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Abstract. We consider the double-scaling limit in the hermitian matrix model for
N

2D quantum gravity associated with the measure exp £ tjZ2j\ N^3. We show
7 = 1

that after the appropriate modification of the contour of integration the Cross-
Migdal-Douglas-Shenker limit to the Painleve I equation (in the generic case of
the pure gravity) is valid and calculate the nonperturbative parameters of the
corresponding Painleve function. Our approach is based on the WKB-analysis of
the L-A pair corresponding to the discrete string equation in the framework of the
Inverse Monodromy Method. Here we extend our results, which were obtained
before for the particular cases JV = 2,3. Our analysis complements the isomono-
dromy approach proposed by G. Moore to the general string equations that come
from the matrix model in the continuous limit and differ in that we apply the
isomonodromy technique to investigate the double scaling limit itself.

1. Introduction

We shall study the difference equation

Σ / . Km^T^^K^m, (LI)
7 = 1 Z Z

where neZ, ί^eC, ί^j^N, N^t3, are regarded given parameters, and L is the
OO

operator acting in the space ψ = {ψn}?=-ao via (Lψ)n= £ Lnmψm. This non-
m = — oo

linear equation for the dependent variable wne(C has recently appeared in
connection with a matrix model in 2D quantum gravity [1, 2] and for this reason
we shall refer to it as the discrete string equation. We will outline, following [3], the
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physical derivation of (1.1) in Sect. 1.1. In this physical context one is interested in
the initial value problem:

wn = 0 for n^O and wM = 4 - / ^ - , n = l,2, ...,7V-1, (1.2)

where /zπ are the normalized constants of orthogonal polynomials Pn(z) with
respect to the following measure,

Kδnm= ϊ Pn(z)Pm(z)^v( Σ tjz2j)dz, n = 0,1,2,. . . , ί N >0, (1.3)

and P n is a polynomial of degree n whose term z" has coefficient equal to 1.
Furthermore, in the context of matrix models (see again Sect. 1.1) one is interested
in the asymptotic limit,

h = βq 2^k^N β = Ch~5 ^ C + C Wξ, h = βqk, 2^k^N, β = C 1 h , ^ C z + C Wξ,

(1.4)
wn~Q(\-2h2u(ξ)), Λ-0.

It has been shown in [1, 2] that the limit (1.4) with an appropriate choice of the
constants CUC2, ρ maps Eq. (1.1) into the Painleve I (PI) equation for the
function u(ξ):

Uξξ = 6u
2 + ξ. (1.5)

Also, the authors of [1, 2] conjectured that the special solution of (1.1)
characterized by the initial conditions (1.2) tends to a solution of (1.5).

A particular consequence of our analysis is that this conjecture is not true.
Actually, this has already been known indirectly from [4]. However, a certain
modification of this conjecture is indeed valid: Let in (1.3)

J dz-^s1 J dz~s2 J dz9 (1.6)
- 00 Γ ^ Γrίx

where s l 5 s 2 e(C, s1 + s 2 , a n < ^ ^ e c o n t o u r s /^+,/^~ are the lines corresponding to

rays <argz= — (m+1), 0 ^ | z | < o o > , <argz= — — : (m+l), 0 ^ | z | < o o > , respec-

tively. Then, for each m = 0,1,..., — - — , there exists an open set of parameters

g's for which it is possible to choose the constants C l 5 C2, and ρ in (1.4) in such a
way that the unique solution wn of the discrete string equation (1.1) characterized
by the initial condition (1.2) tends to a solution u(ξ) of PI equation (1.5) (the details
are given in Sect. 5).

Furthermore, this unique solution of PI is characterized by one of the following
large ξ asymptotics:

(1.7)

(1.8)
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where

— f2\1/8 p i -^i/2\1/8 1

8π W i+p' ]/Sπ \V

Note that in order for u(ξ) to be real, one needs |p| = l. The so-called "triply
truncated solution," which has been discussed intensively in connection with 2D
gravity since the work [4], corresponds to p = 0. This solution has infinitely many
poles only in the sector ̂ π < arg£ < f π, and has regular asymptotic behavior on the
remaining Stokes rays, arg<ί; = π + fπ [see formulae (A.ll) in Appendix A].

The distinguished feature of formulae (1.9) is that they don't depend on the
concrete choice of the parameters g's, and the number N^3.

The particular cases N = 2,3 have already been considered in the author's
papers [5-8]. For the particular case JV = 2, p = 0, the last of the equalities (1.9) was
also obtained in [9].

Our analysis complements the scheme [10, 11] where the isomonodromy
approach is used to study the continuous string equations (see Sect. 1.1).

To obtain the results listed above we made essential use of the asymptotic
analysis of the PI equation developed in [12].

In order to investigate the general Cauchy problem of the string equation (1.1)
we use the so-called isomonodromy method [30, 31]. This method, which is an
extension of the inverse spectral method, relies on the association of a given
nonlinear equation to a pair of linear equations known as the Lax pair. Actually,
the string equation (1.1) is associated with three linear equations (see for
example [3]),

dzψ = 2 jtjtμu-iψ, dtjψ= (L2J+^L2AΨ, (1.10)j

where (L_)nm = Lnm for n>m9 (L_)nm = 0 for n^m and (L0)nm = Lnmδnm. This is a
consequence of the fact that the string equation is a "similarity" reduction (or
simply is compatible) with the Volterra hierarchy

Since, Eq. (1.11) is the compatibility condition of Eqs. (1.10a) and (1.10c) [13-15],
Eq. (1.1) is the compatibility condition of Eqs. (1.10a) and (1.10b) [16,3,17, 5], and
Eqs. (1.1) and (1.11) are compatible, it follows that Eq. (1.1) is compatible with all
three linear equations (1.10).

It is more convenient to let Ψn(z) = (ψn(z),\pn-ι(z))τ, and to write Eqs. (1.10) in
matrix form. In Sect. 2 we shall show that the relevant matrix form of Eqs. (1.10) is
given by

W + 1 J (1.12)

Λn(z) =

(1.13)
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where an(z) is given by

*„(*)=- Σ JtjzV-'-n^YzV-1 Σ HL2l-^-\n^ (1.14)
7 = 1 7 = 1 / = 7 + l

n(z), Vn(z) =

,1/2

where vn(z) and rn(z) are given by

1 / 2 w 1 / 2

^ ( L ^ - 1 ) Π + 1 , M - ^ ( L ^ - \ Π _ 1 , (1.16a)

72j 1 i" 1

i wl/2 V 72l(τ2j-2l-l\

2 2 ϊ = i

w 1 / 2 w 1 / 2

For convenience of notation we have suppressed the independence.
In Sect. 3 we study the general initial value problem of the discrete string

equation (1.1), where wn are given for — (JV —2)^n^iV — 1 . We show that this
problem admits a global meromorphic in t , solution. This solution can be obtained

Γl " .Ί
by solving a RH problem for the function Φn(z) = Ψn(z) exp - £ tf2j :

L 2 7=1 J

ΦΛ-(z) = Φ π

+ (z)e"2,- Σ

1

ί j z 2 J S β 2 J ? 1 ^ 2 j

j ( U 7 )

odh-i/2 A \ / / α ( 1 ) β ( 1 )\ 1 / 1

o (a-i/2/\ w1 d ^ W
(1.18)

this RH problem is defined on a contour which as z^oo is asymptotic to the rays
argz = — π/2iV + lπ/2N, 0 ̂  / ^ 4N — 1. The jump matrix S depends on the mono-
dromy data st, 0 ̂  / ̂  4JV — 1 which are defined on a 2N — 1-dimensional algebraic
variety. Having obtained Φn, wn follows from wn = 4β(

n

1)yi

n

1). To prove this result we
show that Φn can be obtained explicitly in terms of Φo and then we use the rigorous
results of [18] to establish the solvability of the RH problem for Φ o . Also, in
analogy with the results of [18], we find that if the monodromy data st satisfy
certain constraints and if the t/s are on certain rays, then Φo is bounded for all
finite tjS (i.e. the existence of poles is excluded). An example is

l ; | 5 0 - 5 1 | < 2 ; ίy imaginary, l^j^N.
(1.19)

The case of physical interest is the so-called triangular case, which corresponds
to the special choice of the monodromy data s2l +1 = 0,0 ^ / ̂  2N — \,t} real, tN > 0.
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In this casέ the above RH problem can be solved in closed form in terms of the
orthogonal polynomials Pn(z) [see Sect. 3, formula (3.21)].

