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Abstract. The superselection structure of the Wess-Zumino-Witten theory based
on the affine Lie algebra sδ(Λf) at level one is investigated for arbitrary N. By making
use of the free fermion representation of the affine algebra, the endomorphisms which
represent the superselection sectors on the observable algebra can be constructed
as endomorphisms of the underlying Majorana algebra. These endomorphisms do
not close on the chiral algebra of the theory, but we are able to obtain a larger
algebra on which the endomorphisms close. The composition of equivalence classes
of the endomorphisms reproduces the WZW fusion rules.

1. Introduction

In quantum physics there has been a continuous effort to define the theory from
first principles - the axiomatic approach. One of the main developments in this
respect has been algebraic quantum field theory [1,2] (for further references see [3]).

For many physicists a major drawback of the axiomatic approach to quantum
field theory has been the scarcity of interesting examples. On the other hand two-
dimensional conformal field theory (conformal field theory, for short) has produced
a wealth of non-perturbatively solvable field theories. In fact rational conformal
field theory has reached such a stage of maturity that there are attempts at a classi-
fication of all rational conformal field theories. Thus it is very natural to try to
incorporate some of the conformal field theory examples into the framework of
algebraic field theory. So far this has been done only for the simplest rational
conformal field theory - that of the Ising model - by Mack and Schomerus [4].

Central to the description of conformal field theory is the infinite-dimensional
symmetry algebra of the theory. Since conformal field theories are solvable theories
it is no surprise that a large part of the information about the theory is contained
in the symmetry algebra - the kinematics. Another specific feature of conformal field
theory is holomorphic factorization. As a consequence one is led to consider a one-
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dimensional theory (the left or right chiral part) specified by the chiral algebra - the
chiral half of the symmetry algebra. A careful analysis [5] shows that in fact the
conformal field theories are living on a tube, and owing to the periodicity in the
space direction the chiral parts live also on circles S1. To each highest weight module
associated to a positive energy representation of the chiral algebra (the number of
which is by definition finite for rational conformal field theories) corresponds a
primary field which, when acting on the vacuum, produces the highest weight vector
of the module. An important element of the theory are the chiral vertex operators.
A chiral vertex operator at the point z can be thought of as an intertwiner of the
representations provided by two primary fields at zero and at z and a third one at
infinity. The data of the chiral vertex operators are equivalent to the three-point
functions of the primaries, or to the knowledge of the operator product coefficients.
The operator product coefficients are essentially the structure constants of the chiral
part of the field algebra, which is obtained by adjoining the primary fields to the
chiral algebra. Thus the knowledge of the representations of the chiral algebra and
the operator product coefficients determines the theory completely. Somewhat
coarser information is provided by the fusion rules. The fusion rule coefficients Nπι*

3

2

give the number of chiral vertex operators intertwining the representations n^ x π2

and π3. The analogy with simple Lie algebras is that the chiral vertex operators
correspond to the Clebsch-Gordan coefficients while the fusion rule coefficients
correspond to the tensor product multiplicities. Even though the operators compris-
ing the chiral algebra are mutually local (have trivial monodromy), in general the
primary fields have non-trivial mutual monodromy and hence give rise to representa-
tions of the braid group.

Many of the structures encountered in conformal field theory are not due
specifically to the conformal invariance, but are general to any two-dimensional
quantum theory. In particular the appearance of braid group statistics is character-
istic of any two-dimensional theory [6,7]. Therefore trying to incorporate the
different conformal field theory models (most important of all the Wess-Zumino-
Witten (WZW) [8] models, believed to be the building blocks of rational conformal
field theory) in algebraic field theory not only puts conformal field theory into a
more general framework but also provides guidelines for the general theory.

In algebraic field theory the central role is played by the observable algebra
[2,6,9]. For every double cone (9 of the underlying Minkowski space-time there is
a unital C*-algebra jtf(&) of observables localized in this cone. The quasilocal
algebra £0 of observables is the completion of the union of the local algebras. The
causal structure of space-time is implemented by the requirement that elements
belonging to local algebras <£/($!), jtf(®2) should commute if (9ί and (92 are relatively
space-like. The physical Hubert space 3? breaks up into a direct sum ̂  = ®^t of
orthogonal Hubert spaces Jff - the superselection sectors, carrying irreducible
representations πt of s0.

The guiding principle of algebraic field theory is that all the information be
contained in the vacuum representation of the observable algebra. In particular,
provided that πQ(stf) satisfies Haag duality, all the asymptotically vacuum-like
representations πt of stf are obtainable (up to unitary equivalence) by composing
the vacuum representation π0 with transportable, localized endomorphisms pt of
the observable algebra,

π^πoopi. (1.1)
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An endohiorphism p is localized in Θ iff p is the identity on <$tf((9c\ where Θc is the
causal complement of Θ. It is transportable iff for any point x of Minkowski space-
time there exists an endomorphism p localized in φ = Θ + x which is equivalent to
p. Two endomorphisms p and p are defined to be (unitarily) equivalent if there exists
a unitary U belonging to some local observable algebra such that

p(a)=Up(a)U* = ffu(p(a)) (1.2)

for all αej/. (In general, for any unitary Uejtf, one defines the corresponding inner
automorphism σv of stf as

σu(a)=U a'U* (1.3)

for all aes/.)
Endomorphisms in the same equivalence class [p] lead to equivalent representa-

tions of the observable algebra. By locality we have π0(s/((9c)) ^ π0(j/(0))', where
the prime denotes the commutant. The important assumption above, Haag duality,
is the assertion that in fact this is an equality

π0(^((9c)) = π0(^((9)γ. (1.4)

This means that, in a certain sense, the observable algebra jtf is maximal. If Haag
duality is satisfied, one usually identifies sf(&) with its vacuum representation

The field algebra 2F is obtained from #0 by adjoining charged fields/to <stf which
realize the endomorphisms, i.e., af = fp(a) for all aesί.

When one is looking at a conformal field theory from the point of view of super-
selection sectors, one must identify the various objects appearing in the conformal
field theory with corresponding objects of the algebraic theory. In general these
identifications have not yet been proven rigorously, but it is intuitively clear that
the following "translation" of notions takes place. The chiral algebra plays the role
of the observable algebra. Indeed, the fields contained in the chiral algebra are
mutually local and moreover, as is usual in quantum theory, the generators of the
symmetries are observable. The irreducible representations of the chiral algebra
should be considered as the Superselection sectors. Thus the primary fields corres-
pond to the "charged" fields implementing the corresponding endomorphisms of
the observable algebra. The fusion of two primaries corresponds to the composition
of the respective transportable endomorphisms. If in the composition we are restrict-
ing ourselves only to equivalence classes of endomorphisms, then we get the fusion
rules:

