKyy = / p2mwtX KC;xix(NX/LX,gNX/LX)z
LX X
k .
+y / 27wt X0, 1t + o(t*) . 2.22)
J=0 px
In particular
20 = Kol Nx/px, " X2X)é6x in KPEX /KPR (2.23)

Proof. Equation (2.22) follows from (2.21), (2.23) was proved in [BS, Egs. (40)-
49)]. 4

Remark 2.8. From (2.23), we find that
OOk 2rwl*6,)=0. (2.24)

Observe that (2.24) also follows from (2.14) and (2.22).
Let p be a smooth differential form on LX. By (2.22), the function of s € C,

Re(s) > 1,
1
ooy L s—1 / K, LX
F,(s) = T /t { [T }dt (2.25)
0

LX

extends to a meromorphic function of s € C, which is holomorphic near s = 0. Also
for s € C, Re(s) < 1, the function

+o00

2 _L/ s—1 / K, LX
Fi(s) = T t { WYy dt (2.26)

1 LX

is holomorphic.
Therefore the function F;(s) + Fﬁ(s) is holomorphic near s = 0.

Definition 2.9. Let XS rx be the current on LX such that if x is a smooth differential
form on LX, then

/ pS,ix = % (F,+F) ). 2.27)

LX

Remark 2.10. The current ¥S_rx is exactly the current 27?1'(‘:, LX /2(0) which was
constructed in [BS5, Sect. C].
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Proposition 2.11. For any smooth form p on LX, the following identity holds

/ pX S, Lx

LX
/ 1 d
_ t
=/ { / ;U'(K'Yt'_ZWWLXKCm:Iax(NX/LXvgNX/LX)(SXz_27TWLX01)}—t“
o \rx
+o0 d
t
+/ {/l‘K'Yt}T
1 Lx
—/HZWWX Kl (Nx px, g X/E%)
X
—I'(1) / wrwlXe; . (2.28)
LX

Proof. Using (2.22), we immediately obtain (2.28) O
We now state a result which was proved in [BS, Theorem 6].

Theorem 2.12. The current XS _vx lies in K PEX. Also the following equation of
currents on LX holds

Ok 0 _
S Surx = 1= M (Nxyx, g™ ¥/ bx (2.29)
Proof. Our theorem follows from Theorems 2.3 and 2.5, from (2.22), (2.24) and from
Proposition 2.11. O

¢) An Equivariant Vector Bundle on LX

Let (LE, g*F) be a holomorphic Hermitian vector bundle on LX. Let VZF be the
holomorphic Hermitian connection on (LE, g“F) and let REF = (VEE)? be its
curvature.

Let QLF be the GL(dim LE) bundle of frames in LE. Let o be the connection
form on QLF associated to the connection VLE.

We assume that the vector field K lifts to a GL(dim LFE)-invariant vector field
KLE on QLF, which is holomorphic, and preserves the metric g“Z. Then a(K L)
is the equivariant representation of a smooth skew-adjoint section of End(LF), which
we denote JLF.

Let o be a holomorphic KZF-invariant section of LE. Set

LY ={ue LX;o(u)=0}. (2.30)

We assume that if v € LY, the rank of do(u):TLX, — LE, is equal to dim LE,,.
Then LY is a compact K-invariant complex submanifold of LX. Let i be the

embedding LY — LX. Set
Wl = *lX 2.31)

TLY

Then w™Y is the Kihler form of the K-invariant metric g induced by g7%X on

TLY.
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Let Npy/Lx be the normal bundle to LY. By identifying Npy,;x with the
orthogonal bundle TLY* to TLY in TLX |Ly With respect to the metric gTL Xy |
we thus equip Ny, x Wwith a Hermitian metric gN LY/LX

Also do:Npy,px — LELy is an identification of holomorphic vector bundles.

We assume that do also identifies the metrics gN LY/LX and gLElLY. Observe that
given the metric g7%X on TLX, one can always find a KZZ-invariant metric g*?
on LE such that this is the case.

Let PTEY, PNLv/Lx be the orthogonal projection operators from T'LX|ry on
TLY, Npy,Lx respectively.

Clearly since K is holomorphic and Killing, (TLX, g7%X) is an example of
(LE, g"F), to which the action of K on LX lifts. One easily verifies that

JTLX — yTLX K (2.32)

Also the vector field K, I’-’L%,X preserves (T'LY, g""¥). Therefore K75 also pre-

serves (Npy/Lx, g  LY/E%).
Let JTLY | JNLY/LX be the obvious analogues of JZZ. One verifies that
JTLY — pTLY JTLX pTLY

JNLy/Lx — pNoy/Lx JI%’X PNLy/Lx (2.33)

Also since o is a KLE-invariant section of E, one sees easily that under the identi-
fication of holomorphic Hermitian vector bundles Nry,rx = LE|Ly, then

JNLy/x — J{Z?" (2.34)

d) Equivariant Double Transgression Formulas

We now closely imitate [BGSS5] to construct equivariant Thom forms and equivariant
Euler-Green currents on the total space of LE. We still use the formalism of Mathai-
Quillen [MQ)] described in [B1, Sect.3a)].
Set

Ogre = 0+ igLEO , 5KLE =0+ L LELD) - 2.35)

As in (2.7), (2.9), we find that
Oy’ =0,  Bgre) =0, (2.36)

Lyre = OgreOgre + OxLeOKLE .

Since K is a holomorphic vector field which preserves the metric g“Z, it also
preserves the connection V7,

Definition 2.13. The equivariant curvature ¥ RLF is defined by
KRMF = J*F 1 RMF. (2.37)

K RLE is the sum of (0,0) and of a (1, 1) form on LX taking values in skew-adjoint
elements of End(LE).

Let JL'F be the complex structure on LEj.

Recall that if 2 € LE, we identify z to Z = z + z € LEg, so that |Z|* = 2|z|2
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Definition 2.14. For u > 0, let Xa,(LE, g*F), K¢, (LE, g*F) be the smooth forms

on LE,
KRLE lzl2
Ko (L LEy _ . _ K pLEN-1
a(LE,g"") det( i )exp{ u(———2 + (" R™*™) >},
9 K RLE
K LEy__ 9 _ _
c(LE,g"%) = 5% [det ( i b) (2.38)

2
exp { - u<|—Z|— +(*R'F + 27erLE)—1) }]
2 b=0

The analogue of [B1, Theorem 3.2] is as follows.
Theorem 2.15. The forms Ka,(LE, g"F) and ¥ c,(LE, g*F) lie in K*¥ PLE _ Also

OxreXay(LE, g"F) =0,

- (2.39)
dxre¥ay(LE,g"?) = 0.
For any u > 0, the following identity holds
OxrE0 K
9 Koo (LE, g"F) = ZKIBZKLE _Cu (LE, g~E)
du 24T u
5 K
— _ 0KLE?KLE Cy, (LE,gLE) (2.40)
2w u

Proof. When K = 0, formulas (2.39), (2.40) were established in [BGS5, Theorem
3.10] and recalled in [B1, Theorem 3.2]. In general, the formalism of equivariant
cohomology of [BeV] shows that formulas (2.39), (2.40) are consequences of [BGSS,
Theorem 3.10], essentially because the connection VZF is KLF_invariant. The fact
that the forms Xa,(LE, g*F) and Xc,(LE, g“F) are K*F-invariant follows tauto-
logically.

Here we will simply check directly that the forms ¥ a,(LE, g“F) and X¢,(LE,
gLF) are KTE invariant. In fact since the connection VLF is KLE invariant, one
deduces from [BeV] that

VEEJEE 4 igRFF = 0. (2.41)
In particular from (2.41), we find that
VEEJEE = 0. (2.42)
Since V¥ is KLE invariant, RLF is KLF invariant, i.e.
VEZRYE —[JME, RMF] = 0. (2.43)
From (2.42), (2.43), we get
[VLE — JLE KRLEY — . (2.44)

Using (2.44), we easily deduce that the forms Xa,(LE, g"F) and X, (LE, g*F)
are KX invariant. O
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e) Equivariant Bott-Chern Currents on K-invariant Submanifolds of LX

Let Y’ be a K-invariant complex submanifold of LX. Let ¢':Y’ — LX be the
corresponding embedding. Set

Y'=LYnY'. (2.45)
We assume that Y is a complex submanifold of LX and that
TY"=TLYNTY'. (2.46)

Then Y” is also a K-invariant submanifold of LX.
Let Nyw/ys be the normal bundle to Y in Y’. Then we have an exact sequence
of holomorphic vector bundles over Y”,

0— Ny"/y/ — NLY/LX,YH — N —0. (247)
In (2.47), N is the excess normal bundle to Y” in LX.
N
The vector bundle Npy,/r Xy is equipped with the metric g LY/LXjyr [ et

N .
gNY”/Y' be the metric induced by g /" on Nyn /y’- We identify N with

the orthogonal bundle to Nyn,y+ in Npy,r Xyn Let gV be the metric induced by
g Y on .

