
Commun. Math. Phys. 147, 253-275 (1992) Communicat ions IΠ

Mathematical
Physics

© Springer-Verlag 1992

Semirigid Geometry

Suresh Govindarajan, Philip Nelson and Eugene Wong
Physics Department, University of Pennsylvania, Philadelphia, PA 19104, USA

Received September 12, 1991; in revised form January 3, 1992

Abstract. We provide an intrinsic description of N-super Riemann surfaces and
TN-semirigid surfaces. Semirigid surfaces occur naturally in the description of
topological gravity as well as topological supergravity. We show that such surfaces
are obtained by an integrable reduction of the structure group of a complex
supermanifold. We also discuss the supermoduli spaces of TN-semirigid surfaces
and their relation to the moduli spaces of N-super Riemann surfaces.

1. Introduction

Semirigid surfaces have been shown [1, 2] to provide a geometric framework to
describe 2d topological gravity and supergravity. For example, in the simplest
theory the dilaton as well as the puncture equations have been proven using the
semirigid formalism [3, 4]. In this paper, we provide an intrinsic or coordinate
invariant definition of semirigid super Riemann surfaces (SSRS) as well as ordinary
super Riemann surfaces (SRS). The discussion of SRS is a natural extension to
similar discussions provided in [5] and applied in [6] for the case of N = 1 SRS
and in [7] for N = 2; the framework follows Cartan's theory of G-structures. (For
an introduction to G-structures, see for example [8, 9, 6, 10].) We show that these
structures subject to some conditions called "torsion constraints" are integrable,
which relates our intrinsic definition to the coordinate dependent definitions.

We will first discuss the various definitions and illustrate G-structures via two
examples in Sect. 2. We also find the appropriate group G for superconformal and
semirigid surfaces and the corresponding torsion constraints. Section 3 deals with
showing that the G-structures we impose are integrable provided the constraints
are satisfied. Briefly the results are as follows. If we begin with a complex super-
manifold, then N-SRS have no essential torsion constraints, generalizing Baranov,
Frolov, and Schwarz [11], who considered N = I.1 We will refer to semirigid
surfaces with N-supersymmetry as "topological N-SRS," or TN for short. TN = 0
surfaces have a rather trivial essential constraint while TN = 1 surfaces have

1 This generalization was asserted in the appendix to [12]. The constraints found in [13] and
discussed in [6] arise when we begin with a real supermanifold
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sbveral. Both in the usual and in the topological case the category of surfaces with
appropriate G-structures, integrable in the sense we will specify, is equivalent to the
corresponding category of surfaces with appropriate patching data. (Actually we
will limit ourselves to proving this for N rg 3 and TN % 1 to keep the algebra
simple.) In particular there are no second-order conditions for flatness, just as for
ordinary N = 0 conformal structures. Throughout this paper we will consider only
untwisted superconformal and semirigid structures, since our focus is primarily on
local properties. The local integrability results we prove will of course also apply to
the study of twisted surfaces.

We can concisely restate the conclusions just given in more mathematical
language. Supergravity and "topological" gravity in two dimensions are for-
mulated on supermanifolds with commuting dimension two (and various anticom-
muting dimensions), endowed with certain first-order G-structures, for supergroups
G to be specified later. These structures generalize the notion of conformal struc-
ture. As in the usual theory of G-structures we may ask if a given structure is locally
equivalent to a standard, or "flat," one. Unlike the usual theory [8], the appropri-
ate standard structure is anholonomic [14], similar to the notion of contact
structure [15]. In the supergravity case, as for ordinary conformal structures, the
first-order structure functions describing deviation from the standard one are
always trivial; in the "topological" case this is no longer so. In each case, however,
there are no further nontrivial structure functions beyond the first.

We should comment on the relation of this work to [1, 2]. In these papers the
coordinate definition of semirigid surfaces was used. The interpretation of such
surfaces as having a special G-structure was crucial for finding the right patching
maps, but no attempt was made to prove the equivalence of the two approaches, i.e.
the theorem that every integrable G-structure gave a semirigid surface. That is what
we do here.

2. G-Stϊ\ictuϊes on Manifolds and S\ipeτman\fo\ds

We begin by stating the problem, then recall the general idea of G-structures with
some examples.

2.1. Patch Definition ofSRS and SSRS. One way of defining SRS or SSRS is to cut
a supermanifold into patches, put coordinates on them and sew them back together
with transition functions given by superconformal or semirigid coordinate trans-
formations. Let us begin with SRS. Generalizing the N = 1 superconformal trans-
formation [16, 11, 17, 12], we start with C 1 | i V and define for ί = 1, . . . , JV,

where gij = δij. We impose the condition that {Dt} transform linearly among
themselves (not mix with d/dz) under a superconformal coordinate transformation
(z, θ1) -• (z, θ(). This condition resembles the one for a complex manifold, where
the good coordinate transformations do not mix the dzι with the d^. Thus,

Di^FJDj; Fj = DiθJ

9 (2.2)
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- ' <3 ~ d
where Dt = —zr + quθ

J — and F is some invertible matrix of functions. It follows
dθ* dz

that the superconformal transformations are those for which

Diz = gjkθ
jDiθ

k . (2.3)

An Λf-superconformal surface is then just a supermanifold patched together from
pieces of C 1 | i V related by iV-superconformal transition functions.

Semirigid surfaces (or SSRS) are patched together by restricted superconformal
transition functions. The restriction imposed is that θ+ be global, where

θ± =—Ί={Θ1 + iθ2). For instance, to obtain the TN = 0 semirigid coordinate

transformations, we start with N = 2 superconformal coordinate transformations
and impose θ+ = θ + . This restriction together with (2.3) fixes the coordinate
transformations on the rest of the coordinates. Such restricted coordinate trans-
formations then provide the transition functions to build a TN = 0 SSRS [1]. One
can similarly obtain TN = 1 semirigid coordinate transformations from N = 3
superconformal coordinate transformations by the same method.

Although this method of deriving SRS and SSRS is adequate for doing physics,
there are at least two features that are buried in them. One would like to classify the
superconformal or semirigid coordinate transformations as being coordinate trans-
formations which preserve some geometrical object. This object is not obvious
using the above patch construction. In addition, to find the superconformal or
semirigid moduli space, one would like to have a coordinate invariant definition of
SRS or SSRS so that it is clear that deformations of their structure are not artifacts
of coordinate transformations. This is of interest when one studies the moduli space
of these surfaces, where one's interest is to find deformations which cannot be
undone by allowed coordinate transformations.

