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Abstract. A generalisation of the finite dimensional presentation of the Faddeev-
Popov procedure is derived in an infinite dimensional framework for gauge theories
with finite dimensional moduli space using heat-kernel regularised determinants. It
is shown that the infinite dimensional Faddeev-Popov determinant is - up to a
finite dimensional determinant determined by a choice of a slice - canonically deter-
mined by the geometrical data defining the gauge theory, namely a fibre bundle
P -> P/G with structure group G and the invariance group of a metric structure given
on the total space P. The case of (closed) bosonic string theory is discussed.

0. Introduction

The Faddeev-Popov procedure for gauge theories originally introduced by Faddeev
and Popov in the context of Yang-Mills theories [1] has been discussed by many
authors in the physics literature in the context of string theory (see e.g. [2]) from a
topological point of view (see e.g. [3-5]) as well as from a geometrical stand-point
(see e.g. [6-8]). It essentially yields a formal procedure to write a functional integral
on the space P of paths arising from the functional quantisation of a classical action
invariant under the action of the gauge group G as an integral on the quotient space
P/G (or a submanifold Σ of P isomorphic to this quotient). If the quotient space is
finite dimensional as in the case of bosonic string theory (it is given by the Teichmuller
space of a Riemann surface), this procedure reduces a formal integration on an
infinite dimensional space, the space of configurations to an integration on a finite
dimensional manifold. "Factorising out" the gauge group in this way gives rise to a
jacobian determinant, the formal Faddeev-Popov determinant. Some important
clarifications were made as to the geometrical meaning behind this formal procedure
[6, 7]. This geometrical interpretation was done in a finite dimensional setting with
the implicit point of view that the infinite dimensional set up inherent to functional
integration can be seen as a generalisation.

In this paper, we want to discuss how far this generalisation to an infinite
dimensional framework can be made precise from a mathematical point of view.
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We shall more specifically concentrate on the case of (closed) bosonic string
theory.

In this infinite dimensional presentation of the Faddeev-Popov procedure, we
stress the role of elliptic operators pointing out that the Faddeev-Popov operator is
essentially built up from elliptic operators on compact surfaces. Using the heat
kernel regularisation method for determinants of elliptic operators on compact
surfaces, we extend the notion of regularised determinant to the class of operators
of interest in the Faddeev Popov procedure.

Let us briefly describe how the Faddeev-Popov operator arises in this procedure.
A natural way of parametrising the manifold P locally around p is to look for a
local cross section Σp in P at point p. If the tangent map τp at point p to the action
of the group G is injective, the map G x Σp -> P yields a one to one local parametrisa-
tion of P around p in terms of the gauge group G and the slice Σp. Changing from
one local cross section to another gives rise to a change of parametrisation and
hence to a jacobian operator tangent to the transformation going from one para-
metrisation to the other. In gauge field theories, when τp has an injective symbol,
starting from a given local cross section Σp at point p one can choose a local cross
section orthogonal to the fibre at point p and the corresponding Jacobian map is
called the Faddeev Popov operator. In Yang-Mills theory for example, a local cross
section around p orthogonal to the fibre at point p is given by the affine space
{p + Ker τ*}. where τ* is the adjoint of τp given a riemannian structure on P. Note
that this however does not a priori yield a global cross section since Gribov
ambiguities can arise [3].

Inserting this new parametrisation into the formal functional integral on the
space P gives rise to a formal jacobian determinant, the Faddeev-Popov determinant
denoted by "det Fp" which coincides with "det τp" up to a finite dimensional deter-
minant. Up to this finite dimensional determinant which depends on the choice of
the slice Σp9 this Faddeev-Popov determinant is canonically determined by the
geometric data P -> P/G through the operator τp.

We shall give a detailed description of this Faddeev-Popov operator and show
how in the infinite dimensional setting, one can compute a regularised version of
this determinant (extending the notion of heat-kernel regularisation of determinants
of elliptic operators to a class of operators of interest for this Faddev-Popov
operator). We prove it coincides (under an ellipticity assumption on τ*τp and up to
a finite dimensional determinant which depends on the choice of the slice Σp) with
a regularised version of the operator τp so that the Faddeev-Popov determinant is
canonically defined in terms of the geometrical data P -» P/G and a choice of the
slice.

We consider two cases, namely first the case when the total space P is equipped
with a metric structure invariant under the whole structure group G and then the
general case when the metric structure on P is only invariant under a subgroup K
of the structure group G which we then assume to be a semi-direct product G =
H x K, where H is a group acting on K by fc -> /CΛ, this action satisfying the condition
(khl)h2 = khlh2. We shall illustrate this in the string theory where G is the in variance
group of the classical string and H the in variance group remaining at the quantised
level in non-critical dimension.