In Sect. 4 we investigate the limit of the discrete string equation to PI equation.
It turns out that it is more convenient to consider the limit of the associated Lax
pair. We show that under the limit (1.4), where Ci,C2, and ρ are given by Eqs. (5.10)
and (5.12), Eqs. (1.10a) and (1.10b) are mapped to the Lax pair for the PI equation.
This Lax pair is expressed in terms of an eigenfunction Y(k, ξ) (see Appendix A).
The asymptotic relationship between Y and Ψn is

Ψn{z)=k~ll2{i-kh
In Sect. 5 using the methodology of [19] we investigate the limit of solutions of

the discrete string equation under the ansatz (1.4). We show that under this limit
only certain solutions of the discrete string equation tend to solutions of PI. We
characterize the initial data of these solutions and also give a description of the
corresponding solutions of PL Our analysis involves the following steps.

(a) We use the WKB method to characterize the asymptotic behavior of the
solution of Ψnz = ΛnΨn as j8->oo. We denote by Ψ™KB(z) the WKB-limit of this
solutions. For large z the piecewise solution Ψn(z)(Ψ^\ ..., ψ^N~1^) described in
Sect. 3 can be expressed in terms of Ψ™KB(z) by

g ( 7 3 ] j w h e r e A^άmgdβ^r^M^r112)
(1.21)

and δ^ is a certain function of ξ,n.
(b) The solution ψWKB breaks down in the neighborhood of the turning points of
the equation Ψnz = AnΨn. Under certain assumption (given in Proposition 5.2)
there exist 2N — 4 double turning points and 2 triple turning points. We denote by
*FT T P and Ψ®ΎP the associate solutions of Ψnz = ΛnΨn at these turning points. The
results of Sect. 4 indicate that ΨjΎP is simply related to the eigenfunction Y
associated with the isomonodromy analysis of PI [see Eq. (1.20)]. The dominant
part of Ψ®ΎP can be given in closed form, and does not contribute to the asymptotic
analysis. At this point the WKB-analysis of (1.13) resembles the analysis of the
z-equation corresponding to the continuous string equation (1.48) (see [10]).
(c) Using the results of (b) above and the fact that Ψ™KB and ΨYP can be related,
we find a relationship between Ψn and Y. This, in turn, induces a relationship
between {S}, the monodromy data associated with Ψn, and {G}, the monodromy
data associated with Y.
(d) The case of physical interest corresponds to the triangular case. In this case the
monodromy data {S} are directly related to initial data for wn. The relation
between the monodromy data {G} and the coefficients characterizing the large ξ
asymptotic behavior of solutions of PI has already been obtained in [12]. Thus the
result of (c) above provides a direct description of solutions of PI in terms of initial
data of solutions of the discrete string equation [see Eq. (1.9)].

1.1. The Physical Model. The starting point of the theory of 2D quantum gravity
is the partition function of the bosonic string which can be represented by the
functional integral [20],

-λγ \\Γg- ^ \R\Γg- \)/gg«*daX»dhX» X . (1.22)
Σ ; In Σ Σ
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The notation f Dg means the integration over all possible metrics on the 2-surface
ΣP of genus p; \DX means the integration over all mappings X: XP^IRD (these
mappings are the string fields). The entity R denotes the scalar curvature of the
metric g. The constants λ1 and λ2 are the cosmological constant and the string
coupling, respectively. The pure two-dimensional quantum gravity is associated
with the partition function

F= Σ J ^ g e x p ί - ^ j /g- ^ f R\/g\ . (1.23)
I Σ 2π Σ )

The basic mathematical problem is to make sense of the formal expressions
(1.22) and (1.23). One of the possible ways of achieving this is the following: Let
W(p; n4, n6,..., n2N) be the number of ways that £ can be covered with rc4 squares,

P

n6 hexagons, n8 eight-gons etc. The basic idea is to approximate the functional
integral

Fp(A)= [Dg\Dx\-λγ l]/g-p-l R\Γg- ί γggahdaX
μSh

as

where

Fp(Λ)^~W{x](p;q) e-^-^-*p\ fi->o, (1.24)

\ q)= Σ W(p; n^ n6,..., n2N)xn

2*xn

3*... x%», q=-.

(The integral jDg is over all metrics of total area A in £ p .) The variables x{ play

only an auxiliary role as will be cleared below.
The derivation of (1.24) is based on the consideration of the triangulations of

the 2-surfaces. (For the details and history of this question we refer the reader to
the articles [21, 3].) It should be noted that Eq. (1.24) is consistent with the
following argument. It is known [22] that

{> 1 ( ^ g-oo, (1.25)

where

c,y,bpΞΞC{x},y{x},bp{x}.

The function y{x} for generic {x} is given by

y=~h (1.26)

on the other hand, for a special choice of m — 2 of x's, it is possible to make
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The quantity bp depends on {x} in such a way that,

{x)^{x'}^bp-+bpV-*. (1.28)

Substituting Eq. (1.25) into Eq. (1.24) it follows that

λ°1, λ2=-ylnε + λ°29 (1.29)

)

ε \ε
This implies the renormalization rule

ε

which in turn leads to the following power-like area dependence of Fp(A):

Fp{A)κe-λUA^2-2p)-χe-λ(i{2~2p)bp. (1.30)

On the other hand, from the scaling-gauge KPZ-theory [23-25, 21] one should
have

p

p H y ^ - 2 \ (1.31)

where

[D 1[D 1 ]/(D - \){D -25)] .

Comparing (1.31) and (1.30) it follows that the approximation (1.24) is valid for the
special dimensions

D = ί- . 6 .., m>2,
m(m + l)

and that generic values of {x} correspond to the pure gravity (1.23) (m = 2, D = 0).
Introducing the notation

λ=_e-λίε^ n = e-*29 λc=-e~
c (1.32)

and assuming that

iFp(A)dAκΣW{χ}(P'>Q)e-λiqε-λ2i2-2p)> I1-33)
q

Eqs. (1.29), (1.33) yield the representation

= Σ $p Σ Σ {]

(1.34)
λλ , n(λ-λcy

y = O{l)

However, Eq. (1.34) cannot be accepted as the definition of the functional integral
(1.22) because the series in the right-hand side has only asymptotic meaning.
Actually, using Eq. (1.25) and the classical formula

Σ
=ι ms
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Eq. (1.34) implies

F = F(t)= Σot
2~2pbpΓ(y(2-2p)) + veg. terms, (1.35)

where

(1.36)

Equations (1.29) and (1.32) suggest that the variable t has the meaning of the
renormalized string coupling, and the asymptotic series (1.35) defines the
perturbative theory for the partition function (1.22). Note that because of
Eq. (1.28), the series in (1.35) does not depend on the individual value of x's (up to a
redefinition of ί), but only of the number m (mth class of universality).

To obtain the nonperturbative definition of the partition function (1.22) one
needs a well-defined generating function for the series (1.34). It follows from the
results of [22] that a candidate for such a generating function can be taken in the
form

Ί λ λ2 λ"-1

where Zn(tl9t2, ...,ίΛr) is the partition function of the hermitian matrix model:

Zn=SDΦexp{-TrU(Φ)}> U(z)= £ tμ2K (1.38)

In (1.38), Φ is n x n hermitian matrix, and

DΦ = [ ] dΦH Π dΦijdΦij. (1.39)
i i<j

Accepting (1.37) as the generating function for (1.34) one can reduce the problem of
calculating the functional integral (1.22) to the problem of calculating a special
double-scaling limit of the well-defined finite-dimensional integral (1.38). [The
problem is not trivial because the dimension of the integral (1.38) goes to infinity.]
Letting

n 2/

the double limit can be formulated as follows:

Evaluate

(1.40)

under the limit

β = C1h~*~™, ~=C2 + C;ιh4ξ, Λ-»0, (1.41)

where
2m 1
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In order for the integral (1.40) to be a well-defined generating function for (1.34) the
constants Cu C2 should be positive. Constant C2 is a function of q's. Using the
freedom in the choice of g's o n e c a n always reach the condition C 2 > 0 for
sufficiently large N (as a matter of fact for N ̂  3). Note also, that for generic values
of q's m = 2 in (1.41), (1.42).

To study the integral (1.38) it is natural to factor out the integration over the
"angle" variables. Putting

Φ = u~1Au,

where u is a unitary matrix and A is a diagonal matrix,

we find

udΦu~x =dA + [A, duu~1~\

or introducing dΦ = udΦu~1, dϋ = duu~1,

dδu = dzi9 dΦij^iZi-ZjjdUij.