We will provide such an invariant description in the sequel by means of
G-structures. To prove that the patch definition is equivalent to the intrinsic
definition (i.e. the one using G-structures), we will show that a manifold constructed
by the above patching functions implies a G-structure. To invert this correspond-
ence and so establish equivalence we will ask whether every G-structure arises by
this construction. In general this last step requires that the given G-structure be
"integrable," a concept whose meaning we will recall in the following examples. We
will find the appropriate integrability conditions in Sect. 2.3 and show that they
really do lead to an equivalence between the patch and G-structure definitions.
While this is not too difficult for TN = 0, it does require some work for TN = 1, i.e.
for topological supergravity.

2.2. Two Examples. In this subsection, we will illustrate G-structures and the
question of their integrability [9, 18]. We will also demonstrate how one obtains
coordinate transformations which preserve the G-structure chosen. This enables us
to relate this definition to the patch definition once integrability is proved.

Suppose we are given a smooth manifold. Then its tangent space can be locally
spanned by a field of frames {ea}. However, there are in general no global frames. In
order to obtain a global structure, we define an equivalence class of frames. The
equivalence relation is given by a group G of matrices whose elements act on the
frames, that is, {Kb

aeb} is defined to be equivalent to {ea}, where K is a function
with values in G. Without any extra structure beyond smoothness, all we can say
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about the matrices Kb

a is that they belong to the group GL(π, R). However, with
additional structures, the structure group can be reduced to a subgroup of
GL(n, R). The structure group can be thought of as the local symmetry group of
a physical theory defined on the manifold. In general, not all manifolds admit
a reduction of structure group due to possible global obstructions [9] 2 . Also, there
are geometrical structures like connections and projective structures that are not
G-structures. What we will see in this paper is that SRS and SSRS as defined in
Sect. 2.1 do arise as reductions of the structure group of a supermanifold.

We first consider a smooth manifold with additional structure provided by
a metric

g = gahe
a®e\ (2.4)

where ea is the dual to the frame ea. Since a metric provides information about the
length of a vector, it selects out from the classes of frames {ea} acted on by elements
of the group GL(n, R) those that are orthonormal, that is, gab = δab. The structure
group that acts on the family of orthonormal frames is the group O(ή) leaving
δab invariant. Thus we have a reduction of structure group from GL(n, R) to O(ή)
imposed by the additional structure, the metric. Conversely, given a reduction of
structure group to O(rc), it induces a metric on the manifold: we simply substitute
any good frame into (2.4). Like the metric, the imposition of a G-structure on
a manifold is an intrinsic concept. Note that the more structures one imposes, the
smaller the class of good frames. For example, imposing in addition an orientation
lets us restrict further to the class of oriented orthonormal frames; these are related
by the smaller group SO (n).

For our second example consider the case of a 2τi-dimensional manifold
M endowed with an almost complex structure, specified by a tensor J similar to the
metric. The tensor is given at a point P by JP: TPM -> TPM everywhere satisfying
Jj= — E. When diagonalized, J splits the complexified tangent TCM into holo-
morphic (with eigenvalue ϊ) and antiholomorphic (with eigenvalue — ΐ) tangent
spaces. We can use J to define good frames \ea, e^] as those for which ea are + i
eigenvectors and eu are the complex conjugates of ea, a = 1, . . . , n. Then

J thus selects out from the class of frames related by GL(2n, R) a smaller class
related by GL(n, (C), since J is invariant only under GL{n, (C) transformation of
frames. Conversely, given a reduction of structure group to GL(n, (C), which gives
us the class of good frames {ea, e^}, we can obtain J by substituting any good frame
in (2.5). Thus an almost complex structure is nothing but a GL(n, (C) structure, an
equivalence class of frames {ea, %}, where any two frames are related by a complex
matrix of the form

(2.6)

A is the complex conjugate of the invertible matrix A.
We have given a coordinate invariant characterization of a G-structure. But

sometimes it is convenient to use coordinates. Since a G-structure makes sense even

2 We will not consider such obstructions because they are not relevant in establishing the
equivalence between the patch and intrinsic definitions
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locally, let us first consider the problem of specifying one on an open set U of IRΛ
For any choice of coordinates {xa} on U we first choose a standard frame given by
some universal rule. For example in Riemannian geometry we choose e{x} = δ/dxa.
(We will choose a more complicated standard frame in the superconformal and
semirigid cases.) If we begin with a different set of coordinates {ya}, in general the
two frames e{x\ eψ do not agree. However if we arrange for them to agree modulo
a. G-transformation then they do define the same G-structure. This happens when

e^\P = K(P)α

be{

b

x]\P (2.7)

for some function K in G. Since G is a group, the set of all coordinate transforma-
tions y(x) defined by (2.7) is a group too; we call it the group of G-coordinate
transformations, or simply the "good" transformations.

Thus one way to specify a G-structure on a manifold M is to present an atlas of
coordinate charts Uα with coordinates xα all related on patch overlaps by G-
transformations.

Let us illustrate the above discussion with our two examples. In Riemannian
geometry the only coordinate transformations preserving the standard frame up to
O(n) are the ones preserving the standard metric, i.e. the rigid Euclidean motions.
For the almost-complex structure example things are more interesting. Given
a choice of real coordinates {uα, vα}, α = 1, . . . , n we let zα = if + ivα and take the
standard frame to be eψ = d/dzα, eψ = d/dzα. Let {wfl, wα} be another complex
local coordinate with standard frame {dwα, d^α}. On the overlap, let w and z be
related by a coordinate transformation wα = wα(zb, zb) so that

where M = Γz \ ~z _ J . (2.8)

For w and z to be complex coordinates for the same complex structure, we need
M to be of the form (2.6). This means that the "good" coordinate transformations
preserving the complex structure are holomorphic maps.

More generally, a manifold obtained by patching together coordinate charts by
a class of G-transformations gets a G-structure. Clearly if we replace each local
coordinate x£ by ya

a = ψχ(χbi)> where φa is itself a G-transformation, we determine
exactly the same G-structure.

We would also like to show the converse: a manifold equipped with a G-
structure can always be constructed from a set of "good" transition functions. In
fact this converse is not always true. To find out when it is so, we introduce
coordinate patches on the manifold with the G-structure. We seek coordinates {xa}
on a local patch Ua such that the standard frame {e{

a

Xa}} determines the given
G-structure. Since a G-structure is given by an equivalence class of good frames we
are thus seeking a local coordinate whose standard frame belongs to the same
equivalence class as the given {ea}. If we can find such a coordinate system, we then
call the G-structure integrable. However, this is in general not possible unless the
frames belonging to the G-structure satisfy certain constraints. After all, {xa}
contains only n = dim M degrees of freedom, while the given {ea = eμ

adμ) has n2

minus the dimension of G. This counting also makes it clear that different G-
structures impose different integrability constraints. For instance, we will see that
the superconformal structure does not need any such conditions while the
semirigid case needs some first order constraints. Of course there is more to do than
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just count conditions. The statement that a set of local constraints on a G-structure
really does suffice to find local coordinates inducing that structure is called an
integrability theorem.