Let V¥ be the holomorphic Hermitian connection on (N, g?V) and let RY be its
curvature.

By the same arguments as in Sect. 2¢), we see that K lifts to a holomorphic vector

field on Ny ,y» which preserves the metrics gy,

Let PNY"/Y' PN be the orthogonal projection operators from Ny, Xy OD
Ny syr, N respectively. Let JNY"/Y' be the obvious analogue of JEE. By (2.33),
we find that

Ty = pNyaypyt pNY/EXyn pNyi (2.48)

Since K lifts to a holomorphic vector field on Npy,, Xyyn which preserves the

N . )
metric g /"X | it also acts holomorphically on N and preserves the metric g".

If JV is the analogue of JZ for IV, one then finds that

JN = pN Xy (2.49)

In the sense of Definition 2.13, the equivariant curvature X R{\;’ /x on (N, gN ) is
given by
KRN = JV 4 RV. (2.50)

We identify 0 € LE to s = 0 + & € LEg, so that [s|? = 2|o|%.

Theorem 2.16. The forms s* Xa,(LE, g*%) and s* K¢ (LE, g"F) lie in K PLX,
Also
Oxs* Kay(LE,g*®) =0, dxs* Ka,(LE,g"F)=0. (2.51)
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For any u > 0, the following identity holds

5}{8}{ S* KC
24w
BKSK S*

KC
- _ZK Y (LE, g*%). (2.52)
2im u

s* Kay(LE, g*F) = Y (LE, g*%)

Au

Proof. Since o is holomorphic and K'F-invariant, one sees easily that
Oxs* = S*aKLE; Oxs* = S*gKLE . (2.53)
Our theorem follows from Theorem 2.15 and from (2.53). O

Let k be the embedding Y — Y’. We use the notation of Sect.2a) for currents
on Y” whose wave front set is included in Ny v/ g

Definition 2.17. Set

o KRN
1T

9 KRN
Ny _
Kd (N, g") = b[det( =i +b>]b=0.

If N = 0, we make the convention
Kcmax(]vagN) =1 s max(N gN) = (2.55)

Theorem 2.18. There exists a constant C > O such that if i is a smooth differential
formonY’, then for u > 1,

(2.54)

/ (@™ s* K ay(LE, g"P) — K crax (W, g™) Syn)| < \/—HMHCWY')’

J (2.56)
[ st Ko LB, g4 + K (V™)) < \/—llullclm

YI

If V, I, o, m are taken as in (2.16) with respect to the embedding k:Y" — Y,
there exists C' > 0 such that for u > 1,
U

. ~ [ C
pv.rom(i™ ™ Kay(LE, gF) — K cpu(V, g™N) 8yn) < Nk
(2.57)

!

PV, rom@*s* Kcy(LE, g"F) + K (N, g ) Syn) < Nk

Proof. The proof of our theorem is essentially the same as the proof of [B2, Theorems
5.1 and 5.4] and [BGSS, Theorem 3.12]. In particular the fact that J LE which appears

n X RLF is ultimately replaced by J N follows directly from (2.49) and from [B2,
Eq. (5.23)]. O

Definition 2.19. For s € C, 0 < Re(s) < 1, let K HY' (LE, g“F) (s) be the current
onY’,

+00

/ 5— I(Z/* * Kcu(LE,gLE)
0

max(N g )6Y”)du (2.58)

K 7Y’ LE __1_
H" (LE,g )(s)-F(S)
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By Theorem 2.18, (2.58) extends to a holomorphic function near 0.

Definition 2.20. Let X&Y' (LE, g“F) be the current on Y,
K&V (LE, g"F) = —(%KHY’(LE, 9“%)(0). (2.59)

Proposition 2.21. The following identity holds

1
v/ du
Kg¥'(LE, g = / 5 (Keu(LE, g%) ~ K eo(LE, g =

/ (*s* Keo(LE, g*F) + K, (N, g >6y~>—

+F’(1)[7,’*K’ (LE,g"By— K (N,g")6yn]. (2.60)

max

Proof. Equation (2.60) follows from (2.58). O

By replacing in Definition 2.4 LX and X by Y’ and Y”, we define the sets of

currents X P}’,’,,, K Pg,/,, 0 on Y.

Theorem 2.22. The current X&¥"(LE, g*P) lies in K PY,. Moreover it verifies the
equation of currents

6122?:{ K~Y,(LE gLE) = cmax(N g )6y// —* Cmax(LE,gLE) . (2.61)

Proof. Using Theorems 2.16 and 2.18, the proof of our theorem is the same as the
proof of Theorem 2.12. O

Remark 2.23. By exactly proceeding as in [BGSS5, Theorem 3.15], we know that the
current KeLX(LE, L) is locally integrable, and is given by the formula

3 KRLE
KelX(LE, g"F) = -5 [det( Tl )
2
Log (% +s*KRLE 4 27er“5)—1>] . (262
b=0

Equivalently

9 K pLE |s[2
K zLX LEy_ _ O _ _ 18
é“*(LE,g"") = % [det ( T b) Log ( 5 )

dmLE~-1

> RS (“ R 1 2mbl )" 1)’“] . (2.63)
k=1 sl b=0

The singularity of XX (LE, g'F) near Y is of the form |[s|~24mE=D which is
indeed locally integrable.

If Y’ is transversal to LY, the restriction i'* XeLX(LE, g"?) of the current
KeLX(LE,g"F) to Y is well-defined. As in [B1, Eq. (3.17)], we find that

KeY'(LE, g"F) = i"* KeLX(LE, gF). (2.64)
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If Y’ is not transversal to Y, i.e. if N s 0, then X&Y' (LE, g*F) is not locally
integrable on Y’ near Y”. More precisely, by proceeding as in [BGS4, proof of
Theorem 3.4], we see that X&Y' (LE, g“F) is smooth on Y’/Y”, and has a singularity

near Y of the form . In fact the obvious analogue of the final part of

z]2dim Nyl//yl
[B1, Remark 3.7] still holds in this case.

f) The Current KeX(LE, g*F)

If B is a complex manifold and if B’ is a complex submanifold, by replacing in
Definition 2.4 LX by B, X by B’ and K by the 0 vector field, we define the sets of
currents Pg‘,, Pg,’o over B. Of course the condition of K-invariance of the currents
is now empty.
We now specialize the results of Sect.2e) to the case where Y/ = X. X is of
course K-invariant. Set
Y=LYNnX. (2.65)

Since the restriction of K to LY is also a Killing vector field, then Y is a complex
submanifold of LY. Moreover since T X is the kernel of J&LX and TY is the kernel
of JEFY, we find that

TY =TLY NTX. (2.66)

With the notation of Sect.2e), Y =Y.
Since K vanishes on X, using (2.41), we get

VEEIEE =0. (2.67)

The tensor Ji%” being parallel with respect to the connection V¥, the eigenvalues
of J&E are locally constant. Let A denote the finite set of distinct locally constant
eigenvalues of J57. If A € A, let LE}y be the eigensubbundle of LEjx associated
to the eigenvalue A of J5”. Then LEx splits holomorphically into

LEx =P LEX, (2.68)
AeA

and the splitting (2.68) is orthogonal with respect to the metric gLEIX .
Let LE?X be the eigensubbundle of LE|x associated to the eigenvalue O (LEIOX

may be reduced to 0) and let LEIOJ’(l be its orthogonal with respect to the metric
gLE IX. Then by (2.68), we deduce in particular that LE|x splits holomorphically into
LEx = LEx ® LE)} . (2.69)
0
Let gLEl X, gL
gLEl X

0,L
IX be the Hermitian metrics on LE|°X, LEI%{l induced by the metric

Since the section o of LE is KLE-invariant, then
Ve = JlPg . (2.70)

From (2.70), we deduce that
ox € LE)x . (2.71)
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In the case considered here, the exact sequence (2.47) can be written in the form
0 — Ny/x = Nryjrx, = N —o. 2.72)

We know that if h € TLX|x, then JTXXh = 0 if and only if h € TX. Moreover
TLY)y is stable under J7XX. Therefore using (2.33), over Y, we have the identity

Ny;x =Ker J,/ Nov/Lx (2.73)

From (2.72), (2.73) we see that if NY Ly/ LXjy is the direct sum of the eigenspaces

Nry, . Nry/ox .
of J /™y agsociated to nonzero eigenvalues of J / 1Y) then NgY/Lxl is

a holomorphic vector subbundle of Npy/r, Xy Moreover Npy,r, Xy splits holomor-
phically into

Nivioxy =Nvix © Niyox, o 2.74)
and so oL
N =Niynx, - 2.75)

Recall that dojpy identifies Npy,px with LE|py. Using (2.34), it is clear that
under this identification, the splittings (2.69) and (2.75) correspond. Of course by
construction, the metrics also correspond. In particular dojy identifies Ny, x with

LE0
We identify X with the zero section of LE| x- The Euler-Green current é(LEl‘)X,

0
|X ) on the total space of the holomorphic Hermitian vector bundle (LE| % g Fix )

was constructed in [BGSS5, Sect. 3f)]. Then e(LEl %3 IX ) is a locally integrable
0

. . E| X
current lying in Py, ', such that
5 L E LEO
5 eLEf,g"%) = 6x — coa(LEfy, g ). (2.76)
In the sequel, o|x will be considered as a section of LEﬁX, which vanishes exactly

onY. Set s;x = 0jx + G)x. Then s/x is a smooth section of LE|0X,R over X.