Thus

DΦ = Π {Zi-Zj)2dzu ...9dzn Π duxβVr (1.43)

Since the integrant in (1.38) does not depend on uij9 Eq. (1.43) implies

Z n ( t l 9 . . . 9 t N ) = const J J Π ̂ Π . f e - ^ / e x p f - £ U { Z i ; t l 9 . . . 9 t N ) ) .

(1.44)

Let (see Introduction) Pn{z) be the orthogonal polynomials with respect to the
measure dze~U(z) [see (1.3)]. Taking into account the equation

det{P,._ ,(*,)}= Πfe-*,).

one can rewrite (1.44) as

Z n = c o n s t J ... J Π ^ ^ '
— o o — o o ί = l

= const Σ (-D*°"+»«"' Π f dzfi-^'Ψ^^P^-M)
σ,σ' ί= 1 - oo

n n

= c o n s t n ! f ] hi-1(tί ... ί^)=Ξconst Π h^^ . . . t N ) . (1.45)
i l

Equation (1.45) reduces the evaluation of Zn ( —, j8 2̂? •? jŜ fjv ) > under the limit

(1.41), to the evaluation of the normalized constants hJ—, βq2, ,βqN j , under

the same limit. The latter in turn leads to the study of the discrete string equation
(1.1), (1.2) under the limit (1.41), which coincides with the limit (1.4) for the case of
m = 2 (pure gravity).
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1 Actually, letting

wn 4 n l , 2 , . . . ,
nn-\

one obtains Eq. (1.1) and the Volterra hierarchy (1.11). These equations are
elementary consequences (see for example [7]) of the orthogonality condition (1.3)
and of recurrence relation

l l 4n- (L46)

The important recent achievement in the theory of the matrix model of the 2D
quantum gravity is the discovery [1, 2] of the connection between the limit (1.41)
in Eq. (1.1) and the theory of KdV-equation. Suppose that under the limit (1.41)

(1.47)

Then, as it was shown in [1, 2], it is possible to determine ρ in such a way that the
function u(ξ) will satisfy the ordinary differential equation

[iϊ,AJ = l, (1-48)

where H= —d2/dξ2 + u(ξ), and Am is the yl-operator associated with the mth KdV
equation. For the general case of pure gravity where m = 2, after an appropriate
choice of the scaling constant C l 5 one finds the first Painleve equation

uξξ = 6u2 + ξ. (1.49)

It should be emphasized that the limiting string equation (1.48) depends only on m
and not on the concrete choice of the parameters qt (the property of universality).

Coming back to the main object of interest, to the partition function

one obtains the relation

Fξξ=-2u. (1.50)

Indeed, the second difference of logZn satisfies the relation

= logwn + explicit increasing (as w—oo) terms. (1-51)

As it follows from (1.41), «—n + 1 =>£ — £ + h2lm. Because of this and (1.47), relation
(1.51) implies (1.50) after a trivial additional regularization of Zn.

In connection with these results, the analytical problem of the calculation of the
parameters of the limiting solution u(ξ) arises. It should be mentioned that some
partial information about u(ξ) has already been obtained. Indeed, the perturbative
series (1.35) together with (1.50) show that

oo 1 2m+l

u(ξ)= Σ ( - £ ) * m PCp as £ — - o o . (1.52)

For m odd the same type of behavior takes place at £ — + oo and, as it has been
shown in [10], together with the reality condition determines u(ξ) uniquely.
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However, tor m even the asymptotics (1.52) does not determine the solution in a
unique way. For instance, in the case m = 2 there is one-parameter family (see [12]
and Appendix A) of solutions with the asymptotic (1.52):

The problem is to determine the nonperturbative parameter α0. The answer of this
question for the general polynomial U(z) is given in (1.9). Note, that α0 does not
depend on q's. This means the universality holds on the level of the limiting
function u(ξ) as well as on the level of the limit equations.

Our method for calculating α0 has been outlined in the Introduction and is
based on the WKB-analysis of the L — A pair corresponding to (1.1). In accordance
with our approach, the main parameters of the limit (1.41), (1.47), i.e. the constants
C2 and ρ, are determined by the condition that the yl-equation of the Lax pair has a
triple turning point (see Sect. 4). This condition is the necessary condition for the
limit (1.41), (1.47) to map the discrete string equation (1.1) into the Painleve I
equation (1.49) for the general case of m = 2. The analogous condition for m>2,
should be the existence of higher order turning points. This observation leads to
the unexpected connection between the string equations (1.48) and the catastrophe
theory (see [26]).

Remark 1. The theory of the general string equation (1.48) has been treated via the
isomonodromy approach in [10,11]. The nonperturbative parameter for m = 3 has
been calculated in [27]. The original approach to the string equations (1.48) based
on methods of algebraic geometry was proposed in [28,29]. The interesting idea of
considering Eqs. (1.48) as the quantization of finite-gap potentials was put forward
in [10] and [28].

Remark 2. In this article we consider the case of general position, m = 2 (pure
gravity). To extend our approach to the arbitrary even m, one needs the description
of the solutions of (1.48) with m = 2kin terms of the corresponding monodromy
data (the cases m = 2, ro = 3, and m = 2k + l are studied in [12, 27, and 10],
respectively).

2. The Lax Pair Formulation of the Discrete String Equation

In this section we start with the linear eigenvalue equation

In Eq. (2.1), ψn and z are the eigenfunction and eigenvalue, respectively, and wn

plays the role of the potential. We shall show that associated with (2.1) there exists:
(i) A hierarchy of discrete nonlinear equations for wn; (ii) a hierarchy of discrete
nonlinear evolution equations for wn. Both these hierarchies admit a Lax pair
representation. In the case (ii) this is a well known fact [13-15]. We shall give the
relevant matrix z-dependent Lax pairs explicitly.

Equation (2.1) can be written as

\ (2.2)
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where L acts in the space of sequences {ψn}
n

nZ ^oo, and Δ is the shift operator. The
coordinate form of L is given by

v T /n Z J nfϊiτtn ? * ntn r\ m n ~\~ 1, m ' ^ n n — 1 ,τn * V 7
m= — oo Z Z

In order to derive the associated nonlinear hierarchies, it is convenient to
rewrite Eq. (2.1) into matrix form. Letting Ψn = (ψn,ψn_1)

τ, Eq. (2.1) becomes
Eq. (1.12).

Proposition 2.1. (The Matrix Lax pair of the discrete string equation.) The
hierarchy of nonlinear discrete equations

1 N 1

2 j = i 2

where C and C7 , j = 0,..., N, are arbitrary z-independent parameters, neZ,NeZ+,
and Lnm is defined in Eq. (2.3), admits the Lax pair formulation

dΨ (z)
Ψn+1(z)=Un(z)Ψn(z), —A±=An(z)Ψn(z), (2.5)

where Un is defined in (1.12) and

an(z)

(2.6a)

1 N . w 1 / 2 i V ~ 1 . N

2 j = ι J 2 j = ί ι = j + ι

Proof. The compatibility condition of Eqs. (2.5) yields Unz = An+ιUn—UnAn.
Denoting the 11,12, 21, and 22 entries of An by an, bn, cn, and dn, respectively, and
writing the compatibility condition into component form we find

bn = Q, (2.7)

K + Cn + ^ K + ψ ^ , dn+1-an + 2zw-+ψcn+1=0. (2.8)

Subtracting Eqs. (2.7b) and (2.8b), and using Eq. (2.8a) it follows that

an + ί+dn + ί=an + dn, or an(z) + dn(z) = y{z).

The function y(z) can be taken zero without loss of. generality, since it can be

r z i
absorbed in Ψn via the transformation Ψn^>ΨnGxp\_ — ̂ $γ(z')dz'j; thus dn= —an.
Then Eqs. (2.7b) and (2.8 b) imply that bn and cn are the expressions appearing in
(2.6 a), while Eq. (2.7 a) becomes

ί=z(an+1-an)+^(an + an.1)-^(an+1 + an + 2). (2.9)

In order to solve Eq. (2.9) we make the ansatz,

an(z)= Σ α Γ ' z 2 ' " - 1 . (2.10)
7 = 1
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Substituting the above form of an in Eq. (2.9), and equating the terms with the same
coefficients of zJ, we find the equation

1 = -f (α^~ 1 + <*>n-ϊ) T ^ fan+l + <*n + i) > (2.11)

as well as the recurrence relations

(2.12)

Equations (2.12) determine oζ * in terms of ww5 and then Eq. (2.11) yields a
nonlinear discrete equation for wn.