Ultimately, in the case of a gauge theory with finite dimensional moduli space
P/G, the Faddeev-Popov procedure as described above enables us to define - under
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precise conditions on the integrand - a renormalised path integral"

where h is a functional on P and d[p] a formal Lebesgue measure on path space as
an integral on a finite dimensional manifold Σ^ P/G. More precisely, for ε > 0 let
us denote by detε(Fp) the ε- heat kernel regularised determinant of the Faddeev Popov
operator (defined in Sect. II). If for an ε-renormalised version hε of h (which we shall
describe in the particular case of string theory), hε(p) άetε(Fp) is gauge invariant and

equivalent when ε goes to zero to a density pε(x) on Σ, then ί J h(p)d[p] j is defined
as the integral on the finite dimensional space Σ:

whenever this limit exists. This renormalised functional integral is the mathematical
object implicitly referred to in the physics literature when writing lh(p)d\_p]. We
shall illustrate this in more detail in the case of string theory. p

The paper is organised as follows. In Sect. I, we briefly recall the geometrical
setting for the Faddeev-Popov procedure and define the Faddeev-Popov operator
which, in the context of string theory, is essentially built up from elliptic operators
acting on functional spaces and as such, does not have a well defined determinant.

In Sect. II, we recall the heat kernel regularisation procedure for elliptic operators
on compact surfaces (without boundary) and extend it to a more general class
of operators, namely to certain triangular matrix operators on product bundles
involving elliptic operators on a compact surface (without boundary).

In Sect. Ill, applying the results of the preceding section, we define a regularised
Faddeev-Popov determinant which coincides with the usual Faddeev-Popov deter-
minant encountered in the physics literature and define a renormalised functional
integral on the bundle P when the moduli space P/G is finite dimensional.

Finally in Sect. IV, we apply this procedure to the case of closed bosonic strings
and then define a renormalised Polyakov integral on Teichmϋller space.

I. The Faddeev-Popov Map

In this section, we recall the geometrical setting for the Faddeev-Popov procedure.
In order to describe this procedure independently of any measure theoretic notion
(infinite dimensional Lebesgue measures are not well defined), we shall define the
notion of Faddeev-Popov operator given a riemannian structure on P.

π\P-+V will denote a C°° trivial principal fibre bundle on a smooth base
manifold V with structure group G and canonical projection π. (In some cases, such
as Yang-Mills theory, the bundle P is not trivial but up to a restriction to an open
subset of the base manifold, we can however recover the above set up.) Let σ: K-»P
denote a C°° global cross section of P. Σ = σ(V) can be seen as a C°° submanifold
of P. We shall assume that the group G acts on P smoothly by a right-hand side
action:

GxP-+P
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We introduce two spaces at a point peP, namely the space:

Wp=Tp(RaΣ), (1.1)

where (x, a) is the unique element in Σ x G such that p = Rax, and the space:

Vp=TJfp) (1.2)

tangent to the fibre Fp = π~1(π(p)) at point p. Then Vp = Im τp, where

τp:TeG^TpP (1.3)

is the tangent map at point eeG to

G^P

a^Ra p = p a. (1.4)

Since Σ is a cross section for the bundle P -> P/G, the tangent space to the bundle
P at point p splits into a direct sum:

TpP=Tp(Fp)@Tp(RaΣ)

= Imτp®Wp. (1.5)

Lemma 1.1. T/ie map

is a C°° dίffeomorphism and τp is ίnjective.

Proof. It is a C°° diffeomorphism since Σ is a C°° cross section for the action of G.
Hence, Tp(RaΣ) φ Im τp = T^P, since £ induces a local cross section and the tangent
map:

TeGx TXΣ^TPP

(u9h)^>τpu + Rah

is one to one and onto. It is clearly injective if and only if τp is injective which proves
the lemma.

We now equip the bundle P with a smooth riemannian structure. It induces a
scalar product <γ>p on the tangent space TpP at any point p in P. We shall first
consider the case when this riemannian structure is invariant under the whole group
G, i.e.

(1.6)

In gauge field theories, one wants a local parametrisation of P induced by a local
cross section orthogonal to the fibre. A change of local parametrisation of P from
one induced by a given cross section around a point p to one induced by a local
cross section orthogonal to the fibre at point p gives rise to a jacpbian operator
tangent to the transformation map, the Faddeev-Popov operator.

We shall make the following assumption under with Faddeev Popov operators
can be naturally constructed in gauge theories.