0
By [BGS5, Remark 3.16], the current on X, s Xe(LEl 1 g Bix ), is well-defined,
lies in Py , and moreover

00 LE?
i srs(e(LEm, LX) = 6y — cnman(LEfx, g %) @.77)
0
The current s, Xe(LEl r g Bixy s a special case of the current KeLX(LE, gL F),
when K =0, KLP =0.
Theorem 2.24. The following identity holds
. LE", .
KeX(LE, ¢"") = K enn(LE); g b3 ) s e(LEY,g" Fx) in BE/PEC.
(2.78)

Proof. By proceeding as in the proof of [B1, Theorem 3.8], the proof of Theorem
2.24 is identical to the proof of [BGSS5, Theorem 3.17]. O
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III. Localization Formulas for Bott-Chern Currents

The purpose of this section is to prove localization formulas for Bott-Chern currents.
More precisely, we prove in Theorems 3.2 and 3.4 that certain combination of Bott-
Chern currents on LX differ of currents localized on X by sums of Ox and Og
coboundaries.

As explained in the introduction, the organization of this section is closely related
to the organization of the paper by Bismut-Lebeau [BL2]. The analogy will in fact
be further explored in [B3].

This paper is organized as follows. In a), we state our localization formulas. The
rest of the section is devoted to the proof of these formulas. In b), and in relation with
[BL2] and also with [B1], we construct a closed form on R¥ x R¥. In ¢), by integrating
this form over a closed rectangular contour, we obtain a fundamental identity. By
deforming the rectangle, we will in fact ultimately prove our main formulas.

In d), we state three intermediary results, which are needed in the proof of Theo-
rems 3.2 and 3.4. The proofs of these results are delayed to Sects. 3h)-3j).

In e), using these intermediary results, we calculate the asymptotics of the funda-
mental identity of Sect.3c). Section 3d) is in fact in close resemblance with [BL2,
Sect. 6].

In f), we verify the consistency of our calculations, by checking that certain di-
verging terms in e) effectively cancel each other.

In g), we prove Theorem 3.4.

In h), i), j), we prove the three intermediary results stated in d).

In k), we give another approach to the results established in e), by a direct manip-
ulation of certain Euler-Green currents, which are shown to exhibit mysterious and
hidden algebraic properties.

Finally in 1), we briefly check the proof of Theorem 3.2.

The techniques used in this section are very similar to techniques we used in [B1]
to deal with another problem also involving an excess normal bundle.

a) A Fundamental Result

We make the same assumptions and we use the same notation as in Sect.2. If z €
XULY, set

N;/LX,R + NzY/LX,R = N;E/LX,R if zeX\Y
=Ny, xg if z€Y. (3.1

Definition 3.1. Let @1’\,* N (LX) be the set of currents on LX whose

X/LX R LY/LX,R
wave front set is included in Ny JLXR +N;y JLX R

LX . . . !
Let Px{j;y be the set of K-invariant currents in &y AN*
X/LXRVLY/LXR

(LX) which

are sums of currents of type (p, p).
Let PLS, be the set of currents w € PLX, . such that there exist K-invariant
currents a, § € Py« (LX) for which w = O a + Ok .

*
x/ox RN

LY/LX,R
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We now use the notation of Sect. 2f). Consider the exact sequences

0— Ny,x = Nry/Lxy — N -0, -
- (3.2)
O—>Ny/Ly -U_)NX/LX‘Y ;) N —0.

As we saw in (2.72)—(2.75), the first exact sequence splits holomorphically, so that
Nryjpxy = Ny/x @ N. (3.3)

By identifying Npy,r, Xy and Nx,px with the orthogonal bundles to T'LY and
TX in TLX|Ly and TLX|x, N y,Lx and Nx,px are respectively equipped with
induced metrics gN LY/LX and gN X/Lx  Using (3.2), these metrics induce the obvious
natural metrics gN Y/X and gN Y/LY on Ny,x and Ny,ry.

On the other hand, in the exact sequences (3.2), we can identify N to the orthog-
onal bundle to Ny, x in Ny, Xy and also to the orthogonal bundle to Ny, ry in

Nx/L Xy It is then easy to check that IV inherits a common metric gN . This metric

is exactly the one which is obtained by identifying N with the orthogonal bundle to
TX +TLY|x in TLX|x.

Finally, observe that the exact sequence of holomorphic Hermitian vector bundles
onY

OHNy/Lyij/LX‘Y;)NHO (34)

N
verifies the assumptions of Sect. 1a) with respect to the action of J XEXiy | which
restricts to JVY/ZY on Ny/py. The assumptions of Sect. 1a) are verified in particular

because Ker(JVX/Lx) = 0. -
We can then use the notation of Sect.1. Note that the class K Cr_ml‘x(Ny/Ly,

Nx/Lxy gNX/ EXvy e PY /PY0 was constructed in Sect. 1d).
We now state the main result of this paper.
Theorem 3.2. The following identity of currents on LX holds
— KX (LE, g"") — K8, 1x X e (LE, g") + ¥ S 1y b1y
= K N /x, 9" KEX (LE, g"F) 8x
+ K eV, g7) Kfc}l/}ax(NY/LY, Nx/LXy QNX/LX'Y )by
Kl (Nyy) KRSy in KPEX /KPS, 35)
Equivalently,
— KX (LE, g"F) = K8, ,1x " coux(LE, g"F) + K S v b1y
= Kl (Nx/px, g " */1tX) KeX(LE, g"F)6x
+ K eman (N, g7) K/grilix(NY/LY, Nx/LXy QNX/LX'Y )0y

— K (Nx/1x) KRN/ 1) ™ cmax(LE) 6x

+ e (Ny ) KRNy )by in KPR /5P . (3.6)
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Remark 3.3. By applying the operator Ox Ok on both sides of (3.5), by using Theo-
rems 2.12 and 2.22, and the fact that

Ok d N
imﬁ K el (Ny/Ly) KR(V)6y) = 0, (3.7)

2 max

one obtains an already known identity. Identity (3.5) must be thought of as a consid-
erable refinement of this identity.

It is here important to observe why (3.5) or (3.6) cannot be entirely trivial. In fact
assume temporarily that X and LY are transversal in LX, i.e. that N = 0. Recall
that S rx € KPLX, K KelX(LE, gt'F) ¢ K PLX. By [H, Theorem 8.2.10], we can
then form the product of currents % SwLXK eLX(LE, g"F) and the ordinary rules of
calculus apply to this product. In particular

OxOk[¥ S, ix %" (LE, g"F) — XS 1x O 0 KX (LE, g*F)
= Ok [0k TS, Lx Ke" (LE, g"F)] + 0k [¥ S, ,1x O K "X (LE, g*F)]. (3.8)

From (3.8), we get

KelX(LE, g"F) — KoL (Nx/x, g /X)) KeLX(LE, gV F)sx

max

~KS 1x@6ry — Xcma(LE, g*F)) € K pEX0, 3.9

which is equivalent to (3.5), (3.6).

It should be no surprise that as in [B1, Theorem 2.8], the extra terms in (3.5),
(3.6) with respect to (3.9) come from the fact that X and LY are not transversal,
so that we get a contribution from the excess normal bundle V.

An obvious corollary of Theorem 3.2 is the following result.

Theorem 3.4. Let n € K PLX which is such that Oxp = 0, Oxpu = 0. Then the
following identity holds:

- / KX (L, gLP) / 1S, 1 K coa(LE, gFF) + / HE S, i

LX LX LY
= —/ pE el (Nx/rx, gV X/2%)KeX (LE, gLF)
X
N N N
+/,U/KcmaX(N7gN)KCIT1;X(NY/LY’NX/Lle,g X/LX[Y)
Y
- / 1 e (Ny/y) K R(N) . (3.10)

Y



Intersection Formula in Equivariant Complex Geometry 29

Equivalently,
- / WKEX (LE, o) / WK S, x X o (LE, 7)1 / WK S 1y
LX LX LY
= _/ lU/Kcr:l;x(NX/LX)gNX/LX)KéX(LEa gLE)
X
o N
+/,chmax(NagN)Kcl;zlix(NY/LY7NX/LXIng X/Lxly)
Y
_/'U'Kcr:ulax(NX/LX)KR(NX/LX)KCmax(LE)
X
+ / 1 e (NyLv) K RWNy Ly - G.11)
%

Remark 3.5. Theorem 3.4 will be proved in detail in Sects. 3b)-3j). The proof of the
more refined Theorem 3.2 essentially follows the same lines and will be sketched in
Sect. 31).