We shall show that the solution of Eqs. (2.12) is given by

k i \

(χk

n= £ Ck-j&J

n; ά%=-, άl=-w}ι

/2(L2j~\n_1, j = 1,2, . . . . (2.13)
7 = o 2 2

Because of the l ineari ty of Eqs . (2.12) it is sufficient t o p r o v e t h a t άk

n is a p a r t i c u l a r
s o l u t i o n of E q s . (2.12): U s i n g t h a t L m n = L n m , we find

ά S ~ 1 + ά J : } = - W n

1 / 2 ( L 2 f c ~ \ π _ 1 + -W n

1 / _ 2

1 (^ 2 / C ~ 3 )n-2,n-l

oo fγ i \
z_ι i >Λ t w, ί <Λ n — i n — z , ι ι\ n,n— i

Z = - o o \ Z Z /
oo

= V L (L 2 / c~ 3) =(L2k~2)
l=-oo

Using this expression, it follows that the right-hand side of Eq. (2.12 b) becomes

^±l(T2k-2λ _Wl(τ2k-2λ

A K1^ )n+ί,n+ί Λ ^ / « - 1 , » - 1

___ W n + 1 1 1/2 (T2k-2\ _μ 1 vyl/2/Γ 2fc-2\

2 L2 " + l 1 ; " + 1 " + 1 2 " l >»-Ln+XJ

_ i w i / 2 ί w 1 / 2 ( L 2 t ~ 2 ) _ _ + -w1'.2 (L2k~2) _
2 " L 2 " « i,» 1 2

 n + 1 " 1 " + 1 J

w + 1 / T 2k— 1\ n ( T 2k— 1\

which equals the left-hand side of Eq. (2.12 b). Equation (2.12 b) for fe = 1 is satisfied
with α° = | .

Using Eqs. (2.13) into (2.10) we find

Φ)= Σ
j=ί

N 1 N-ί N-j

=i 2 j ι ιι
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Letting l-^l—j, this equation becomes Eq. (2.6 b).
The right-hand side of Eq. (2.11) is of the same form as the right-hand side of

Eq. (2.12 b), hence Eq. (2.11) can be written as l = α * - α * + 1 . Therefore,
α*= - n - C , which is Eq. (2.4).

If we allow wn to depend on i j ; / = 1,2,..., it can be shown, following a similar
analysis, that the linear eigenvalue equation (2.1) can also be associated with a
hierarchy of nonlinear evolution (with respect to ίj) equations.

Proposition 2.2. (The Matrix Lax pair of the Volterra hierarchy.) The Volterra
hierarchy,

^ , (2-14)

admits the Lax pair formulation

Ψn + 1(z)= Un(z)Ψn(z), δ-^- = Vn(z)Ψn(z), (2.15)

where Un is defined in Eq. (1.12), and Vn is given by Eq. (1.15). For convenience of
notation we have suppressed the tfdependence. This is the matrix z-dependent
representation of the known scalar pair [13-15].

Proof. Actually Eq. (2.4) is associated with a larger than (2.14) class of integrable
equations. To derive these equations we consider the compatibility condition of
Eqs.(2.15), which yields Unt=Vn+1Un-UnVn. Denoting the 11, 12, 21, and 22
entries of Vn by υn9 qn9 pn9 and rn9 respectively, and writing the compatibility
condition into component form we find for qn and pn the expressions given in (1.15),
as well as

rn=-vn-\(\nwn)tj, (2.16a)

and

Z VV W J_ I

n w ^ . . (2.16b)

[In Eqs. (2.16), subscripts tj denote partial derivatives with respect to £,-.] In order
to solve Eq. (2.16 b) we make the ansatz

vn(z)= Σ βi~kz2h. (2.17)
fc = 0

Substituting this form of vn in Eq. (2.16 b), and equating the terms with the same
coefficient zfc, we find

(2.18)
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as well as the recurrence relations

A ° + i = t f ; Λ + i - / ί = - i ϊ * " 1 , fc = l , 2 , . . . , j - l ;

Equations (2.19) determine /?*, fc = 0,..., j , and then Eq. (2.18) yields a nonlinear
evolution equation for wn. Furthermore, Eqs. (2.16a) and (2.17) imply the
associated form of Vn(z). We note that Eqs. (2.19 a) and (2.19 b) are identical to
Eqs. (2.12), thus

β°n = ̂ l P*=T + Ψ Σ Q_ r (L 2 -\ n _ 1 ? Z=l j - 1 . (2.20)
I I I r=l

Using this general form of β\ we obtain nonlinear evolution equations which are
linear combinations of the Volterra hierarchy. To obtain Eq. (2.14) we restrict
ourselves to the choice

w 1 / 2

(2.21)

fj-ί

Equation (2.19c) yields βJ

n=-~—, which [using (2.21)] was calculated in the

derivation of Proposit ion 2.1, and gives

1 / 2 w 1 / 2

Y ? ψ \ + Un. (2.22)
The right-hand side of Eq. (2.18 a) reduces to βJ

n+ί +βJ

n which equals

±( 1/2 (T2j-l\ i 1/2/Γ2J-1\ Ί

_ i [ l/2/r2j-l\ _, 1/2/Γ2J-1\ \ .

the first bracket, which was also calculated in Proposition 2.1, equals
2(L2J)n+un+u and the second one equals \{L2\n, hence Eq. (2.18a) is Eq. (2.14).
Equations (1.16) follow from the substitution of Eqs. (2.21) in Eqs. (2.16a)
and (2.17).

It is possible to allow the C/s appearing in Eq. (2.6) to evolve in tj in such a way
that the Lax pairs (2.5) and (2.15) are compatible. The equations Ψnt = VnΨn and
ψn=AnΨn are compatible iff

^ F π = J - / t π + [Λn,Fπ]. (2.23)

Differentiating the compatibility condition of Eqs. (2.5) with respect to tj, and the
compatibility condition of Eqs. (2.15) with respect to z we obtain

^Vn=—An + IAWVΛ + Fn9 where Fn+lUn-UnFn = 0. (2.24)

The solution of Eq. (2.24b) is precisely of the form (2.6), thus if (Fn)ίl is zero then
Fn = 0. It can be shown that

CN-~-2jtj (2.25)

is a sufficient condition for (Fn)ιl =0.
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3. The RH Formulation of the Discrete String Equation

In this section we use the isomonodromy approach to solve Eq. (1.1), which as it
was shown in Sect. 2, is the compatibility condition of Eqs. (1.12), (1.13), (1.15).
Equation (1.13) plays a fundamental role in the subsequent analysis, while Eqs.
(1.12) and (1.15) play only auxiliary roles.

3.1. The Direct Problem. The basic idea of the isomonodromy method is to use
Eq. (1.13) to formulate an inverse problem for Ψn(z) in terms of appropriate
monodromy data. This can be achieved by determining the analytic structure of
solutions of Eq. (1.13) with respect to z e <C. Since Eq. (1.13) is a linear ODE in z, the
analytic structure of Ψn depends only on An(z). Actually, Eq. (1.13) has only one
singularity, namely an irregular singular point at z = oo. A formal solution at
z = oo has the form,

^ ^ ^ J ^σaJ, z-oo, (3.1)

where σ3 = diag(l, — 1), and Ψ{^] is a formal power series in - . However, the actual
z

asymptotic behavior of Ψn changes form in certain sectors of the complex z-plane
N

(Stoke's phenomenon). These sectors are determined by 9ΐ £ tjZ2j = O; thus for
. 7 = 1

large z the boundaries of the sectors, which we call £ , are asymptotic to the rays
— 71 71 ι

argz = —— + /—, 0 ̂  / ^ 4/V - 1 (we have assumed that tN is imaginary). Let Ωι be

the sector containing the boundary £ , i.e. zeΩ0, — —— ̂ a r g z < 0 , etc. Then if
i 2N

Ψn^Ψ{^] as z^oo in Ω?, it turns out that Ψn~Ψi

n

co)S1S2 ... Sh as z^oo in Ωι + U

0 SIS 4N - 1 . The matrices S/5 0 5Ξ Z ^AN — 1, are triangular and are called Stokes
matrices. Alternatively, it is more convenient to introduce different solutions
0 ^ 4 i V such that Ψ® is asymptotic to Ψ^ in Ωt. Then Ψ«+1) £ l

0 ^ 4 J V - l ; also it can be shown that Ψ{

n°\z)= ψ(*"\ze

2ίπ)e

2iπnσ* = Ψ(

n

4N)(ze2ίπ).
Therefore,

1\ze2iπ)S4N_ίi (3.2)

\ as z-^oo infl,. (3.3)

The Stokes matrices have the form

r
The case Λ̂  = 4 is illustrated in Fig. 3.1.