Let us illustrate these ideas in the two examples given above. For the case of
Riemannian geometry, G — O(π), it turns out that a G-structure is integrable iff its
Riemann curvature tensor R vanishes (see for example [19]). That is, if R = 0 in the
neighborhood of a point, then there exist local coordinates (called inertial) such
that the metric is in the standard form g = δabάxa®άxb. Comparing this metric
with the one specified by the given O(n)-structure g = δabe

a®eb, we see that the
d

frames are related by ea = Ka

b —-^, where K e O(n). Thus the frame defining the G-

structure ea is G-equivalent to the standard frame of some coordinates, which is
what we called integrability earlier. Notice that the integrability condition is given
by constraining the curvature, a function involving up to second order derivatives
of the original frame. We thus call this a second order constraint. The condition
R = 0 implies flat space; thus integrability conditions are sometimes called flatness
conditions, even though they may be given by first order constraints in other cases.

Instead of Riemannian geometry we can enlarge O(ή) somewhat to the group of
matrices with KιgK oc g — the conformal group. The obstruction to flatness is
now just a part of the Riemann curvature, namely the Weyl tensor [20]. An
important case is two dimensions, where there is no Weyl tensor at all and every
conformal (or (C x )-structure is integrable.

In the case of an almost complex structure, the counterpart of the curvature is
the Nijenhuis tensor [21], given in terms of J by

Jf(X9 Y) = [X, 7] + J[JX9 Y~\ + J [ Z , J 7 ] - [JX, JY~\ , (2.9)

where X and Y are arbitrary vector fields. The integrability theorem [22] says if
^V = 0, then there exists a local complex coordinate system {za}, i = 1, . . . , n such
that J is of the form (2.5) with the frames given by eψ = d/dza, ef = δ/dza. Thus
Jί = 0 becomes the flatness condition. It is however a first order condition unlike
the O(ή) case, since (2.9) clearly involves at most first derivatives of J. As mentioned
above, the "good" coordinate transformations (those preserving J) are the holo-
morphic maps.

Given an integrable G-structure on M, we can now return to the question of
whether it can be constructed via patching maps. On each coordinate patch choose
a coordinate inducing the given G-structure. Then on patch overlaps the chosen
coordinates are related by what we have called a "good" or G-transformation:
Xβ = Φ*β{x*)> Hence we can construct M with its G-structure from patching
coordinate charts with the "good" coordinate transformations. Of course on each
patch we have some freedom to redefine the good coordinate xa

a by some G-
transformation yl = ι/fα(x£). This simply corresponds to replacing the {φaβ} by the
equivalent family {φa°φOίβ

cφβ1} as discussed above.
To summarize, given G and a choice of standard frames we may define

a G-manifold as a collection of patching G-transformations modulo the substitu-
tion {φaβ} H-> {ψa

oφ0Cβ°ψβ~1}, where φ^ are themselves G-transformations. Or we
may define a G-manifold as a smooth manifold with a collection of frames defined
modulo G satisfying appropriate integrability conditions. We have seen that these
two definitions are equivalent once the appropriate integrability theorem is estab-
lished.
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For the case of specifying the N ^ 1 superconformal structure, a coordinate
invariant tensor analogous to the metric g or the tensor J is not known. However,
one can still choose a group G and specify a G-structure by giving a frame defined
up to transformations by elements of G. Without the analog of g or J, we cannot
define a tensor like R or JV^ measuring the local obstruction to integrability. Thus,
one has to find another way to give the flatness condition for the case of supercon-
formal structures or else prove that there is no such condition, that is, all G-
structures are flat. The situation is similar for semirigid structures.

Let us once again use the case of an almost complex structure on a In
dimensional real manifold to clarify how first-order flatness conditions can come
about. The flatness condition j \ r = 0 can be replaced by a condition similar to the
one used in the Frobenius integrability theorem, namely tab = 0, where

leA,eB'] = tAB

cec (2.10)

and A denotes either α, a. In other words, the Lie bracket of the holomorphic
tangent frames stays in the same subspace. Conditions of this type are sometimes
called "essential torsion constraints" [6].

We now recall a general prescription [6] to obtain the torsion constraints with
the above example in mind and see they are necessary conditions for integrability.
In our examples the structure constants tab all vanish when we use the standard
frame {e{x}} in [_e{*\ e{

h

x]~\ = tabe
{x]. (More generally they will at least all be

constants in the cases of interest.) Of course the same may not be true when we
substitute some other equivalent frame {ea} to get tab

c. We obtain an arbitrary
representative of the standard G-structure by letting an arbitrary function in G act
on the standard frame. Those tab that remain equal to tab clearly have the same
values in any good frame. Thus we have found some conditions on tab which follow
from the assumption that our frame is equivalent to some standard frame. These
conditions may be overcomplete; for example some may be related to others by
Jacobi identities.

In other words given a frame we have found some conditions which must be
met if the corresponding G-structure is to be integrable. These "torsion constraints"
are first order conditions on any frame representing the given structure since the
Lie bracket entering t contains one derivative. If we find that they are also sufficient
for flatness, then we have an integrability theorem with only first order constraints.
This is the case for G = GL(n9 (C) since here the torsion constraints amount to the
vanishing of the Nijenhuis tensor; it will also be true for superconformal and
semirigid geometry. (And as we have mentioned, for superconformal geometry
there will be no essential torsion constraints at all.) However as we have seen it is
false for Riemannian geometry. It is sometimes convenient to impose further
G-invariant "inessential" torsion constraints corresponding to normalization con-
ditions [6], as we will recall below.

We will now apply all these ideas to the cases of N superconformal and TN
semirigid structure.

2.3. Intrinsic Definitions of SRS and SSRS. We now provide an intrinsic definition
of N superconformal structures [12] generalizing [11, 23]. Below we will propose
a similar intrinsic definition of semirigid structures. Let M be a complex super-
manifold of dimension 1\N equipped wkh a holomorphic distribution (subbundle
of TM) S° of dimension O|ΛΓ. Given (M, S\ one can always define a symmetric
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bilinear B: $ ® $ -• 9~ 1$, where £Γ is the holomorphic tangent bundle. The bilinear
is given by B(Eh Ej) = [Eh EβmodS', where [,] is the graded Lie bracket and
Et e S. Following [11, 23, 12], we will call (M, S) an N-SRS if B is non-degenerate.