From now on, the assumptions of Theorem 3.4 will be in force.

b) A Closed One-Form on R* x R*

A first step in the proof of Theorem 3.4 is as follows:
Theorem 3.6. Let 0, 1 be the 1-form on RY x R

du
Mt =— [ #ws" Car(LE,g"")
LX
dT
+ = pEay,s* Kep(LE, g*F). (3.12)

LX
Then 0, 1 is a closed form.

Proof. Using Theorems 2.3 and 2.16, and also the fact that g pu = 0, 5Ku =0, we
find that

01
o T / Kyus* Kap(LE, g*F)
LX
1 Ok 0
=— [ W % s* Ker(LE, g"7)
LX
1 Ok Ok
=7 | —Iz{l'ﬂ—‘ Kyus* Ker(LE, g"7),
LX
a1 1 Ok 0
5 T /,uKaus* Ker(LE, g"F) = oT /,u Z.WK Kyus* Ker(LE, g"F).
LX Lx

(3.13)
From (3.13), we see that the form n, 7 is closed. [
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c) A Contour Integral

J.-M. Bismut

We now fix constants €, A, tg, Tp suchthat 0 < e < 1 < A< +00,0<tp <1<

To < +o0.
Let I' = It 44,1, be the oriented contour in R’}

uﬂk
FZ
AfF----- <«
Ly A I
sﬁ ————— »
| r |
| 4 |
|
, : : >
Fig. 1 0 A T, T
As shown in Fig. 1, I" is made of four oriented pieces:
IN:T=1Ty;, e<u<A, Ltgc <T<Ty, u=A4,
I3:T=ty, e<u<A, I tpzw<T<Ty u=e

The orientation of I, I, I3, I is indicated in Fig. 1.

For 1 < k < 4,set
Ioz/"?u,T-

Iy,

Theorem 3.7. The following identity holds

4
Y R=o.
k=1

(3.14)

(3.15)

Proof. Equation (3.15) is a trivial consequence of Theorem 3.6. O

Remark 3.8. We now will make t; — 0, A — +o00, Ty — +00, € — 0 in this order
in identity (3.15). Typically each term Ig(l < k < 4) will diverge at one or several
stages of this process. However because of the identity (3.15), the divergences will
cancel, often for non-trivial reasons. Once the divergences will have been subtracted
off, we will obtain an identity in Sect. 3f) which will lead us to the proof of Theorem

3.4.
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d) Three Intermediary Results

We now state three intermediary essential results whose proof is delayed to Sects.
3h)-3j).

As explained in Sect.3a), we apply the results of Sect.1 to the exact sequence
(3.4).

1
Theorem 3.8. There exists C > 0 such that for any u €10,1], T € [O, —] ,
u

/ /*LKau'S* KCT(LEa gLE) - / :U'KCI;EIIX(NX/LX, gNX/LX) 3* KCT(LEv gLE)
LX X

< C(u(l +T)'/? (3.16)
Theorem 3.9. For any T > 0, the following identity holds

lim uKaus* KCT/U(LE,gLE)

u—»O
N ~ ~
/ / Ka(NX/LXn/vg My yw* Kep(N, g™y .
Nx/Lxy (3.17)
Theorem 3.10. There exists C > 0 such that for any u €]0,1], and any T > 1,
C

/ ,u QS cT/u(LE g Byl < ﬁ . (3.18)
LX

Remark 3.11. Using Theorems 1.10 and 2.18, one can easily check that Theorems
3.8-3.10 are indeed compatible.

e) The Asymptotics of the IY's

1. The term I}. Clearly
A

du
I?:/{/quyus*KaTO(LE,gLE)};. (3.19)

£ LX

o) to — 0. I remains constant and equal to 1.
B) A — +o0o0. We see that

+o00
du
I11—>IIZ:/ {/,quyus*KaTo(LE,gLE)};. (3.20)

€ LX
v To— +oo
du
The form f fyu — is smooth on LX. By using Theorem 2.18, we find that as

Ty — 400, ¢
+00 d
U
I?—*LBZ/{//L fyu}u. 3.21)

€ LY
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8) € — 0. Since Oxp = 0, O pu = 0, using Theorem 2.7, we see that as € — 0,
1
L+ / p2mw Kepl (Nypy, g™ ¥/my) (1 - —)
€

+ / " cmn) (Ny, Ly, g™Y/™ ) Log(e) — I}

%
1 1
= / { / (K — 2w Kc;ulax(NY/LngNy/Ly)éYa
o oy
du [ d
U U
_(Kc;ullx)l(NY/LYagNY/LY)(SY)}7"‘/ {/MK%}?. (3.22)
1 LY

€) Evaluation of I}.

Theorem 3.12. The following identity holds

I;t = / :u’KSwLY +/ /'L(27TWY Kcr;;x(NY/LanNY/LY)
LY Y
+ ') Kl (Nyyny, gNY7EY)). (3.23)

Proof. Equation (3.23) follows from Theorem 2.7, from Proposition 2.11 and from
(3.22). O

2. The term IY. Clearly, I{ is given by

To

B[ { [ weass KcT(LE,gLE)}%- (3.24)

to LX
a) to — 0. We have the obvious

s* Keo(LE, g"F) = -5 (LE, g*F). (3.25)

max

So, we find that as ¢ty — O,

D+ / pEas ¥ (LE, g"F)Log(ty) — I

Lx
1
K ¥ K LE\  *K ey | 4T
=- praa(s” Ter(LE,g™") — 8" Teo(LE,g7")) T
o lrx

T

~/{//J/KO£AS*KCT(LE,QLE)}g. (3.26)
1

LX

=1
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B) A — +o0. Obviously

1
ar
L—L=- / { / uis™ er(LE, g**) - s* K%(LE,gLE»}?

0o \rLx
Ty
—/ { / us* Eep(LE, gLE)}g. (3.27)
1 rx
Y) To — +oo. By Theorem 2.18, we know that as T — +o0,
) 4 us* Ker(LE, g"F) =0 (%) . (3.28)

From (3.28), we find that as Ty — 400,

1

dT
Bop=- / { / u(s* Kep(LE, g — s* Kco(LE,gLE»}?
LX

0
400 dT
- / { / us* KcT(LE,gLE)}?. (3.29)
1 LX

8) € — 0. I3 remains constant and equal to I3.
€) Evaluation of I3.

Theorem 3.13. The following identity holds
I =— / pKerX(LE, g"F) + ' (1) / pie (LE,g"F). (3.30)
LX LX
Proof. Equation (3.30) follows from Proposition 2.21 and from (3.29). O

3. The term I3. We have the obvious

A
L=- / { / p5yus* Kay (LE, gLE)} %“. (3.31)
€ LX
a) to — 0. Clearly
A
B-I=- / { / uK%Kcmax(LE,gLE)} d;“ : (3.32)
€ LX
B) A — +o00. As A — +o0, then
+00
L—-I=- / { / 157K emax (LE, gLE)} %u . (3.33)
€ LX

Y) Ty — +o0. I? remains constant and equal to I3.



34 J.-M. Bismut

8) € — 0. Using Theorem 2.7 and the fact that Ogpu = 0, Ok = 0, we see that as
e—0,

_ 1
e / p2rwX Keol (Nx ) x, gV ¥/ K epax(LE, g5F) (1 —~ ;)
X

- / p et (Nx/px, " X/2X) K con (LE, g7F) Log(e) — I3
X
1

( _ 1
= —/ { / #(K’)’u —2mwt X Kol (Nxjnx, g™\ xX/m%) 6x "
o lrx

du
— Kty (Nx/nx, gNx/ex) 5x) Kcmax<LE,gLE>} —

+00

— / { / quchmax<LE,gLE)}d§. (3.34)

1 LX

€) Evaluation of I5.

Theorem 3.14. The following identity holds

I;} = — / uKSwLxKCmaX(LE,gLE)
LX

- / prw Kl (Nx/px) + I'(1) Feph) (Nx/130)) K emax (LE) .