There exists a symmetry relationship for An, which in turn implies a symmetry
relationship for Ψn:

AJL-z)= -σ3An(z)σ3 ^ Ψ«X-z) = (-l)n + 1σ3Ψ« + 2N)(z)σ3 . (3.5)

Equation (3.5 b) implies that the Stokes matrices satisfy the constraint

<7

3S Iff3 = S f x . (3.6a)
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ΣAN-I

Fig. 3.1 (JV =

Also Eqs. (3.2) imply the consistency condition

SoV 'Wi^ (3.6b)

The constraints (3.6) identify the set of the monodromy data as a 2iV— 1-
dimensional algebraic variety. Given this set, Eqs. (3.2) and (3.3) define a RH
problem for the function ΨN. The quantity wn can then be reconstructed via

wn = 4βi

n

iyn

1\ (3.7)

where β^ and y{

n

1] are appropriate asymptotic coefficients in the expression

(3.8)

and An is a diagonal matrix. Equation (3.7) implies that wn depends only on the
orbits of the action

Sι M> Qxp(δσ3)Sι exp( — δσ3), 5 e (C. (3.9)

This action is well defined on the algebraic variety specified by Eqs. (3.6).
Since An depends on n and on ί, it follows that the monodromy data will also

depend in general on n and t. However, it is possible to normalize Ψn in such a way
that, if wn satisfies Eqs. (1.1) and (1.11), then the monodromy data are n and t
independent (this is a usual situation in the isomonodromy method [31]). The
correct normalization is achieved by choosing An so that the formal solution Ψ^
defined in Eqs. (3.1), (3.8), is also a formal solution of Eqs. (1.12) and (1.15). This is
the case if

-1/2 (3.10)
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3.2. The Inverse Problem

Theorem 3.1. The Cauchy problem for the discrete string equation (1.1) always
admits a global meromorphic in tj solution. This solution can be obtained by solving
the RH problem defined with respect to the orientation shown in Fig. 3.1:

(3.11a)

(3.11b)

where S=S2l)~1 on Σ21+U and S=S2l+1 on Σ 2 / + 2 , 0^l^2N-l. This RH
problem is uniquely defined in terms of the monodromy data Sh 0^l^4N—l,
defined on the 2N'— \-dimensional algebraic variety given by Eqs. (3.6). Having
obtained Φn, wn follows from Eq. (3.7).

Proof. We first note that Eqs. (3.11) are a consequence of Eqs. (3.2), (3.3), (3.8)

Γ 1 N 1
and of the change of variables Ψn = Φn exp — - Σ h2^ σ 3 ' ̂ e sPe cifi° form of

L 2 i = i J
the jump S follows from the orientation chosen in Fig. 3.1 (Ψf = Ψ0S0, Ψ2

= ΨtSl9etc.).
The solvability of the RH (3.11) for n = 0 follows from the general results of [32]

as extended in [18]. In particular, the difficulty of the existence of oscillations (as
opposed to decay) on the contour, can be handled as in [18] by performing a small
clockwise rotation. Also the existence of meromorphic in tj solutions is a
consequence of the explicit analytic dependence of the jump matrices on tj.

However, the above RH problem possesses two novelties: (a) Because of the
boundary condition (3.11b), Φn involves a polynomial Pn of degree n and the
question arises of how to determine this polynomial, (b) In order to prove that the
function wn defined by Eq. (3.7) solves the discrete string equation (1.1), it is
necessary to prove that the solution of the RH problem (3.11) satisfies Eqs. (1.12),
(1.13), and (1.15). (This is sometimes referred to, in the literature, as proving that the
inverse problem solves the direct problem.) This step presents a technical difficulty
for Eqs. (1.13) and (1.15) because z enters in a polynomial of degree 2N — 1 and iV is
arbitrary. We will solve these problems as follows:

(a) We will derive the solution of Φn in terms of Φo; in this process the form of Pn

will be determined.
(b) We shall prove that the solution of (3.11) solves Eq. (1.12). This is rather simple
since z enters only linearly in Eq. (1.12). This proof also will clarify the reason for
choosing Λn in the form (3.10). We shall also prove that Ψnz = AnΨn and
Ψnt =VnΨn, where An and Vn are polynomials of z or degree 27V— 1 and 2JV,
respectively. Then it follows from the results of Sect. 2 that the RH problem (3.11)
also solves Eqs. (1.13), (1.15). Indeed, if Ψn+1 = UnΨn and Ψnz = AnΨn, where Un is
given and An is a polynomial in z of degree IN — 1, it was shown in Sect. 2 that An

must be of the form (1.13). Similarly for Vn.
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(a) Φn in Terms of Φ o . Since the jump matrices are independent of n, the RH
problems for both Φn and Φo can be denoted by Φ~ =Φ^J, ΦQ =ΦQJ, or

where Pn is a polynomial of degree n whose zn term has coefficient I, Q n _ 1 is a

polynomial of degree n — ί, α0 = l + θ ( - l , δ0 = ί + O\-)9 β0 = θ[-)9 and

where (Pn^0)+ means multiplying P π by δ0 and keeping only the non-negative
powers of z. We assume that Φo is known, therefore, ao,βo,γo, and (50 are known to
any desired order. The matrix appearing in Eq. (3.12) depends on the In
coefficients of Pn (pn-upp-2,'.>,Po) and of Qn_ί (qn-ί9qn-2,. ;<lo)' These In
parameters can be determined as follows. The large z asymptotics of Φn indicates
that the coefficients of the terms z\ — n ̂  j ^ n — 1 of the 12 entry of the right-hand
side of Eq. (3.12) must be zero. Similarly, the coefficients of the terms zj, —(n — ί)
Sjύn — 2 of the 22 entry of the right-hand side of Eq. (3.12) must be zero, while
the coefficient of the z~" term of this entry must be one. The coefficients of the non-
negative powers of zj are zero by construction; the rest of these requirements imply
precisely In equations for the In unknown parameters. It is easily seen that the
relevant equations have a triangular structure thus they are always solvable. As an
example we shall consider below n = 2.

In both parts (a) and (b) we shall make use of the symmetry relationship (3.6a)
of the monodromy data. It is easy to show that this symmetry induces a symmetry
for Φn(z):

Φn(-z) = (-ί)nσ3Φn(z)σ3. (3.13)

Equation (3.13) implies

(3.14)

Using these equations, Eq. (3.12) in the case n = 2 becomes
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Demanding that the coefficients of - and of —^ in the 12 and 22 terms are 0 and 1,

respectively, we find jS^Po + β o ^ O and qί(β$)δ{o) + Po)) = l These equations
determine p0 and qί in terms of the asymptotics of Φ o .

It should be mentioned that the transition from Φo to Φn described above is the
particular case of the general Schlesinger transformation [31].

(b) The RH Problem (3.11) Solves Eq. (1.12). Using the relationship between Ψn

and Φn it follows that Ψn+ίΨ~1 = Φn + 1Φ~1. But since Ψn + x and ¥*„ have the same
jumps we deduce that Ψn + ί Ψ~1 is a polynomial, thus it equals lim (Φn + 1z

σ3Φ~!).
z—• oo

Using Eq. (3.11b) to compute this limit [and taking into consideration the
symmetry condition (3.13)] we find

λn μn

II Λ j ί 1 )

λ.

n = dmg(λn,μn). (3.15)

1
The — term of the 22 entry of the above equation implies /?„ 7ί, + i = l. Using

z
2, Eq. (3.15) becomes

Ύn+γ \ l o

The definition wn = 4βi

n

1)γ(

n

1) = 4βi

n

1)/β(

n

1l1 reduces this equation to Eq. (1.12).

3.3. A Vanishing Lemma. For certain constraints of the monodromy data and for
the tjs on certain rays, the RH problem for the function Φ o is uniquely solvable,
which in turn implies that Φo cannot have poles for finite ί/s.

We denote by / r(z) = (/(z))* the Schwartz reflection of a matrix function /
(* denotes transposition and complex conjugate). Consider the RH problem
φ~ = φ + J on the contour £ containing the real axis. Then it is easy to prove [18]
that if £ and J are Schwartz reflection invariant, then a sufficient condition for the
solvability of this RH problem is R e J > 0 on the real axis. A direct application of
this result to the RH for the function Φo fails. However, it is possible to use analytic
continuation of the original RH problem and then apply the above result. The
situation is precisely analogous to the one studied in [18]. For brevity of
presentation we give the result for N even only.

