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Abstract. Using the cohomological approach to W^-algebras, we calculate charac-
ters and fusion coefficients for their representations obtained from modular in-
variant representations of affine algebras by the quantized Drinfeld-Sokolov
reduction.

0. Introduction

The study of extended conformal algebras has been playing an increasingly impor-
tant role in the recent development of conformal field theory. Among them the W-
algebras have attracted much attention in the past few years. The first example of
a ^-algebra was discovered by Zamolodchikov [37] in an attempt to classify
extended conformal algebras with two generating fields. (Further classification of
J^-algebras generated by two or three fields may be found in [8, 9].) There have
been developed several approaches since then to the construction of a general
ϊ^-algebra.

In the series of papers [15-17,31] Fateev, Zamolodchikov and Lukyanov
defined PF-algebras associated to simple finite-dimensional Lie algebras g of type
A( and Όέ by explicitly quantizing the corresponding Mίura transformations and
derived some results on their "minimal" representations. They put results in a form
suitable for an arbitrary simply laced g. At the same time Bilal and Gervais studied
H^-algebras as the algebras of symmetries of Toda theories [7].

In [2, 9, 11] the ^-algebras appeared as the chiral algebras in coset models. In
[34, 1] they also appeared in an attempt to generalize the Sugawara construction
to higher degree Casimirs. All these constructions are closely related to the
invariants of the Weyl group W of g, hence the name PF-algebra.

We adopt the point of view of the paper [21] by Feigin and one of the authors
of the present paper, where the P^-algebra W(Q), associated to any simple
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finite-dimensional Lie algebra g, naturally appears as a result of quantization of the
(classical) Drinfeld-Sokolov reduction [14]. Namely, W(§) is realized as the co-
homology of a BRST complex involving the universal enveloping algebra C/(g) of
the affine algebra g associated to g and the ghosts associated to the currents of
a maximal nilpotent subalgebra n of g. For (classical) simply laced algebras this
construction gives the same result as in [16, 17].

This approach allows one not only to define the H^-algebras, but also to
construct a functor F from the category of positive energy representations of the
affine algebra g to the category of positive energy representations of the algebra
W(§). Namely, the W(g)-module corresponding to a g-module M is the cohomol-
ogy of a BRST complex associated to M.

The most important representations of affine algebras to which we apply this
functor are the admissible (conjecturally = all modular invariant) representations
of g of fractional levels k, discovered and classified in [26-28] by two of the authors
of the present paper.

In the particular case g = sT2 all modular invariant representations of level
different from — 2 have level k = — 2 + pjp' [26], and it was shown in [6, 19] that
the functor F sends these representations either to zero or to the irreducible
representations of the Virasoro algebra from the (p, /?')-minimal model [3]. This
makes us to believe that F sends a modular invariant representation of an arbitrary
affine algebra g either to zero or to an irreducible "minimal" representation of
^(g). This irreducibility is our basic conjecture.

We use the functor F to evaluate the characters of the PK(g)-modules thus
obtained as residues of affine characters. Our results completely agree with the
results and conjectures of [7, 9, 16]. The fact that the characters of the minimal
series of the Virasoro algebra are residues of affine ίT2-characters was first observed
in [32]. The functor F gives a simple explanation of this phenomenon.

Our calculations give much information about the conformal field theory with
PF(g)-symmetry which as yet has not been rigorously defined. In particular, we can
apply the Verlίnde formula [35] to the modular transformation of ^(c^-characters
(found in [17,28]) to describe the fusion algebra of the (conjectured) minimal
^(c^-models (in the simply-laced case).

It is interesting that if we apply Verlinde's argument to the affine characters at
a fractional level, then the fusion coefficients may be negative. However, the functor
F corrects the situation. It sends some different g-modules to the same W($)-
modules and "erases" some of the g-modules, so that the resulting fusion coeffi-
cients for the ί^-algebra are positive integers.

Note that the characters of W(o)-mod\xles computed by means of the quantum
Drinfeld-Sokolov reduction coincide with those of the gx © Qu'/Qi+k' coset
model in the case of a simply-laced g. The connection between the quantum
Drinfeld-Sokolov reduction and the coset models still remains a mystery.

Below we describe the contents of the paper. In Sects. 1.1 and 1.2 we recall the
necessary information about an affine Kac-Moody algebra g, its affine Weyl group
W and especially the "enlarged" affine Weyl group W = W+ x W, where W+ is
a group of symmetries of the Dynkin diagram of g isomorphic to the center of the
simply connected group corresponding to g. In Sects. 1.3-1.5 we recall the defini-
tion and properties of the principal admissible weights Prk [26, 27]. Here k stands
for the level; it has the form k = — hv + p/p\ where h v is the dual Coxeter number
and p, p' are relatively prime positive integers such that p ^ /iv. We also recall [27]
the definition of the subset JV*_ of " — "-nondegenerate weights, and the map
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φ~:Prk-^Ip p>v {0} which is 0 outside Nk- and φ~: Nk- -> Ip p> is | W\ to 1.

Here

where P + (respectively P +m) is the set of dominant integral weights (resp.
coweights) for g of level m. The map φ~ corresponds to the first quantized
Drinfeld-Sokolov reduction. Furthermore, defining a bijective map / of Prk onto
itself, we introduce the map φ+ : Prk -> lp%p> u {0} by φ+ = φ~ °/and characterize
the set Nk+ of " + "-nondegenerate weights. (JV + φ 0 only if p' ^ h, the Coxeter
number.) The map φ+ corresponds to the second quantized Drinfeld-Sokolov
reduction. In Sects. 1.6 and 1.7 we recall formulas for "normalized" characters of
irreducible representations with principal admissible highest weights and their
properties under modular transformations [27,28]. In Sect. 1.8 we define the
(multidimensional) residue and express the residues of normalized characters of
admissible representations in terms of certain functions φλ,μ (/, μ e lp,p) which in
Sect. 3 will turn out to be the characters of PF-algebras.

In Sect. 2.1 we describe two classical Drinfeld-Sokolov reductions, with respect
to the set of positive roots (" + "-case) and negative roots (" — " case). In Sect. 2.2
we quantize these reductions by means of the semi-infinite cohomology. Though
44 + " and " — " reductions give isomorphic Poisson algebras and their quantiz-
ations give isomorphic ^-algebras, it is important to consider both reductions.
This is because the " + " reduction can be obtained using the techniques of
conformal field theory. (It is much easier to perform calculations using operator
product expansions [3, 9].) On the other hand, in the " — " reduction the picture is
in many respects much simpler (for example, it is much easier to calculate the value
of the highest weight vector). In Sect. 2.3 we construct, using the two quantum
reductions, functors F ± from the category of positive energy g-modules to the
category of modules over the corresponding H^-algebra W^ (g). We prove here an
important vanishing theorem (Theorem 2.3) which gives a sufficient condition of
vanishing of the W^ (g)-module F-(M) for a g-module M.

In Sect. 3.1 we construct a Virasoro subalgebra of the algebra W£ {§)
(the energy momentum field T(z)). In Sect. 3.2 we calculate the Euler character
of the Wk (g)-module F±(M) in terms of residues of aίfine characters (Pro-
position 3.2.3 and Theorem 3.2). The key fact here is Proposition 3.2.2 which
asserts that functors F+ map positive energy g-modules to positive energy W^ (g)-
modules. In Sect. 3.3 we prove some properties of the W-algebras using representa-
tion theory. Using this and the fundamental irreducibility Conjecture 3.4+, we
derive in Sect. 3.4 the character formula for F±(L(Λ)), where ΛeNk±, and
show that these W^ (g)-modules are parameterized by the set lv,v . In Sect. 3.5
we state conjectures on resolutions, which, in particular, imply the irreducibility
conjecture.

Finally, in Sect. 4 we use results of Sects. 1 and 3 to derive fusion rules for the
PF-algebra in the case of simply laced g. It turns out, in particular, that if | W+ | is
relatively prime to p or to p' (which holds for all k in all cases except for g of type An9

where n is not a power of a prime number) then the fusion algebra for W^ (g) is
isomorphic to s/p~h®s#f~h or to srf\~h® dp'~h respectively, where stfm denote
the fusion algebra of level m for g and j^ϊ 1 denote its subalgebra corresponding to
radical weights (Theorem 4.3').

The main results of the paper have been announced in [21 and 28].
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1. Principal Admissible Highest Weight Representations of Affine Algebras

1.1. Preliminaries on g. Let g be a simple finite-dimensional Lie algebra over (C of
rank /. Choose a Cartan subalgebra tj of g and let J v c \) and A a 5* be the sets
of coroots and roots respectively. Let Q v c f) be the coroot lattice and let Q* c: ζ
be the dual to the root lattice. One knows that β* => Q v and that the group
<2*/β v is isomorphic to the center of the simply connected Lie group correspond-
ing to g.

Choose a subset of positive roots Δ + cz A and let A + be the corresponding
subset of positive coroots in J v ._Let g = n_ © 5 © n + _ b e the corresponding
triangular decomposition of g. Let Π = {α l5 . . . , α }̂ and Π v = {α^ , . . . , α/ } be
the sets of simple roots and simple coroots respectively. Let — α0 = YJ\= 1 a&i e ̂ ~+
and — όϊo = Σ ί = i aϊ ^ϊ ^Δ\ be the highest root and the corresponding coroot
respectively, and let a0 = a^ = 1. The numbers

h= Σ cii and hv = ^ a^v

i = 0 ΐ = 0

are called the Coxeter number and the dual Coxeter number respectively. Let J be
a subset of the set {0, 1, . . . , / } consisting of those i for which a{ = 1. One has:

ι e * / β v ι _ = ι / ι .
Let At e ί)* (resp. y4jv G ί)), i = 1, . . . , / , be the fundamental weights (resp.

coweights), i.e. <yΓί5 α/ > = <5ί<; (resp. <yϊjV, dj) = δij), and let Λo = ΛQ = 0.
Let (x\y) — φ(x, y)/2hv be the normalized invariant bilinear form on g, where

φ is the Killing form. We identify 5 and 5 * using the form. Then we have:

α v = 2 α / ( α | α ) e Λv for α G I , (1.1.1)

(α i |αI) = 2fl i

v/α i, i = 0 , . . . , < r . (1.1.2)

It follows that (yΓf | αf) = αjV/αj (i = 1, . . . , / ) , hence A{ e Q* if i G J. Thus, we have

{^fjiej is a s e t °f representatives of g * mod Q v . (1.1.3)

All possible values of the ratio α,-/̂ /7 are 1 if g is of type A/9 D{ or Eί:, 1 and 2 if
g is of type B^ Cf or F 4 , and 1 and 3 if g is of type G 2 . We let r v = max^cii/a^). The
case r v = 1 (resp._rv > 1) is called simply-laced (resp. non-simply-laced).