X (3.35)

Proof. Using Proposition 2.11 and (3.34), (3.35) follows. O
4. The term IY. Clearly

I = / { / ,uKozEs*KcT(LE,gLE)}d?T. (3.36)
LX

o) to — 0. Obviously,

- / p¥a K (LE,g"P)Log(ty) — I
Lx
1

|

dT
{ / uKaes*<KcT<LE,gLE>—Kco(LE,gLE»} -
0

LX
T

0
+ / { / pxas* KcT(LE,gLE)}%. (3.37)

1 LX

B) A — +oo. I} remains constant and equal to I7.
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Y) To — +oo. Using Theorem 2.18, we find that
1
L= / { / paes"(Ker(LE,g"*) — Kco<LE,gLE»} ‘%T
0o \rLx
+00

+ / { / p¥ocs* Ker(LE, gLE)} dT (3.38)

1 lrx
8) € — 0. Set

J0 = { / u"ass*U‘cT(LE,gLE)—Kco<LE,gLE»}%

1
0/ LX
1
Jg =/ { / /JfKass*KcT/e(LE;gLE)} %a (3.39)
€ LX
400
0 K LE ar
J3 = p¥acs*Xer(LE, g"F) T
1 LX

Then
=0+ +J. (3.40)

1. The term J?. Using Theorem 2.5, it is clear that as € — 0,

1
=g :/ {//J'Kcr;zlix(NX/LXang/LX)

0 Y

s*®er(LE, g"F) — K ¢y(LE, gLE»} % : (3.41)

2. The term JY. We make the crucial step of writing JJ in the form

1

/ { / p=acs*Xer/(LE, g"F)

ar

pXept N px, 9" X11%) s* Ko (LE, !JLE)} T

)Z
1/
K 1 N * K N
+ B Ca(Nx/Lx, 9 */F%) 8™ “er(LE, g"") T (3.42)
1 X
By Theorem 3.8, we know that for € €]0, 1], T € [¢, 1], then
/ N’KaES* KCT/E(LEagLE) - /iu’Kc;ul\x(NX/LXagNX/LX)S* KCT/E(LE> gLE)

LX X
<CE+D)?<cen'/?. (3.43)
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Using (3.43) and Theorems 2.18 and 3.9, we see that as ¢ — O,

1

/ { / p¥oes* Ker)o(LE, g"P)

€ LX
dT
T

X
1
- / { / u( / Ka(Nx/pxiyrg ") w* KcT(N,g’V)>

o vy Nx/LXjy

_ N o N
+/“Kcm;11x(NX/LX|Yag X/LX‘Y)KC;nax(N7gN)}
Y

- / ) Kc;zlix(NX/LXv gNx/Lx) * KCT/E(LE» gLE)}

dT

T (3.44)

Of course by Theorem 1.10, we know that as T' — 0,

N ~ ~
/ Ka(NX/Lley g i yw* Kep(N, o)

NX/LX|Y

N ~ ~
= Ko (Nx/1xy 9 ) KN, g™ +OT),  (3.45)

so that (3.44) makes sense.
By Theorem 2.18, we see that as € — 0,

1/e
dT
/ {/NKC;;)((NX/LX,QNX/LX)S* KCT(LE,QLE)} vl

1 X

- ( / X et (Nxypx, g™ X12) K (W, gV ))
Y

+00
Log(e) — / { / pXent (Nx/px, g X/tx) s* Kep(LE, g*F)
1 X

+ / pEerl (Nx/Lx, g™ Kd (N, gV )} %. (3.46)
Y

We now use the notation of Sect. 1 with respect to the exact sequence (3.4). From
(3.42)—(3.46), we see that as ¢ — 0,

J - (/ penh (Nx/px, g™ xexyKd (N, QN)>
Y

1
dT
Log(e) — J; = / ] wxT — X0) T
0 Y
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+00
+ / { / 12 Kcr:xellx(NX/LXv gNX/LX) 3* KCT(LEa gLE)
1 X
_ - 5] dT
+/ IU’KCm;x(NX/LXagNX/LX)KC:nax(Na gN) ? ’
Y (3.47)
3. The term Jg. Using Theorems 3.9 and 3.10, we see that as € — O,
+oco dT
J3 = J5 = / / (pxT) = - (3.48)
1 Y

4. The asymptotics of 1, ;:’. Using (3.40), (3.41), (3.47), (3.48), we see that as € — 0,

I - (/ pX e (Nx Lx, g X)) K (N, QN)>
%

1
Log(e) — I} = / { / p¥ent (Nx/px, g™ x/ex)
o lx
dT

s*(“er(LE, 9"") = “a(LE, gLE»} =

+o0

+ / { / X il (Nxpx, gVX/1%) s* K ep(LE, )
1 X

- - &) dT
+/ MKCm;x(NX/LX,!}NX/LX)Kcﬁmx(N,gN)} T

+00

Y
1
dT dT
+ / / u(xT—xO)7+ / / (#XT)?- (3.49)
0 Y 1 Y

¢) Evaluation of I}.

Theorem 3.15. The following identity holds

I} = / p¥erl (Nx px, gV X/2x) KeX (LE, gFP)
X

N
+/ BNy Ly, Nx/Lxy»9 XXy
%

—I'Q1) / pX e (Nx/px,g"X1tx) K (LE,g"F).  (3.50)
X

Proof. Equation (3.50) follows from Propositions 1.13 and 2.21, and from (3.49). O
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f) Matching the Divergences

We now establish an identity, which will lead us directly to the proof of Theorem
34,

Theorem 3.16. The following identity holds

S 1i=o. (3.51)

4

Proof. Recall that Y I = 0. The sum of the diverging terms at each of the four
k=1

steps to — 0, A — +o00, Ty — 400, € — 0 is then tautologically zero. The identity
(3.51) follows. We will here verify that the diverging terms effectively add up to zero.
This will confirm that our previous calculations are correct. Also we will establish
certain identities which will be useful when proving Theorem 3.4.
o) to — 0. By formulas (3.26) and (3.37), which concern the diverging terms I9, L?,
we get

( / pEas®d  (LE,g"P) — / pEa e ;mx(LE,gLE)) Log(to).  (3.52)
LX LX

Since u &, (LE, gF) is Ok and Ok closed, one concludes from Theorem 2.3 that
(3.52) is effectively zero.

B) A — +o0. There is no divergence.

Y) Tp — +oo. There is no divergence.

) € — 0. By formulas (3.22), (3.34), (3.49), which concern the terms I3, I3, I}, we
must calculate the expression

(/ p2mw Kepl (Ny/py, g™v/ey)
1
/ p2me™ K e (Nxpx, 9™/ K emon (LE, gLE>> ( - —)
X
+ < N(K 1) (Nyypy, g™v/ey)
/ m:\x)/ (NX/LX’ gNX/LX) Kcmax(LEv gLE)
X
1/

15 emax(Nx/Lx, 9 NxjexyKe (N, gV )) Log(e) . (3.53)

Now by (2.69), we know that over X

LE{}
7 ¥ (LB, §75) = e LB 6750 K LEQ 650y, 3.58)
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The section o|x of LEIOX exactly vanishes on Y. Since the forms f*u, wX € PX
are closed, we deduce from Theorem 2.22, from (2.77) and (3.54),

/ p2amw® Kool (Nxjpx, 9" X1%) K cag(LE, g*7)
X
{0},1

LE
:/ p2mw K enl (Nxypx, g%/ K ena (LB}, g7 715 )
Y

=/u27rw o VL) K Cmax (V). (3.55)
Y

By (3.4), it is clear we have the identity
* e V23, " emax () = K e (Nyypy) in PY/PY0. (3.56)

So from (3.55), (3.56), we see that

/,u27rw max(NX/LX g X/LX) Cmax(LE, gLE)
X

= / p2rwY Kool (Ny/ry). (3.57)
Y

The same arguments as in (3.55) show that
/ K e (Nx/1.x) K man( LE) = / K ) (Nx/px) K emax(V) . (3.58)
b'e Y

Clearly,
(Kcl:l;x)/ (NX/LX|Y) Kcmax(N)
= ) WNyyny) = X Ny Ly) " emax () K (V). (3.59)
Equivalently,
(Feman) (Nx/£xj5) < Cmax (V)
= Fepa) Nyyry) = X eabeNx/Lx) X (V). (3.60)
From (3.58), (3.60), we deduce that

//“L(K max) (NY/LY)_/N(KC;;;)(), (NX/LX) Kcmax(LE)

Y X
—/ 1K s (Nx/L.x) & o (N) = 0
J 3.61)

Using (3.57), (3.61), we see that (3.53) is indeed equal to zero. The proof of
Theorem 3.16 is completed. O
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g) Proof of Theorem 3.4

Using Theorems 3.12-3.16, we get

- / p X8 xX cnax(LE, g*F) — / uKerX(LE, g*F)

LX LX

+/ uKSwLer/uKc;;X(NX/LX,gNX/LX)KéLX(LE,gLE)
LY X

N
+ / uB(Ny;Ly, Nx/Lxy» 9 XXy
Y

+I'(1) /M(KC;;X)I(NY/LY)

Y

- / WK kY (Nx/x0) X coan(LE)

H cmax(NX/LX) cmax(LE) + / max(LE)
LX

\

+ [ p2rw’ Kot (Ny)y)

p2rw™ Kool (Nx/1x) X emax(LE) =

y
{

(3.62)

Since f*u € PX and since f*u = 0, df*u = 0, we deduce from Theorem 1.19

that

N
/ HB(Ny/Ly, Nx/Lxy 9 XXy
%
NX/LXIY)