Lemma 3.1. Assume that N is even, that t-p l^j^N, are imaginary, and that the
monodromy data sh in addition to Eqs. (3.6), also satisfy

<2. (3.16)

Then the RH problem (3.11) with n — 0 is uniquely solvable.

Proof.

Γ 1 N . Ύ Γl N . Ί
Since tj=—tj, exp - i ^ ί / 2 ^ =exp\-γ jt jz

2 jσ3 . Also using analytic
continuation, we find Ψ2 = ΨίSι = Ψ0S0Su or ΨQ =Ψ^(S0Sι)~\ etc. The re-
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Fig. 3.2 (N = 4)

quirement of the invariance under the Schwartz reflection implies (£2^3)*

— ^4N-2^4N-ί~ ^2N-2^2N-1^ •"Λύ2N-2^2N-ΐ) ~ ^2N+ 2^2N+ 3 ~ ^2 ^3 •> WneΓC

we have used the symmetry (3.6a). These equations imply (3.16a). The require-
ment that R e J > 0 on the real axis implies ReSΌS^O and Re ίS2]VίS'2iV+1

= RQSQ1SΪ1>0. Demanding that both the trace and the determinant of the
matrix S0Sι-\-(S0S1)^ are positive we find (3.16b).

3.4. The Triangular Case. If the monodromy data st have a special form, then the
RH problem (3.11) can be solved in closed form. This is, for example, the case when

tN>0.
(3.17)

We denote by Γk the contours asymptotic to the rays at angles — —— + (2/c — 1) —-,

fc = l,...,2iV. Using the orientation of Fig. 3.3, the relevant RH becomes
ψ~ = Ψ+S, where S is either S^1 or S2Z. In the case for example of JV = 4, <S on
Γl9...9Γ8 is given by SQ\ S2, S^\ S6, SO, SJ 1 , S4, S^K

Γ8

Fig. 3.3
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We define φn by

then φn satisfies the RH problem

(3.18)

0 1

-- + 0(.
- w - 1

(3.19)

Z—XX) ,

where s is either s2fc_2

 o r ~s2k-2- This RH problem is triangular and hence it can
be solved in closed form: The 11 and 21 components yield {φn)ίi={Φn)n a n d
(Φn)2i=(Φn)2i- Using these equations and (3.19b) we find

(φϊ)ίί = Pn{z) , {Φn)2ί = Qn- l(Z) J (3.20)

where P n and Q fI_1 are arbitrary polynomial of degree n with the only restriction
that the coefficient of zn in Pn equals 1. Using Eqs. (3.20) in the 12 and 22 entry of
Eq. (3.19a) we can find (φn)ί2 and (φn)22:

p Γ

2iπJ μ-z

μ-z

(3.21)

where the integral J is defined along the lines corresponding to the rays Γk,

ί = Σ
and the orientation of j is indicated in Fig. 3.4.

(3.22)

Fig. 3.4 (N = 4)
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The function φn satisfies the boundary condition (3.19b) iff

Sμιe~Uiμ)Pn{μ) = 0, Z = 0 , 1 , . . . , n - l

a n d (3.23)

These equations imply that Pn and Qn are simply related and that Pn are
orthogonal polynomials with respect to the measure \e~υ{μ):

(3.24)

Using the explicit formula (3.21) one obtains that in the case under
consideration

This means that the discrete string equation (1.1) with the initial data (1.2)
corresponds to the special triangular form (3.17) of the RH problem (3.11). The
monodromy data s2/c_2, fc=l,...,iV appear explicitly in the initial data (1.2)
through the redefinition of the integration in (1.3),

oo N

ί <fc- Σ s2k-2 J dz (3.25)
- oo k = 1 fk

(the basic case corresponds s2k-2

 = Q, fc = 2, ...,N).

Remark. Formulae (1.12)—(1.16) for the matrices C/M(z), /4n(z), and Fπ(z) can be
derived in the case under consideration directly from the explicit formula (3.21)
(without use of the general theorem 3.1).

4. The Continuous Limit of the Discrete String Equation to Painleve I

We consider the Lax pair (2.5), which, recalling that Ψn = (ψn,ψn_ι)
τ, can be

written as

Zψn = Wn'+lΨn+l+Wn/2ψn-l, (4-1)

Ψnz = anψn + hΨn -i, bn=—-{an + dn+ γ)wl12, (4.2)
LZ

N-ί N

where an [see Eq. (1.14)], after interchanging the summations £ a n d Σ > ^s

given by 7 = 1 ι = j+1

Φ)= ~ Σ jt?2J-ι-<12 Σ Ihz21-1 'Σ z-^L2"-1)^. (4.3)
J = l Z = 2 m = l

We shall show that under a certain continuous limit, the Lax pair (4.1) and (4.2)
reduces to the Lax pair of Painleve I equation.
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Proposition 4.1. Consider the transformations

wn ~ ρ(l - 2h2u{ξ)), ψn(z) ~ ψ(k9 ξ), w π ± ! - ρ(l - 2h2u(ξ ± ft)),

ψn±1(z)~xp(k9ξ±h)9

 Z = e 1 / 2 ( 1 + ^ J > Λ->0,

where ρ satisfies

N μt /β\

tlQ+ Σ2 ^τQιcι

2l=o, σβ= r). (4.5)

(i) // ψn(z) satisfies the Lax pair given by Eqs. (4.1) and (4.2), then ψ(k, ξ) satisfies the
Lax pair of the Painlevέ I equation,

Ψ, (4.6)

'=̂ 4 Σ JJhQ'Hi-VQi. (4.7)

(ii) // An is defined by Eq. (1.13 b), then the determinant of An has a third order zero as
Λ->0.

ρ 1 / 2

Proof. We first derive (ii). Equations (4.4a, c) implies L~ —— (A + A ι\ thus

/nl/2\2m- 1

\ 2 ) L 2m~ι

hence (4.8)

Ίl/2\2m-l

Equations (4.4 a), (1.13 b) implies that

2

— det An ~ ~2 (z2 — ρ), (4.9)
z

where a is the limit of an. Hence if a(z)\z = ρi,2 = 0, the determinant of An will have a
third order zero. Using Eq. (4.8b) in Eq. (4.3) it follows that

/ 1/2Λ ί 1-T ί / l-Jlr C " m
a(Q ) ~ — 2^ J*jQ — 2-, MlQ Z^ Λ2m '

j=l 1 = 2 m = 1 2

where we have used 2C™m^1 = C^m. It is easily shown by induction that

I-I Qm Ql

m= 1 2 m 2

Using this equation to simplify α(ρ1/2) = 0 we find Eq. (4.5).
We now derive (i). The limit of Eq. (4.1) to Eq. (4.6) is straightforward. In order

to derive the limit of Eq. (4.2) to (4.7) we need an(z) and bn(z) correct to O(h4). For
this purpose we must know (L2m~1)nn_1 correct to 0(/i4). Because the operators w
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and A do commute up to O(h3\ it follows that

1
OT-y

2m-ί Q m 2 3

More detailed analysis shows that the O(h3) in (4.11) can be replaced by 0(h4).
Substituting (4.11) and (4.4a, e) in Eqs. (4.3) and (4.2b) and taking into account (4.5)
we find

v2h2 Γ N ; _ ! N , _ i i-i r

Σ 2 / V 2 + Σfttf 2 Σ %
7 = 1 ί = 2 m = 1 ^

(4.12)

2^ lliQ 2^ —2m" ^ — '
/=2 w = l °

N ι-± I-1 Γm

2h2u Σ IhQ 2 Σ m ^
Z = 2 m = l 2

i _ A z - l

22 Σ m^^

It is easily shown by induction that

Using Eqs. (4.5), (4.10), and (4.13), the expressions of an(z) and bn(z) can be
simplified,

h ^ ) , (4.14)

where R is defined by Eq. (4.7b).
After obtaining the limits of an(z) and bn(z), the limit of Eq. (4.2) to Eq. (4.7) is

straightforward:

Substituting the expression for an and bn in this equation we find Eq. (4.7a).
Proposition 4.1 suggests the proper relationship between β and h9 in order for

the discrete string equation to tend to PL Letting t^βqu 1^/^/V, qγ = \,
1 N l2cji

E q . ( 4 . 7 b ) yields R = βJ, J=~Σ ^ P T ^ " 1 ^ - 1 ) ^ / t h e n i n o r d e r f o r Ψk i n

J 1 = 2 2

Eq. (4.7a) to be 0(1) it follows that βh5 = Cu which is chosen as C1 = - 4 ρ " 1 / 2 J " \
in order for (4.7 a) to be the Lax operator for PI equation (1.5).