When incorporating a conformal field theory model in the framework of algebraic
field theory, one would like to use the knowledge one has about the positive energy
representations of the chiral algebra. This means in particular that we will relax
the canonical framework [2, 6, 9] and allow the observable algebra to contain un-
bounded operators - the generators of the chiral algebra. Another difference is that
one allows global elements in sf\ this is because our "space-time" has the topology
of the circle (for example, the central element Y which implements the translation
by 2π is in stf\ This means that the observable algebra cannot be identified with its
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vacuum representation π0, since π0 is not faithful. Having relaxed the quasilocality
of eQ/ it is natural to look for non-localized endomorphisms of the chiral algebra
that lead to its inequivalent representations. One finds that in order to obtain these
endomorphisms, it is necessary to extend the chiral algebra. This should in fact be
expected because one does not have Haag duality for the chiral algebra. Let us give
a pedestrian explanation of why e.g. the Virasoro algebra Vir has to be enlarged to
obtain the observable algebra. Consider the algebra Vir(/) of diffeomorphisms that
are localized in an interval 7 c S1, i.e., outside of this interval they act as the identity
map. The double commutant Vir(/)" of Vir(/) in the space ^p"f0) of bounded
operators in Jf0 can serve as a local observable algebra and satisfies Haag duality
[10]. The algebra Vir(/)" certainly contains not only the diffeomorphisms, but also
bounded functions of operators that act by multiplication by functions that are
constant on Γ = S1^. Therefore a necessary condition for being able to describe
the observable algebra <*/(/) satisfying Haag duality as bounded functions of a Lie
algebra of unbounded observables, is that we extend Vir(7) by the Lie algebra of
functions on the circle. Of course one must check that this extended observable
algebra has the same superselection sectors as the chiral algebra we started with.
In addition, having obtained the non-localized endomorphisms, one has to show
that it is possible to find localized ones giving rise to the same representations.

This program was carried out in [4] for the Ising model. In this model one has
three inequivalent physical representations of the chiral algebra (the c = 1/2 Virasoro
algebra Vir1/2); these are the representations corresponding to the identity, the
energy operator, and the spin operator. The key point in [4] was the explicit construc-
tion of the non-local endomorphisms that correspond to these three representations.

Technically the endomorphisms were constructed by employing the free fermion
realization of the Ising model. It is well known that a free Majorana fermion has
an energy-momentum tensor which is bilinear in the fermions and has central charge
1/2. Thus one is looking for endomorphisms of the Majorana algebra which, when
composed with the vacuum representation and restricted to the Virasoro algebra,
give the three inequivalent representations of the c = 1/2 Virasoro algebra. In fact
it turns out that these endomorphisms do not leave the Virasoro algebra invariant;
rather, the algebra of observables on which the constructed endomorphisms act is
an extension of the algebra of vector fields (centerless Virasoro algebra) and functions
on the circle by an infinite orthogonal Lie algebra O^ (consisting of finite linear
combinations of fermion bilinears) and two central elements [4]. A question which
was not investigated in [4] is "w/zj; this algebra of observables." In this paper we also
do not have much to say about this issue; instead we will try to enlarge the set of
examples, hoping that this could provide a clue to the answer.

Since the fermionic realization of the Ising model has been the key to the explicit
construction of the endomorphisms, we will consider here the next most simple
generalization - WZW models based on level 1 affine orthogonal Lie algebras
sb(N)i. For such models one can represent the Virasoro generators and the Kac-
Moody currents in terms of bilinears of N fermions.

The representations of so(ΛOι are of course known [11]. For N even we have
four physical representations - the basic representation, the vector, the spinor and
the conjugate spinor; these will be denoted symbolically by 1, v, s, and c, respectively.
In this symbolic notation, the fusion rules read

1, s*c = v, for Ne4Z, (1.6)
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respectively

= s * c = l , s*s = c*c = v, for Λfe4Z + 2. (1.7)

Recalling that primary fields for which the fusion product with any primary field
produces exactly one primary field are called simple currents [12-14], we see that
for even TV all the representations l,v,s,c correspond to primary fields that are
simple currents. It is known that the simple currents of a conformal field theory are
precisely those primaries which have quantum dimension equal to 1 [14]. In terms
of algebraic field theory, the quantum dimension of a primary field corresponds to
the statistical dimension of the associated endomorphism of the observable algebra,
and it can be shown that the endomorphisms with statistical dimension 1 are precisely
the automorphisms [15]. Thus simple currents correspond to endomorphisms
which in fact are automorphisms, and hence for even JV we will be looking for auto-
morphisms leading to the fusion rules (1.6, 1.7). (Theories where all endomorphisms
are automorphisms have also been analysed, in the context of the ύ1 Kac-Moody
algebra, in [16].)

The case of odd N is similar to the Ising model: we have three physical representa-
tions - the basic, vector and spinor representations, denoted symbolically by 1, v,
and σ. The fusion rules of the N odd case are the same as the ones of the Ising model,

v * v = l , σ * σ = l + v , σ*v = σ; (1.8)

thus the identity and vector are simple currents, while the spinor is not. This means
that we should be looking for an automorphism to represent the vector, and a
proper endomorphism to represent the spinor.

With this input from the conformal theory it is possible to construct explicit
endomorphisms of the Majorana algebra which, when composed with the vacuum
representation and when restricted to the chiral algebra (the semidirect sum of the
Virasoro algebra Vir^/2 and so(N)1), give the physical representations of the chiral
algebra. The Majorana algebra and the chiral algebra and their representations are
presented in Sect. 2,'and the endomorphisms are introduced and analysed in Sect. 3.
Section 2 also contains a brief discussion of the various local and global observable
algebras. The global Lie algebra of observables, which we denote by Jδf, is analysed
further in Sect. 4. As in the case of the Ising model, the endomorphisms again take
us out of the chiral algebra. This time besides the algebra of functions on the circle
and the infinite orthogonal Lie algebra generated by fermion bilinears, one has to
introduce an algebra containing sb(N)1; up to finite sums of fermion bilinears, the
commutation relations of this algebra which we call gl(Λf) coincide with those of
the sl(Λ00ύ(l) Kac-Moody algebra. Together, the fermion bilinears, the Virasoro
generators and the generators of gί(Λf) form a Lie algebra, and they are transformed
among themselves by the endomorphisms. It is a non-trivial result that a closed Lie
algebra is obtained after a finite number of steps. We also exhibit in Sect. 4 a maximal
abelian subalgebra J 0̂ c J^ of the observable Lie algebra; somewhat unexpectedly,
J 0̂ is not closed under the action of the endomorphisms. In Sect. 5 we show that
the composition of (equivalence classes of) endomorphisms reproduces the fusion
rules of the WZW theory. In an Appendix we have collected various aspects of the
zero mode subalgebra of the current algebra and of its representations.

The theories described in this paper are rather special conformal field theories
as they can be expressed through free fermions. One can however hope to treat also
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more complicated theories along similar lines. In particular it may be possible to
use conformal embeddings [17] to reduce theories with higher level Kac-Moody
algebras to the level one case treated here [18]. This and other open questions are
discussed in Sect. 6.