A SRS can also be regarded as a reduction of the structure group on M. We
simply declare a frame {£ 0, E} as "good" if EQ is even and Et are an (odd) frame for
the given S. Then all good frames are related to one another by elements of
a supergroup as follows:

(2.11)

where a is an invertible even function, ώ are odd functions, and M is an invertible
matrix of even functions. In order for the set of frames {E\} to span the same
distribution $ as {£f}, we have required the column 5.

We can always put a SRS in a more canonical form. The non-degeneracy
condition above implies that the bilinear B is diagonalizable. Thus we can always
use a transformation of the form (2.11) to get from a frame {Eo, E) to a normalized
frame with

[£j, Eβ = 2gijE0 mod S, (2.12)

where gtj = d^. Such normalized good frames are then all related by a smaller
group than (2.11), in which M is in the orthogonal group O(N, C). This residual
group we will call GN, and we will call a GN-structure an almost superconformal
structure. Since we can always pass to normalized frames, and the new frame is
unique modulo the residual group, we find that an N-SRS in the above sense is
precisely a reduction of the structure group ofM to GN. We will prove in Sect. 3 that
this reduction N ^ 3 is always integrable.

We would like to point out that E+ and £_ (in a complex basis) in the N = 2
case are preserved up to a multiplicative factor on a SRS because in this basis
matrices in 0(2, <C) are diagonal. Hence the distribution $ is split into two line
bundles. This is not true for N ^ 3, a fact related to the existence of a nonabelian
current algebra in the superconformal algebra starting at N = 3.

What are the "good" coordinate transformations for this superconformal
structure? To answer this, and to make precise what we wish to prove in the
integrability theorem, we must specify the standard frames associated to a coordi-
nate patch. We choose E$ = d/dz, E^ = Dt, where z = (z, θ) and Dt are defined
in (2.1). We can then identify the N-superconformal coordinate transformations as
those complex coordinate transformations that leave this structure unchanged
along the lines similar to the discussion below (2.8). Then the "good" coordinate
transformations preserving the standard G structure will take z to z with

%)-($ „«)(!)•

The set of coordinate transformations in the form of (2.13) are given by the
JV-superconformal transformations defined by (2.2)-(2.3). As in the general analysis
above, this leads to a patch definition of super Riemann surfaces. Once the
integrability theorem is proved in Sect. 3 we thus have that every N-SRS in the
above sense is also a SRS in the sense of Sect. 2.1.

Next we turn to the semirigid case. An almost TN-structure is obtained by
reduction of the structure group from an (N + 2)-superconformal structure.
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Consider 'the set of frames spanning <ί, { £ j = {E + ,Er, £_}, where E +

= — ^ (Ex ± iE2) and r = 3, . . . , N + 2. The metric g o in this frame is

(2.14)

where grs = δrs. The reduction from (2.11) is specified by the G-structure where now
the group consists of matrices of the form

κ=
0

0

ω_

1

ώ ω +

Y -\YgYι

0 aM -aMgY'

\ 0 0 0

(2.15)

Here Ϋ, M have even elements, MgM* = g, a is invertible and the ω are odd
functions. It can be verified that matrices of type (2.15) form a supergroup GT N,
which is a subgroup of GN + 2. In fact this structure group arises by a reduction from
QN + 2 ky i m p 0 S i n g extra structure: we have chosen a Id subbundle ^ _ cz $ a 3~'.
Q) _ is not trivial; indeed we also choose a (parity-reversing) isomorphism
@ - = ,TI $. The good frames are those good superconformal frames for which
E- spans 3 _ and corresponds to E0mod6° under the chosen isomorphism. These
frames are then all related by (2.15).

The motivation for this construction is simple for TN = 0. Any kind of
topological field theory should have a superspace formulation involving a global,
spinless odd coordinate for bookkeeping. For us this coordinate will be θ + . For
TN = 0 (2.15) says that "good" coordinate transformations take D+ to itself, and
hence they also take θ + to itself as desired. For N > 0 this may not be so clear, but
in fact (2.15) again ensures that the "good" TN-coordinate transformations are just
N-superconformal transformations which keep θ+ fixed [2]. Note that the N-
superconformal structure group is embedded in that of TN semirigid geometry,
GN cz G T N cz GN + 2 by comparing with (2.11). This is seen by setting
Ϋ = ω+ = ω _ = 0 . This is why the TN-coordinate transformations include the
iV-superconformal group and give rise to topological supergravity.

In Sect. 4 we will find first order constraints which are sufficient flatness
conditions for the existence of a coordinate system with the standard frames
GTN-equivalent to the frames Ea defining the semirigid structure. Hence as in our
general discussion a complex supermanifold with an integrable GTN-structure is
glued together by semirigid transition functions, which recovers the patch defini-
tion of semirigid surfaces given in Sect. 2.1.

3. Superconformal Integrability

In Sect. 2.3 we defined an almost superconformal structure. We shall prove that this
reduction is always integrable for N = 3; there are no flatness conditions to impose
in this case. The cases N < 3 are much easier and can easily be obtained from our
derivation. We expect N = 4 to be similar.
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We are given a distribution $ which satisfies the non-degeneracy condition. As
ve have discussed above we can always choose a frame {Eo, E} with E spanning

£ and satisfying (2.12), or in the notation of (2.10)

ίo.° = 20y = 2<5O , (3.1)

and any two such frames are related by (2.11) with the matrix M orthogonal.
Indeed (2.11) shows that we have a lot of freedom with Eo; modifying it by adding
any linear combination of the E does not change the superconίbrmal structure.
Given a normalized frame we can thus discard Eo and focus on £, regenerating
Eo when needed by \ [ £ + , £ _ ] or some other convenient variant.

Recall that a complex structure has been given on the manifold and that
{Eo, E) are holomorphic. Hence in an arbitrary complex coordinate system with
coordinates given by w and λ\ we can represent {Ei} by

Ei = Mjdj + α f5w , (3.2)

where d( = d/dλ\ dw = d/dw and M{ and αt are holomorphic functions of w and λ\
We would like to show that we can find a coordinate system in which {£ f} is

GN-equivalent to the standard frame {Dj. We shall proceed in four steps, order by
order in the odd coordinate λ.

Step 1. We shall first find a coordinate system in which

Et = dt + Θ(λ) . (3.3)

Let M{ = mj + Θ(λ) and αt = α/0 + Θ(λ) in (3.2). We make the following complex
coordinate transformation:

λi = λj\m~1'])\ w = w. (3.4)

Under coordinate transformation (3.4), we obtain that

Et = dt + α ί 0 3 w + 6{λ) .

We can now drop the tildes for convenience. We make another complex coordinate
transformation

P = ?}\ w = w + λrβr , (3.5)

and obtain

Ei = ()i + (βi + aί0)dw + Θ(λ) .

Choosing βt = — α ί 0, we obtain (after dropping the tildes again) (3.3).