= —/ ﬂKCmax(NagN)Kcr;;x(NY/LY»NX/LXWag
Y
+/NKC;,;X(NY/LY)KD(N)-
4

Also by (2.29) and (3.56), we obtain

/ wKd (LE) = / uKd o (LBl (Nx/1x),
LX X

~ (V)
/NKcm;x(NX/LX)KC;nax(N /
Y Y

Cnax (V. Y/LY) m

(3.63)

(3.64)
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From (3.57), (3.61)—(3.64), we get

—/uKSwLchmax(LE,gLE)—/#KéLX(LE,gLE)

LX LX
+ [ uSar + [ WKl g ") KX LB, 5
LY X
~ N i N
—/HKCmax(N,gN)KCl;;x(NY/LY)NX/LX'yag XXy
Y
N K .t N)
K-l (. (KDN +I'a ——Cﬂax(—~)=o. 3.65
+i,/:u cmax( Y/LY) ( ) ()Kcmax(N) ( )

Using Proposition 1.21 and (3.65), we get (3.10). Also since the class ¥ R is additive,
we see that

/ WK ek Ny 1y) KROV) = / WK ez (Nyjr) RN )
Y Y
— / 15 cpax(Ny/Ly) K R(Ny,Ly) . (3.66)
Y
By using (2.69), (2.74), (2.75), (3.56), (3.66), we thus find that

//’LKCx;zlix(NY/LY)KR(N)=/MKC,;;X(Nx/Lx)KR(Nx/Lx)KCmaX(LE)
Y X

- / 15 cpac(Ny/1y) KRNy /Ly ) - (3.67)
Y
Using (3.10), (3.67), we obtain (3.11). O

h) Proof of Theorem 3.8

By Theorem 2.5, it is clear that we may restrict ourselves to the case where T' €

i

U

If the support K of y is included in LX\LY’, then the forms ps* Kk (LE, gLF)
and their derivatives are uniformly bounded for T' € [1, +o0o[, and so, using again
Theorem 2.5, (3.16) holds.

On the other hand as T — +oo, |s* Kcp(LE, g~F)| grows at most like 79m X
If the support of p is included in LX\X, there exists ¢ > 0, C > 0 such that for

uZIaTS_’
u

C 1
| Koy s* KcT(LE,gLE)I < cexp (— -17) (1 + W) , (3.68)

and so (3.16) still holds.
So to prove Theorem 3.8, we may and we will assume that the support of y is
included in an arbitrarily small open neighborhood of Y in LX.
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Take yo € Y. Set

X

™
Il
=
3

e = dim NY/X,yO ; 6/ = dim NY/LY,yO s Yo - (369)

By (3.2), we find that
e+ ¢ +Eé= dim(Ny/Lx)yO . (370)

For n > 0, let Be(0,7), B«(0,7n), Bs(0,n) be the open balls of center 0 and radius
nin C® = R?, C¢ = R?, C¢ = R%. Let 7" be an open neighborhood of g in Y. If
7" and 1 > 0 are small enough, we can identify 7" x B¢(0,n) X B.(0,1) x Bs(0,n)
with an open neighborhood U, of yo in LX.

)

Y LY

Fig.2

Let o, be the map from 7 x R? x R?¢ x R? into itself
~ Z ~
oot (W, 2,7, 7) — ( L Sz, uZ). 3.71)
u,T (y Yy \/T \/_ \/—

Assume that the support of y is included in U,,. Clearly

/ /J/Ka'u,s* KCT(LE,gLE)
LX
- / (0F i) (0 7K ) 0% (5 Ker(LE, g7P)),
yer

IZIS,m/T
\21,12/1< 2% (3.72)

/ pEet (Nx/px, g X/1x) s* Kep(LE, g=P)
X

= / (@57 (05 7 cam(Nx/Lx, g X1EX)) 05 1 (s* K e (LE, 7)) .

yevw”
12|1<vVT
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Set

~ A ~
TT(y’ Z’ Z/)Z) = (y’ ﬁa Z/aZ> . (373)

Recall that Ny, x is identified to the orthogonal bundle to TX in TLXx. As in
(1.2), the connection VVX/LX induces a splitting TNx/1x = Nx/Lx ® THNX/LX.
If U € TNx/Lx, let UY be the component of U in T N,z x with respect to this
splitting. As in (1.3), we identify JNX/LX with the 2-form U, U’ € TrNx/Lx —
UV, JNxix gy, )

We consider ((y,Z),Z’ + Z) as lying in the total space of Nx /LX, R There-

fore JVX/LX is now a 2-form in the coordinates (,Z,2', 7). Similarly R,z N/ is

a 2-form in the variables (y, Z) which lifts naturally to a 2-form in the varlables
v, 2,2, 2).

By proceeding as in [B2, proof of Theorem 3.2] and in [B4, proof of Theorem
1.3], we ﬁnd that there existc >0,C >Osuchthatif 0<u<1,T > 1, |Z| < n\/T,

7'l < ==, |Z| < —&, then
|Z'| < \/— |Z] f
ok K o) < cexp(—C(Z')* + |27,
0% X oy, 2, 7', 2) - iexp{~ 3 1T S (2 + DP (3.74)
N :
+ LI RIS (Z + 0,2 + D)) + T D)
< evuexp(-C(Z'|> + |Z])).
Set
N Z Z
h ,ZaZ/7Z :<:_,Z/’ -——)a
@ =\ VT VT (3.75)
Jur®, 2,2, Z) = (y, Z,VuZ' ,NuT 7).
Clearly
Ou, T = hrju,T . (3.76)
Therefore
on p(s* Ker(LE, g*F)) = ji phip(s* K er(LE, g"F)), (3.77)
and so

o p(s* Ker(LE, g"®)) — 0§ (s* Ker(LE, g"7))
= (o — Jor) hp(s* Ker(LE, g"F)). (3.78)

Now by proceeding as in [BGSS5, proof of Theorem 3.12] and using the fact that
do:Npy/px — LE)y is an isometry, it is clear that as T — +oo0,

a K pLE
hy(s* Ker(LE, g*F) (y, 2,2', Z) — 3% [~ det (2—m (y,2") - b)
712
exp{ _ (@ + (KRLE(y. 7y + 27erLE)—1) H . (3.79)
b=0
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Also, we find easily that for any differential operator P with constant coefficients
in the variables y, Z, Z', Z, there exist cp > 0, Cp > 0 such that for any 7' > 1,

|Z| < VT, |Z') < /1, |1 Z] < VT, then
|Phys* Ker(LE, g"") (v, 2,2/, 2)| < cpexp(~Cp(Z]° +|2).  (3.80)

Using (3. 80) we see that there exist ¢ > 0, C' > 0 such that if 0 < u < 1,

1<T<—|Z|<n\/_ |Z’|<\/_|Z|<\/_

(o3 rs* Ker(LE, g"F) — o548 X er(LE, g"P) (v, 2, Z', 2)|
< dWu+ Vau|Z'| + VuT + VuT | Z) exp(—C'| Z ). (3.81)
From (3 74), (3.81), we find that there exist c” > 0,C" > 0suchthatif 0 < u <1,

1<T<— |Z| < VT, |Z'| < Z| < then
s

loh 71 (o p¥ o) (0 p8™ Ker(LE, g")) (y, 2, Z', Z)
N
— O TEexp{L (Jo SX RS (2! + 2),(Z' + D)
-3 IJ(;;/)” (Z' + D + J(y’;/f" D@ rs* Ker(LE, g"F) (y, 2,2, Z)|
< "Wu+Vu|Z'| + VuT + VuT | Z) exp(—=C"(|Z* + | Z'* + |Z]) . (3.82)

As in (1.44), we get

then

/ exp{% (JNX/LX RNx/Lx U,U) - % lJNX/LX U|2 + JNX/LX}
Nx/Lx

=Keol (Nx/px, g™ /0% . (3.83)

Using (3.8.2), (3.83) we easily obtain the inequality (3.16) in the special case consid-
ered above.
By partition of unity, we get (3.16) in full generality. [

i) Proof of Theorem 3.9

It is clear that since on LX\Y, either K or o are nonzero, if %4 is an arbitrary open
neighborhood of Y in LX, as u — 0,

pXays* K (LE, g"7) — 0. (3.84)
LX\%

We now take yp € Y and we use the notation in Sect.3h). In particular, we
choose 77 and 7 > 0 as in the proof of Theorem 3.8. Let o, be the map from

7" x R% x R? x R? into itself
Uu(y7Z)Z/’Z)_')(y7‘\/1_LZ7‘\/;l;Z/7\/’I—‘LZ)‘ (3'85)
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Then

NKaus* KCT/u(LEa gLE)
%
= / (k) (oh Baw)op(s* Ker/(LE, g"F)).  (3.86)

ye7”
1Z1,12"| Z|<n/v/u

Let o, 7 be the maps
Q:(y»Z) Zlaz) - (y;Zl,Z) € NX/LXIY )

) ) (3.87)
T:(y,2,2',2) > (y,Z,2).