2. Majorana Fields and Observables

The distinctive feature of the conformal field theory of the so(N)1 WZW theories
which makes the algebraic treatment of the theory manageable is the fact that the
theory can be expressed in terms of free fermions, so that the observables may be
constructed in terms of bilinears of the fermions, and that the relations of the observ-
able algebra can be deduced from the canonical anti-commutation relations of the
fermions. The canonical anti-commutation relations for real free fermions ι/^(z),
i = 1, 2, . . . , JV, on the circle S1 are given by

(ι/φ), ψs(w)} = 2πiδίjδ(z - w)l (2.1)

(to be precise, only fields obtained by smearing the φl(z) with appropriate test func-
tions are operators for which the canonical anti-commutation relations make sense),
and the hermiticity condition is

(^'(z))* = z-1f(z~1). (2-2)

There are in fact two types of such fermions, namely Neveu-Schwarz (NS) and
Ramond (R) fermions which are characterized by the boundary conditions ι/^s(e2πiz) =
^NS(Z) (NS fermions) and ι/^(e2πiz) = — ι/^(z) (R fermions), so that they may be
expanded into a Fourier-Laurent series as φl(z) = Σ^z~r~ 1/2 w^h r6^ + i

and reTL (R), respectively. For the present purpose it will be convenient to treat NS
and R fermions in a unified way. This is done by admitting test functions which are
single- valued continuous functions on the double cover S1 of S1 (the coordinate on
S1 will also be denoted by z). The description of the boundary condition then
requires the introduction of a non-trivial central element which will be denoted by Y:

ί/^(e2πiz) = - yi/φ), y* = Y, y2 = i. (2.3)
Thus we define: The universal Majorana algebra of N fermions is the associative
*-algebra with identity 1 which is generated by Y and fields φ\i= 1, 2, . . . , N, on S1

(more precisely, smeared with test functions of the type described above), subject to
the hermiticity and boundary conditions (2.2,2.3), and to

(ι/φ), ψj(w)} = π\δij\_δ(z - w)l - δ(z - e2πίw)y],

O' (z),r] = 0. (2.4)

The expansion of the universal fermion fields into a Fourier-Laurent series reads

ι/φ)= X fc z-*-1/2. (2.5)
qeZ/2

The algebra generated by the modes bl

q and by y will be denoted by Maj = Maj(Λf),
and its restriction to qeΊί + \ and to qeTL by MajNS and MajR, respectively. In terms
of the modes, the hermiticity property reads (bj

p)* = bj_p, and the relations (2.4)
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become

ι>;,y]=o. (2.6)
Evaluating the first of these relations for p = q = 0, one sees that, for any i,

7 = 46^-1, (2.7)

so that

(2.8)

(and hence in particular b^b ̂  = 0 if fo^eMajNS and b;jeMajR).
As is quite obvious, each of the subalgebras MajNS and MajR has only a single

(inequivalent) faithful irreducible unitary ^representation; the corresponding irre-
ducible unitary ^representations of the universal Majorana algebra Maj, denoted
as πNS and πR, are then defined by

= 0 for peZ, πN S(y)=-l,

= 0 for />eZ + i, πR(7)=l. (2.9)

They obey

Maj/Ker(πNS) ̂  MajNS, Maj/Ker(πR) ̂  MajR. (2.10)

The corresponding modules J^NS and JfR are highest weight modules, i.e. they
contain highest weight vectors |NS> and |R> obeying

= 0 for

for b;eMajR, q>09

and J-fNS and J^fR are spanned by the vectors

l(T?)w>Ns = l^ι,'2*2>-^

and

,̂ ^with f> ίl(Z2eMajNS and fo'lgjeMajR, respectively, where weZ^0 and ί?ί+ 1 ̂  ̂ j ̂  0 for
/ = 1, 2, . .'. , m - 1. For future convenience we will also write ^fNS = «?f Ss" © ̂ Nsd»
where jf ^v

s

en and Jf ̂  are spanned by the vectors | (ι~q}m >NS with m even and m odd,
respectively. Also, we define the grade of a state in ̂ NS or Jf R as the non-negative
integer that one obtains by adding up minus the mode numbers of the fermion
operators which create the state by acting on the highest weight state of the space,

m

i.e. as £ <?5 m tne notation of (2.12) and (2.13).
s=l _

The global observable algebra <stf which is the algebra of our main interest will
be a subalgebra of an appropriate completion by infinite power series of Maj..
Moreover, as we will see, sf is in fact the enveloping algebra of a Lie algebra; we
will use the notation JS? for this underlying Lie algebra of global observables. The
Lie algebra & will be constructed by adjoining further generators to the infinite
orthogonal Lie algebra O^N) which is defined as

(2.14)
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(note that owing to (2.7) this includes also the central generator Y). The full set of
infinite series of such bilinears that are needed for the completion & will be obtained
in Sect. 5. For the moment we content ourselves with including in the observable
algebra those operators which according to the introduction should certainly be
present, namely the generators of the chiral symmetry algebra of the conformal field
theory under consideration. For WZW theories, the chiral algebra is the semidirect
sum of the Virasoro algebra Vir with an untwisted affine Kac-Moody algebra.
Therefore we introduce the following infinite series of fermion bilinears:

Σ :*#,-,:. (2.15)
qeZ/2

2 i qeZ/2

for meTL. Here Tfl, a = 1, 2, . . . , N(N - l)/2, are the matrix generators of the simple
Lie algebra so(ΛΓ) in the defining (vector) representation (taken to be real and
antisymmetric). The colons denote the normal ordering of the modes bl

q, defined as

for p<0,
:blb} •. = {"""'> '"' ^ ""' (2.17)
' ' \-ψp for p^O.

By direct computation, one verifies that these combinations obey the commutation
relations

Ua

m>Ή=^*m + *.0+f?JC

m + « (2 18)

[Lm,LJ = ~(m3 - m)δm + n,0 + (m - n)Lm+n, (2.19)

LLm9J
aJ=-nJa

m+n9 (2.20)

where fab and κab are the structure constants and Cartan-Killing form of so(Λf),
respectively, i.e. [Γα, Tb~] = /f T, tr(TaTb) = κab, and the summation convention is
used for the adjoint indices α, b, Thus the combinations (2.15,2.16) generate the
semidirect sum of the Virasoro algebra Vir (generated by the Lm) and the untwisted
affine Lie algebra sδ(/V) (generated by the Ja

m\ with the respective central generators
fixed to the values c — N/2 and k= 1, respectively. In addition, of course the
commutator of any element of O^N) with an element of the Virasoro or the affine
algebra is again in O^N). Thus we see that the global observable algebra J ,̂ we
are finally interested in, contains the Lie algebra

J? = OJΛOΘVirN / 2Θsδ(ΛOι (2.21)

(with "0" denoting the semidirect sum) as a subalgebra.
The representation theory of the algebra sδ(ΛΓ) at level one (and of its semidirect

sum with the Virasoro algebra) is well known [11]: up to equivalence, there are only
three different integrable irreducible highest weight modules if N is odd, and four
if N is even, namely the basic module, the vector module, and one or two inequivalent
spinor modules. With respect to the so(N) algebra generated by the zero modes JJ,
they reduce to the trivial one-dimensional module, the Af-dimensional vector
module, and the 2[(ΛΓ~1)/2]-dimensional1 spinor module(s), respectively. Also, the

Here and below we denote the integer part of a rational number x by [x].
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states spanning the highest weight modules of so(Af) can be chosen as eigenvectors
of L0; the L0 -eigenvalues h are the sum of the grade of the state and the eigenvalue
of the highest weight vector, which is h0 = 0, /ιv = 1/2, and hs = AT/16 for the basic,
vector, and spinor modules, respectively.