Hyp 1. The gauge group G is an infinite dimensional smooth Frechet manifold equipped
with a smooth Riemannian structure, and TeG is the space of smooth sections of a
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bundle E on a compact surface Λ. The operator τp is a differential operator on E of
order larger or equal to 1 with smooth coefficients and has injectίve symbol

In the sequel, we shall denote by <y> the scalar product on TeG. We shall first
assume it is invariant under the action of the whole group G so that we define on
TflG,0eG:

<Λ;ιι,Λ;ι;>βΞ<ιι,f?>VfleG,Vιι,ι?6TβG. (1.7)

If A is a differential operator with C°° coefficients from TeG = C°°(£) to TpP which
is densily defined, A* denotes the adjoint of A with respect to <y> and <y>p. It is
uniquely defined since the domain of A contains the space C°°(E) of C°° sections
dense in the closure L2(E). Moreover, the coefficients of A being C°°, and the
Riemannian structure being smooth, the operator A* is well defined on the image
of C°°(£) through A so that the operator A*A makes sense on C°°(E) and can be
extended in a unique way to a self adjoint operator which we denote by the same
symbol

Remark. Notice that the injectivity of the symbol of τp yields the ellipticity of the
operator τ*τp (see e.g. [9]).

Since τp has an injective symbol, the space Im τp is closed in TpP and the following
orthogonal splitting holds (see [9], Corollary 6.9):

Since Im τp is closed, the orthogonal projection onto Im τp is well defined and we
shall denote it by πp. In gauge field theories, when the manifold P is a C°° Hubert
manifold, using the implicit function theorem, one constructs a local cross section
Sp of P with tangent space Ker τ* which is then naturally orthogonal to the orbit
of p since the splitting Ker τ* © Im τp = TpP is orthogonal. This gives rise to the
following jacobian operator:

Lemma 1.2. The map

(u, h) -> (τpu + πpft, (1 - π

P)
n)

is one to one and onto.

Proof. The map Fp is clearly injective if and only ifτp is injective. Let us check that
it is onto. Take (kl,k2)e\mτp x Kerτ*, the splitting (1.5) yields k1 + k2 = τpu + ft,
w e T G, heW so that /c1 = πp(kl + k2) = τpu + π ft, k2 = (1 - π )/ft and F (n,ft) =
(/cU2).

Definition. Tfte map Fp of Lemma 1.2 is called the Faddeev-Popov operator associated
to the group G.

Remark. The construction of a Faddeev-Popov operator can be generalised to the
case when the gauge group is a semi-direct product

G = G'xiG" (1.8)

of two groups as in the case of string theory, the group G' acting on G" by an action
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satisfying the requirement:

The underlying Riemannian structures are not invariant under the whole group G
anymore but only under the group G', the total group G being the structure group
for the bundle. In the case of strings, G is the in variance group for the classical action
describing the classical motion of the string whereas G' is the invariance group
remaining at the quantised level in non-critical dimension, the group of invariance
of the formal measures arising in the functional quantisation.

In this case, the operator τp has the following shape:

τp:TeG'xTeG"^TpP

where

and

τ'pu' = τp(u')

Under the assumption Hyp. 1, the space Imτ^ is closed and we can define the
orthogonal projection π"p onto this space. Writing

τp(u' + u") = (τ'p - π"τ'p)u' + π'pτ'pu' + τ"pu"

yields the following matrix representation for τp as an operator from TeG' x TeG"
onto Kp- x Kp with Kp = Im τp:

**+">-β ;][:•}
where

and

= πpτp.

The operator τp then has injective symbol if and only if the operators Ap and Bp

have injective symbol. In particular, both operators A*Ap and B*Bp are elliptic.
Lemma 1.2 clearly extends to this more general operator τp and we can extend

the notion of Faddeev-Popov operator to this case whenever τp is injective. Notice
that if G" = [e], we have Im τ"p = {0} and the matrix operator given in (1.9) reduces
to the operator Ap — τp.

In order to simplify the presentation of the Faddeev-Popov procedure, we shall
assume that the operator Bp takes a simple form, this being the case in string theory.
However, the setting could be generalised to any differential operator Bp with C°°
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coefficient's and injective symbol as we shall point out throughout paper. We assume
that TeG" is canonically embedded by an isometry ip into TpP and that Bpu" = ip(u"}.
We shall henceforth identify TeG" with ip(TeG") thus replacing the operator Bp in
(1.9) by 1.

The Faddeev-Popov operator Fp associated to the gauge group G reads:

FP = DP + RP (1.10)

with

(1.11)
[_u n j

and

0 πp/Wp

' LO -*jw,\
where Dp and /^ are seen as operators from TeG x Wp to T^P ̂  Imτ^ x Ker τ*.
Here πp/Wp denotes the restriction of the projection πp to the finite dimensional
space Wp.