Step 2. Restoring λ terms in Eh we have

Ei = {δ\ + λrμri

k}dk + λraridw + 0(λ2) , (3.6)

where we have introduced two functions μri

k and ari. The normalization conditions
(3.1) are easily seen to imply that

where a0 is some invertible function. The antisymmetric part of atj can now be
removed by a coordinate transformation of the form
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while the trace bit can be set to one by a further transformation of the form
w = w(w) with dw/dw = a^1. We will now use our freedoms to put μri

k into more
canonical form.

Again we perform coordinate transformations. Let

ί = ̂  + ̂ 7 V ; vv = w, (3.7)

where pj = p[sr]\ In this coordinate system

Ei = {δϊ + λr{pri

k + μri

k)}dk + fa* + Θ(λ2) . (3.8)

We can also consider the G^-equivalent frame E\ = (KE)i, where

Ki = δi + λr(*ri

s + ξrδi) + Θ { λ 2 ) . (3.9)

Here otrij = αr[ί7 ] is a generator of 50(3, C). Together with (3.7) we see that we can
shift μ by

μ ~* μrik + Prik + αrίfc + ζrδik

To begin simplifying this we see we may without loss of generality use p to get
μ = μ(ri)k> symmetric on the first two indices. A little algebra then shows that with
an appropriate choice of further p, a transformations we may take μ = μ^), and
moreover using ξ we can get μf/ = 0.

Step 3. Thus we have

Et = A + λrμn

kdk + \λs/htsu{Mui

kdk + Θuidw) + Θ(λ3) ,

where again μ = μ{rik) and we have introduced the next order, coefficients Mui

k

and Θui.
Using our freedom to choose a convenient Eo we now take

l E Λ + F ι E ι , (3.10)

where Fι is some function of w, / of order /. imposing (3.1) to Θ(λ) now shows that
μ = 0 and Θui x (5Mί. But this means that we may remove Θ altogether by the
coordinate transformation w = w + λ3β, where

T 3 _ _ )s

6

. Thus we have

where sh σt

ι are new sets of coefficients. There remain the freedom to make
coordinate transformations of the form /} = )! + λ3Kι as well as 50(3, (C)xC x

frame rotations. One readily sees that this freedom suffices to make σ traceless
symmetric, M = Mu{ιk), st = 0, and M ik

ι = 0.
We now make a convenient choice of Fι in (3.10):

Eo =lllEi> Er\ - ~(2λ%iuMuil + λs?Jεtsίσ
ίl)Eι . (3.11)
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Then the condition (3.1) says σ = 0, M = 0. Thus we have

as was to be shown.
We close this section by remarking that superconformal integrability should be

related to the conformal flatness of an appropriate supergravity theory. Indeed
AT = 3, 4 supergravity theories have been constructed using conformal flatness as
a principle [24]. Perhaps the rather simple idea of superconformal geometry can
shed some light on the structure of these theories.

4. Semirigid Integrability

4.1. TN = 0 Integrability. We now investigate the local integrability of semirigid
structures. To begin suppose we have been given a TN = 0 (or "almost semirigid")
structure specified by a frame {Eo, E+, £_} obeying (3.1). This is the same
information as in the superconformal case, but now we do not consider two frames
equivalent unless they are related by (2.15), i.e.

0 1 0

0 0c

(4.1)

Thus to integrate the frame we have a harder job than in Sect. 3: find local
coordinates such that the standard frame equals the given one modulo
GτN = 0 cz GN = 2 (4.1), not just modulo GN = 2 (2.11).

We can again simplify the problem somewhat by noticing that Eo will take
care of itself once we put the E into the desired form. Accordingly we take
£o = iίE+, £ - ] , since this choice is still normalized correctly and is related to the
given one by a G T N = 0 transformation (4.1).

Following the procedure in Sect. 2.2, we look for torsion constraints by taking
a standard frame and applying an arbitrary transformation of the form (4.1):
£ + = D + , £ _ = c D _ where c is a function. By the remark in the previous para-
graph we then take Eo = | [ £ + , £ _ ] . Computing tAB

c we find that in addition to
(3.1), preserved since we have maintained the normalization condition, we also
preserve various other elements of t, including in particular

t + +

 + = 0 . (4.2)

Thus (4.2) is necessary for a frame to be integrable.
Now suppose our given frame does satisfy (4.2). By the results of the previous

section we can at least find superconformal coordinates, i.e. coordinates z = (z, θ ±)
such that {EQ,E} is GN"2-equivalent to {dz,D}. In particular

Di = NiJEj N

for some invertible functions α, b. We would now like to find another set of
coordinates z(z) with

({ °Y (4.4)
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Since z is not a good semirigid coordinate, z(z) is not a semirigid transformation.
However (4.3)-(4.4) say z and z are at least superconformal coordinates and so z(z)
will be a superconformal transformation. But we know how D transform under the
latter (Eq. (2.2)).

Putting it all together, given a, b in (4.3) we need to choose z and c in (4.4) such
that

b/a \fD+\ fD+θ +

In other words, while we can always adjust c to satisfy the second equation, we do
need to find a superconformal transformation for which D+θ+ = a/b. As expected
we see that in general there is no solution. Imposing (4.2), however, tells that
D + (a/b) = 0, which^ensures that an appropriate function θ+ exists. To see that
there is a z with this θ + , we need to inspect the most general N = 2 superconformal
coordinate transformation:

z = / + θ + tφ + θ~sτ + θ + θ~dz{τφ) ,

0 - = φ + θ~s-θ + θ~dzφ , (4.6)

where dzf= ts — τdzφ — φdzτ. Thus, we have

D+θ+ =t + 2θ~dzτ-θ + θ~dzt (4.7)

and we can choose ί, τ to match this to any chiral superfield a/b.

4.2. TN = 1 Integrability. In this subsection, we start with an N = 3 SRS
endowed with the TN = 1 structure given by a frame { £ 0 , £ + , £ 3 } normalized
per (3.1), (2.14). As in the previous subsection we may discard Eo and replace it
by Eo = i [ E 3 , £ 3 ] without changing the semirigid structure.

Proceeding as before we get the torsion constraints by acting on the standard
frame D with3

1

0

0

X

a

0

x2

2~
— ax

a2

K = 0 a - ax , (4.8)

where a is invertible. Examining the commutators of Et = Ki

iDί we find that in
addition to (3.1) we have (among other things)

ί ί 7

+ = 0 , f__3 = 0 . (4.9)

We will show that these necessary conditions are sufficient for integrability.
Suppose then that we have a local frame E for S obeying (3.1) and (4.9) once we

set £ 0 = j [ £ 3 , £ 3 ] . Once again we can use the result in Sect. 3 to choose
superconformal coordinates, so that Et = (N~1)i

jDJ , where N belongs to
SO(3, ( C ) x C x . Semirigid integrability means that there exists a superconformal

Recall that in this basis the metric gtj is antidiagonal
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coordinate transformation z(z) such that the given frame E{ is G T N = ^equivalent to
the standard frame Df.

with K some matrix function of the form (4.8). Analogous to (4.5) this requires us to
solve

F = NK where Ff = Dfik . (4.10)

In this equation we are seeking suitable z(z) and K given N. Once again this is in
general impossible until we impose the constraints (3.1), (4.9) on N.