Since the observables are made out of bilinears in the modes bl

q, the represen-
tations πNS and πR of Maj restrict to representations of the algebra (2.21), which are
however reducible. This is most easily seen by considering the action of the Virasoro
generator L0. Because of (2.11) the highest weight vectors |NS> = |0> of JfNS and
|R>of^f R obey

L0 |0> = 0,
(2.22)

16

while for the states

| i>Ns:=|i -ϊ>Ns = &-ι,2 |0> (2.23)

one finds

i-oli>Ns = i l i>Ns (2-24)

Using

LL09b
i

q]=-qbi

q, (2.25)

it then follows that

L lίTfl) > -h\(Ta) > with >=° f°r l(T^ >^θK l 0 Λ n / N S — " I I * <7)m/NS Wltft 1 7 ~ , l r , /T»-*V \
OeZ^o + i for lθ4) m >

(2.26)

and

Lo\(ϊq)m>R = h\(Γq)myR with /ze2^0 + . (2.27)
16

In particular, the lowest values h = 0 and h = \ in (2.26) are obtained iff |(Γ<f)m>NS =
|0> and |(T<f)m>NS = |i>NS (for some ie{l, 2, . . . , AT}), respectively, while the lowest
value h = AT/16 in (2.27) is the L0 eigenvalue of each of the following 2N independent
states:

(2.28)

It is also easily verified that the states |0>, | ί >NS and the states (2.28) have the correct
transformation properties under the horizontal subalgebra so(AT) of sδ(AT); |0>
provides the singlet and the states |i>NS span the vector module of so(AT), i.e.

ϊ (2-29)
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while the states (2.28) span 2[N/2] + 1 irreducible spinor modules (more details are
provided in the Appendix). Finally one can check that upon acting on the zero grade
states with any fermion bilinear bl

pb
j

q, the number of irreducible subspaces is not
changed2 and hence the multiplicities of the various irreducible sb^-modules in
JfNS and JjfR are the same as the multiplicities of the corresponding irreducible
soC/VJ-modules in the zero grade subspaces of JfNS and JfR. Putting this information
together, we learn that the representations πNS and πR of the Majorana algebra
restrict to representations of £ό(N)l9 and hence of (2.21), as follows: πNS splits up
into the direct sum of the basic and the vector representation, while πR gives the
direct sum of 2[N/2] + 1 irreducible spinor representations.

The Lie algebras of local observables corresponding to the global algebras
O^N), VirN/2 and so^V^ are obtained by smearing the bilinears of fields ^NS(Z) anc*

T(z):= X Lmz-™-2,
meZ

(2.30)
ΛZ):= Σ -O""'1.

meZ

with appropriate test functions. Thus to O^N) there corresponds, for any open
interval / c S1 whose closure is not all of S1, an algebra (O^ΛOH/) of observables
localized in /; (O^ΛOX/) is spanned by the identity 1 and the generators

f dzdwίzwJ-^V^w^^z^ίw), (2.31)
S1 xS 1

where ftj is a real <C°° function with support on / x / c= S1 x S1. Similarly, the
algebra VirN/2(/) is the real Lie algebra spanned by 1 and

Jdzz/(z)T(z), (2.32)
s1

with / a real <C°° function with support on /, and analogously for (so(Af)i)(/). In the
notation introduced here, the global algebras are presented as follows. O^N) is the
algebra spanned by 1 and the generators

j dz dw (zw)~ 1/2/0 (z, w)±l\l/l(z)il/j(\v) + ψi(e2*iz)\l/j(e2*iw)'], (2.33)
S'xS 1

where ftj is now a real C°° function on S1 x S1, and similarly for VirN/2 and ^(N)^^.
This definition of the global algebras illustrates the two main differences between
the present treatment of these algebras and the canonical [2] one: first, we do not
restrict to bounded operators (by using f-a rather than exp(/ α) in the integrands),
and second, by considering the double cover S1 rather than S1.

One can also show (in full analogy with the treatment in [4]) that there exists
an injective homomorphism from (O^N))^) to O^N) for which the mapping
prescription is independent of the interval /. This homomorphism acts as 1 h-> 1 and

f dz dw (zw)- 1/2/0-(z, w)^s(z)^NS(>v)
/ x /

H-> J dz dw (zw)' 1/2/0 (z, w) H'/ΦW'W + ̂  Vπίz>He2πίw)]. (2.34)
7 χ 7

2 This is non-trivial in the case of spinor modules; some relevant formulae are again provided in
the Appendix
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Here the function ftj on the left-hand side is regarded as a function on S1 x S1 with
support in 7 x 7, where 7 is one of the two disjoint intervals which form the pre-
image of/ under the projection from S1 to S1.

3. Endomorphisms of the Majorana Algebra

3.1. The Vector Endomorphism. For arbitrary N9 define the vector endomorphism pv

of Maj by

Pv(fri):=P ϋ v(fri)=Uv 6i t/v* (3 !)

with the unitary operator

z + f>'-1/2) on

(3.2)

on MajR.

More explicitly, this transformation is given by

P,(*ί)=-ί>ί for <?*0,±i (3.3)

and

'± 1,2) = ~ & ± 1,2 + Σ>ί,2 + *'- 1/2).

(3.4)
Inspection shows that pv is a *-automorphism of Maj that projects to inner
automorphisms of MajNS and MajR. Furthermore, owing to the fact that Uv is self-
adjoint as well, one has

pv°pv = id. (3.5)

(More explicitly, this can be seen as follows. Introducing the matrix / which has

all entries equal to — ,/0 = — , and the vectors fc0 = (bJ,ί?Q,... ,^0)^11/2 =

( f e ± ι / 2 » & ± ι / 2 > > & ΐ ι / 2 A (3 4) can be rewritten as pv(δ± 1 / 2)= -b±ίf2 + I'(bίl2 +
b- 1/2), Pv(^o) = (21 - I) fe0

 τhe Γesult (3-5) then follows from the identity I2 = I.)

3.2. The Spinor Endomorphisms. We also want to identify further endomorphisms
of Maj corresponding to the spinor representation(s) of so(N). In order to simplify
the expressions, let us first establish some additional notation. We denote by
σ,, / = 1, 2, 3, the Pauli matrices, and define the 2 x 2-maίrices

« ' (' ' Y s ' (-' )
2 V 1 -ιj 2\ 1 I/

,,6,
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and the 4 x 4-matrices

M P = (i o \ β = l(i-*2 i + σΛ
-R) V θ σj * 2 V t + σ2 t-σj

(so that e.g. σj = SR, σ2 = - RS and ζ>M = MF). We also define the vectors

B0 = (&ό~3,*ό~2,&ό~1,&ό) f f°r ίe4Z'4^'^jV'
B(2 = (b\22>bi-1

2

2,b\2,b
i_12)< for ie4Z,4^i^tf,

. (3.8)

Finally, set

{^-1,*?,fr?/2.^ι/2}
 for

and denote

^ = ̂ (7 ) = (-l>/ (3.10)

for 7 'e{l,2,...,yV}.
Now for Ne2Z, we define the following spinor endomorphisms ps c of Maj: For

except for bl

q an entry of B1

0 or B\/2, where

and

pc(BN )=—M P'BN. (3.13)

For ΛΓe4Z + 2,

for

for

again except for entries of B1

0 or B\/2, where

for ie4Z,
(3.15)
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and

pc(B"/2) = R'B". (3.16)

By direct computation, one verifies that ps>c are *-automorphisms of Maj.
Next we come to the case ΛΓe2Z+l, in which there is only one spinor

endomorphism which we denote by pσ. It is defined by

pσ(bj

q) = ps(bj

q) for j<N (3.17)

and

bq±ij2 for qej%± and Ne4Z+l

±ib"±l/2 for qe±Z± and Λfe4Z + 3 (3.18)

•?„ - bN_, /7) for a = 0.

In (3.17), ps means the spinor endomorphism ps at N = N - le2Z. Clearly, pσ is
a *-endomorphism.