From now on, we shall assume that the moduli space is finite dimensional, i.e.
that the following assumption is fulfilled

Hyp 2. dimP/G< oo.

Notice that the matrix Rp is then of finite rank and hence of finite trace. The operator
D*Dp on the other hand will essentially be an elliptic operator and to define its
determinant requires a regularisation. The object of the following section is to define
the Faddeev-Popov determinant, i.e. to give a meaning to the expression "det Fp"
and to give a mathematical interpretation of the formal equality:

= (det(τ*τp))1/2 det(l - πp)", (1.13)

where det(l — πp) is a finite dimensional determinant given by the determinant of
the matrix of H — π seen as operator from W onto Ker τ*

II. Regularised Determinants for Elliptic Operators

In this section, we shall extend the presentation of heat-kernel regularisation for
determinants of elliptic operators which was done in [12 and 13] in the particular
case of string theory to a more general setting so as to be able to define the regularised
Faddeev-Popov determinant "det Fp" Let E be a smooth vector bundle with fibres
of finite dimension based on a boundaryless C°° real compact manifold A of dimension
k ̂  2 and let CCO(E) be the vector space of smooth sections of E. Let H = L2(E) be
the closure of C°°(£) with respect to the L2 scalar product induced by an L2 -scalar
product < , •> on E. Let E\\ + (E) denote the space of positive elliptic self adjoint (with
respect to <•,•» operators on H of strictly positive order. We apply here classical
results for elliptic operators on compact surfaces for which we refer the reader to
[10]. Since A is compact, for AeEll*(£), the orthogonal space HA = (KeτA)λ to
the kernel Ker A of A is invariant under A and we can define the restriction >4/(Ker A)1
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of- A to this Hubert space HA. Let us set

A' = A/HA. (2.1)

This defines a strictly positive self adjoint operator on HA.
We now introduce a heat-kernel cut-off function which yields the usual heat-

kernel regularisation for infinite dimensional determinants via the spectral theorem.
For ε > 0, Λ,elR+/{0} we set:

+ (2.2)

and for ,4eEll + (E), we define hε(A') through the spectral theorem.
If JI(H] denotes the set of compact operators A on H such that \A\ has finite

trace (the trace is taken with respect to the scalar product < , » then for A = 1 + C,
CeJ !(//), we can define the determinant det A of A as in [11] and it coincides with
the product of the eigenvalues of A (theorem of Lidskii). The asymptotic behaviour
of the eigenvalues of a positive self adjoint elliptic operator of strictly positive order
on a compact boundaryless finite dimensional manifold yields that

Jι(HA) (2.3)

for all AeE\\ + (E\ ε > 0 and hence the finiteness of the "ε-cut-off" determinant:

det'Λ(A) = det(hε(A% VAeE\l + (E). (2.4)

The regularised determinant is then defined as

det' (A) ΞΞ lim exp [log det /zε(,4')-divergent terms]. (2.4 bis)
ε->0

Let now £, F be two smooth vector bundles based on Λ with fibres of finite dimension
and C°°(E), C°°(F) be the corresponding vector spaces of smooth sections.

Let Λ:C°°(E)->C00(F) be an operator such that A*AeE\\ + (E\ then applying
formula (2.4), we can extend the notion of regularised determinant setting:

)1/2 (2.5)

and

det'(A) = det(AM')1/2. (2.5 bis)

When the operator is injective, we shall omit the prime.
We now generalise this heat-kernel regularisation for determinants of a class of

triangular matrix operators.

Proposition 2.1. Let E = E1 x £2, F = Fί x F2 be products of C°° bundles equipped
with scalar products and

T:CCO(E1) x C'Λ(E2)^CCO(F1) x C°°(F2)

be an injective operator of the form

C
°Ί=μ oTi on
tj LO iJLc ij
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such that:

a) the operator A*AeEU + (E1)9

b) C is a differential operator with C°° coefficients of strictly positive order. Then for
ε > 0, the operator

*CΓkC*Jhε(A*A) OΊΓ

1 JL 0 t]\_
ί τ*Γ ) =

1 (l+εC*CΓkC*Jhε(A*A) OΊΓ 1 0

C(l+εC*CΓk l

is of the form "1 -f a traceclass operator" and we have

det(Γ* T)ε = det hε(A*A) = (detε(Λ))2.

Remark. As pointed .out above, this could easily extend to the case

τ = \A °"

where B is a differential operator with C°° coefficients such that B*BeEll + (E2). We
would have

det(Γ* Γ)ε = det hε(A*A)det Λe(B*B).