Let W cz GL(Ϊ)) be the Weyl group of g. We denote by W+ the subgroup of
elements of W that map the set {αo>^i? . . . ,α^} into itself. Note that the set
{α0, , u{}\{uj) is a root basis of A if and only if; e J. Since ^ acts simply
transitively on root bases, we conclude that for each e J there exists a unique
Wj E W+ such that dj = w 7α 0, and that

W+ = {wj}jeJ . (1.1.4)

Proposition 1.1. ε(w/) = ( - 1)2(/T>Λ

Proof. Let α = ^ . m ^ G Z+. Then, for j e J we have: either m7- = 0, then

w7~
1 α G Z+ or mj = 1, then wjι ot e — A + . Hence we have:
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1.2. Ajfine Algebra q and the Groups W and W (see [24] for details). Let
Γ ^ g g i (£K be the affine algebra associated to g:

la{m\ b(n)2 = [a, b](m + n) + m<5m, -n(a\b)K , [K, g] = 0 , (1.2.1)

where a,b e%m,neTL and α(m) stands for ίm (x) a. Let ί) = 5 + CX be the Cartan
subalgebra of g. The bilinear form (. |.) extends trivially from 5 to ί), so that CX is its
kernel and further to the whole g by (a{m)\b(ή)) = δm, -n(a\b). Given /lei)*, we
denote by λ e f)* its restriction to ζ; the number <A, X ) is called the level of λ.

Let Av

+

re = Δ\ u {α + nK|α G J s

v

h o r t, n e N} u {α + r v nX|α G J ^ n g , n e N}
be the set of positive real coroots, zl v r e = Δ ΐ r e u — Δ Xre the set of all real co-
roots, Π v = {αjv =: δ ί 0X + αf

v I Ϊ = 0, . . . , /} the set of simple coroots. Note that

We have the following action α h-• ία of ί)* on ί):

ία(ι;) = y - ( i ; 5 α ) X , i; e ί)

(the contragredient action on ϊ)* being ία(>i) = A + </, K)ot). For a subset L c ζ*
let ίL = { ί J α c L } .

Recall that the Weyl group W of g is a semidirect product:

W=tQ«xW. (1.2.2)

It turns out that A v r e = ^(77 v ) is invariant with respect to a larger group
W\= tq*x W, which will play an important role in our considerations. Let
W+ = [w e W\w(Πv) = Πv}. Since ί^acts simply transitively on root bases, we
have:

W= W+xW. (1.2.3)

Using (1.1.3 and 4), the group W+ can be described explicitly as follows:

^ + = {wj}jeJ> w h e r e WJ = tλjWj • (1-2-4)

we have canonical isomorphisms

W+ £- W+ ^ Q*/Qv , (1.2.5)

which are induced by the canonical homomorphism W^ f u s i n g (1.2.3) and the
definition of W.

Proposition 1.2. (see e.g. [25]). The group W+ is a unique normal subgroup of the
group Aut77v that satisfies the following two properties:

AutΠ^ = AutΠvxW+ and W+^Q*/QV. D

Let Λo G ί)* be defined by Λ0\ΐ} = 0, (Λ0,K} = 1. Define the fundamental
weights (resp. coweights) by

Ai = Ai + a^ Ao (resp. A? = A? + M o ) , i = 0, . . . J .
One has

wJ (αo

v) = α/ and Wj(A0) = A } = AJ iϊj e J . (1.2.6)

Let p = ΣUoΛi> PV = Vi^^ϊ

(p,K) = h\ (p\K} = h. (1.2.7)
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1 Let P = YuiΈAi and P v = ΣflΛi be the sets of integral weights and coweights
and let P+ =ΣίZ + Λiand PI =YjiZ + Λ^ be the sets of dominant integral weights
and coweights. Let Pk, Pk+ etc. be the subsets of level k weights.

Note that the bilinear form (.|.) on f) is ^-invariant, but there is no non-trivial
PF-invariant bilinear form on ϊ)*. The situation can be fixed, however, as follows.
One enlarges ϊ) by a one-dimensional space (Ed by letting 5 = 1)© (Ed and extends
the bilinear form (.|.) from f) to ζ by letting (d|ζ) = 0, (d\d) = 0,(d\K)=L Then
there is a unique way to extend the action of Wίrom f) to ίj so that the form (.|.) is
ϊ^-invariant, namely:

w(d) = diϊweW, ta(d) = d + α - i ( α | α ) X .

The resulting formula for the automorphism ta of I) is:

φ) = v + (v\K)a - ((v\a) + i (φ)(υ\K))K9 υ e ζ . (1.2.8)

We identify I)* with the subspace of linear functions on ζ which vanish on d. This
subspace is not ^-invariant, as we can see from

ta(λ) = λ + <λ, K)a - «/, α> + i (α|α)</, X»(5, λ 6 ζ* , (1.2.9)

where δ is defined by

As the bilinear form (. |.) is non-degenerate on ζ, it induces one on ί)* which extends
that on ζ* by

(Λo\Λo) = 09 (Λo\δ)=l. (1.2.10)

L e t Ar+ = A+ u {% + nδ\oce A,ne N } b e t h e set of p o s i t i v e r e a l r o o t s .

13. Principal Admissible Weights. Given A e f)*, let K^ = {α e A v r e | < / l + p5 α>
G Z} } .R + = i^71 n zl ϊ r e . Recall that A is called a principal admissible weight [27] if
it satisfies, the following two properties:

</l + p, α> φ - Έ+ for all α e Λ Tre , (1.3.1)

i^^ is isomorphic to zl v r e . (1.3.2)

Note that all dominant integral weights are principal admissible. Recall the
description of all principal admissible weights [27]. Let w e N and let
R[u] = A I u {α + nuK\aeA\ne^}. One has (cf. (1.2.6)):

tUΛjWjR[u] c ^[«] f o r j e J . (1 .3 .3)

Given y £ W, denote by Pu y the set of all principal admissible A such that
RΛ+ = y(R[u]l and by Pk

Uty the'subset of PUty of weights of level k. Denote by Prk the
set of all principal admissible weights of level k.

A rational number k with the denominator u e N is called principal admissible if

u(k + hv)^hv and ( w , r v ) = l . (1.3.4)
Letting

p = u(k + /iv) ,
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conditions1 (1.3.4) can be rewritten as

p , « e N , p^h\ (p ,w)=l , ( u , r v ) = l . (1.3.5)

Recall the shifted action of W: w.A = w(A + p) — p.

Theorem 1.3 [27]. (a) Pj y is non-empty if and only if the following two conditions
hold:

k is a principal admissible number with the denominator u , (1.3.6)

y{R[u]) c z1ΐ r e (1.3.7)

(b) //(/c, M, 3;) and (fc, w, >Ί) are ίwo £rφ/es satisfying (1.3.6) ίmd (1.3.7) ί/zβπ ί/ze
following statements are equivalent:

(i) P£ J 3 , and P j ? V l have a non-empty intersection,
(ii) P^y and Pk,yι coincide,

(iii) y(R[u]) = y1\R[u]l
(iv) ^ = ytuAWjfor some j e J.

(c) // (1.3.6) and (1.3.7) ftoW, then

Pku,y = {y (Λ° - (u - l)(/c + h^)Λ0)\Λ°ePf + hv)-hv} .

(d) Prk is nonempty if and only ifk is principal admissible.

(e) P r k = [ j y P k v> w h e r e w e N is t h e d e n o m i n a t o r of k and y e W satisfies
(1.3.7). D
Lemma 1.3. Let y = tβy. Then condition (1.3.7) is equivalent to each of the following
two conditions:

(y-'β^Π^O fori=l,...9t; (y~^\^)^u. (1.3.8)

0 ^ - ( y - ι β \ a i ) ^ u f o r all OLE Δ + , (1.3.9)

Proof is straightforward.

Remarks 1.3. (a) We have a bijective map A h^ Λ° between Pk

 y and
P f + /?v)"/ lV defined by A = y.(A° - (u - l)(fc + hv)A0).

(b) Note that ke Έ+ is principal admissible and in this case, Prk = P + .
(c) If k is principal admissible, then kA0 e Pk

uΛ a Prk. This is called the vacuum
weight of Prk.

1.4. The Maps Transpose andf. In this section we consider some important maps
on the set Prk of all principal admissible weights. The first map is the transpose
Av->XA defined in [28] as follows. Let RA = RΛ n Λ\ RΛ

+ = RΛ n Δ\, and let WA

be the subgroup of H7 generated by reflections in the elements of RΛ. The group WA

contains a unique element, denoted by wΛ, such that wΛR + = — R +. In particular,
w°Av

+ = - A I. Note that {wAf = 1. Define ŵ 1 e Aut ί) by

w71^) = - w71^) if 1; e jj, wyl(X) = X . (1.4.1)

Then XA is defined by

*Λ + p = wΛ(A + p). (1.4.2)
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In particular, one has:

ιA = w°(Λ) if ΛeP+ . (1.4.3)

Furthermore, we have: %Ply = Pl,ty, where for y = tβy we let

*y = ^vAw°, ιy = t-p'y . (1.4.4)

Explicitly, for A = (tβy).(Λ° - (u - l)(/c + hv)Λ0) e Pk,y we have

ιA = (ί_/)0.C(/lo) - (M - l)(fe + hv)Λ0) e Pk,ty . (1.4.5)

It is clear that the transpose is an involutive map of Prk into itself which fixes
the vacuum weight kΛ0. It will appear in the calculation of the fusion algebra.

We turn now to the definition of the second map / : Prk -> Prk, which will link
two quantum reductions considered in the next sections. For this we need the
following lemma.

Lemma 1.4. ([27], Lemma 3.4a). Given βeQ*, there exists a unique y e Qv and
a unique ye Wsuch that (tβ + uγy)R[u] a zj+re. D

Given M G N , we first define a map y h-> / of W into itself. Let y = tβy; by
Lemma 1.4, there exists a unique y e Qv and a unique y' e W such that

β' = β - pv + uγ9 y' = tβ>y .

Using (1.3.3), it is clear that if y is replaced by yx = ytu^Wj, then its image / gets
replaced by y\ = y'tuΛ\Vj. It follows that the element

j>:= y'y-1 e W

remains unchanged if y is replaced by ytuΛ Wj.
Now, for A e Prk there exists y e W such that AePk

<y and we let/(Λ) = y. A.
Due to the above argument and Theorem 1.3,/is a well-defined bijective map on
Pr\ such thatf(Pk

Uty) = Ply.