3J. Composition of Endomorphisms. The fusion rules of the conformal field theory
correspond to the natural composition of the representations πu (with u = v, s, c
(N even), respectively u = v, σ (N odd)) which is defined by

πuι x πU2 = π0°pU l°pU 2. (3.19)

(If pu. are localized endomorphisms, then this defines an operator product on the
field algebra <F.) This definition is possible because the endomorphisms pu obey

7r ~ 7Γ o n Π ?OΪ
'*Ί1 == 0 ΓU \J.£\J)

for all bilinears in the fermion modes bl

p9 and herce for all (finite or infinite) sums
thereof, in particular for the Kac-Moody and Virasoro generators Jα

m and Tm. (It
is straightforward to check that the endomorphisms pu constructed above indeed
fulfill (3.20); for some details, see the appendix.)

As a consequence of the definition (3.19) the fusion rules are isomorphic to the
composition of equivalence classes of the endomorphisms pu. Therefore we will
now compute the various compositions of the endomorphisms pu introduced above.
These results will be the basis of the calculation of the fusion rules which will be
performed in Sect. 5.

The result of the composition of two vector endomorphisms was already
obtained in (3.5) above. The formulae for all other possible compositions read as
follows.

For Ne4Z,

1 /<j Λ 1 \
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For

and

ρc°ps=—id on Maj\Maj°,

Pc*ps(BN

0) = - P-Bl Pc°ps(BN

1/2) = - Q B»,2. (3.22)

(3.23)

p s o p s = — id on Maj\Maj°,

Ps°ps(BN

0) = σl Bl psops(BN

1/2)=-σ2 BN

1/2. (3.24)

In particular, the compositions leading to non-trivial endomorphisms project onto
inner automorphisms of MajNS and MajR:

P*°Pc(b\} = Pc°P*(b[}=VCsbi

q'Ό*s for Ne4Z (3.25)

and

Ps°Ps(^) = Pc°/>c(^)=^ss ^^s*s for 7V64Z + 2, (3.26)
with

on

=
on MajNS)

For odd N, one obtains the following results. From (3.18) we deduce that

Pσ°Pσ(bj

q) = bj

q for ; <ΛΓ,ΛΓ64Z+1, (3.28)

while

Pσ°Pa(bj

q)=-bj

q for ;<JV- l , JVe4Z + 3, (3.29)

and also forj = N—l except for

Pa°Pa(BNU2l)=-σ2B»-S. (3.30)

Here we used the corresponding formulae (3.21,3.24) for ps. Finally, for j = N it
follows from (3. 18) that

A"±ι
i „

2

for q Φ (

for q = i

for qφ(

for a = (

for ΛΓe4Z+l,

(3.31)



Level 1 WZW Superselection Sectors 567

To determine pσ°pv and pv°pσ, it is convenient to define the endomorphism
ρv = σ£f with

on MaJR

It is readily checked that this is a vector automorphism, i.e. pve[pv]; explicitly, its
action is given by

C-b{ for j*N9

Pv(bi)=\-bN

q for j = N,q*0, ±i (3.33)

[bN_q for 7 = AU = 0,±±

One verifies that pv°pσ = -pσ. Similarly, pσ°ρv= -ρσ except when acting on b*
or on bN

± 1/2, where in the first case pσ°pv(bN

Q) = pσ(bN

Q). Thus when acting on observ-
ables aeO^(N\ one has

pv°pσ(α) = pσ(α), (3.34)

while on observables in the vacuum representation,

πo°P<τ°Pv(
f l) = πo°σI7°Pσ( f l) (3 35)

with the unitary

(3.36)

4. Construction of <£

We would now like to identify a global Lie algebra 2? of observables such that each
of the endomorphisms pu for u =_v, s, c (N even), respectively u = v, σ (N odd), of Maj
induces a *-endomorphism of &. Clearly, this endomorphism property is satisfied
for any bilinear bl

pb
j

q, and hence also for all finite sums thereof, i.e. in particular for
all elements of the algebra 0^(N). It remains to investigate the action of the endo-
morphisms on infinite sums of fermion bilinears. The infinite series encountered so
far are the generators Lm of the Virasoro algebra and the generators Ja

m of the affine
Kac-Moody algebra sδ(ΛΓ), which together with 0^(N] span the subalgebra (2.21)
of S. As we >yill see, for the full algebra Ĵ , we will essentially have to double the
number of generators which are infinite sums.

Before going into details, let us make the following general remark. Let a Lie
algebra g be realized in an associative algebra A in terms of commutators. Given
an endomorphism p of A, we may then address the question of what is the Lie
algebraic extension of g on which the corresponding endomorphism closes. It is
clear that closure is obtained when adjoining to A appropriate successive com-
mutators of the generators, but it is not at all obvious that a closed Lie algebra can
be obtained after a finite number of steps (each step consisting either of application
of the endomorphisms p or of taking commutators). In the case at hand, we will see
that we do arrive at the final answer after a finite number of steps.

4.1. Action of the Endomorphisms on VirN/2> To start, consider now the action of
the endomorphism pv on the Virasoro generators. It is given by

pv(LJ = Lm + /?m, (4.1)
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where

A. = ̂  Σ ([(« + 1)&L+ 1/2 + (w - DC ι/2](M/2 + 1̂ 1/2) + 4«M)- (4-2)

Thus in order to close the algebra, we have to include the finite sums βm, mεZ, of
bilinears in the bl

q into the global Lie algebra of observables. Moreover, it is straight-
forward to verify that

for all we2Z, so that at this stage no further generators are needed.
Since we include all bilinears of the b'q into the global Lie algebra of observables

anyway, from now on we will often suppress finite sums in these bilinears in order
to make the formulae more readable. We will write a = b if a and b coincide up to
such finite sums. Using this notation, the action of the spinor endomorphisms on
the Virasoro algebra reads, for N even,

ps,c(Lm)^Lm + Fm, (4.4)

where

Fm =l-Σ Σ' (-i)'+2'*ί,-A (4.5)
^ / q>m/2

and where for later convenience we defined

Σ' /(P):=( Σ f ( p ) ) + jf(m) + \f(n\ (4-6)
m<p<n \m<p<n / ^ *•

peZ/2 peZ/2

and analogously for sums which are bounded only from one side or for which the
summation is restricted to peZ + ε/2 for ε = 0, 1 (in the latter case, the boundary
terms are included only if m, ntTL + ε/2).

For N odd, the corresponding formulae read

pa(LJ*Lm + Fm + Fm, (4.7)

where Fm denotes the operator Fm at N = N — 1 e22£, and

••=-- Σ' b» ab» (4.8)Λ L-Λ m — q q \ '
£ q>m/2

Also,

for N even, so that in particular ps>c° ps>c(LJ ^ Lm. Analogously, pσ(Fm) ^~Fm for
N odd, whereas in this case

pσ(Fm)*Fm. (4.10)

In addition,

[Fm,LJ^mFm+M,
4 Π
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and analogously for Fm and Fm. Thus we conclude that for even N we have to include
Fm, weZ, into the global observable algebra, while for odd N we need both Fm and
fm

4.2. Action of the Endomorphίsms on so(N)1. Next we come to the action of the
endomorphism pv on the Kac-Moody generators. It reads

P*(JaJ = Ja

m + βa

m (4-12)
with

/C = - ^ Σ (Γ MΦ U 1/2 + *i- ι/2)(*ί/2 + bk- 1/2) + 4^o) (4-13)
™ i,M

Hence we must include the finite sums βa

m, raeZ, of bilinears in order to close the
algebra. Also,

-/£ (4-14)

for all weZ, so that again no further generators are needed at this stage. Next we
must consider the action of the spinor endomorphisms on the Kac-Moody algebra.
To keep the formulae short, we introduce some further notation. Denote

DU^ = Σ »m_qb{ (4.15)

for raeZ and ε = 0, 1 mod 2, and

q>m/2
qeZ + ε/2

DiJ(m):=Dl^(m) + D^(m)9 (4.16)

Eij(m) : = Dij(m) - Dji(m). (4. 1 7)

In this notation, one has e.g.

and also

bl bj
Um-qυq

q>m

(4 19)2 ij
In particular, the transformation properties of the Kac-Moody generators Ja follow
immediately from those of the operators Elj(m\ and hence from those of the Dlj(m).