Also, in order for (4.4c) and (4.4d) to be the consequences of (4.4 a) and (4.4 b),
respectively, we need
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where

N oj

because of (1.1). This completes the description of the parameters of the limit (1.4)
that maps the discrete equation (1.1) into the Painleve I equation (1.5). Letting
ψ = (ψiψξ)

τ we obtain a matrix Lax pair for Painleve I equations. The
transformation

(4.14)

maps this Lax pair to the Lax pair of PI studied in [12]

(4.15)

Yk = (4k4 + 2u2 + ξ)σ3 - i(4uk2 + 2u2 + ξ)σ2 - ( 2kuξ + — ) σ t | Y,

where σ}, j = 1,2,3 are the Pauli matrices,

'0 A ίθ -i\ (\ 0

The relationship ψn±1~ιp(ξ±h) implies Ψn(z)~MΨ(ξ, k\ /z^O, where
M n = M 2 1 = l5 M 1 2 = 0, M22=-h. Then Eq. (4.14) yields

5. The WKB Analysis

In this section we perform the analysis of the double-scaling limit (1.4), which has
been outlined in points (a)-(d) of the Introduction.

5.1. The WKB-Solutίon.

Proposition 5.1 (The WKB-Solution). Consider the equation

— = βAn(z)Ψ ,
dz

An is An of Eq.(l.13b) with tj^qj, l^j^N, q,=\.

Let

Js=c1ft-
5, ^ c v i q ' n ,

P (5-2)

wn~ρ(i-2h2u(ξ)), h-*0.
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The WKB-solution of Eq. (5.1) under the limit (5.2) is given by

W z 2 Γ l

)-(z Q)

where

1/2 '

N- 1

. Λ -.

> i — 1 \-<

•' Σ '

\ l / 2 y

") + 0 (

ρι~j

N

1 Σ /̂
l = j+l

'h4z

• 1 I

2 2 / -

.2N-2

ι-
J) 21

1

•2; 2

(5.4)

(5-5a)

, (5.5b)

αnrf z 0 /s any of the zeros of the function a(z). The asymptotic representation (5.3) is
valid along the Stokes lines given by

Re }μ(z')dz' = O, (5.6)

and away from z = z0 and from z = ρ1/2. More precisely, we assume that h2/(z2 — ρ),
h3/(z2-ρ)3/2, tf/iz-z^ where z , φ ρ 1 / 2 and α(zz) = 0, are small

Proof. The WKB-solution of Eq. (5.1) can be represented as [33]

ΨΓB(z) ~ Tn(z) exp | ^ σ 3 )μ(z')dz' - Jdiag

where

and 7̂ ,(z) is the matrix diagonalizing Λn(z), i.e. in our case Tn~
ιΆnTn = μσ3. We

choose Tn in the form (jΓ) u =(TΠ) 1 2 = 1, (Tn)21 =(μ-άn)/Gn, (Tn)22= -(μ + άn)/βn,
where άn, Bn, and cn are the 11, 12, and 21 entries of /!„. Using Eq. (4.11) we find

1 / 2 w 1 / 2 '

where 4(z) is defined in (5.5). These equations imply for μn = (ά2 + Sncn)
1/2 the

estimate given in Eq. (5.4b). It should be mentioned that the terms of order 0(h3) in
Sn and cn are the same. Using this estimate and Eqs. (5.7) we find
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This equation implies

j / n3z2N-2 \

diag(Tπ"* TnJ = — d i a g ( - m~z, m+J + 01 - 2 2 ^ ] , (5.9a)

and therefore,

( 5 - 9 b l

The usual analysis of the corresponding integral equation shows that the error in

. . . 7 -
a(z)(zz-ρ)

is of order . . . 7 -rjj, thus taking into consideration the estimates (5.8)
a(z)(zzρ) ;

and (5.9) we find

^ K B ( z ) = ( z 2 " w " Γ 1 / L v κ V 1 / 2 K ) 1 / 2 j + 0 V Φ ) ( ^ 2 - ^ ) 1 / 2 J j e

This equation immediately implies Eq. (5.3).

Proposition 5.2 (The Solution Near the Turning Points). Assume that ρ is a positive
solution of the equation

1 N l2a

- ρ + Σ W=T C 2/^ = °> ( 5 1 0 )

so that + ρ 1 / 2 are ί/ze zerc>5 o/ ί/ze function a(z)/z, where a(z) is defined in Eq. (5.5 b).
Also assume that this function has exactly 2N — 4 zeros zh 1 rg/^2Λf — 4, zt + Zj,
z,± +ρ1/2. Then

(i) the points z = zt, 1 ̂ l^2N — 4 are double turning points of Eq. (5.1), w/π'/e ί/ze
pomίs ±ρ1/2 are triple turning points.
(ii) Let Ψ^JP and Ψj[v denote the solutions of (5.1) near the triple turning points
z = ρ 1 / 2 and z = — ρ1 / 2, respectively. Then

(5.11)

(f ί/ιe parameters in the limit (5.2) are chosen as

7 = 1 Z

(5.12)

^ " y ( / l ) C '

e, Y(ξ, k) is the eigenfunction associated with the isomonodromy solution of PI
(see Appendix A). Furthermore,

Y , Λ->0, (5.13)

where δ± are certain n-independent functions of ξ.
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(iii) Let Ψ™ denote the solution of (5.1) near z = zx. Then

423

(5.14)

Furthermore,

Ψ™(z)=Ψ™KB(z)(zf-ρ)xl4(I + o(l)), Λ->0. (5.15)

Proof (i) The turning points of Eq. (5.1) are determined by the zeros of det^ π , thus
ίa(z)\2

asymptotically they are determined by I [z2 — ρ) = 0. It was shown (see

Sect. 4) that under the condition (5.10), a(ρ1/2) = 0, which implies the existence of
two triple turning points.
(ii) Equations (5.11) and (5.12) were derived in Sect. 4. To derive Eq. (5.13), we
investigate Ψ™KB and * F " P near z= ± ρ 1 / 2 . We give the relevant formulae for z

ί k2 \
near ρ 1 / 2 : Near z = ρlβ we introduce the variable k by z = ρlj2l 1 + —-h2

an = h2J(u-k2) + o(h4) we find

thus

β

Using

(5.16)

(5.17)

where we have used (5.12a). In the matching domain k2~h~ε, ε>0, the WKB-
solution ψ™KB can be represented as

yWKB

Comparing this equation and Eq. (5.11) and, taking into account the known
behavior of Y(ξ,k) as fc->oo (see Appendix A) we find (5.13).
(iii) Near z = zt we introduce z = zt(ί +h5^2λ). Using Eq. (5.7) and expanding the
matrix An(z) in a Taylor series at z = zt we find that near z = zι Eq. (5.1) becomes

O(h1'2)

The 0(1) term of this equation can be solved exactly and is given by Eq. (5.14).
Expanding f^KB n e a r Z = = Z ; a n ( j comparing with ¥*°T P we find Eq. (5.15).
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5.2. Calculation of the Parameters of the PI Equation. The WKB-solution
presented in Proposition 5.1 specifies the large β behavior of the eigenfunction
Ψn(z) characterized in Theorem 3.1. The solutions Ψn(z) and Ψ™KB(z) have different
normalizations; comparing their large z behavior it follows that

] / ^ j=ί P

(5.18)

It was shown in Proposition 5.2 that near the triple turning points z = ± ρ1/2, Ψn(z)
can be approximated by ΨΊ

n

Ύ

±

? which are proportional to Y [see Eq. (5.11)]. Since
ΨΊ

n

τJ and Ψ™KB are related [see Eq. (5.13)] we obtain a relationship between Ψn(z)
and Y:

Ψn(z) = CY(ξ,k)σ3Λne^δ~ + δ^(I + o(l)),

/ h2k2\
Recall that z= ±ρ1/21 1 H — — ), and Y is the representation of the piecewise

solution (Y~\ Y°, Y\ Y2, Y3, Y8). Therefore, in the z-complex plane Y has the
piecewise representation (Y~ \ Y°, Y1, Y2, Y3). Since Stokes lines connect turning
points to turning points or to infinity, and since they cannot cross, it follows that
one of these Y's (Y3) connects with the other turning point, while the other four Y's
(Y~\ Y°, Y1, Y2) connect with some of the Ψn\

Equation (5.19) and the independence of the monodromy data {S} of n and β
imply that for the ^ ' s which are connected to Y's the following relationship
between monodromy data is valid

S = M~±

ιGM±, M± = \imσ3Λne
{βδ- + δ±)σ\ (5.20)

h-*0

It should be mentioned that because of (3.9) we do not need to calculate the
diagonal matrix M + explicitly. At the same time, formula (5.20b) gives us the
characterization of the asymptotic behavior of the quantities β^\ y{

n

1} from (3.10)
(cp. with [7]).