Proposition 1.4. (a) (f° transpose)2 = 1.
(b) Ifu ^ h9 thenf(kA0) = kA0 - (fc + hv)p\

Proof. Let ΛePly9y = tβy9 so that A = y.(A° - (u - l)(fe + hv)A0) for some
A0 G pujk + hJ)~h\ By Lemma 1.4, there exists a unique y e β v and a unique y' e W
such that

v ί ' % ] c ^ + r e ' w h e r e β' = - β - 9v + uy - ( 1 A 6 )

Then, by definition, A'\=f{tA) = (tβ>yf).('(A0) - (u - ί)(k + hv)A0).
We need to show that/(M') = /I. Applying the above argument to β' and y' in

place of β and _y, there exists a unique / e g v and a unique y" e W such that

ί/?".F%] <= Λ ΐ r e , where ^ = - β' - pv + wy' . (1.4.7)

But β" = β + M(/ - 7) (see (1.4.6)). Hence, comparing (1.4.7) with tβyR[u] cz A lrc

and using uniqueness in Lemma 1.4, we conclude that y" = y and β" = β. Hence,
/(M'):= (try").(Λ° -(u- l)(fe + /zvMo) = /I, proving (a).
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Noting that t _ ̂  R[u] cz A +re if u ^ h, we have under the assumption that u ^ h:
f(kΛ0) = t_r.(kΛ0) = kA0-(k + hw)p\ proving (b). α

1.5. The Maps φ ± and the Corresponding Sets of Non-Degenerate Weights Nk

± . The
proof of the following lemma is straightforward (cf. Lemma 1.3):

Lemma 1.5. Let A be a principal admissible weight, A e P*> v, where y = tβy. Then
the following conditions are equivalent:

<

0 < -

(β|α)

[A,a)φZ

y(R[u]) <

0 for i =

- (y*1 β\oή

ψ 0 mod u

for all a e

1, ...J\

<u fora

for all a

>

(y-1βWo)<u,

ill a e Δ+ ,

e Δ . D

(1.5.1)

(1.5.2)

(1.5.3)

(1.5.4)

(1.5.5)

In particular, all elements of P^y either satisfy (1.5.1-5) or all do not. Given
yeW, let

MUtP= {/?eβ*|0 < - ( j ; " 1 j 8 | α ) < u for all

k _ I I p/c

(Elements of the last set are called non-degenerate weights in [28]).
Each set P) admits the following nice parametrisation:

Proposition 1.5.1. [28] (a) Let ΛeP*. Then there exists a unique β(e MUy) such
that AePk

UJβΓ We let

This is a bijective map (here, as before, p = u(k + /?v)):

φy-\Pky-^P\-hw xPlu~h ,

the converse map being

P P
φp (λ9 μ) = y. λ - - y(μ + ρy) + - Ao .

In particular, P) φ 0 if and only if

k is principal admissible and u ^ h . (1.5.6)

(b) Let k satisfy (1.5.6) and let y,yx e W. Then φj (λ, μ) = φ^ (λ1, μ j if and only
ify~lyι = Wjfor some j e J and p~ (λ — Wj.λx) = u~ι(μ — Wj.μx) = Ά r

(c) Pky and Pk

x are either disjoint or coincide and they coincide if and only if
y~ίy1eW+. D
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G i v e n r e l a t i v e l y p r i m e i n t e g e r s p ^ h y a n d p' ^ h, c o n s i d e r t h e s e t

(where w(λ, μ) = (wλ, wμ), w e W+). Let φ :Prk-+Ipu be the map defined as
follows:

φ~(Λ) = φi(A) if A E Pk, φ~(Λ) = 0 if A φ Nk- .

It is easy to see, using Proposition 1.5.1b, that the map φ~ is well defined.
As we shall see, the map φ~ corresponds to the quantization of the first

Drinfeld-Sokolov reduction. We turn now to the map φ+ := φ~ °/corresponding
to the quantization of the second Drinfeld-Sokolov reduction.

Consider the set Nk+ :=/"1(Λ^ /i) = {A e Prk\φ+(A) φ 0}. We give below
a more explicit description of the set Nk+ and of the map φ +. Proof is straight-
forward.

Proposition 1.5.2. (a) Nk+ = {Jβ.pPk.tβy, where the union is taken over all y e W and
all β e M such that

(β - pv\ot)φ0modu for alive A. (1.5.7)

(b) The map φ+ is defined on A e Pk

JιΛ. c JV+ as follows. By Lemma 1.4, there
exists a unique y' eW and a unique y e M such that tβ r + ιr.y'R[u] c A lre. Then

φ + (A) = (A0, uA0 - y'~1(β - pv + uy) - pv)mod W+ . (1.5.8)

Equiυaΐently, the weight uA0 — y~1(β — p v ) is cointegral regular, hence there
exists a unique wβ^,eW and a unique μePy

+

u~h such that μ + p v

- w(uA0 - y~\β - p v ) ) ; then φ + (A) = (A°, μ ) m o d W+.
(c) // φ + (A) = (λ, μ), then φ + (σ(A)) = ('/, ιμ) mod W+, where σ =

f~ι° transpose0f
(d) φ +(kA0) = ((p — h v )A0, (u — h)A0)mod W+ . D

Proposition 1.5.3. (a) Elements A, A'e Nk.. are such that φ~(A) = φ~{A') if and
only if A' = w. A for some w e W. In particular, the map φ" : Nk- -»IPtU is | W\ to 1.

(b) The same statement holds for φ+ : N
+

Proof Let A = y.(λ - [μ - l)(fc + hV)AO) e Λ^k_, where y = tβye W. Then, due to
(1.5.2) we have:

wy(R[u]) a A X \Zl for any w e W .

Hence by Theorem 1.3 and Lemma 1.5,

{wy).{λ - (u - l)(fc + hv)A0)sNk- .

But wy = twβ{wy), hence by definition of φ_ (see Proposition 1.5.1),

φ-(w.A) - (/, uA0 ~ (w~j;)-ι{wβ) - p^) = φ'{A).
Conversely, suppose that φ (A) = φ (/Γ) = (/, μ) e Pp+~bvχ Plp'~}\ where

A' = y'.(λ' - ( M - l)(fe + hv)Λ0)eNk- and y' = tβ.y'. By definition of φ~ we
have: λ = λ' and y'1 β = (y')1 β' Letting w = y'y~x, we thus have: wβ = βf.
Hence y' = tβ>yι = tfvβ(wy) = wtβy = wy, and A' = w.A. D
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Here is a somewhat different description of the maps φ+ and σ. Recall that
by Lemma 1.4, given u e N, each βeM determines uniquely an element
yβ'-= tβ + uyye Why the condition yβ(R[u]) <= zj+ r e . This gives us a map

>:Pp

+-h"x(Q*/uQv)-+Pr

defined by φ(Λ°, β) = yβ.(Λ° — (u — l)(/c + hv)Λ0). The map φ induces a bijec-
tion:

where JV+ acts on both factors as defined in 1.2.
Let now /I - </>(2, β) e i V , where (2, /?) e (PV / Γ x (β*/wβ v )) mod W+. Then

yl e iV + if and only if yS — p v is regular with respect to the group Wx uM. In this
case we have:

φ + (Λ) = (λ, (u -h)Λ0 + μ) mod W+ , (1.5.9)

where μ eP
w

+

u~h is such that μ + ρv and j8 - p v lie on the same WxuQv-orbit.
Furthermore, we have:

σ(Λ) = <£('/, -/^ + 2 p v ) . (1.5.10)

7.(5. Characters and Normalized Characters of an Affine Algebra. Let M be a g-
module. It is called a level k module if K = kIM. It is called a restricted module if for
any x e g and any v e M there exists n0 such that x(n)v = 0 for n > n0. If M is
a restricted g-module of level fe φ — hv one defines the Sugawara operators on
M b y

^ ^ . Λ . Σ Σ ^ i ί - M i + n):, (1.6.1)

where {wj and {u1} are bases of g such that {u^u3) = ̂ l 7. Recall that these operators
define a representation of the Virasoro algebra with central charge

ττ^ (L6-2)

A restricted g-module M of level fc φ — h v is called a positive energy module if
So is a diagonalizable operator on M with a discrete spectrum bounded below and
each eigenspace of SO is a g-module from the category Θ. (Recall that a g-module is
said to be in the category Θ if it is finitely generated ίj-diagonalizable and n + -finite.)

The most important examples of positive energy g-modules are irreducible
highest weight modules L(Λ\ where Aefy* is of level k φ — /iv, defined by the
property that there exists a non-zero vector vΛ such that [24]

+ + Σ ίkg i;,! = 0, hvΛ = (Λ,h}vΛ for h e ί) .
/c>0 /

Let q = e2πιτ, where τ e J^+, the upper half-plane. Consider the domain
Y = Jf+ x 5 x C. One defines the character chκ of a positive energy g-module M of
level k by the series:

chM(τ, x, ί) = e2πίkttrM(qSoe2πίxχ (τ, x, ί) e F .
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This series converges to a holomorphic function in the following domain in Y
[24, Chap. 11]:

Im(x|α) > 0 for a e Λ\ and Im(αo |x) < Imτ , (1.6.3)

and can be analytically extended to a meromorphic function in Y analytic outside
the hyperplanes (x\a) = n for α e A\,neTL. If ΛePk

+, then χΛ converges to
a holomorphic function on the whole domain Y [24, Chap. 10].

Given Λ el)* of level k one defines the normalized character χΛ of the g-module
L(Λ) by the formula:

We shall identify Y with a domain in ί) by letting

(τ, x9 ί) = 2πi( - τd + x + tK) .

In the case A e Pu,tβy> t n e meromorphic function χΛ(τ, x, t) in Y is given by the
following formula [27, 28]:

(x\β)
—
Ap(τ,x9t)

Here, for / e P +, 5 e N, we let

, Λ:, ί) p- — . (1.6.4)
Ap(τ,x9t)

Recall the following simple (but useful) identity for λe Ps+ and μ e I)* such that
<μ, K> = m [28]:

f ) X (1.6.5)

Recall also Macdonald's identity:

Ap = q\P\2/2h"e2m((M + th<) γi ((l- q»y Yl (1 - ^ - ^ ^ ( 1 - qne~aU . (1.6.6)

7.7. Modular Transformations of Normalized Characters. The most interesting
from the conformal field theory point of view are the modular invariant representa-
tions, which are defined as follows. Recall the action of the group SL2(%) on Y\

aτ + b x c(x\x)
t

and its right action on functions on Y:

f(τ9x9t)\B=f(B.(τ9x9ή), B e SL2{Έ) .

The representation L(Λ) is called modular invariant if χΛ is invariant with respect
to a congruence subgroup of 5L2(Z).

It was proved in [26] that L(Λ) is modular invariant if A is admissible, i.e. (1.3.1)
holds, and <QRΛ = Qz l v r e (it was also conjectured there that there is no other
modular invariant L(Λ) of level =j= —hv). According to the classification of



Fusion Rules for 1^-Algebras 307

admissible1 A given in [27], they can be described in terms of the principal
admissible weights (in the type A case all admissible weights are principal admis-
sible).

The normalized characters of the principal admissible representations have
remarkable transformation properties. Let

ι o
Theorem 1.7. ([27, Theorem 3.6]). Let AePk

u^y, where y = tβy. Then

XΛ\S= Σ SΛΛ'XΛ' ,
A e Prk

where

SΛΛ, = iiJ+ιM-'(fc + hv)-'/2\M*/M\-ll2ε{yyf)

x e

711 'W(ΛG + p)\Λ'° + p)

Σ i i v v i z * ' yι\^ i y/

ε(w)e k + h . (1.7.1)
W 6 W

(Here A' ePk

u,y>,y' = ί^'j'.) /n particular the space ΣΛeΛ.fcCχ^ is SL2{Z)-invari-
ant. G

Recall also that the matrix (̂ /l/iO^yiep^ is a unitary symmetric matrix ([28,
Proposition 4.3]).