It turns out that all the operators D^0)(m) and Dj-j^m) (and not just their particular
antisymmetric combinations Eij(m)) must be included into the global observable
algebra. (In particular, owing to (4.18), this includes the generators Fm.) The corres-
ponding formulae are obtained as follows. First we observe that

+ n)]. (4.20)

This implies

[Dίj(m\ Dkl(n}} ^ δjkDil(m + n) - δilDkj(m + ή). (4.21)
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Note that, neglecting finite sums in the bilinears bl

pb
j

q, the latter is the loop algebra
associated to sl(N). Including also the generators Fm, one obtains a structure similar
to the loop algebra of gl(ΛΓ) ̂  sl(Λf)® u(l). As a consequence, we will from now on
denote the vector space spanned by the generators D^ε)(m) by gl(AT).

Consider now first the case Ne2%. Then

ps,c(/%(m)) * D|ί + υ(m - 1( - l)ε[( - 1)' - ( - I)']), (4.22)

and hence

p.iC(D"N) = ϋUm + K( - 1)' - ( - 1)']) + £;{)(™ - K( -!)'-(- MX (4 23)

so that in particular

π0op8 t C(D V)) = π0φ
y(w - 1[( - 1)' - ( - 1)'])). (4.24)

Note that the shift in the mode number of Dίj that is induced by pSjC is not symmetric
in i and j; as a consequence, ps>c does not close on the antisymmetric combinations
Eij(m). From (4.24) it also follows that (in the vacuum representation) taking further
commutators does not introduce any new generators. (More explicitly, one has

[D{i(m), ps,c(/>£>))] * δttε, + 1Dik

ε)(m + n + 1( - !)<[( - IX - ( - l)fe]) (4.25)

and an analogous formula for [Dij(m)9pStC(Dkl(n))']. Finally,

[L^^Wl^-nD^m + π), (4.26)

[Fm, />&(*)] ̂  i( - l)ε(( - I)1' + ( - l)J)D&(m + n\ (4.27)

i.e.

m + n)). (4.28)

For N odd, the calculations are identical with the ones above as long as ij φ N.
For / or j equal to AT, one has

p,(D(>0) s

pσ(^;(m))^^+1)(m-|[l-(-iy+ε]),

where ^7 = 1 for Ne4Z + 1, 77 = i for Ne4Z + 3. From this one can infer the trans-
formation behavior and commutation relations oϊDiN(m) and DNi(m). These are very
similar to the previous results and we omit the details.

4.3. The Lie Algebra & of Global Observables. We summarize the results above in
the

Theorem. The global observable algebra $£ is the Lie algebra

& = 0^(N)@ VιτNI2 ® l\(N\ (4.30)

where O^N) is generated by the identity 1 and the bilinears bl

pb
j

q (i,je{l,2, ...,N},

/?, ge-|2£, p — qe%), VirN/2 is generated by the infinite sums Lm (weZ), and (for N even,
and similarly for N odd) gl(N) is generated by the infinite sums D^ε)(m) (ije{l, 2, . . . , N},
εe{0, 1},W6Z).
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Up to finite sums, the commutation relations among the infinite sums of bilinears are
given by the formula (2.79), (4.20) and (4.26).

4.4. Some More Details. In the equations above, we have not written out the terms
involving finite sums of the bilinears b^b^. The explicit form of these terms is not
very illuminating; for completeness let us however present the full result, including
finite sums of fermion bilinears, for the following objects. First, we give the complete
version of (4.21) for the case; = k with ij, I all different; it reads

(4.31)\Dij(m\ Djl(n)'] = Dil(m + n) + Ail(m, n)

with

AίJ(m,n):=

- Σ' bi(
0<p<n/2

Σ fcU
n/2<p<0

Σ' *{
-m/2<p<0

Σ'
0<p< -m/2

f°Γ

for

for

for

" > °> * > 0,

n>0,n<0,

n<0,m>0,
(4.32)

Second, let us present the action of the vector automorphism on the generators

(4.33)Pv(D{>0) = D« (w) +

where gl^ε}(m) denotes the finite sums

with

0 for m < 0,

ι for m = 0,

1 for w>0.

(4.35)

Let us also discuss the extended algebra & in a different guise. First note that
according to (4.19), the Kac-Moody generators Ja

m are essentially the antisymmetric
combinations Elj(m) of the operators Dij(m); they can also be considered as appro-
priately normal ordered versions of the Dίj(m). It is therefore of interest to re-express
the relations of <£ in terms of the Eij(m). The results are most easily described in
terms of the operators

, n):= D^(m + n)- D{(}(m + n)± LD^(m -n)- D^(m - n)] (4.36)

which carry an additional mode number n. As a consequence of (4.22), one must
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include into J^ the operators Eij

+(m,ri) for meZ and n = ± 1. More precisely, by
application of ps c one obtains these operators with ίe2%,je2Z + 1, or vice versa.
However, owing to (4.25), one has

[£>z), Ps,c(£»)] = Eik (m + w, K( - I)7' - ( ~ I)*]), (4-37)

implying that these generators also appear with both i and j even or both odd.
Finally, taking further commutators, one sees that also the parameter n introduced
in (4.36) can take arbitrary integer values. Thus we have to include the Ell(m,n)
with arbitrary ij and m,ΠE% into the global observable algebra. Under ps c, these
generators transform as

pβt C(E" (m, n)) * El (m, - n + ±[( - 1)' - ( - 1)''] ) (4.38)

(so that in particular ps c°ps c(E'i(w, n)) ̂  Eij

±(m, n}\ Finally one computes the com-
mutation relations

[Eij

± (m, n\ Ek± (m', n')] = δjkEil

+ (m + m', n + n') - δ"EY(m + m', n + n')

+ ($'fc£Ύ (m + m',n-ri)- δjlEik (m + m', n - ri\ (4.39)

[E^m, n), Ekl(m', n')] ̂  δjkEil_(m + m', w + n') - <5'<E^(m + m', n + w')

- δίkf:^ (m + m', n - n') + δjlEik (m + m',n- ri\ (4.40)

[βij

± (m, n), LJ ^ m£fi (m + /, n) + n£^ (m -h /, n\ (4.41)

m, n), F{\)* \(( - I)1' + ( - l)>0(£'ΐ(™ + /, n)). (4.42)

From (4.41), one deduces that one indeed has to include not only Eij

+(m, n\ but also
Eij_(m, n). Also note that according to (4.41) for n Φ 0 the operators Eij

±(m, n) cannot
be interpreted as the Laurent modes of conformal fields.

For N odd, one has in addition similar relations for the corresponding quantities
EiN(m, n) and ENi(m, n) (as well as ENN(m, n) for n Φ 0; note that Eίj

±(m, n) is not anti-
symmetric in i and 7, but rather ElJ

+(m, n)= — EJ+(w, — n)).