N
As explained after Eq. (3.73), Ka(NV. X/LXy>9 X/ EXlvy can be considered as a

form in the variables (y, Z’, Z). By (3.74) and by [BGS4, proof of Theorem 3.12]
(see also Eq. (3.79)), we know that

. Nx/Lx
11}1}1}) O':Kau = o Ka(NX/Lx,Y,g / "),
(3.88)
. N
11}3}) a:s* KcT/u =r* KCT(NLY/LX,Y,Q LY/LX'Y)-

By (3.86), (3.88) and by an easy application of the dominated convergence theorem,
we find that

. N
lim /uKaus* KCT/u(LEagLE)=/:U'[N/ 0" KaWx/nxy,9 )
Y

u—0

LX Y/LX

N
T Ker(Npyyoxy g =Y )] . (3.89)

Recall that forms ar(Ny,x, gNY/X ) and cr(Ny/x, gN Y/X) were defined in
[B1, Definition 3.1]. These forms are exactly the forms Xar(Ny,x,g"¥/X) and
Ker(Nyyx, g™¥/%), with JVv/x = .

Let p,p be the projection maps p: Nry;rx, — Ny/x,P':Niy/rxy — N. By
(2.38), (2.74), (2.75), we get

N ~ o~
Ker(Npy/nxw g =) = p*er(Ny x, V%) p™* Kar(N, gV)
/LX)y / 9
+p*ar(Ny,x, g"VX)p* Ker (N, gV).  (3.90)

By [MQ, Theorem 4.10], [BGSS, Eq. (3.58)], or by an easy direct calculation, we
obtain

/ ar(Ny,x,g™V/%) =1, / er(Ny x,g™/¥) = 0. (3.91)

Ny/x Ny/x
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Recall that w is the projection Nx/r, Xy ™ N. From (3.89)—(3.91), we deduce
that

lim ,U'Kau'S* KCT/u(LEngE)

u—0
LX
N ~ ~
= / uL / Ka(Nx/Lxy,9 X”"IY)w*KcT(N,gN)]. (3.92)
Y

X/LX)y

Using (3.92) and partition of unity, Theorem 3.9 holds in full generality. O

J) Proof of Theorem 3.10

We use the same notation as in the proofs of Theorems 3.8 and 3.9. If the support to
w is included in LX\LY, there exist ¢ > 0, C > 0 such that

\us* Ker(LE, g"F)| < cexp < - CTT> ) (3.93)

The estimate (3.18) is then trivial.

If the support of y is included in LX\X, for 0 < u < 1, the forms ,uK a, and
their derivatives are uniformly bounded. Equation (3.18) then follows from (2.56). So
as in the proof of Theorem 3.8, we may and we will assume that the support of y is
included in an arbitrary small open neighborhood of Y in LX.

We assume that yo, 77, n > 0, U, are chosen as in the proof of Theorem 3.8, and
also that the support of p is included in U,,. Set

ku,r(y, 2,2, 2) = (y \/g Z,\uZ, \/g Z) : (3.94)

Then

/ pays* Ker u(LE, g"F)
LX
= / (k¥ ) (ks 25 o) (ks 8™ Kerju(LE, g"F)) . (3.95)
ye7”
1Z1,|1ZI<y/T/un
IZ'ISﬁ n
Set

Ty, 2,2',2) = (y, Z,NuZ', Z). (3.96)
By proceeding as in [B2, proof of Theorem 3.2] and in [BGSS, proof of Theorem

~ T
3.12], we find that there exist ¢ > 0, C' > 0, such that if |Z|,|Z] < \/Zn, |Z'| <
1
ﬁn, then

|kk 5% Ker (LB, g*F) — 75 Ker o (Npy px, g7 Y/E%))

< c\/g exp(—=C(|1Z* +|Z]»). (3.97)
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Set
4(?/’ Z’ Zl’ Z) = (y) Z) \/EZI> \/HZ)’
N VA (3.98)
2,722y =y, /= 2,2, ==).
mu,T(y) ) ) ) <y7 T ) ) \/T)
Then
ku,T = 4mu,T . (3.99)
Therefore
ki p(u o) =mh p¥ (Few). (3.100)

By proceeding as in [B2, proof of Theorem 3.2] and in [B4, proof of Theorem
1.3], we know that if P is any differential operator with constant goefﬁcients, there
exist ¢ > 0, C > 0, such that if u €]0,1], |Z| < n, |Z'| < n//u, |Z| < n/+/u, then

|P£*(uE )| < cexp(—C(|Z')* +|Z*)). (3.101)

Forms on 7 x R2¢ x R?¢ x R?¢ can be decomposed according to their partial

degree in the Grassmann variables associated to the variables (Z, Z). If w is a form,

let w° be the piece of w of degree 0 in these Grassmann variables, and let w>° be the
piece of w which has nonzero degree in these variables, so that

w=uw’+w0. (3.102)

In particular
A (TR e A (TR ) L A (TRl ) L (3.103)

From (3.100), (3.101), we deduce that if |Z| < \/T/un, |Z'| < n/\u, |Z| <
T/um, then

712
* K >0 1oy < € _ e, 14|
|(kyy 1™ ) (y,Z,Z,Z)I_—ﬁexp< C<|Z| +° 5 ) (3.104)

Also by (3.100), (3.101), under the same conditions on Z, Z’, Z, we get

(ks r (X )’ W, 2,2, Z) — (k7 (n X ) (3,0, Z', 0)]

< c(\/g]ﬂ + % |Z|> exp <— C(IZ’]2 - @)) . (3.105)

Finally by the obvious analogue of (3.91), or by a trivial calculation, we see that

/ KCT/u(NLY/Lx,gNLY/LX) =0. (3.106)

Nry/Lx

By combining (3.97), (3.104), (3.106), we get (3.18). Using partition of unity, we
obtain (3.18) in full generality. O
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k) Some Remarks on the Behaviour of the Term I} as € — 0

By (2.60), (3.38), it is clear that

I‘%:/”KaEKéLX(LE’gLE)‘F/(I) / p¥a K (LE,g"F).  (3.107)
LX Lx

By Theorems 2.3 and 2.5, we know that

/ p¥a X (LE,g"F) = / p X ent(Nx/rx) ¥ e (LE) . (3.108)
LX X
Set
P = / pEa KX (LE, g'F). (3.109)
LX

Using (3.107)—(3.109), it is clear that, to calculate the asymptotics of I 2 ase — 0,

we may instead replace I3 by I,>.
By (2.63), we find that

P K pLE Is|?

3 __ K _ = _ _ Ll

I —/,u ae{ 3% [det( i b) (Log( 2)
LX

dimLE—1 g
—— (-(*R"P + 27erLE)—1)k))” . (3.110)
=1 kls| b=0
Observe that by (2.69),
K pLEx
det ( — R, - b)
2w
LE? LE%*
X K | X
= det —R, — b det —i,——b . (3.111)
i 24

Using (3.111) and the Mathai-Quillen formalism [MQ], we see that expressions over
X like

K LE|X 0 0
det ( T b) (~(R™1x 4 2mby ")k (0 < k < dim E)
1T

make sense.
In the sequel, we assume that X is connected, so that dim LEOX is a well-defined
constant.
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Theorem 3.17. The following identities hold

, ] KRLE Ek
l‘:%/“ %ab["det(‘w ") (L"g(z)
LX

dim LEC_ —1
1x 2k *

Z kl |2k (( (KRLE+2T‘_bJLE)——1)k‘)):|

1 b=0

z/ch_l (N gNX/LX)2 — det —KRLE —-b Lo | |2
max\ D X/LX ab 2im &

X
> k|s[?* (—(R"Ph 4 2mby* !X)'l)’“>)Jb=0,

) 8 KRLE
!‘l‘%/“o‘e%[_da(— i _b)
X

L
dimLE-1
Z kl |2k s (( (KRLE+27TbJLE) l)k))]
dxmLEIOX+1 b=0
N 9 K RLE
=/u{ / Fa(Nx/Lxy .9 X/LX'Y)% [det(— o —b)
Y Nx/Lxy
dim N-1 ok - ~
w*( > (—(KRN+27erN)‘1)’“)] : (3.112)
k=1 klZ' b=0

2
Proof. Observe that on X, the function Log (%) is integrable. Also for

1 < j <.dimE = dim Ny,x, one verifies that is integrable over X. Over

s
X, o is a section of LE|°X Some easy analysis, which essentially involves dominated

convergence, then shows that the first identity in (3.112) holds.
If 72 is an open neighborhood of X in LX, it is clear that for any k, 1 < k <
dim LE — 1, then

o KRLE 2k
I ~det( — —b
) / utas 8b[ © ( 2im >k|s|2k

LX\7%

s (—(¥RME + ZwaLE)“)’“)] =0. (3.113)
b=0

Recall that over X, o is a section of LE'IOX It follows that for k > dim LE| X
over X

KRLE
det ( - b) s (—(*REE 1 2mbJEPYy"Yr = 0. (3.114)
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Let %4’ be an open set in LX which is at a positive distance from Y. From (3.114),
we easily deduce that

. 6 KRLE ISIZ
lim | p afab[‘det( 2in ‘b)( (7)
2!

dimLE—-1
Z o S (CCCRME 4 2mbJ ) ~hE ))]
| | b=0

= / ,ch ! (N gNX/LX) — | —det{ — —b Log —| ]2
Xnzs!