We will subdivide our task by writing K = KiK2 and choosing K1 to put
N = NKi into the form of a lower triangular matrix L (when N + + is invertible) or
an "upper" triangular matrix U (when N + + is not invertible; see below) with unit
determinant. This puts our problem (4.10) into standard form: F = LK2 or = UK2.
We will in the following concentrate on the case when N + + is invertible, prove the
integrability theorem and then comment on the other case.

We organize the proof into four steps. First, we will show that NKX can be put
into the form of L. Then we impose the semirigid essential torsion constraints on
L (recall the constraints are GTΓ^=1-invariant). With this done, we will substitute
L into (4.10), and solve for the θ+ component of the superconformal coordinate
transformation in terms of the unconstrained superfield components of L just as in
Sect. 4.1. The rest of the components, θ3 and θ~, can always be made to satisfy
(4.10) by choosing K2 appropriately. Finally, we will show by construction that
there really does exist a superconformal coordinate transformation with the re-
quired θ+.

The torsion constraint (3.1) implies that N belongs to 50(3, (C) x C x , meaning
NgN* oc g. In particular we have

M - { N + i ) 2 A M - N3

+(N+

3V N+

3N,3

N+ = - 2 i v 7 ^ and N> =^{w^) -ΠTT- (4 U )

(NK1)+

3 is set to zero by choosing K1 in (4.8) with

*!=-«, ^ 4 (4.12)

Substituting (4.11) and (4.12) into the expressions (NKί)+~ and (NKι)3~, they too
vanish. Furthermore, a1 is chosen so that NKX has unit determinant, that is,
a1 = (det TV)"1/3. Thus, NK1 by construction is a lower triangular matrix given by

L =

i b 0 (Λ
y 1 0

y2 y i

\~2b ~b bι

(4.13)

We can now let Et = {K±lE)i = {L-1D)i. While we have used our G T N = 1

freedom to put L into the standard form (4.13), still further restrictions come when
we impose the torsion constraints (4.9). Since these torsion constraints are by
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construction G T N = ^invariant, we can impose them on Eh The constraints give
respectively

( L " 1 ) _ f c D Λ ( L - 1 ) _ ί L z

3 = 0 and (4.14)

{ ( L - 1 ) ( ί

f c Z ) f c ( L - 1 ) Λ

z - ^ . ( L - 1 ) 3

f c ^ ( ^ " 1 ) 3 / } ^ + = 0 . (4.15)

Substituting (4.13) into (4.14) and (4.15), we obtain the following four constraints on
the two independent matrix elements b and y of the matrix L:

D + b = 0, (4.16)

D + y + D3b = 0, (4.17)

yD + y = 0, and (4.18)

V2

2
y—D + y + by D3y - b2D_y = 0 . (4.19)

In Appendix A, we show that under this set of torsion constraints we obtain
a unique odd superfield Ω satisfying

b = D + Ω, y = D3Ω, and giJ(DiΩ)(DjΩ) = 0 . (4.20)

We are now ready to show that there exists a superconformal coordinate
transformation and suitable K2 for which F = LK2. That is,

bx
'D+θ+ D+θ3 D+θ~\

Dj+ D3Θ
3

x2y + a2 — x2

y(

2b bV2^ 2 /

(4.21)

where a2 and x2 are the independent elements of K2. Taking the determinant of
both sides of (4.21), we see that we have to choose

a2 = det (F) 1 / 3 . (4.22)

As for x2, we will choose it so that bx2 = D+θ3*. Equation^(4.20) then shows that
the first column of Eqs. (4.21) are satisfied when we identify θ + as Ω. One can show
that the remaining five components of the matrix equation (4.21) are then satisfied
by the use of the superconformal conditions (2.3). These turn into two sets of
readily applicable relations

FgF* = 0(det F)2/\ (4.23)

and the set of equations where we replace F by F ~ \ since F ~x is also a supercon-
formal transformation.

Finally, the question is if there exists an N = 3 superconformal coordinate
transformation with θ + given by the function Ω. The answer is yes; details are given
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in1 Appendix B. The point is that from the superconformal conditions z can be
expressed in terms of the components of the transformation of 0\ i = + , 3, — .
The only requirement left for the coordinate transformation to be superconformal
is that the θι satisfy the superconformal conditions among themselves. In Appendix
B, we have expanded z and θι in components. There arejbur even and four odd
components in each of the superfields. We set out with θ\ given,jnamely Ώ, and
there are sixteen degrees of freedom in the components of θ3 and θ~ to choose to
satisfy the internal superconformal conditions. The superconformal conditions
among θι are linear in the components of θ3 and θ~ and there are sixteen such
equations. We have shown in the appendix that indeed a solution exists. If all the
even components of θ+ are invertible, then we use all sixteen degrees of freedom to
solve the sixteen equations. If one or more even components of θ + are noninvert-
ible, then the linear matrix equations become singular and it implies that there are
more variables than equations. Thus, there exists a family of solutions.

When N + + is not invertible, from the fact that N belongs to SO(3, C) x C x , we
immediately obtain that iV_ + , N + ~, and N3

3 are invertible. Since N-+ is
invertible, we can choose elements in K1 so that (NK^ takes the form

U = NK1 =

y y i
~2b ~b b
y 1 0

b 0 0

(4.24)

All the essential torsion constraints are the same as before with the roles of D+ and
D_ interchanged. We again wish to find a superconformal coordinate transforma-
tion F so that (4.10)is satisfied. We then have b = D^θ+ andy = D3Θ

+. The rest of
the proof is analogous to the previous case with the roles of the superfield
components switched between the untilded + and — components and a sign
change for the tilde components along with interchanging the + and — compon-
ents (e.g. S- -> s+ and φ- —> — φ + ).