4.5. The Maximal Abelian Subalgebra J^0. Let us also consider the "zero modes"
L0 and Dl

(

J

ε)(0). Together with the finite bilinears

*#=*X (4 43)

they close under commutation, and in particular all these generators commute
with L0:

(4.44)

» - δilbk

0

j + δikblj - δJlbl (4.45)

(0) - 5«D«(0) + ̂ βi0[^, fr*1] }. (4.46)

In particular, for ε = 1 the /%(()) generate the simple Lie algebra si (AT), and for ε = 0
they do so up to the bilinears fej/. Including also the action of the automorphism
pv, one still gets a finite number of modes which close upon commutation. First,
according to (4.1), (4.3), (4.12), (4.14) and (4.33) one has

pv(D{'0)(0)) =
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with

A) = Σ /#' = Σ [ft'ι,2. *'- 1/2]-

The generators j8j/ do not yet close, but if one counts the contributions

(4 49)

(z = 1, . . . , Λ/) and b\/2b
j_ 1/2 (/,/ = 1, . . . , N) to /?j/ independently, then a closed algebra

is obtained. In contrast, after acting on the operators Djj^O) also with a spinor auto-
morphism, closure can only be obtained with an infinite number of operators.

It is also natural to look for maximal abelian subalgebras of J .̂ Among these,
the interesting ones are those which contain the Virasoro zero mode L0. We will
present one of these algebras, which we will denote by j^0 (other maximal abelian
subalgebras can then be obtained by acting on j£?0 with any automorphism). Let us
start by extending the definition (4.43) to arbitrary moding:

&θ : =fei_^ for 4^0. (4.50)

These bilinears obey the commutation relations (4.45) and

δ " ) for 4>0. (4.51)

It follows that a maximal commuting subset of the linear span of these operators is
spanned by the central generators 1 and Y and the combinations

fc2, -l,2, -1+fe2;,2, q>0f (452)

bU-W-bU U-1, q>0,

with 76(1, . . . , N} for any ΛΓ, and in addition by

b™,q^0 (4.53)

for N odd. It can be checked that there are no other elements of O00(N) which
commute with these combinations, i.e. they span indeed a maximal abelian sub-
algebra oϊO^N). Next we look for those .independent infinite sums of the generators
bl

pb
j

q of Ooo (ΛΓ) which are contained in S and which commute with the operators

(4.52), (4.53). They are
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y (b2j~l'2j - b2j-2j~l) , /=! , . . . , ΠV/21 (4.54)^ \ q q i ]-> J » J ι_ / _ι» \ /

<?>0

GJ

0 = Σ (bT 1>2'~' + blj'2il 7=1,. . . , CΛΓ/2],
g > 0

for any N, and in addition

G (N + D/2 = Σ bNN (455)

q>0

for /V odd. Together with the finite linear combinations given previously, these
operators spaη_a maximal abelian subalgebra J 0̂ of 2?. Note that (in the notation
of (4.5), (4.8)), J 0̂ does not contain the zero mode F0, while for odd N it does contain

One might expect J 0̂ to be closed under the action of the endomorphisms pu

which represent the superselection sectors, but inspection shows that (except for the
special case N = I where e.g. the list (4.54), (4.55) reduces to L0 and G0ocF0 = F0)
this is not the case, and it also does not hold for any other maximal abelian sub-
algebra of Ϊ£. While this is a bit surprising, it does not violate any of the principles
of algebraic quantum field theory.

5. Fusion Rules

If p1 and ρ2 are any endomorphisms of Maj which both project onto inner auto-
morphisms of MajNS and MajR, i.e. pk(blj = Uk'b

{

q' U* with Uk9 k = 1, 2, unitary, and
if either both of them are made out of odd or both out of even polynomials in the
bl

q9 then p1 and p2 induce equivalent *-automorphisms of the global observable
algebra, namely via

P2 = Pi°^c/ 1 2, (5.1)

where σUl2 is defined according to (1.3), with

U12 = iU*U2ε<tf. (5.2)

In particular, if the unitary 17 is even in the f/ , then σue[iά], and if it is odd in the
bl

q, then
,

Combining this observation with the results of the previous sections, one concludes
that ps°pc = pv = Pc°ps for Ne4% etc. Thus we arrive at the fusion rules

° Ps] = [Pc ° PC] = [id] \
> for Λfe4Zι,

°Pc] = [Pc°Ps] =[Pv]J

°Pc] - [Pc°ps] = [id]

Using these results (and in addition, for Ne4% + 2, the fact that σ^S^ R" 1 and
σ2 R = — S ~ l ), one also deduces immediately the remaining non-trivial fusion rules
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for Ne2fc:

[Ps°Pv] =[Pv0Ps] =[pj>

[Pc°Pv] = [Pv°pc] = [Ps] (5.4)

Thus the composition of equivalence classes of endomorphisms reproduces the
fusion rules (1.6) and (1.7), as it should be.

For Ne2Έ + 1, the situation is more complicated. First from (3.34), (3.35) and
the fact that pve[pv] we see that

[/VPv] = [pv°Pj = [/α (5.5)

To determine also [pσ°pff], let us to define the operator

Π0:=bN

1/2b
N_ί/2. (5.6)

This is a projector, Π0Π0 = /70, on Jf0. Moreover, 77g (and hence also the orthogonal
projector 1 — Π0) lie in the commutant of pσ°pσ(J?) since bN

lj2 and bN_i/2 are not
contained in the image by pσ°ρσ of Maj. In the following we show that the invariant
subspaces Π0J^0 and (1 - J70)Jf0 with respect to pσ°pσ carry representations
in the equivalence class of π0 and π0°pv for ΛΓe4Z + 1, and of π0°pv and π0 for

+ 3, respectively. Let us define the observables

(5.7)
= v

with

— 1m w —

and with the product defined iteratively as f] αn = am ]\ an I . It is not difficult
n=l n = l /

to verify (compare the similar calculation in [4] for N = 1) that they obey

SS* = JJ* = 1,

770, (5.9)

so that the maps

<^ TΊ -*&> ^ ι&>
J f . IIQJΪQ^JΪQ,

3\ (l-JIo^o-^o

are bijective. Moreover, the operator «/ possesses the following intertwining
properties for Ne4Z + 1 : bj

qS = Jfb for; < N, and ft^ = Jb*± x for eZ± + \\ for
-f 3 similar relations are valid. As a consequence, by comparison with the

properties (3.28) to (3.31), and defining συ by

C/ = ̂ 1+i^T/1

2, (5.11)
one has

aS = Spσ°pσ(a) for ΛΓe4Z+l,

for
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for all bilinears a = bl

pb
j

q in the vacuum representation (here we write a for π0(α) )
and more generally for all generators of π0(J^). Similarly, using py°pσ(ά) = pσ(ά) for
U as given in (3.32), it follows that

Spσ°pσ(a) for ΛΓe4Z+l,

Sρ°pσ(a) for Ne4Z + 3. (5 13)

Next we notice that U is linear in the fermion modes so that σv is a representative
of the [/9V] equivalence class. Analogously, the fact that £/•£/ is quadratic in the
fermion modes implies [pv°σ{;] = [σ ]̂ = [id]. Putting all these results together,
we can conclude that

Thus we see that also for odd N the composition of equivalence classes of
endomorphisms reproduces the relevant fusion rules, namely (1.8).