1.8. The Residue of Affine Characters. Let F(τ, x, t) be a meromorphic function on
7. Define the residue of F by the following formula:

This is a meromorphic function in (τ, ί) e J f + x C
Let p and p7 be integers such that p ^ /?v, p' ^ /z. For / G Pp+~h\ μ e Plp'~hlet

pp' w(λ + p) μ + pv 2

where η(τ) = q1/24Y[ne^(l — qn) is the Dedekind ^-function. This is a holomorphic
function in τ e J4f+ .

Proposition 1.8. Let A e P^tβy be a principal admissible weight.

(a) There are two possibilities:
(i) A φ Nk- in this case RQSx = o(χΛ(τ, x,t)) = 0;
(ii) A E Nk_ in this case we let (λ, μ) = φ~(A). Then:

η(τfm«-'Resx = oχΛ(τ, x, 0) = φλ,μ(τ) .

(b) There are two possibilities:
(i) ΛφNk+; in this case Resx = o(χΛ{τ, - τβ v + x, ί)) = 0;
(ii) A e Nk

+; i.e. /I e Pk

UJβp where (β — p v |α) φ 0 mod w/or alloce A; in this case
we let (λ, μ) = φ + (A\ i.e. (see Proposition 1.5.2) we Zeί / = A0 and define (unique)
μeP\~h and weWby
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Then:

ηdιm«-'(τ)(- l ) / ( w ) + 2 ( ^ ^ ) + | J + l R e s x = 0 ^ ( τ , - τ p v + x, τ\p v \2/2) = φλnlι(τ) .

Proof. We use the explicit formula (1.6.4) for χΛ and identities (1.6.6) and (1.6.5).
Since (a) was proved in [28, Proposition 4.2], we check here (b). The proof of (i) of
(b) is the same as that of (a). In the case (ii) of (b) we have, using (1.6.4) and (1.6.6):

Resx = oχΛ(τ, -τpv + x, τ\pv \2/2) =

, τΓ\β - P v), ^ ^

n φ htv

Using (1.6.5), and the formulas

Π ( i - < ? " ~ 1 + a ) Π ( i - « " ~ β )

= ( - i)«-i^-«(«-D/2 -Q ( i _ ^ ) 2 5 α e N , (1.8.1)

|p | 2 /2/? v = dim §/24 ("strange formula") , (1.8.2)

Σ Λία = 2 ( p | p v ) , (1.8.3)
7 e /14.

X (/ίία)2 = / i v | p v | 2 , (1.8.4)

the previous formula gives the result. Note that (1.8.4) follows from

Σ (x|α)(>'|α) = /2vM)0 • (1-8.5)
y e A...

2. Two Quantum Reductions

2.1. Two Classical Drinfeld-Sokoloυ Reductions. Let g = n_ © 5 Θπ+ be the tri-
angular decomposition of the Lie algebra g. Choose bases of n+ (resp. ft_)
consisting of root vectors {eα} (resp. {e_α}), α 6 J + , such that (ea\e-a) = 1. Con-
sider the following two subalgebras of the affine algebra cj:

n ± = ( C [ ί , r 1 ] ( χ ) n ± .

Vectors ea(m) (resp. e_α(m)), α e I + , m ε Z , form a basis of n + (resp. n_) and we let
eα(m)* (resp. e_α(m)*) be the dual basis of the space n% (resp. n* ) of linear functions
on n+ (resp. n_) which vanish on all but finitely many vectors of the basis. Using
the bilinear form (.|.) on g we may identify n% with n+ so that e±α(m)* gets
identified with e + a( — m). Set

P + = Σ * « ( - ! ) * , P - = Σ e - « ( 0 ) * . (2.1.1)
y e 77 7 e 77

Note that p+ (resp. p_) is a character of n+ (resp. n_).
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Let π+' be the restriction map from the dual of g to the dual of n+. Denote by
3F± (g) the algebra of local functionals on π + ι (p±) invariant under n+. These two
algebras have canonical structures of Poisson algebras induced from the canonical
Poisson structure on the dual of g. These Poisson algebras are called the classical
J^-algebras. Drinfeld and Sokolov used them to write equations of KdV type as
Hamiltonian systems [14]. For example, #+(s/Π) is the Gelfand-Dikii algebra,
which can be identified with the Poisson algebra of local functionals on the space of
differential operators of the form dn + a2(x)dn~2 + . . . + an{x) on the circle.

According to [30], the Poisson algebra #"+(§) can be obtained as the cohomo-
logy of the complex which is the "local completion" of (C[g*] ® Λ(n © n*), d\
where C[g*] is the Poisson algebra of polynomial functions on g* and d = {φ, }.
Here

φ = Σ e « ® Φ * ~ 9 Σ ch® <Py<PΪ<Pβ + Σ PM® Φ ? >
α <x,β, γ α

where α, β, y are roots of n+.
Indeed, the space 3F'+ of functions on n±ί(p±) can be identified with the 0th

cohomology of the Koszul complex C[g*] ® Λ(n±) with respect to the differential

The space of n +-invariant functionals on π±1(p + ) is the 0th cohomology of the
standard cohomology complex # + ® yl*(n + ) of the Lie algebra n+. The differen-
tial of this complex is equal to

d2 =Σ {̂ α' }® Φ? - ^ Σ cϊ,/3® {φyΦ?Φ*>"} •
α Z α,/3, y

Therefore, the space #+(g) is the 0th cohomology of the double complex
C[g*] ® Λ(n+ Θ n ΐ ) with respect to the differential d^ + d2 = d.

Remark 2.1. This construction can be generalized as follows. Let f̂  be an ideal
in ft = n+, and p e n * be such that its stabilizer in n is nι. Let
n = C[ί, ί" 1 ] (x) ft, rtx = C[ί, ί " 1 ] ® ft!. Let us define a linear functional p e n* by
p(x(n)) = δn, -ιp{x\ so that p restricted to nί defines its one-dimensional repres-
entation (Cp. Let N and Nx be Lie groups corresponding to Lie algebras n and r^.
We can apply the Hamiltonian reduction to the orbit Θp of p e n*, which is
isomorphic to N = N/N1. Here N is a Lie group, because N1 is a normal subgroup
of Λf. The Poisson algebra of local functionals on the reduced Hamiltonian space
π~1(Θp)/N coincides then with the 0th cohomology of the local completion of the
complex

with respect to the differential

jea®φt -- Σ clβ® ψyψiφh
l σ,β,γ

Here C \βv~\ is the space of polynomial functions on Gp, and the Lie algebra n acts
on it as on the coinduced module Hom [ / ( n i )([/(n), <EP). If n1 = n and p = p+, then
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φ^ = p+ and we have the Drinfeld-Sokolov reduction. Some other cases were
considered in [29, 33, and 12].

2.2. Quantization of Drinfeld-Sokolov Reductions. As usual, the quantization pro-
cedure consists of replacing the Poisson algebra J^(g*) by the corresponding
universal enveloping algebra and the Grassmann algebra by the Clifford algebra.
This is explained below.

We shall view the space d+ := n+ 0 n% ( = n+ 0 n_) as an odd commutative
Lie superalgebra with the bilinear form (.|.) restricted from g. We define a Lie
superalgebra a± to be the orthogonal direct sum of the even Lie superalgebra
α°± ;= g with the bilinear form (. |.) and the odd Lie superalgebra α1 with the bilinear
form (.|.). (Of course, the superalgebras ά+ and α_ are naturally isomorphic.)

We consider the central extension

α± = C [ ί , r 1 ] ® ά ± © O C 0 O Γ

of the loop super-algebra C[ί, ί" 1] ® α+ by letting the even and odd part com-
mute, the bracket on the even part given by (1.2.1) and on the odd part by

la(m\b{n)'] = δmt-Mb)K' , (2.2.1)

where a,b eά±,m,neZ and, as before, a(m) stands for tm ® a. Its even part
a\ = g © <CK' and its odd part α+ =n±®n*±.

We have the following decomposition:

l/ '(α ± ):= U(a±)/(Kf - 1 ) - [/(g) ® ^/(α τ

± ) .

Here U(.) stands for the universal enveloping (super) algebra and W(a\) for the
Clifford algebra on the space α + ( = n+ © n_) with the symmetric bilinear form
induced from g.

Introduce a Z-gradation of U'(a±) by letting

deg g = 0, deg π ± = - 1, d e g n | = 1 . (2.2.2)

Given fc £ (C, let Uk(a±) = U'(a + )/(K - k) with the induced Z-gradation (in other
words, we fix the value of the affine central charge to be equal k).

Let z be an indeterminate. For an element α e g + n+ (resp. e n%) of ά+ we let

Δa = l(resp. = 0) ,

and define the elementary field a(z) of conformal dimension Δa as the series

a(z)= X a(m)z-m-Δ-.
raeZ

Arbitrary fields are obtained from these by taking derivatives in z and normally
ordered products a finite number of times. (Recall that one defines the derivative

dA(z) of a field A(z) of conformal dimension A to be the field — A(z) of conformal
dz

dimension A + 1, and the normally ordered product of fields A(z) and Aλ(z) of
conformal dimensions A and A1 to be the field

:AA,: (z) = A-(z)Ax(z) ± Aγ(z)A + {z)
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of conforrnal dimension A + A x. Here, as usual,

A.(z)= X

and the sign + (resp. — ) is taken if at most one (resp. both) of the fields is odd.)
Let Uk(a±\oc denote the C-span of the coefficients of all fields (in a certain

completion of Uk(a±)). It is well-known that it is closed under the Lie (super)
bracket. Also, it inherits Z-gradation (2.2.2) from Uk(a + ). (Uk(a + ) l o c consists of the
series whose symbols are local functionals on α* [20]. One also knows that the
associative envelope of Uk(a±)ιoc is its universal enveloping algebra [20].)

Denote by φa{m) and φα(m)*, a e A + , m e Έ, the generators of ^V(n+ 0 n* )
(resp. ^/(n_ 0 τ t * ) ) which correspond to the elements ea(m) and eα(m)* (resp.
e-a(m) and e_α(m)*) of n + and n* (resp. n_ and n* ). Consider the following fields
(here normally ordered products are the usual products):

ds

±

t(z)= Σ e±a{z)φt{z)-\ Σ clβφy(z)φ*(z)φΐ(z) ,

where [eα, eβ~\ = Σy

clβey
Let d^ E Uk(a + ) l o c be the coefficient of z~1 in dft (z). It is easy to check that the

singular part of the OPE d^(z)d^(w) is 0 (see Sect. 3.1 for a digression on OPE).
Hence(d^) 2 = 0. The operator d*t (resp. d~t) is the standard differential of n+ (resp.
n_)-cohomology. We let as before

P + = Σ ΨW), P - = Σ <P!Φ) ,
αe/7 σeΠ

and define a new differential:

d± = dft + p± .