Definition. For T as m Proposition 2.1, we define the ε-cut-off determinant detε(Γ) =
(det(T*T)ε)

1/2soί/ιaί

detε(T) = detε(A). (2.6)

Notice that A*A = A*A' since T is injective. Moreover, the equality of the deter-
minants also holds in the limit ε -> 0 after removal of the divergences (see (2.5 bis)):

det(Γ) = det(Λ). (2.6 bis)

Proof of Proposition 2.1. Let us write

ΓH (l+βC Q-'C -llΛMM) 0-IΓ 1 OΊ
( jε LO 1 JL 0 lJLc(l + εC*C)-* i j { '

Since /zε(^*^r) is of the form "1 + a trace-class operator," so is the operator described
by the middle matrix in (2.7). As for the two extreme matrices in (2.7), we observe
that the operator C(l + εC*C)~k and its adjoint are pseudo-differential operators
of order — m with m > k since k> 1 (where k is as before the dimension of A) and
hence trace class (see e.g. [15] p. 308) so that these matrices represent operators of
the form "1 + trace class." The product of operators of the form "1 + trace class"
being "1 + trace class" (see e.g. [11]), the first assertion of the proposition follows.

As for the second assertion, we use the fact that the determinant of an operator
of the form "1 + trace class" is well defined and finite and we apply the product
formula for determinants of such operators (see [11]). The determinants of the two
extreme operator matrices in (2.7) are equal to 1 since they are of the form "1 +
a nilpotent operator"; the determinant of the middle operator is exactly det hε(A*A)
as the product of the eigenvalues.

Let us now briefly comment on this regularisation procedure; it essentially
amounts to a renormalisation by which one divides the determinant of an operator
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by an infinite constant independent of the operator in a sense made clear by the
following proposition.

Proposition 2.2

1) Let A eEll+ (E\ where £ is a vector bundle as above. For ε > 0 there is a constant
Kε = hε(l)~1 independent of A such that Kεhε(A) converges pointwise to A on a core
of A.
2) Let A, B, C and T be as in Proposition 2.1 and let us set for ε = (ε1} ε2>

 ει)>

fr*r) Γ* (i + eWQrTjKMA'A) OΊΓ I OΊ
h LO i JL o i_]|_c(i+e3c*cr* ij

then there is a sequence έ(rc)eIR3 converging to (0,0,0) as n-> + oo a such that the
family of operators (T*T)E(n} converges point-wise to the operator T*T on a core
of Γ*T.

Proof. The first part of the proposition is a direct consequence of the definition of
ε/λ

hε. Indeed, we have exp — j t~1e~tλdt-+λ when ε->0 and hence

exp J t Le IΛ,
ε/λ

when ε->0, which is equivalent to hε(l)~1 hε(λ)-+λ. C°°(E) is a common core for a
positive operator A and /ιε(Λ) and we have by the spectral theorem that Kεhε(A)
converges pointwise to A on this common core with Kε = (Λ^l))"1.

The proof of part 2 essentially follows the lines of Prop. 6.7, p. 74 in [12]. We
shall set the following notations

Γ
' _C(l+εC*C)
-Γ
1 L

ΓKA^ M) o]
L o i j

N

for ε>0. The space L of finite linear combinations £ akhk, ΛΓeN, αλeQ, where
fe = 0

/ιk, feeN is a fixed orthonormal basis in L2(E) such that /ikGC°°(£), yields a common
core for the operators Γ] and their adjoints since it is dense in C°°(E) and the
operators are bounded. L is a countable space and we shall denote a generic element
by /;. The following inequalities hold by easy pointwise convergence considerations.

Setting ε(p) — -, from the pointwise convergence of Γ* to Γ* when ε->0 on the
P

core, we have (denoting by || || the norm with respect to the L2 structure):

Furthermore, from the pointwise convergence of Γε

2 to Γ2 when ε->0 on the core,
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we can write:

3 ε2(pίt N) > 0, V ε2(p) ̂  ε2(pί>N)

II r^ε2(p) /-• / Γ Γ 1 \\ < _ I) f Γ"«ι(ph* II ~ 1

I I 7 2 -* ι*i ~ λ 21 \li\\ = ZT: IK7 i Ml

Finally, the pointwise convergence of Γ\ to /^ when ε->0 on the core gives:

Combining these three inequalities, the diagonal principle yields the following
assertion:

> 0, VieN, 3 n ί t Λ Γ > 0, V w > w ί § Λ Γ

using the formula

This ends the proof of the proposition.