‘ k
> ﬁ s*(—(FREP + 27erLE)“)’“))] . (3.115)
= ksl b=0

Equivalently, using Remark 2.23, we find that

ll_l;l(l) ,LLKaE KéLX(LE,gLE)
P

- / p X b (Nxx, gV X)) KeX (LE, g-F). (3.116)
Xn4!

Now the restriction of the current XéX(LE, g"P) to X\Y is generally not locally
1

integrable near Y because of the singular term . which

2d1m LEIX |3[2dlm Ny, x

appears in the analogue of (2.63). It follows in pamcular from (3.115) that for £ >

dim LE|OX,
o KRLE 2k:
. K -~ _ _ _ =
lim / K% By [ det( 2im b) k|5

%'

s*(—(*RMF + 27erLE)“)’“)] =0. (3.117)
b=0

For k > dim LEIOX, we now will study

b KRLE 2k
. K I _ _ _ =
i / oo Bb[ det( 2 b) PIREL
LX

s*(—(*RLF 27erLE)—1)k)] . (3.118)
b=0
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Let 74 be an arbitrary small open neighborhood of Y in LX. In view of (3.117),
it is equivalent to study

8 KRLE 2k
. K -~ _ . _
l‘i‘%/“ e ab[ det( 2in b) PR

%

s* (=¥ RFF + 27erLE)“)’“)] : (3.119)
b=0

We now take yo € Y, n > 0 as in the proof of Theorem 3.8, and we use the same
notation. Set

0, 2,2',2) = (y,VeZ,NeZ \eZ). (3.120)

Clearly
o KRLE 2k
K
e | —det | - —— —b)
/M “ ab[ ¢ ( 24w )l{:[slyc
Wn

s (—(“RP 4 2mbJFE) k)

| I

b=0

] KRLE'
__ * * [ K I _ _
= / (o;w)o; ( ae o [ det< i b))
ye7”
|2112'],|12|<n/vE
2k
Ws*((—(KRLE + zwaLE)—‘)k)] . (3.121)
b=0

Let p, g be the obvious linear maps Ny,rx — NX/LX|y’ Ny/px — NLy/LX|Y =
1
LE)y. Using (3.74) and an easy argument on the asymptotic behaviour of ok W’

s

we find that as ¢ — 0,

o (Ko 9 —det| — “RME -b 2" s*(—(X REE 4 2wbJLEYyky
€ b 2w k|s|* b=0
KRLE 2k:
- ) k(Z| + |22k

* K Nx/Lx 0 _ _
—p " UNx/Lxy 9 ) b [ det ( i

¢ (—(“R"" + 27erLE)'1)k)] : (3.122)
b=0
Set E = LEloy. Equivalently £ = Ny, x. If r, 7 are the projections LE;y — E,
LEy — LE%" = N, then
| Yy

k
(__(KRLE + 27!'bJLE)_1)k — Z Cgr*((_(RE + 27l'bJE)_1)/)
/=0
P(—(RY +27bJ™) 7). (3.123)
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Let dvg be the oriented volume form on E. Then one has the identities

K RLE RE KRN
det (— i - b) = det (—- ‘2IL—7T — b) det (_ 2in - b)>
RE ' 1 dim B
det (— —— - b) (— (RF + 27bJ By~ ydimE (—) (dim E)! dvg .
24 2m

(3.124)

Moreover a trivial calculation shows that if & > dim E, then for Z € N\{0},

= . (3.125)

/ dvg(Z) _ I'(k—dim E)r“™F
(Iz|2 + |Z|2)k I'(k) |Z|2(k—dimE)

R2dim E

From (3.121)—(3.125) and from some non-entirely trivial algebra, we deduce that
if k>dmFE

o KRLE 2k:
. K il _ _ _
Ll ab[ det( )k|s[2k
P

24

S*((_(KRLE + 27erLE')——l)k):I

b=0
N
= / Iz / KO‘(NX/LX'Y,Q M
Y Nx/oxpy
o KRN 1\4mE I'(k—dmE)
i _ _ _ . . o\ M) dimE
5% ( det( i b) (27r> (dim E)! T s
2k 1 G . .
dmE < % _ (K pN N\—1\(k—dim E)
Cy A w (——_lZ‘Z(k—dimE) (- R™ +27bJ7V)™) )L:O. (3.126)
Now,
1 dim E F(k _ dlm E) dimE di B 2k 2k-—dimE
- . p o\ A= im imE = _ % ) .
( 27r) (dim E)! T%) T C A —dm B (3.127)
Using (3.117), (3.126), (3.127) and partition of unity, we see that
P K RLE ok
li Kog — | —det | — -
Bl BT [ ¢ ( 2im ) k|s|*k
LX
S*((__(KRLE + 27erLE)—l)k):'
b=0
K pN
_ K Nx/Lxy *2 _ "R —b
/ M{ / (Nx/Lxy» 9 Jw % det i
Y Nx/LXy
2k~dimE‘

K pN Ny-1\k—dim E
5 dim ) [ (—(*RN +2bmJ™)™h LO}. (3.128)

From (3.128), we obtain the second identity in (3.112). O
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Remark 3.18. In view of (3.110), (3.112), we see that to calculate the asymptotics as
e—0of I} = f u¥a KelX(LE, g*F), the only quantity which is left to study

is
P K pLE
K —_— — —_ —_—
/ Qe % [ det< 2im b)
LX

2dim LE|0 _
1m
2dim LE(y s* (=R + 2bmJ*P) 71 ) . (3.129)

dim E|s| b=0

It follows from (3.49), (3.107)—(3.109), (3.112), that, as € — 0, (3.129) diverges
like Log(e). In view of Theorem 3.15, once the logarithmic divergence is sub-
tracted off, the remainder splits into two pieces, one which makes a missing lo-
cally non-integrable piece of the current éX(LE, g'F) appear in the expression

f pXerl (Nx/x, gVX/tX)KeX(LE, g*F), the other piece which in particular

ma.kes the missing term appear in the expression for f uB(Ny,ry, Nx/L Xy 9 Nxy vy
given in (1.25) with respect to the sum of the nght -hand sides of (3.112).

The main purpose of Theorems 3.8-3.10 has been to deal indirectly with these
difficulties when studying the asymptotics of I; as ¢ — 0.

The term (3.129) could be directly studied as € — 0 by the techniques of [BGS4,
Sect. 3b)]. The description of the current éX (LE, g*F) as a principal part of its re-
striction to X /Y should then be used.

Another manifestation of the difficulty in studying (3.129) directly is made obvious
by the fact that the integral

P K RLE 2dimLEI°
/Bb[ det( 2i _b> 2dim LE
v dimEls|"""

dimLE

s (—(* RFE + 2nbJLE) Ty m} : (3.130)
b=0

diverges.
As we shall see in [B3], the main point of the proof of Theorem 3.4 given in Sects.
3b)-3j) is that it has a formal extremely interesting analogue in infinite dimensions.

1) Proof of Theorem 3.2

We now briefly sketch the principle of the proof of the stronger Theorem 3.2. Let
Nu,r be the form on R x R% x LX,

du T
Mt = — Kryus* Kar(LE, g"%) + — K a,s* Ker(LE, g“F).

T
d,,r denotes the exterior differentiation operator with respect to the variables u, T'.

Theorem 3.19. The following identity holds

dudT | - o
du, TN = Ok ([ X Ky, ) s* Ker(LE, g*F)
uT 2qm

8
+ 0k <Kfyu ﬁs* KcT(LE,gLE)>}. (3.131)
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Proof. By proceeding as in the proof of Theorem 3.6, we immediately obtain
(3.131). O

Let I" be the oriented contour considered in Sect.3c), and let A be its interior.
Theorem 3.20. The following identity holds
. 0 dudT
/ nu,T =8K / (_K K’Yu) s* KCT(LE,gLE)_
ul
r A

2im

d T
+ Ok / Ky Q,Ii (s* Ker(LE, g"F)) dudl’ (3.132)
1T ul
A
In particular
/ M1 € K PO, (3.133)
r

The idea will be then to take the limit in (3.132) as tg — 0, A — +o00, Ty — +00,
€ — 0. The intermediary steps are essentially the same as in the proof of Theorem 3.4,
except that now one has to study carefully the right-hand side of (3.132). A similar
difficulty in fact already appeared in the proof of [B1, Theorem 2.8].

Details of the proof of Theorem 3.2 are left to the reader.

Acknowledgement. The author is very indebted to a referee for his comments and suggestions.
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