One easily checks that d^ and p± anticommute, hence d + = 0. Note that d+ is an
odd element of Uk(a±)loc of degree 1. Hence the operator D± defined by

D±(u) = [d±,M], ue Uk(a + ) l o c ,

equipes the Z-graded Lie super-algebra Uk(a + ) l o c with the structure of a differential
graded Lie superalgebra. The corresponding cohomology is again a Lie super-
algebra.

Note that the complexes (Uk(a + )ιoc, D + ) and (ί7fc(α_)loc,Z)_) are naturally
isomorphic. Indeed, let w° be the involutive automorphism of § that maps n + to n_
and induces the element w° e W, and consider the element w = w°t_r. We have:

w(Λ0) = Λ 0 + p v - i | p v | 2 < 5 , (2.2.3)

vv(α) = - lu + (htoήδ if α e J, where rα - - w°(α) , (2.2.4)

w(x) = w°(χ) + ( p v \ χ ) K i f x e ζ , (2.2.5)

w(βα(π)) = β_tα(π + ftία), w(φα(n)) = φtα(n + ftία),

(2.2.6)
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Using these formulas, we see that w maps p + to p-,n± to n+ and induces an
isomorphism of Uk(a + ) and Uk(a-) which maps d+ to J_. Hence the cohomology
of complexes (ί/ f c(α+) l o c, D + ) and (ί/ f c(α_) l o c, D_) are isomorphic.

Tt was conjectured in [20] (and proved in [23] for generic k) that the fth

cohomology of these complexes vanishes if i φ 0. The 0 th cohomology is a Lie
algebra which is called the W-algebra associated to § and is denoted by Wk (§).
This is a natural quantization of the classical ^-algebra. Namely, it was shown in
[23] that Wk (o) is a quantum deformation of the classical ^-algebra. Its proper-
ties are described in Sect. 3.3.

2.3. The Functors F\. Let Λ+ be the module of semi-infinite forms over the
algebra ^/(aT

±), i.e. the irreducible module with the cyclic vector υ + satisfying the
following conditions (α e Δ +):

φ*(m)v- = 0 if m ̂  0, φa(m)v- = 0 if m > 0 ,

φ*(m)v+ = 0 if m > 0, φx(m)υ+ = 0 if m ̂  0 .

Letting deg ι;+ = 0, Λ+ inherits Z-gradation from ^ / ( α + ) (given by (2.2.2)):

Given a restricted g-module M, let

Σ i w h e r e

The Lie superalgebra Uk(a + )ιoc acts on C + (M). In particular, the element d± acts
on C±(M) shifting the Z-degree by 1. Let H± (M) = @jel Hj

± (M) be the cohomol-
ogy of the complex (C+(M),d+). The representation of ί/fe(α + ) l o c on C+(M)
induces a representation of the Lie algebra Wk(o) on each space //J+ (M).

Thus, we get functors, which we denote by Fj+, from the category of positive
energy ^-modules to the category of W/

fc

±(g)-modules, that send M to Hj+(M).
In order to prove a vanishing theorem, we need the following standard lemma.

Lemma 2.3. Let (C, d) be a complex, i.e. d(Cj) a Cj+ x and d2 = 0. Let δ: C ^ C be
such that δ(Cj) a C 7 '" 1 and dδ + δd = A is an invertible operator on C. Then the
cohomology of the complex (C, d) is zero.

Proof. First, note that dA = dδd = /!<£ Given ω e C such that dω = 0, let
ω' = δ(Λ~1ω). Then dω' = dδ(A~1ω) = ω — δd(A~ίω) = ω since A and d com-
mute. D

Theorem 2.3. //M is α positive energy Q-module such that £_αχ is locally nilpotent for
some Ui E 77, then //_ (M) = 0.

Proof. Let <5 = φα,(0). Then we have:

dδ + δd = I + n ,

where « = e_αι(0) + £ y e J + Σ j ^ α Γ Φ α + α.ί -j)φίϋ) τ h e operator π is locally nil-
potent on C(M) since β_α (0) is, hence 1 + n is invertible and we apply Lemma
2.3. D
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Remark 2.3. We can also quantize the generalized Drinfeld-Sokolov reduction,
described in Remark 2.1. The quantum BRST complex then is t/fc(α)loc5 where
δ = (g ® n)ό ® (n 0 n*)j where n = n/n1. The differential D is the supercommuta-
tor with dst, and the action of n on Uk(a) is twisted by p. Let us denote the 0th

cohomology of this algebra by H^(g? n 1 ? p). We also have functors from the
category of positive-energy modules over cj to the category of Wk(% n l 5 /?)-modules,
sending a g-module M to Hj(n, M (g) Np), where JVP = Homt/(Πi)((7(n), Cp). The
algebra Wk(sl3, n l 5 /?) where r^ is the span of the generator of the maximal root,
was considered in [5].

3. A Calculation of Characters of ^-Algebras

3.1. The Virasoro Subalgebra. Let fc φ — hv. Then the J^-algebras Wk(a) con-
tains a subalgebra Vir isomorphic to the Virasoro algebra. In order to give
a formula for its generating field T(z) = YumsΊίL^z~m~2, we choose an ortho-
normal basis {ui} of ί). Then

T(z) = S{z) + dzp^{z)+ Γg h(z),

where S(z) is the Sugawara field (cf. Sect. 1.6):

and Tgh(z) is the ghost field:

We have to show that

,d + ] = 0 . (3.1.1)

In order to avoid lengthy calculations, we use some well known field-theoretic
techniques that we now recall. Given two fields A(z) and Λ1(z) of conformal
dimensions A and Δu we may write their operator product expansion (OPE):

Λ(z)Λ1(w)= X Cj(w)(z-w)j ,

where C ; (z) are some fields. The sum of terms with j < 0, the singular part of the
OPE, determines the (super) bracket of Fourier coefficients. One says that fields do
not interact if the singular part of the OPE is 0 (in this case the Fourier coefficients
(super) commute). The regular part of the OPE is unimportant for calculation of
(super) commutators and is usually dropped.

One calls a field t(z) of conformal dimension 2 an energy-momentum field with
central charge c if

t(z)t(w) = 4 + -—"—^ + — ^ - , where ce£,
(z — w) (z — w) z — w

This OPE is equivalent to the property that t(z) = Σne7ίtnz~n~2 and the tn obey the
commutation relations of the Virasoro algebra with central charge c.
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A field A(z) is called primary of conformal dimension Δ with respect to t(z) if

t(z)A(w) = -2 +
(z w)

2 + .
(z — w) z — w

In order to prove (3.1.1) we use the following simple lemma.

Lemma 3.1.1. If A (z) = ^nAnz~n~ι is a primary field of conformal dimension 1 with
respect to an energy-momentum field ί(z), then [ί(z), Ao~\ = 0. D

Let us recall some of the OPE's:

Lemma 3.1.2. (a) S(z) is an energy-momentum field with central charge ck (given by
(1.6.2)).

. (b) The field Tλ

g>h

a:= λ : dφa(z)φ*(z): + (1 - λ) : <9φ?(z)φα(z): is an energy-
momentum field with central charge

cλ= - \2λ2 + 12/ - 2 .

(c) Elementary fields a(z), α e g, are primary with respect to S(z) of conformal
dimension 1.

(d) Elementary fields φa(z) and φ*(z) are primary with respect to T^ of con-
formal dimension λ and 1 — λ respectively.

(e) One has the following OPE between elementary fields:

(ΛU( λ [α,δ](w) (a\b)k _
a(z)b(w) = + abe$— w (z — w)

φa(z)φ*(w) =
z — w

all other pairs of elementary fields do not interact. D

The following lemma is immediate by Lemma 3.1.2, using the usual Wick
formula for free fermionic fields.

Lemma 3.1.3. (a) T+(z) is an energy-momentum field with central charge

c{k) = ck - 12k\pv\2 - 2 X (6(htoc)2 - βhtot + 1), (3.1.2)

where ck is given by (1.6.2).
(b) The field d+(z) = d£(z) + Σ α ε 7 ϊ φ ί ( z ) is primary with respect to T+(z) of

conformal dimension 1. D

Formula (3.1.1) is immediate by Lemma 3.1.1 and Lemma 3.1.3b.

Remark 3.1. Using (1.8.2-4) we obtain another formula for c(k):

c(k) = ck - dim § + t + 2 4 ( p | p v ) - 12(fc + hv)\pv \2

- 12(k + h-)\pv \2 (3.1.3)

We have the following explicit formula for LQ :



Fusion Rules for J^-Algebras 315

where

Σ (rn-htot)φa(-m)φ*(m)+ Σ (m + hta)φ%( - m)φa(m)
y e A, \ m > 0 m ^ 0

= Σ ( Σ (mδ -a\Λ0 + pv)φa(-rn)φ*(nι)
7 e A , \ m > 0

(3.1.5)

Applying the automorphism w (see formulas (2.2.3)-(2.2.6)) we get a formula for

Lo =S0-Hk + / Ϊ V ) I P V I2 + (PIP V ) + ^o",gh , (3.1.6)

where

L o 8 h = Σ f y m φ α ( - m)φ*(m) + £ mφ*( - m)φα(m) ) . (3.1.7)

(In this calculation we use (1.8.3 and 4) along with the formula

where Ω is the affine Casimir [24, Chapter 2].)

3.2. A Calculation of the Euler Character of the Wt-Module H+(M). Define the
Euler character of a direct sum of W*(g)-modules V = ®je7L V} by the formula

chF- Σ ( -

In this definition we assume that ch V converges, by which we mean that L^ is
diagonalizable on V with finite-dimensional eigenspaces.

Let now M be a positive energy g-module. By the Euler-Poincare principle we
have:

chH±(M) = chC±(M)

if the right-hand side converges. Unfortunately, it does not converge.
To get around this difficulty, introduce a Z2-gradation of C + (M) in such a way

that degd^ = (1,0) and degp+ = (0, 1). It follows that the cohomology of the
complex (C±(M\d±) may be calculated as follows. First, we calculate the co-
homology £+(M) of the complex (C±(M),d^). Then we consider the spectral
sequence (E±(M\j), d^j}\ j ^ 1, where E ± (M) ( 1 ) = £ + (M) and d{1) = p±. This
spectral sequence converges, which is ensured by the following facts. The complex
C±{M) decomposes into a direct sum of subcomplexes C + (M)λ which are λ-
eigenspaces of LQ . Furthermore, Cp

±(M)λ = ®i+j = pC\j(M)λ, where; is bounded
from above for any / and p. Thus we have:

ff±(M)= l i m £ ± ( M ) ( i ) . (3.2.1)

In order to proceed, we need the following
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Lemma 3.2. For x e ί), let

x(z) = x(z)+ X (x\cn):φ.{z)φ*{z):. (3.2.2)

Then

(a) [d sj,x(z)] = O.

(b) x z j ; w -
(z - w) 2

One checks (a) directly, using Wick's theorem and the fact that cγ

aβ φ 0
only, if γ = α + β, that the singular part of the OPE d£ (z)ic(w) is zero, (b) follows
from (1.8.5). D

By Lemma 3.2b, the Fourier coefficients of the fields jc(z), x e ζ, form an
oscillator algebra of level k + /iv, which we denote by Γ(cj). By Lemma 3.2a, Γ(g)
acts on £+(M).