III. The Regularised Faddeev-Popov Determinant

The aim of this section is to give meaning to the Faddeev-Popov determinant"
d e t F p " Recall that Fp = Dp + Rp with Dp and Rp given by (1.11) and (1.12). Since
by definition of a Faddeev-Popov operator, τp is invertible, so is Dp and we can
write:

so that F*pFp = (1 + D-lRp)*D*Dp(l + D~1RP).

Recall that Dp = \ p where τp is a differential operator of the form (1.9). For
|_0 IJ

ε > 0, we define the ε-cut-off Faddeev-Popov operator:

(F*FP)£ = (1 + D-' Rf)*(D*fD,\(\ + D; ' Rp), (3.2)

where

?τ»). 0

and with (τ*τp)ε defined as in Proposition 2.1 with T = τp, A = Ap, B = Bp = t,
C = Cp, defined in (1.9.a-c). This operator is also a determinant class operator as
is shown in the following proposition:

Proposition 3.1. For ε > 0, the cut-off Faddeev-Popov operator (F*F )ε is an operator
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of the form "1 + trace class" and we can define the ε-cut-off Faddeev-Popov deter-
minant:

Then

detεFp = det(l - πp)det(τ*τp)ε

1/2 = det(l - π;

where

det(l-π^J^^!/2;

Ψi

pΛ= 1,..., dim P/G, is α feαsis (non-necessarily orthonormal) of Kerτ* and χl

p,
i = 1,..., dim P/G is an orthonormal basis of Wp.

Remark. Since the divergences when ε -> 0 of the ε-cut-off Faddeev-Popov determi-
nant detε(Fp) coincide with that of the ε-cut-off determinant detε(4p), after removing
the divergences, we have an equality of regularised determinants (see (2.5 bis)):

det Fp = det(l - πp)det(Λp).

Proof of Proposition 3.1. As was pointed out earlier on under the assumption
Hyp. 2, Rp being of finite rank is trace class, so both (1 + D^Rp) and (1 + D~1RP)*
are of the form "1 + a traceclass operator." Thus the product (F*Fp)ε is also
"1 + traceclass" and has a well defined determinant which coincides with the product
of the determinants of the three operators. By Proposition 2.1, we have det(D*Dp)ε =
detε(A*Ap). On the other hand, by (1.11) and (1.12), we have

D;1R Γo <;",] ΓO o 1 Γo τ ^-1
P P LO -πj LO -πj LO 0 J

But the last matrix in this sum is nilpotent and we have

| = det((l-πp)/W;).

. Γl 0 1
nx

LO 1-πJ
Γl 0 Ί

can be written ~ . . , where Ψl

p, i = 1,..., dim P/G is an orthonormal

basis of Ker τ* and χ^, i = 1,..., dim P/G is an orthonormal basis of Wp. If we now

express this matrix in terms of a non-necessarily orthonormal basis Ψl

p, i = 1,..., p
of Ker τ*, and compute its determinant, we find the result announced in the proposi-
tion. A similar computation holds then for the adjoint expression, and we finally find

det(P*Fp)ε - det(l - πp)
2det(τ*τp)ε

with det(l — πp) as in the proposition, which ends the proof since by Prop. 2.1 since
we have det (τ* τp)ε = det hε(A* Ap) = detε( Ap)

2.

Remark. If we had τp = \ p with B*Bp elliptic, then the ε-cut-off Faddeev-

Since 1 — πp is the orthogonal projection of Wp onto Ker τ*, the matrix
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Popov determinant would read:

detε(Fp) - det(l - πp)detβμp)dete(Bp).

IV. Application to Bosonic String Theory

In this section, we apply the framework set up above to the context of (closed)
bosonic string theory. We shall use classical results in string theory and refer the
reader to [12, 13] for further details. We first define the various objects introduced
in the previous sections in this context.

Let A be a C°° real connected compact surface of genus p > 1 (so that we take
here k = dim (A) = 2) and let M(Λ) be the manifold of C°° Riemannian metrics on
A. We shall denote by D0(Λ) the group of C°° diffeomorphisms of A which are
homotopic to identity. It coincides with the connected component of identity in the
group D(A) of diffeomorphisms of A and acts smoothly on M(Λ) by pull-back. Let
W(A) be the Weyl group {eφ, (/>eC°°(/l,]R)}. It acts smoothly on M(A) by point-wise
multiplication.

Let us define the bundle P of Sect. I. We first notice that setting G" = W(A\
G = DQ(A\ the group G' acts on G" as follows:

W(Λ)-*W(Λ)

λ-+λf = λ°f

and the action obviously satisfies the relation:

Hence we can define the semi-direct product G = D0(A) x W(Λ) with the product
law:

Notice that the group G has the structure of a C°° Frechet manifold with tangent
space Cco(TΛ)xCao(Λ9K).