We recall that near the double turning points zl9 Ψn(z) can be approximated by
*F°TP Then, using Eqs. (5.14), (5.15), and (5.18), we get a relationship between Ψn(z)
and the 0(1) approximation of Ψ™ [see the right-hand side of Eq. (5.14)]. This
equation is analogous to Eq. (5.19). The 0(1) approximation of Ψ™ is represented
by four functions (because of the occurrence of λ2). However, the associated Stokes
multipliers are equal to the identity matrix (cp. with the "continuous" calculation
in [10]). Thus for the ^ ' s which are connected with the 0(1) approximation of the
solution around the double turning points, we find

S = I, (5.21)

instead of Eq. (5.20).
Equations (5.20) and (5.21) allow us, for a given distribution of the location of

the triple and double turning points, to decide for which monodromy data of the
discrete string equation (and hence which initial data), the limit (1.4) exists. An
exhaustive investigation of all possibilities will be given elsewhere. Here we discuss
some generic cases and we assume that there exist IN — A distinct, real double
points.
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4N-1

4N-2
Fig. 5.1 (N = 4)

Example 1. Only one zx is to the right of ρ1/2.
This situation is illustrated in Fig. 5.1. The relationships Y°=Y~ίG-1 and

ψ4N-ι = ψ^N~2S4N_2 imply a relationship between G_1 and S4N_2, the relations
Y2 = Y1Gί and Ψ* = Ψ2S2, imply a relationship between Gi and S2; the relations
y^yOGo and Ψ2 = Ψ^N~1S4N_1S0S1 imply a relationship between Go and
^4iV-1^0^i:

S 4 N-2 = M ; 1 G _ 1 M + , S2^M~1G1M+, S4N_lS0Sl=M~1G0M+.

(5.22)

Using the triple turning point —ρ1/2 we find similar relations for S 2 N _ 2 , ^2 + 2̂ ?
iŜ Tv-i? 2̂τv> ^1 + 2 -̂ Using the double turning points it follows that all 5's except
5'4Λr_2, S2, S2N_2, S2 + 2N are equal to identity. In particular, Eq. (5.22c) implies

0 = σ1G5σ1=I. (5.23)

Thus we are dealing with the one-parameter family of solutions of PI character-
ized by (A.5). Equations (5.22a) and (5.22b) give (M+ is diagonal!)

U S2N-2
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which together with gί +g4 = ί imply

Example 2. No zι is to the right of ρ1/2.
This situation is illustrated in Fig. 5.2. In this case we get the same relations as in

(5.22a, b) but for the matrices S1 ? S4N-lt In the triangular case (3.7), which
corresponds to the matrix model, these matrices must be trivial. This implies the
equalities

gi=g* = 0 (5.25)

for the monodromy parameters of the Pi function u(ξ). Equations (5.25) contradict
to the cyclic relations (A.4); the Stokes multipliers g1 ? g4 couldn't be zero
simultaneously. This means that in this case the asymptotic behavior (1.4) for the
solutions wn corresponding to the triangular monodromy data (3.7) is not valid.

The two examples considered above are typical. It is obvious, that Eqs. (5.25)
will always arise in the triangular case if the number of the points zι on the right of
ρ 1 / 2 are even. On the other hand, if this number is odd, we get a situation similar to
Example 1. More precisely, if the number of the points zx on the right of ρ1/2 is

2 m + l , m = 0 , l , . . J — 2 — , then all S's except S4N_2m^2, S2 Λ Γ_2 m_2, S 2 m + 2,

2 a r e equal to identity, and the formula (5.24) should be rewritten as

1+p 1+p s2m+2

Obviously, all of the above conclusions will still be true if the double turning
points zι are in a small neighborhood of the real axis.

For every possible location of the double points zι one can conclude that in the
basic triangular case (all S"s are trivial except So, S2N) the limit (1.4) does not exist.
Indeed, the only possibility to get So + / is to have the situation depicted in Fig. 5.2,
which leads to the contradictory equality (5.25).

In the matrix model of 2D gravity the parameters qj9 j = 2,...,N, play an
auxiliary role. The above analysis shows, that the zeros of the polynomial a(z)/z
(i.e. the turning point zt and ρι/2) provide a more convenient set of independent
parameters for the double scaling limit (1.4). Also, this indicates the corre-
spondence between the hierarchy of the classes of universality (see Sect. 1.1) and
the hierarchy of the types of the turning points of system (5.1) (for more details see
[8, 26]).

Summarizing the above considerations and taking into account the results of
the PI equation obtained in [12] and presented in Appendix A, we come to the
description of the PI solution u(ξ) given in the Introduction.

Remark 5.1. The result of the last two sections can easily be made rigorous. Indeed,
consider for example the case corresponding to Fig. 5.1. Putting in the coefficients
of Eq. (5.1) the asymptotic ansatz (1.4) where Pi-function u(ξ) has been chosen in
accordance with (5.24), we get the system

dΨ
-j^-=βΆa

n\z)Ψn. (5.27)

The calculations carried out above show that the Stokes matrices Ssa(h) of the
system (5.27) have the initial Stokes matrices S as the limit when /ι->0. Using the
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general properties of the RH-problem (3.11) established in Sect. 3, one can
conclude that the initial matrix Λn(z) has matrix Aa

n\z) as its limit at ft->0.

Remark 5.2. Let's write down the diagonal matrix M + as

Then, formulae (5.22) provide us with the explicit expression for the constant α,

1 is\

^2N—2 ^2

or
o2

α = _ ! i o g - is^+2

S2N-2m-2~S2r

in the general "solvable" triangular case.

Fig. 5.2

Appendix A

According to the isomonodromy method the main role in the investigation of the
Pi-equation (1.5) is played by the second equation in (4.15). This equation has two
singular points; a regular singularity at η = 0 and an irregular at η = GO. Following
[12] we shall introduce the monodromy data for the second equation in (4.12) as
the set of Stokes matrices GJ? jeZ, defined by the equations

Here Y\κ\ j e Z, are the canonical solutions determined by the asymptotics

nί 1\ ' - ( A 2 )

fc^co in -ii--)£
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The Stokes matrices Gj have the usual triangular structure

Λ iiι+λ r / t 0
U ) G = L

and they satisfy the relations

Gj+5 = σίGjσί, jeZ; ^1L2ΰ3G4G5 = iσί . (A3)

This implies that the monodromy data for the second equation in (4.15) can be
parametrized by the Stokes multipliers {gj}]= i connected by the relations

g5 = i(l + g2g3), g3 + gi(l + g2g3) = i, g4 = *(1 + gig2) (A.4)

The monodromy data {gj}[ provide a parametrization of the solutions of the
Pi-equation (1.5). An alternative parametrization is provided by the asymptotic
characteristics of the solution u(ξ) on one of the "nonlinear Stokes ray," given by

2π 4π

The main result of [12] is the calculation of the explicit form of the connection
between these two parametrizations. In particular, for the special case

g 5 = 0 (A.5)

and, as a consequence,

i, ( A 6)

the following asymptotic behavior for u(ξ) has been obtained:

ίi8 / 3 \ 1 / 4

2π .„. ? , 1 e ^ m 1 ' 8

Moreover, in [12] using ideas based on the analytical continuation of the
asymptotics (A.7), (A.8), the following description of the asymptotics of the
solution u(ξ) on the ray arg£ = π is proposed:

(A.9)
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4π
The behavior of the function u(ξ) on the rays arg ξ = π ± —- is more complicated. It
depends on the combinations

1+igi ίray arg£ = π - y j and l+ι'g4 ί ray arg£ = π + - ^ J . (A.10)

For example, if 1 + ίg1 = 0 (i.e. g1 = ΐ , g 4 = 0), the asymptotics of u(ξ) on the rays
4τc An

= π and arg£ = π + —- are given by Eq. (A.ll) and (A. 12), respectively:

9iπ
1 / 8 1 1-1/8

(A.12)

For details and explicit formulae for the cases l+igί>0 and 1 + i g 4 ^ 0 we refer
to [12].

As it follows from the asymptotic formulae (A.7-A.11), in the case g5 = 0 = g4,
g1=g2 = g3 = i we obtain the so-called "triply truncated solution," the solution
having infinitely many poles only in the sector | π < a r g £ < f π .
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