Proposition 3.2.1 [20]. The action of the W-algebra W£ (cj) on E + (M) can be
expressed via the action of (7(Γ(g)) loc. In particular, one has

Tiz) = ̂ ^ Σ : *?W: + a3' W - ^ W ,

Mf is an orthonormal basis ofϊ). •

Fix now x E 5 such that (α|x) < 0 in the " + " case (resp. > 0 in the " — " case)
for all α e 77, and fix ε > 0. Then all eigenspaces of the operator LQ + εx in C+(M\
(resp. LQ" + εw(x)) are finite-dimensional. Here

•̂  = x + Σ Σ Mα) : φa(-m)φ*(m):
m e Έ x e A +

is the coefficient of z " 1 of x(z). Thus, by the Euler-Poincare principle we have
a rigorous formula:

Σ ( " iytrc+w)<Zn + " = Σ ( " ίy^Ejmqa + ίS • (3.2.3 + )

Letting d = — So we extend any positive energy g-module M to an ^-module
(cf. Sect. 1.2) which decomposes into a direct sum of finite-dimensional weight
spaces: M = ®λeP(M)Mλ, where P(M) a ζ* is the set of weights of M (note that
weight spaces with respect to ί) and to So may be infinite-dimensional). A weight
μ e P(M) is called maximal if ( μ | p v ) is maximal. Fixing a maximal weight μ, we
m a y d e f i n e t h e h e i g h t o f λe P{M) b y htμ{λ) = (μ - λ\pv)eZ+.

Recall that the oscillator algebra Γ(cj) acts on E + (M\ the semi-infinite co-
homology of n+, with coefficients in M. Since k + hv =t= 0, it follows from repres-
entation theory of oscillator algebras [24, Chap. 9], that for each μ e ί)* of level
fc there exists a unique irreducible Γ(g)-module πμ which admits a non-zero vector
yμ (vacuum vector) such that

x(m)υμ = 0 for m > 0 and x(0)ι;μ = μ(x)vμ for x G f) ,

and that E+(M) viewed as a Γ(cj)-module decomposes into a direct sum of modules
πμ. Using the formula for T(z) given by Proposition 3.2.1, we obtain

tτπHqL+° = q P i μ ) f[ (1 - qn)~i ,
n=l
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where

2(/c + h )

In particular, all eigenspaces of LQ in πμ are finite-dimensional.
Now we are in a position to prove the following important proposition.

Proposition 3.2.2. For any positive energy Q-module M all eigenspaces of L^ on
E±(M) are finite-dimensional.

Proof. We give the proof in the " + " case, the proof in the " — " case being similar.
Let μ be a maximal weight of M. Denote by Θμ the category of positive energy
modules M' such that all irreducible subquotients of M' are of the form L(w. μ),
where w G W, and htμ(λ) eZ+ if λ e P(M'). We may assume using results of [13],
that M is a module from the category Θμ.

We shall prove by induction on n the following:
Claim (n): the multiplicity of πλ in a g-module from the category Θμ is finite if

htμ{λ) g n and it is non-zero only if λ = w. μ.
We shall repeatedly use the (obvious) fact that if htμ(λ) > 0 for all maximal

weights λ of a g-module M' (in this case we write: P(M') < μ), then πμ does not
occur in E+(M').

Let B(μ) be a Wakimoto module [18]; by its definition, E°+(B(μ)) = πμ and
Ej

+ (B(μ)) = 0 if j =t= 0. We have an exact sequence:

where U(μ) is a quotient of M(μ) and P(B(μ)) < μ. From the long exact sequence
for semi-infinite cohomology, we conclude that the multiplicity of πλ in E+ (U(μ)) is
equal to that in E+(B(μ)). Hence, Claim (0) holds for U(μ) and, applying the
inductive assumption for n to B(μ), we derive Claim (n + 1) for U(μ). Thus, we have
proved the claim for U(μ). The same argument applied to the exact sequence

0 -• M(μ) ^ M(μ) -• U(μ) -> 0

proves the claim for the Verma module M(μ). Similarly we prove the claim for any
quotient of M(μ).

Finally, let μ l 5 . . . , μn be all maximal weights of M (with their multiplicities).
Consider the exact sequence

0 -> 0 f M(μ f) ^ M ^ M ^ 0 ,

where M(μ f) are some quotients of Verma modules. Applying the above argument
to this exact sequence we prove the claim for M.

Proposition now follows since for any positive integer N there exists n such that
P(w.μ) > N ifY(w) > n. D

Using Proposition 3.2.2, formulas (3.2.1) and (3.2.3)+ now imply:

chH+(M) = lim Σ ( - i y t r c / ( M ) ^ + ^ . (3.2.4 + )

Similarly, under the same assumption on M we have

c h t f _ ( M ) = lim Σ ( - l)jtτCJ{M)q
L° + "*<*> . (3.2.4_)

We can prove now
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Proposition 3.2.3. Let M be a positive energy ^-module of level k. Then:

(a) ch H-(M) = ^24 ( c ( / c )~C k )^(τ)d i m^^Resx = 0chM(τ, x, 0).

(b) ch if+(M) = ( - l)m^) + ι^ιq^ic{k)-Ck)η(τ)dim~Q--'Resx = ochM(τ, - τpv + x,

τ |p v | 2 /2) .

Proof. Using (3.1.5) and (3.1.7), it is straightforward to derive the following for-
mulas:

tfL+0 * + βlJE~x) = Π ( l - g M o + ^ " " | α ) ) , (3.2.5 + )
α e Zl +

re

V~°'Bh + ε*(*~x) = Π ( 2 - q{Λo-ε*°ix)lΛ)) . (3.2.5_)
j e 2 a e Δ +e

Since C + (M) is a tensor product of M and /1 + , and since the operator LQ + εx
(resp. Lo + εw(x)) acts on M as 5 0 - ρv + x (resp. So - τ(k + hv)\pv \2

+ ( p | p v ) + εw(x))5 and on Λ+ (resp. /L_) as L ^ g h + ε(x — x) (resp. as
£o,gh + εw(ic — x)), (a) and (b) follow from (3.2.5 _) and (3.2.5 + ) respectively. D

Comparing Proposition 3.2.3 with Proposition 1.8 (and its proof), we obtain

Theorem 3.2. Let A e Pk

utβy be a principal admissible weight.
(a) If A e Nk- and φ~(A) = (λ9 μ\ then q-c(k)/24chH -(L(Λ)) = φλilι{τ).
(b) If Λe Nk

+, φ + (A) = (λ, μ) and w is the element of W defined in Proposition
1.8b(ii), then

q-*W*4chH+(L(Λ)) = ε(w)φλ,μ(τ) . D

3.3. Some Properties of W-Algebras. In order to state some properties of
W-algebras define the Harish-Chandra homomorphism π : Uk(a±)ιoc -• U(ϊ)).
For this note that Uk(a±)loc is a direct sum of subspaces [/(§) and
n_ Uk(a±)ιoc + Uk(a + )ιocn+ + αV Uk(a±)loc. We let π be the projection on the first
summand. Let dx = 2 < d2 ^ . . . < df = h be the degrees of fundamental W-
invariants in S(ϊ)).

It was shown in [21,23] that the J^-algebra Wk(§) contains Fourier coef-
ficients of t fundamental fields W}{z) = T(z\ Wf2(z)9 . . . , W$x (z), with the follow-
ing properties:

(Wl) The Lie algebra Wk (g) is the linear span of the Fourier components of all
fields obtained from the Wf (z) by taking finitely many times normally ordered
products and derivatives.

(W2) Wf (z) has conformal dimension j :

Wl(z) = Σ wίHz~m-j, \_W;(m), Lo

+ ] = mWf (m) .
m e Z

(W3) The highest degree terms of π{Wf (ϋ)\ j = d1, . . . , 4 generate the
algebra of invariants S(ϊ))w.

(W4) [WtΦl w;(0n=Σs,mCij(s,m)W;i(mι)W;2(m2) , where m1^m2

Σ
We let Wj{m) =
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Proposition13.3. (a) Let Pj(λ) = π(WJ{ϋ))(λ + p\ λ e rj*. Then the polynomials Pj

generate the algebra S(ϊ))w.
(b) cy(s, 0) = Ofor all ije{dί9 . . . , d,}9 s = (sus2, . . . ).

Proof. In view of (W3), in order to prove (a) it suffices to show that Pj is
^-invariant. Let rt be the reflection with respect to αf (i = 1, . . . , / ) . Let π e N and
let /I be a generic element in the hyperplane <A, α* > = n in ί)* of level fc. Consider
the Wakimoto module B(λ). Then we have either the exact sequence

0 -• L(λ) -> B(λ) -> Lfo. A) -• 0 ,

or the same sequence with arrows reversed.
Recall that H-(L(λ)) = 0 by Theorem 2.3. Note also that E-{B(λ)) = H-(B(λ))

and that L(r f ./) = M(rf./l) = 2?(r;./). From the d_-cohomology long exact se-
quence we now obtain that H°- (L(r f. /ί)) = πλ. Since the vector of maximal weight
of the J^Y(cj)-module i ί ° (L(rf.Λ,)) is ι;Γι.λ (g) t;_, we deduce that

i. A) = π(^r(0))(A) for all / .

This completes the proof of (a).
We prove (b) by induction i which we may assume to be ^ j . For i = 2,

(b) follows from (W2). By Proposition 3.2.3a, the vector ϋλ = υλ®v- spans the
eigenspace corresponding to the minimal eigenvalue of LQ in H°-(M(λ)). Since all
W~ (0) commute with Lό, we obtain that W~ (0)vλ = Ps(λ - ρ)ϋλ for all λ e ψ. In
particular, [07(0), WJ{ϋ)]ϋλ = 0, hence

(Σcy(5, 0) ̂ s - (0) ̂ -2(0) . . . )vλ = 0 or all 2 .

Since, by the inductive assumption all factors in the above sum commute (see
(W4)), we deduce that ci;(s, 0) = 0. D

3.4. Positive Energy Modules Over W-Algebras. A W^ (cj)-module is called a posit-
ive energy module if LQ(= ^^(O)) is diagonalizable with finite-dimensional
eigenspaces and has a real discrete spectrum bounded below. Note that by Proposi-
tion 3.2.2, FJ+ are functors from the category of positive energy g-modules to the
category of positive energy ^^(gj-modules (see Sect. 2.3).

Lemma 3.4. Let M (resp. M') be a quotient of a Verma module M(λ) (resp. M(w. λ)
for some w e W) over g and let v (resp. v') denote its highest weight vector. Then the
eigenspace corresponding to the minimal eigenvalue of LQ in F°±(M) (resp. F + (M'))
is 1-dimensional and Wf (0)-invariant. Furthermore the eigenvalues ofWf (0) in these
eigenspaces are equal.