We now set

P:M(Λ)-+M(Λ)/D0(Λ) x W(A). (4.1)

P indeed defines a C°° principal trivial fibre bundle (see e.g. [13] and references
therein) with a C°° global section which we shall denote by σ.

Let us denote by &~(A) the Teichmuller space, i.e. the quotient space M(Λ)/W(Λ)/
D0(Λ). It is a real smooth manifold of dimension 6p — 6. Hence Hyp. 2 of Sect. 1 is
fulfilled.

There is a global C°° cross-section:

and any metric in M(Λ) can be written in a unique way as g = f*eφgt, feD0(Λ)9

</>eC°°(/l,IR), ίe«^~. For more details concerning this point, we refer the reader to
[12] and [13].
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Let us now introduce the space Wp of Sect. I. We have Σ = {gt, te^(Λ)}. For a
metric g = f*eφgteM(Λ\ we therefore set

Wβ=Tβ(f*<*Σ), (4.2)

where C°°(52Γ*) is the space of C°° sections of the bundle S2T* of symmetric 2
covariant tensors over Λ-notice that this space is just the tangent space to the C°°
Frechet manifold M(A).

We now define for a point p in the bundle P (i.e. here for a metric g in the space
M(A)\ the map τp of Sect. I. Since diffeomorphisms act by pull-back and since the
tangent space to D0(Λ) is the space of C°° sections C°°(Γ/1) of the tangent bundle
TΛ over /I, it is easy to see that the tangent map to the pull-back map is given at
a point geM(Λ) by:

τg:C°°(TΛ) x C^AR^C

(4.3)

Here Vg denotes the Lie derivative with respect to the metric g, (Vgu)ab = Vaub + Vbua.
Let us equip TgM(Λ) with a scalar product:

Kgab(ξ)gcd(ξ)-]hab(ξ)kcd(ξ)dξy (4.4)

where K is a positive constant, (which we set equal to |)

GZ = &:δ< + δlδ'a-gΛg«)

and

Gabcd = gaegbfGc

e

d

f.

When restricted to tensors of the form h = λg (pure trace tensors), this scalar product
coincides with the scalar product on functions:

so that the embedding:

is an isometry. As we did in the general setting, we shall henceforth identify C°°(/l, R)
with C°°(Λ,R)0. Seen as a matrix operator as in (1.9), the operator τg thus reads:

τ = lc.
with

and where Ag is defined as follows.
Let us first note that the natural scalar product <v>β for two tensors defined

on TgM(Λ) is not invariant under the whole gauge group G but only under the
group D0(Λ) of C°° diffeomorphisms homotopic to identity and that there is a
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natural orthogonal splitting of TgM(Λ) for the scalar product <v># into traceless
two tensors and pure trace tensors, namely:

TgM(λ) = C*(S2

0 T*) Θ C°°(

where C^S^T*) is the space of smooth sections of the bundle of two symmetric
traceless covariant tensors (the trace is taken with respect to g). Since the image by
τg of the tangent space to the Weyl group W(Λ) is C°°(/1,]R)0, the operator Ag is
obtained by projecting τg onto the traceless tensors. We hence define (adopting the
usual notations namely setting Ag = Pg)

In matrix representation, the operator τg reads:

P. o

The operator Pg being injective for genus p > 1, so is the operator τg. We can define
for each geM(Λ), the Faddeev-Popov operator Fg and write it Fg = Dg + Rg accord-

ing to (1.10), (1.11) and (1.12) so that Dg = Γ9 ° |andK, = Γ° *9 1 where π,
L O HJ |_0 -πgj

is the orthogonal projection onto
Let us now check the remaining assumptions made in Sect. I for this data. Hyp. 1

is fulfilled since ΊeG = C°°(TΛ x(Λx R)) and τg is a differential operator of order
larger or equal to 1 since the metric g is C°°. Moreover it has injective symbol [14].
In particular, the operator Pg has injective symbol and P$Pg is an elliptic operator
on the compact surface A (see also [12, 13]). We pointed out above that Hyp. 2 is
satisfied, since dim M(Λ)/D0(Λ) x W(A) = 6p — 6, where p is the genus of Λ.