5. Moduli Spaces of Semirigid Surfaces

There exists a natural projection from the moduli space of TN-semirigid surfaces to
that of N-SRS [1, 2]. We will show that this is the case for TN = 0, 1. This can be
easily extended for the case of arbitrary N. As explained earlier, an N-SRS is
obtained by patching together pieces of C 1 | i V by means of iV-superconformal
transformations:

za=faβ(zβ;rh,l) , (5.1)

where z = (z, θ) and m (ζ) are the even (odd) moduli. Following [1, 3] we obtain
augmented Λf-superconformal transformations by introducing a new global odd
variable 0 + and promoting all the functions given above to be arbitrary functions
of θ + in addition to z. Now an augmented Λf-superconformal surface is obtained by
patching together pieces of C 1 | N + 1 by means of the augmented superconformal
transformations. An augmented iV-superconformal surface still has a distinguished
distribution $ of dimension O|Λf spanned by D. This is seen by checking that under
augmented superconformal transformations, # is preserved.
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The group of augmented JV-superconformal transformations is isomorphic to
TN-semirigid transformations. This has been proved for the cases of TN = 0 [1]
and for TN = 1, 2 [2]. Since we may represent any SSRS by a collection of
semirigid patching functions, we can apply this isomorphism to obtain an aug-
mented SRS and vice versa.4 This isomorphism implies that the moduli spaces of
TN-SSRS and augmented N-SRS are identical. Hence, it suffices to study the
moduli space of augmented SRS.

The moduli of the augmented superconformal surfaces are obtained by re-
placing the moduli of the superconformal surfaces by functions of θ + in (5.1), that is

ma\^>ma + θ + ma

9 ζμ^ζμ + θ + ζμ , (5.2)

where we have introduced extra odd (even) moduli, ma(ζμ) and placed tildes on
ma(ζa) to avoid confusion with the ma(ζa) on the original space. Hence, given any
family of N-SRS, we obtain a family of augmented N-SRS with twice as many
parameters. We lack global information regarding the moduli space of augmented
superconformal surfaces. For example, we do not know if any of the new even
coordinates ζμ are periodic. But we can easily argue that infinitesimally, (5.2) spans
the full tangent to the moduli space when we vary m, m, ζ, ζ. First, we note that
deformations of any augmented SRS involve small changes in the patching maps.
These are generated by vector fields Vaβ on Ua n Uβ with n o θ + component (this
follows from the global nature of θ + ) . Expanding Vaβ in a power series in θ + , we get
two identical copies of the deformation space of N-SRS, with opposite parity.
Furthermore, given VA(z, θ, θ + ) = vA(z, θ) + θ + vA(z> θ) with Vθ+ = 0, the vector
field {vA

β} generates infinitesimal deformations in the moduli m and ζ and the
vector field {v^} generates infinitesimal deformations in m and ζ from (5.2).

A projection down to the moduli space of N-SRS corresponds to forgetting the
new moduli introduced, that is, given a point with coordinates (rha, rha, ζμ, ζμ) in the
augmented moduli space, we project down to the point with coordinates
[nf = ma

y ζa = ζa) in the moduli space of SRS. We would like to show that the
projection is natural.

Let usjiow discuss projections in general. We wish to define a map Π from
a space Jί to Jί. Let (xα, xa) be a set of coordinates near P and Jί and xa be
coordinates near P on Jί. We can define a projection Π by taking xa(P) = xa(P) or
in other words

Π*{xa) = xa

which we refer to as the "forgetful" map. Unfortunately, the definition of Π depends
on the choice of coordinates. Let [ya = Fa(x\ xb\ ya = Fa(x\ xb)) be another set
of coordinates near P. Also, let ya = Fa(x) be a new coordinate near P. The new
coordinates will define the same map Π as the old ones only if

ya = Fa(x\xb) = Fa(xb) . (5.3)

Of course arbitrary coordinates for Jί will not be related to (xfl, xa) by (5.3). But if
Jt has some natural class of coordinates all related by (5.3) then we do obtain

4 Note however that as a complex supermanifold the TN-surface is of dimension 11N + 2 while
the corresponding augmented N-SRS is of dimension 1|JV+ 1. The missing 0' carries no
information, though it was crucial to get superfleld formulas in [1]
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a global projection Π. We will now see that semirigid moduli space does have such
a natural class of coordinates.

Begin with the case of TN = 0 following the discussion in [1]. A Riemann
surface is obtained by patching together pieces of C 1 by means of the transition
function

where ma are complex coordinates on the moduli space of complex dimension
(3g — 3). We now obtain a class of augmented Riemann surfaces parametrized by
(ma, rha) using the augmented transition functions

= faβ(zβ9 ma) + β ; dafaβ(zβ9 ma)ma

θϊ=θϊ, (5.4)

where a point in the moduli space of augmented Riemann surfaces has coordinates
(mα, ήf). Coordinates obtained in this way are not the most general ones, and
indeed we will now show that they are all related by the special class of maps (5.3).

Let na(ma) be a new set of coordinates on the moduli space of ordinary Riemann
surfaces. We obtain the patching function parametrized by na by means of the
following identification:

faβ(zβ9 n) =faβ(zβ9 m(n)) . (5.5)

The corresponding family of augmented Riemann surfaces is again given by the
rule (5.2):

za — Jaβ\zβi n -\- 0 n )

= Lβ(zβ,na) + θ; djaβ{zβ,ή
b)ήa

θa = θβ (5.6)

Comparing (5.4) and (5.6) using (5.5) shows that the two sets of coordinates on the
moduli space of TN = 0 surfaces are related by the transition function

ήa = ήa(mb) ,

rr = dmb
mb

which is not only of the form (5.3) but in fact split. Hence in particular the
projection from augmented N = 0 surfaces to ordinary ones is natural, and as we
have already seen this gives the desired projection from TN = 0 surfaces J o iV = 0.

For the case of TN = 1, the situation is similar. Let (mfl, mfl, ζμ, ζμ) be the
coordinates of a point in the moduli space of augmented N = 1 SRS and
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(ήa, ήa, φv,φv) be the coordinates of the same point on another patch. Following
similar arguments as for TN = 0, we obtain

ήa = ήa(m\ <fv) ,

dna

 Ah dna ~

dnf dζv

which is again of the form (5.3) and hence the "forgetful" map is again natural. This
can be seen to hold for the case of arbitrary TN since the only property which
makes the transition function split is the global nature of θ +. Thus, there exists
a natural projection from the moduli space of TN-SSRS to the moduli space of
N-SRS. The significance of this result is that [1] it means we can use string-theory
methods to get a measure on the big space, then integrate it over the fibers of this
projection to get a measure on the smaller space, namely the moduli space of
N-superconformal surfaces, which is where the observables of topological gravity
should live.

6. Conclusion

Tn this paper, we have provided an intrinsic definition of N-SRS and TN-SSRS
which appeared naturally in (super)gravity and topological (super)gravity respec-
tively. The intrinsic definitions are given in the context of G-structures. It is
straightforward to define superconformal or semirigid G-structure from the coord-
inates given in the patch definition of SRS or SSRS. Much of our analysis was
devoted to showing how one can recover the patch definition given a G-structure
on a manifold. That is, we first obtained the necessary torsion constraints where
needed and showed that the almost G-structure is integrable under such condi-
tions.