Proof. The first claim of the lemma is clear and the second one follows from
Proposition 3.3a. D

Let now V be an irreducible positive energy W^ (g)-module. It is clear by
Proposition 3.3b that the eigenspace of LQ corresponding to the minimal eigen-
value is 1-dimensional. The /-tuple of eigenvalues (cu . . . , c{) of W^(0), . . . ,
W^(0) in this space is called the highest weight of V. Clearly, it determines
V uniquely; moreover, there exists a unique irreducible positive energy module
over Wk(Q) with a given highest weight.
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Conjecture 3.4-. Let ΛeNk be a non-degenerate principal admissible weight.
Then

(a) F°-(L(Λ)) is an irreducible PΓfc~(cj)-module.
(b) FL(L(Λ)) = 0 if j*0.
Conjecture 3.4_ a together with Propositions 1.5.3 and 3.3a and Theorem 3.2a

imply

Proposition 3.4. (a) A and A' e Nk- are such that φ~(Λ) = φ~(Λ') if and only if
F°-(L(Λ)) and F°-(L(Λ')) are equivalent W^ (Q)-modules. Thus, W^ (eft-modules
obtained by applying the functor F0. to the set of ^-modules {L(A)\A e Nk-} is
parametrized by the set Ip p> via the map φ~, where p' is the denominator of k and
p = p'(k + hy').

(b) Let AeNk- and let (A, μ) = φ~(Λ). Then:

L~0- c{k)ι'2A _ ( \

i — Φ l τ J

Remark 3.4. (a) Formulas (3.1.3) for k = — hv + pjp' can be rewritten as follows:

^ ! , w h e r e ( p 9 p ' ) = l , p ^ h \ p ' ^ h ,()
PP

which in the simply laced case becomes (cf. [7, 9, 17]):

PP

(b) Let hλμ denote the lowest eigenvalue of L<j in a W} (^)-module labeled by
(/L, μ) e IPiP.. Then hλμ = hλμ + c(fe), where hλμ is the exponent of the leading term of
φλμ. Using this one easily derives the formula (cf. [9]):

h (\'(λ + p)-p{μ + pv)\2 - \p'p - PPV\2)hλμ r,(\p(
2pp'

(c) Let Q be a simply laced simple Lie algebra of type different from Af. Then for
each s such that as > 1 one has a family of non-principal admissible g-modules
L(Λ) parameterized by a finite set of /Γs which we denote by Pk. The set of all
non-principal admissible g-modules is a union of these sets [27]. The sets Pk are
explicitly described in [27, Theorem 2.3]. Here we only recall that Pk Φ 0 if and
only if k + h = p/p\ where p and p' are relatively prime positive integers such that

p^πrnx(h/h\ . . . ) , (3.4.1)

where h,h, . . . are Coxeter numbers of Lie algebras g, §, . . . whose Dynkin
diagrams are connected components of the Dynkin diagram of g with the 5th node
deleted. In some cases (described in [27]), (3.4.1) should be a strict inequality.
Furthermore, consider the set of coroots σ s(77v) (see [27]); this set of roots
decomposes into an orthogonal disjoint union Π v u Π v u . . . . Define fe, fe, . . .
by k + h = k + h = ... = k + h. Let / , / , . . . be dominant integral weights for
77 v , 77 v , . . . of levels p'(k + h) — h, p'(k -\-h) — h\... . Then there exists a unique
element λ e I)* such that λ + p\π* = λ + p, λ + p\Π v = λ + p, . . . . There exists
a unique integer^ such that

asλ =jλAs mod P .
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Then all possible (/, μ) = φ~{Λ\ that may occur (where A e Pk, λ e Pp

+~\ μ e Ppi~h)
should satisfy the matching condition [27]:

(jχ-jμ,as)=l (3A2)

Let now Nk = {A e Pk\{A, α> e Z for all ae Δv} be the set of non-degenerate
weights from Pk

s. Due to Theorem 2.3, given A ε Pk, we have H-(L(A)) = 0 unless
AeNk. The set Nk is non-empty if p' satisfies the same inequality (3.4.1) as p. In the
case A ε Nk we have, using Theorem 3.2a and [27, (3.4)]:

In other words (provided that Conjecture 3.4 _ holds in this case) characters of
corresponding representations of W^(Q) are products of characters of WJ[(Q),

Theorem 3.2b leads us to a conjecture in the " + " case similar to Conjecture
3.4_:

Conjecture 3.4+. Let A e P*ttβ9 n Nk+ (i.e. β satisfies (1.5.7)) and let (/, μ) = φ + (A)
and w e ϊ^be the element defined in Proposition 1.8b (ii). Then:

(a) Flt+iw)(L(A)) is an irreducible (or zero) W£ (g)-module, where ίt(w)eZ is
defined in [18].

(b) Fj+ (L(A)) = 0 if j φ Λ(w). lϊλe Prk\Nk+, then Fj+ (L(Λ)) = 0 for all j . (In
the " — " case this follows from Theorem 2.3.)

Of course, we have a corollary similar to Proposition 3.4 in this case as well.

3.5. Conjectures on Resolutions. One of the possible ways to prove Conjectures
3.4+ is to use resolutions by Wakimoto modules. We will explain it for the " + "
case.

Conjecture 3.5.1. Let A e Pk

Jβy be a principal admissible weight and let L(A) be the
corresponding representation. Then there exists a complex (a two-sided BGG
resolution) RΛί such that

R1Λ= θ B>.A,
se WΛ

and that all of its cohomologies but 0th vanish, and the 0 th cohomology is
isomorphic to L(A). Here ίtΛ(s) denotes ίt(s), where s is the image of s e WA in
W under their isomorphism.

The existence of this resolution has been proved for any integrable representa-
tion over arbitrary g [18] and for any modular invariant representation over
Aψ [4, 18]. Resolutions of this kind were extensively studied in [10].

If we apply our functor F + to this resolution, then we get the complex of
modules RΛ over the ί^-algebra, such that

R 1 A = 0 πs.Λ9

SG WΛ

/tΛ(s) = i

because F\{Bμ) = 0, i φ 0, F°+{Bμ) = πμ. By definition, the zth cohomology of the
complex RΛ coincides with F\(L(A)).

Conjecture 3.5.2. RΛ is a resolution of an irreducible module F°+(L(A)) over the W-
algebra: all of its cohomologies but /ί(vv)th (where w is the element, defined in
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Proposition 1.8b(ii)) vanish, and the /t(w)th cohomology is isomorphic to an
irreducible module (with character φλ,μ(τ)).

This conjecture has been proved for g = sl2 in [22].
If Conjecture 3.5.2 is true in general, then we may calculate the character of the

module F°+(L(Λ)) as

( - ifίw) Σ ( - n

by the Euler-Poincare principle. This is equal to

We get the same formula as the one obtained by means of the residue calculation.
Now Conjecture 3.4 + follows from Conjectures 3.5.1 and 3.5.2. Note that the

lowest eigenvalue of LQ on RΛ is equal to P(w. Λ\ where w is the element of WΛ,
which corresponds to the element w under the isomorphism W <**> WΛ, and that the
corresponding eigenspace is the span of the vacuum vector of π$mΛ. Therefore this
vector represents a cohomology class in F%{w)(L(Λ)\ which is the highest weight
vector oϊF+(L(Λ)).

It is natural to assume that the W^(g)-modules which are the images of L{Λ\
ΛE Nk+ under the functor F+ form a minimal model of the corresponding con-
formal field theory in the sense of [3]. In the next section we will prove that the
linear span of characters of these modules form a representation of SL2{7ί) and we
will use the information on the action of this group to deduce the fusion algebra of
this theory by means of the Verlinde argument.

4. Fusion Rules for ^-Algebras in the Simply Laced Case

Throughout this section we will assume that § is simply laced (i.e. of type Aέ, Dέ or
E()\ equivalently: at = a? for all / (i.e. r v = 1).

4.1. Some Properties of the Group W+, We use here results and notation of
Sect. 1.1. Let Q be the root lattice and P the weight lattice of g. Note that

Q* = p9 Qv =Q . (4.1.1)

Hence by (1.1.3) we have for any k e TL relatively prime to \J\:

{kΛi}ieJ is a set of representatives of P mod Q . (4.1.2)

Lemma 4.1.1. Let k e IN be relatively prime to \J\. Then for any λ e Pk there exists

a unique w e W+ such that w(λ) e Q.

Proof By (4.1.2), there exists a unique; e J such that / = kλj mod Q. Since (for any
keΈ)

wj(λ) = wj(λ) + kΛj (4.1.3)

and w(Σ) = Xmod Q if w e ΪV, the lemma follows. D
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By (4.1.2), there exists a unique se J such that

Λs - P e Q .

Of course, s = 0 if p e Q. In all other cases s is listed below:

s = i (/ + 1) if g is of type Ae, ί odd,

5 = 1 if g is of type D / ? / = 2 or 3 mod 4,

s = 6 if § is of type £ 7 .

Note the following properties of s:

2AseQ, ws

2 = 1 . (4.1.4)

Lemma 4.1.2. Given j e J, Zeί Ϊ e J be_defined by wt = w/"1 (i.e. Wj(/ί7 ) = Ao).

(a) wf(yϊy) + yϊf = 0, hence At + 1 ^ 0 mod Q.
(b) IfλePk

+, then

Proof, (a) (resp. (b)) follows from (4.1.3) where we let) = i and replace / by Aj (resp.
by λ + p - (k + hv)Aj, which has level 0). D

Lemma 4.12a immediately implies

Lemma 4.1.3. Let jι,j2,J3 e«/ and let σjt

ι — σit, t = 1,2, 3. Then

(a) Λ_h + Λ, 2 + Λ,, G β iff Λ^ +_Λ/2 +_Λi3 e β.
(b) Λ^ -f y4j2 + /4j3 + p e Q iff Λ^ + A^ + /lj3 + p G (λ

^.2. /I Transformation Formula for Functions φλ,μ(τ). Recall that

ψw{λ,μ) = Ψλ,μ ^ V V E ^ + s (4.2.1)

where w(/, μ) = (wλ, wμ). The following transformation formula follows from
Theorem 1.7 and Proposition 1.8a (see [28, proof of Theorem 4.4]): Let p and p' be
relatively prime integers greater than or equal to h and let (/, )f) e IPtP>. Then

<Px,d ' I ) = Σ Siλtλ Uμ,μΊφμtμ.(τ) , (4.2.2)

where

c ^ __ / r)W\ — f/2 I J I ~ l / 2 ^ 2 π z ( ( / + p | μ ' + p j + ( / ' + ρ\μ + p))

2πip - 2πip' -
^ , -{'-' + P\y{fi' + P)) ^ , , W + P\w(β + p)) /Λ^^X

x Σ ε(y)e p Σ ε ( w ) e p - (4.2.3)
y e W vv e W

Note also a special case of Theorem 1.7 when λe Pk

+,keZ+ (and g is simply
laced):

xΔs= Σ S λ , μ χ μ , (4.2.4)
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where
2πί ^

SAj/, = iî i(fc + / ! ) - « | J r 1 / 2 Σ ε(w)e~Γ^ . (4.2.5)
w e W

Recall also the following important fact [25]:

Swλ,μ = e~2««*Λ°Msλtμ if w E W+ (4.2.6)

Our objective is to express the SiλfλΊΛμtμΊ in terms of the Sλtμ. We shall assume
that p' and \J\ are relatively prime. Then we may choose (and fix) positive integers
a and a! such that

ap' = 1 m o d p\J\, dp = 1 m o d p \ d = 1 m o d \J\ . (4.2.7)

Note that d and p'\J\ are relatively prime, hence we can find a positive integer
V such that:

a'V = 1 m o d p V I (4 2 8 )

Lemma 4.2.1. Suppose that λ' e Q. Then

(a) X:= α(p'(X + p) - p(X'_+ P)) = X + P - pΛs mod pβ.
(b) Y:=a\p(λ' + p)-p'(λ + p))

λ' + p — //Λ mod p'Q if p E Q or p is even

λ! + p — p ' (X+ p) mod p ' 2 if P Φ Q and p is odd .