Hence we can apply the results of Propositions 2.1 and 3.1 to compute the ε
regularised Faddeev-Popov determinant. We set T = τg, A = Pg9 C = ^trg(Vg(-))g
and define the ε-regularised operator (τ*τ^)ε according to Proposition 2.1. As in (3.2)
we can then define the ε cut-off Faddeev-Popov operator (F*Fg)ε and the ε cut-off
Faddeev-Popov determinant is then given by Proposition 3.1,

detβ(F.) = det(l - 7gdet(i*gy2 = det(l - π,)detβ(P,),

where 1 — πa is as before the orthogonal projection from Wg onto Kerτ* By (4.6),
P* x Ί

9 , so that

Ker τ* = Ker P* x {0} * Ker P*
y y ^ J y

and det(l — πg) coincides with this same determinant where now πg is the orthogonal
projection of Wg onto Ker P*. Hence we find the usual expression of the Faddeev-
Popov determinant for bosonic strings namely:

Ψl yj^ }* >* /9) / 1 t /p*p \ u / 2 (47\

1'2( t(P β)) l '
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Ψ^9i=l9...96p — 6isa (non necessarily orthonormal) basis of Ker P* and tfg9 i =
1, . . . , 6p — 6 is an orthonormal basis of Wg.

After removing the divergences when taking the limit ε -> 0, we have:

Let us now apply these results to define a renormalised "Polyakov path integral"
on the space of configurations of a closed bosonic string evolving in space-time.

We consider as before a smooth compact boundaryless surface A embedded in
IRd modelling the evolution of a closed bosonic string in space time Rd. The space
of configurations is C°°(/l,Rd) x M(Λ) and the quantification of the string model
amounts to defining functional integrals of the form

f f(x,g)e-(1/2)A(x>g}dxdg"

where dxdg is a formal Lebesgue integration on the product space C°°(/l, Rd) x M(Λ\
f ( x , g ) is a functional on this same product space, the space of configurations and

A(x,g)= j ^/doϊggabdax
μdbx

μ is the classical action corresponding to a metric
A

g = gabdηadηb on /I, the determinant of which is denoted by det# and the inverse
matrix of which is written (gab).

After a gaussian integration in the variable x (corresponding to the embedding
of the surface A in Kd), this boils down to defining formal integrals of the form

dg" = " ί h(g)dg," (4.8)

1
where H is a functional on M(Λ), Δg = ——= da^/detggabdb is the Laplace Beltrami

v/det0
operator, det( — Δg) its formal determinant and

Using the results of the preceding sections, we introduce a renormalised "Polyakov
path integral" for closed bosonic strings which is the one implicitly referred to in
the physics literature on functional integration of strings.

Since - Δβ is a positive self adjoint elliptic operator on the L2 closure L2(Λ,Rd) of
C°°(/i,Rd) (with respect to the scalar product < , >β induced on scalar functions on
A by the metric g\ we can define for ε > 0, the ε-cut-off determinant det^( - Δg)~d/2

as in (2.4). It is by now a classical result (see references in [2]) that for dimension
d = 26 (critical dimension), and g = f*eφgt (as described above), the expression

, _ / A?\'(—Λ\ \-d/2

ε*"> exp{ - μ. f JteΓg(η)dη} ^ gj det.(F.)
Λ \IJdet g(η)dη

\Λ /

is equivalent to a gauge invariant function γe(g) when ε -»• 0 (and hence to a function
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yε(t) of te^~(Λ)). Here exp{ — με J >/det g(η)dη} is the cosmological constant term,

με an ε dependent positive constant tending to -f oo when ε -> 0, a(Λ) is a topological
constant expressed in terms of the Euler characteristic χ(Λ).

Let now H(g\ g =J*eφgt be a gauge invariant functional on M(A\ which we
can see as a function H(t) = H(gt) on f(Λ). Setting

hε(g) = H(g)ε«Λ)exp{-με$

we see that hε(g)detε(Fg) is equivalent when ε->0 to a function pε(t) = H(t)yε(t) on
«^"C/1). If lim J pε(t)dt exists, then the renormalised integral

ren = Γ J h(g)dg] = lim J
I_M(Λ) Jren ε^° 3~(

is finite and we have

J H(t)γΛ(t)dt

det.(Ff)A,

(4.9)

thus giving a meaning to the formal path integral (4.8).

V. Summary

We have given a careful treatment of the Faddeev-Popov procedure applied to the
functional quantisation of gauge theories with finite dimensional moduli space like
string theory and shown how far the finite dimensional treatment of the procedure
can be generalised to infinite dimensions. After having defined a notion of the
Faddeev-Popov operator independent of measure theoretic considerations in terms
of the geometrical data for the gauge theory, we extended the heat-kernel regularisa-
tion methods to classes of operator matrices to which belongs the Faddeev-Popov
operator in order to define the Faddeev-Popov determinant. We prove this infinite
dimensional determinant is canonically determined by the geometrical data - a fibre
bundle P -> P/G, where P is equipped with a metric - defining the theory and a
choice of a slice. This then enables us to define a priori a renormalised path integral
in terms of a finite dimensional integral on moduli space.
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