Moreover, we have shown that there exists a natural projection from the
moduli space of TN-SSRS to that of N-SRS. Since a field theoretical realization of
topological TN-gravity can yield an integration density on the moduli space of
TN-SSRS, the natural projection allows us to integrate along the fibers of the
projection and obtain an integration density on the moduli space of N-SRS. If there
are non-trivial observables, then the field theory provides for us cohomology
classes on the moduli space, thus probing its topology. This procedure has been
used for the case TN = 0 in [3, 4]; it would be interesting to see what topologies
one can probe for TN ^ 1 cases.
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Appendix A. Solving the Torsion Constraints

We will show that under the constraints (4.16) to (4.19), we can find a unique Ω to
represent b and y by D+Ω and D3Ω respectively and satisfying the constraint

D + ΩD^Ω= -^(D3Ω)2 . (A.I)

Anticipating Appendix B we note that if Ω = θ+ then (A.I) is one of the supercon-
formal conditions involving only θ+ in (4.23) when F'1 is used.

We will now go through the constraints (4.16) to (4.19) and show how we get Ω.
Equation (4.16) implies that b = D + Ω, where Ω is an odd superfield. To see that is
possible, one way is to expand both b and Ω in components θι and constrain b by
(4.16). Then it is straightforward that equating b and D + Ω turns into algebraic
equations between their components, thus solving for the components of Ω in terms
of that of b. However there is a residual freedom Ω -> Ω' = Ω + ω, where
D + oj — o, that leaves b = D+Ω invariant. We will make use of this degree of
freedom to make y = D3Ω. Substituting b = D + Ω into (4.17), it implies that
y = D3Ω + B, where D + B = 0. Here we will use the freedom in choosing Ω' to
cancel B, that is, D3ω = — B. This is possible because both ω and B are annihi-
lated by D+, and in components, it means solving two algebraic equations and
two first order linear differential equations in the components of ω in terms of
that of B. There is still a little freedom left in Ω\ namely Ω" = Ω' + φ, where
D+φ = D3φ = 0. In components, this means φ = θ~φ_, and φ_ is a constant.
Again, this constant will be used later on. Dropping the primes, we now have
b = D + Ω and y = D3Ω; substituting both into (4.18) and (4.19), we obtain

D3ΩD + D3Ω= -D,ΩD + D-Ω (A.2)

and

- -{D3Ω)2D3D + Ω + D + ΩD3ΩdM + (D + Ω)2D3D-Ω = 0 . (A.3)

Eliminating D3Ω D + D3Ω in (A.3) by (A.2), we get

- -D3ΩD_D + Ω + D + ΩD-D3Ω = 0 . (A.4)

Equations (A.2), (A.3) and (A.4) can be rewritten as

where i = + , 3, — respectively. This implies that whatever is inside the square
bracket can at most be some arbitrary constant. This constant can be cancelled
by the remaining free constant φ. By construction, D3 and D+ annihilate φ, and
D_0 = φ_. Thus, φ- will be chosen to cancel the arbitrary constant, and we
are left with (A.I).
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Appendix B. N = 3 Superconformal Coordinate Transformation

In this appendix, we will give the conditions for the N = 3 superconformal
coordinate transformation. We will then show that there exists an N = 3 supercon-
formal coordinate transformation when θ + is given subject to (A.I). This is needed
in the proof of N = 3 semirigid integrability.

We expand the superconformal transformation in components. Let

and

(mt)i

jθ
j + (Γtγjg

jk-εklmθι0

where / = + , 3, — and

m, J =

t+

t

t-

n +

n

Π-

s +

s

s _

I v +

V

v_

φ+

φ
φ-

(B.I)

(B.2)

(B.3)

λ' = Γ = (B.4)

the metric g = 1

0

and ε _ 3 + = 1.

The superconformal conditions can be compactly written as

t = g{mgm%z ,

^ + εijk(g-1mgdzλf ,

- - εijk [2ΓgΓ (d.nήgnί -

)i = (mgλ)i ,

)t = (Γgλ)i9 and

φ = ΐtgλ-(mgΓt)33

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.ll)

There are two things that one notices from (B.5) to (B.I 1). One is that m belongs to
SO(3, C ) x ( C x , thus only four matrix elements are independent. The rest can be
expressed in terms of the four independent variables. The other observation is that
the components of z of the transformation are expressed in terms of the compon-
ents of θι given by (B.8) to (B.ll). Thus jΉ.5) to (B.7) are internal superconformal
conditions that have to be satisfied by θ\
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Our problem is that we are given the components of θ +, and we wish to see that
there exists a superconformal coordinate transformation with this θ + by choosing
the components of Θ3'~ to satisfy the internal superconformal conditions. Let us
work with the case when N +

 + is invertible. This implies that b = D+θ+ is also
invertible and hence so is t+. From the lowest component of (A.I), when Ω is
identified with θ +, we have t2 = — 2t+ ί_. Thus even though θ+ is handed to us,
we know that t is not independent of ί+ and ί_. We will take t+ and ί_ as two
independent elements of m. There are two left, and we will choose them to be
s- and n. For now, the only constraint we put on s_ and n is that they are
invertible. This gives m an invertible determinant. The rest of the five entries of
m are expressed in terms of ί + , ί_,s_ and nby (B.5). Since θ+ is given to us, we now
have, in addition to s__and n,J:he rest of the six elements of Γ, the lowest and
highest components of θ3 and θ ~ to choose to satisfy the eight conditions in (B.6)
and three in (B.7). Since t+, s_ and n are invertible, we invert them in (B.6) to solve
for dzv9 dzφ, φ + , v + , - and v, thus satisfying six of the eight conditions of (B.6). The
two variables φ - and ι/^have coefficients ί_ . ί_ is^given tojαs and it may vanish. If it
does not, then we can invert it and choose φ - and φ to satisfy the last two
conditions. Tf ί_ vanishes then by (B.5) and by (A.I), we conclude that
n2- = — 2s_£_ = 0, ί_ = t = t = τ_ = 0 and τ = dzτ = fcτ + , where k is some even
function. Under these circumstances, the two conditions become vacuous. Sim-
ilarly, we invert t+ and n in (B.7) to solve for the highest components of θ3 and θ~,
ή and s respectively, thus leaving one condition to be satisfied. The problem is that
we cannot choose t to satisfy this equation, but one can see that if ί_ is invertible,
then we can invert π- and choose dzn to satisfy this condition. If ί_ vanishes, then
this condition becomes vacuous. Thus, all superconformal conditions can be
satisfied given θ + and we are able to complete the rest of the superconformal
coordinate transformation.
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