Proof By (4.2.7), ap'(λ + p) = λ+_ρ mod β, hence X ΞΞ λ + p - app mod pβ. If
p e g , (a) follows. In the case p φ Q,p' is odd since | J | is even (see Sect. 4.1), hence
a is odd. Hence app = p mod pQ since 2peQ and (a) follows from the definition of
Λs in Sect. 4.1. The proof of (b) is similar. D

Lemma 4.2.2. Let freN be relatively prime to p\J\ (resp. p'\J\). Let λePp

+~h

(resp. ePpi~h). Define the map φb of Pp

+~h into itself and ε: Pp

+~h->{ ± 1} (resp.
φ'h and ε'b replacing p by p') by.

b{λ + p)-(b- l)hΛ0 = w(φb(λ) + p), weW;

εb(λ) = ε(w) .

Then the map φb (resp. φ'b) is bijective.

Proof We have to show that if 2, λγ e Pp

+~h and y e W are such that

b(λ + p) - (ft - l ) p ^ 0 = ĵ (fc(Ai + p) - (b - ί)pΛ0), (4.2.9)

then y = 1. Note that fc:= p/ί? — h is a principal admissible rational number with
denominator b. Dividing both sides of (4.2.9) by b we get:

λ + p-(b- l)(fc + /zvMo - )>0ii +P-Φ- ί)(k + h v μ 0 ) •

So Λ:=λ +p-(b-l)(k + hv)Λ0 and /li := ) Λ + p - (ft - l)(/c + /iv)ylo are
principal admissible weights such that RΛ = RΛί = R[b] and Λ = yΛ1. Hence
yR[b] = R[bh therefore there exists taw G JV+ such that y = tb(Xw. Since b and | J\ are
relatively prime and feα e M, we deduce that α e M, hence α = 0 and w = 1 (see
Sect. 1.2). Thus, y = 1. D

Given / e P Γ Λ (resp. A' e Ppi~% we let ̂  = φb{λ\ (resp. λί = φ'b(λ)).
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Proposition14.2. Let (λ, λ') and (μ, μ') be elements of Pp+~hx Pp+~h such that Γ e Q.
We define j e J by letting

(λ mod Q if p e Q or p is even (case 1)
j | X + p mod Q otherwise (case 2) ,

and let wt = wj1. Then

X SWs{Λμp,SWj{λ'lμ>b, .

Proof We rewrite (4.2.3) using the following calculations:

O V ^ - I - ' ^ - Ϊ NΓ- -^r(λ' + P\y{β' + P)) ^ , ~^-{p{A'+ p)-p'{λ +p)\y(β'+ p))

e2m(,+p\μ+P) £ ε(y)e pi = ^ ε(y)e p
yeW yeW

^ . . ^{a{p{Z + p)p{T. + p))\y{V(β + p))) /Λ^n^
= Σ <y)e p (by (4.28))

yeW

2πι
+p)))

2πz

p

yeW

(by Lemmas 4.2.1b and 4.1.2b).
Similarly, we have:

e W

(Φ'U+ p) ~ p(/? + p)|vv(p'(μ + p)))

weW

2πi
^ (ws(;.) + p\w(fi'p. + p))

= εp>(μ)ε(ws) 2, Φ)e p

w e W

by Lemma 4.1.1a.
Substituting in (4.2.3) and using (4.2.5) gives the result. D

4.3. A Calculation of the Fusion Rules. First, recall Verlinde's formula for fusion
rules [35]. Suppose that we have a finite set / of representations of a "chiral
algebra" such that

(i) the vacuum representation, labeled by 0, lies in /;
(ii) the linear span of normalized characters {χχ}χei is SL2(Z)-invariant and the

action of S e SL2(Έ) is given by a matrix (Sλμ)λ,μeI.
Then the fusion coefficients Nλμv are given by the following formula:

Nλμ, = Σ Sλ°S»σSv° . (4.3.1)
σel ύ 0σ

If, in addition, an involutive map λ i—• xλ of / into itself is given, one defines the
fusion algebra as an algebra over C with basis {χλ}λeI and the following multiplica-
tion:

Xλ*Xμ = Σ Nλμ^Xv
vel
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In the case when the chiral algebra is the affine algebra g and the set of its
representations is L(Λ), λ G P + , the vacuum representation is L(mΛ0) and one
knows an explicit expression for the fusion coefficients NλtμtV(λ9 μ, v e P + ) [24,
Exercise 13.35].

Let now A: be a principal admissible rational number with the denominator p'
and let p = p'(k + h). Note that p ^ h and (p, p') = 1. Recall that ΛΓ± φ 0 if and
only if p' ^ h (Proposition 1.5a). We consider the set of representations of the
^F-algebra Wk(§) obtained from the principal admissible representations of cj by
a quantum Drinfeld-Sokolov reduction. Recall that (by Proposition 3.4) these
representations are parametrized by the set IPiP> = (Pp+~hx Pp+~h)/W+, that the
vacuum representation is labeled by {(p — h)Λ0, (pr — h)Λ0) and that a representa-
tion labeled by the pair (/, μ) has normalized character φλ,μ(τ).

Theorem 4.3. Let p and p' be integers such that p, p' §: h and (p, p') =_(p', | J | ) = 1.
In Aft e IP^P' (i = 1, 2, 3) choose a representative (λi9 λ\) such that λ\ e Q {see Lemma
4.1.1). Then

NAMi) = N?ιλ2/3NAiλiAi , (4.3.2)

where N/ι/2/3 and N / i / 2 ^ are fusion coefficients for g. (Similar result holds in the case
when (p9\j\)= 1.)

First, note the following lemma, which follows immediately from (4.2.6) and
(4.3.1):

Lemma 4.3.1. Let i1, /2,13 6 J and λ±, λ2, λ3 e Pk+, k e N . Then
(a) / / I ^ + J ί 2 + Λj3 E Q, ί ten JVlV| (;i),u, (/2),u, (;3) = Nλl/2;3.

(b) IfΛiχ + Λh + Λ-3 + P e Q, then iVu,,,,,,),,,^),,,,^) = ^ Λ / ^ D

A special case of Lemma 4.3.1a is

L e m m a 4.3.2. Let λ u λ 2 , λ 3 e Pk+. Then N/ί}Wi{/2)jWs{;3) = N/ij/2}λ3.

Proof of Theorem 4.3. Let λ 0 = (p — h)Λ0, λ'o = (pf — h)Λ0. F o r e a c h t = 0, 1, 2 o r
3, define j(t) e J by letting (cf. Proposition 4.2):

_{λt m o d Q in case 1
J{t) ~ \λt + p mod Q in case 2 .

and define i(t) by wi(ί) = w/"(ίj. In particular, wi{0) = 1 in case 1, and = ws in case 2.
Now, using Verlinde's formula (4.3.1), formula (4.2.6), Proposition 4.2 and

Lemma 4.2.2 we obtain the following formula:

εNΛ{M3) = N / 1 > ; 2, / 3NW | ( 1 ) ( / ί ) ) W / ( 2 ) ( / Λ W ( (, ι W ), (4.3.3)

where ε = ε(wJ (i))ε(w7 (2))ε(wJ (3 ))εθ 5 and ε0 = 1 in case 1, ε0 = ε(ws) in case 2.
Furthermore, it follows, for example, from the explicit formula in the affine case

[24] that

N;ιλ2;3 φ 0 implies Σ1 + I 2 + Σ3 e Q . (4.3.4)

In case 1, we may assume, due to (4.3.4), that Λj(1) + Λj(2) + v47(3) G Q, hence
Λi(1) + ydί(2) + Λ (3) G g by Lemma 4.1.3a. It follows that ε = 1 and, by Lemma
4.3.1a, that NW ( ( 1 ) W ) > W f ( 2 ) ( A : 0 > W f ( 3 ) ( / i J = NΛl</2^, proving the theorem.

J n case 2 we similarly have Λj(1) + Z i ( 2 ) + Λji3) + p e Q, hence yd ί(1) + Λi{2)

+ Λi{3) + p G β by Lemma 4.1.3b. It follows that ε = 1 and, by Lemma 4.3.1b, that
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One has the following involutive automorphism of the set lPtP>\

\(λ, )!) mod W+) = (% 'λ') mod W+ ,

where xλ is defined by (1.4.3). Since w° is the unique longest element in W, w°

commutes with W+, hence this map is well-defined. Theorem 4.3 may be refor-

mulated as follows.

Theorem 4.3'. Let p and p' be relatively prime integers such that p, p' ^ h, and assume

that (p, I J\) = 1 (resp. (p\ \ J\) = 1). Let stfp'p' be the fusion algebra for the W-

algebra Wk(§), where h = p/p' — h. Given meZ+ let stfm denote the fusion algebra

for the affine algebra g with K — m {and the index set P + ) and let s$™ denote its

subalgebra spanned by the χλ with λ e Q. Then:

Remark 4.3. If | J\ is a power of a prime number, then either p or p' is relatively

prime to \J\. Thus, Theorem 4.3 describes fusion rules completely in all (simply

laced) cases except for g of type An, n not a power or a prime.

The following result takes care of all cases (but it is not as nice as Theorem 4.3).

Its proof is the same as that of Theorem 4.3.

Proposition 4.3. Let p and p' be relatively prime integers greater than or equal to h.

Choose integers b and V such that (p — b'p\ \ J\) = 1 and (p' — bp,\J\) = 1. Let

σ = ws (resp. = 1) ifb is even (resp. odd) and σ' = ws (resp. = 1) if b' is even (resp.
odd). Given Λ(ι) e IPίP', i = 1, 2, 3, choose their representatives (AΓ , X[) (resp. (λ*, λf'))

such that b(λi + β) - ( I + ρ)eQ (resp. b'(λf + β) - (λf + β)e Q). Then

NΛi»Λi2>Λv> = Nσ{/ι)λ2λ3Nσ{λr)λΐ/f . D
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Note added in proof. Two of the authors of the present paper have shown recently that the
quantum reduction applied to modular invariant representations of affine superalgebras
osp(l, 2n)(1) (resp. sl(l, 2n){1)) gives the "minimal" series of representation of certain M -̂superal-
gebras. In particular, for n = 1 one recovers all "minimal" representations of JV = 1 (resp. N = 2)
superconformal algebras.