6. Discussion

In this paper we have analysed the level one so(Λf) Wess-Zumino-Witten conformal
field theories from the point of view of algebraic quantum field theory. We have
constructed the endomorphisms which represent the superselection sectors of the
theory on the global observable algebra (Sect. 3, (3.1), (3.11)-(3.18)), and checked
that they reproduce the fusion rules of the WZW theory (Sect. 5). A large part of
our paper is of a technical nature, expressing the fact that most of our results are
obtainable through calculations which are tedious but straightforward. What is less
straightforward is the basic task of constructing the endomorphisms. This is the
main point where the information coming from conformal field theory, namely on
the chiral symmetry algebra, the spectrum of primary fields and on their fusion rules,
becomes essential. Without these guidelines from conformal field theory the search
for the endomorphisms would be a rather hopeless task.

The endomorphisms do not close on the algebra & (2.21) which is the natural
first guess for the Lie algebra of global observables as it corresponds to the chiral
symmetry algebra of the WZW theory, supplemented by the fermion bilinears
(including the two central elements 1 and Γ). The complete Lie algebra & of global
observables on which the endomorphisms close is given by (4.30); it contains as a
subspace the vector space glC/V) whose generators have commutation relations
which up to finite sums of fermion bilinears coincide with those of the sl(7V)0ύ(l)
Kac-Moody algebra; it contains the subalgebra^of functions on the circle which is
similar to ύ(l). A deeper understanding of the gl(N) part of the global observable
algebra is still lacking. Certainly it should be one of the main issues of research in
this area to learn more about the appropriate way of extending the naive global
observable algebra, and in particular about the relation with Haag duality. It is also
tempting to try to identify the Lie group which has & as its Lie algebra.

The generators Dl

(

j

ε)(m) of gl(JV) close under commutation only up to finite sums
of fermion bilinears, i.e. form a closed Lie algebra only when combined with the
infinite orthogonal Lie algebra O^N) (2.14). (Nevertheless gl(N) contains the $b(N)ι
Kac-Moody algebra. This is so because, after taking antisymmetric combinations
of the gί(N)-generators, one is left with a closed algebra generated only by infinite
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sums, provided that one properly adjusts a finite number of terms in the sums. The
operators obtained this way are precisely the generators Ja

m of the affϊne algebra
so(Λf)ι.) Note that there is no way to obtain a closed algebra by adjusting the finite
contributions to the non-antisymmetric generators D^ε)(m). It would in fact be rather
disturbing if this were possible, because then the operators D^e)(m) could be
interpreted as the modes of a primary conformal field of conformal dimension 1.
Such a field would necessarily be a Kac-Moody current, and as a consequence the
chiral symmetry algebra of the theory would have to be larger than the semidirect
sum of so(Af)i and VirN / 2, which is, however, just the correct maximal chiral algebra
of the WZW theory.

Another line of research is to extend the results to more complicated theories.
The WZW theories considered here provide an infinite number of conformal field
theories, but all of them are rather simple theories, manifested by the fact that the
level of the relevant affine algebra (sδ(ΛΓ)) is equal to one. As WZW theories are
believed to be the building blocks of all rational conformal field theories, one should
next try to extend the results to higher level WZW theories. Since the progress made
in the present paper relies on the realization of the affine algebra in terms of free
fermions, one may first look for higher level theories which share this property. Such
theories exist [19]; in fact, they are in one to one correspondence with the conformal
embeddings [17] in the classical affine algebras so(Λf)ι and sϊ(Af)ι [19,20], so that
one could apply the results of the present paper rather directly to these more
complicated models. Note, however, that in the case of conformal embeddings the
maximal chiral symmetry algebra (which is the algebra one is usually interested in
in conformal field theory) contains the large level one classical affine algebra rather
than only its higher level subalgebra. Nevertheless it seems to be possible [18] to
obtain non-trivial results also for the superselection structure of the higher level
WZW theory. Another possibility to go to higher level is to use constrained fermions
or free fields coupled to a background charge. It is, however, not at all obvious how
to describe such systems in terms of algebraic quantum field theory.

Let us also mention the following problem which will arise when more
complicated theories are considered. For the theories considered in this paper, one
can express the quantum dimensions &u of the primary fields (i.e. [6] the statistical
dimensions of the corresponding superselection sectors) as 2 = 2ind([pu])/4, where
ind([/?u]) is the index of the representative endomorphisms /?ue[/?u] of the
Majorana algebra (this follows in the same way as for the special case N = 1, i.e. the
conformal Ising model [4]). For theories with more complicated fusion rules this
is certainly no longer true because the quantum dimensions are generically not just
fractional powers of 2.

Finally let us recall that one can construct the field algebra which describes the
superselection structure in terms of the observable algebra and of additional
operators which intertwine between the sectors. One then obtains a natural product
in the field algebra, which should correspond to the operator product expansion of
the conformal field theory description. Thus it may be possible to compute the
operator product coefficients of the conformal field theory as the structure constants
of the field algebra, which in principle can be determined from the explicit form of
the intertwiners.

Acknowledgements. It is a pleasure to thank L. Alvarez-Gaume, G. Mack and V. Schomerus for
interesting discussions, and B. Schroer for providing a copy of ref. [18].
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A. Appendix: The Zero Mode Currents

A.I. Cartan-Weyl Basis. The zero mode generators Ja

0 of the current algebra
sb(ΛOι span the horizontal subalgebra so(N)<^so(N)i. Throughout this appendix,
we will neglect the contributions with mode numbers different from 0 or + \ to these
zero mode generators, because these do not contribute when acting on the states of
zero grade in any of the affine highest weight modules; the conclusions concerning
the action on higher grade states are also not altered. The Lie algebra so(ΛΓ) is then
spanned, in the Ramond sector, by the operators b^b^, and in the Neveu-Schwarz
sector by [b\l2,b

j_ll2\, with i,je{l,...,N}. Explicit expressions in terms of
Majorana bilinears for an orthogonal basis of the Cartan subalgebra and for the
elements corresponding to the simple roots of a Cartan-Weyl basis of so(ΛΓ) are
given as follows.

We write N = 2r and N = 2r + 1 for N even and odd, respectively. Then in the
Ramond sector, one has

Hk = _ib2k-lb2k k=l
1L 0 0 0 ' 15 5 ' 5

£2r-3 j^2r-2w f c 2r-l ° j f r 2r ) _ 7" " ' ^

(blr~l + ib0r)£0r+1, N = 2r+l,

and in the Neveu-Schwarz sector

These operators satisfy

and obey the commutation relations

, „
(«*,«*)

Here ίί denotes the vector with components Hk

0. Also, the components of the simple
roots «!,..., αr have been chosen as

-ι,ί + «5r,ί, N = 2r, (A.5)

.,, Λf = 2r+l

in an orthogonal basis on the weight lattice.
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A.2. Highest Weight Modules. As a consequence of the choice (A.5), the highest
weights of the trivial, the vector and the spinor representations of so(Λf) have the
following components in the Dynkin basis (second column) and in the orthogonal
basis (third column), respectively:

(0): (0,0,. ..,0) (0,0,. ..,0),

(v): (1,0,. ..,0) (1,0,. ..,0),

(s): (0,... ,0,0,1) (i...,i,i), i (A.6)

(c): (0,... ,0,1,0) (i...,l-i),j Γ'

(σ): (0,... ,0,0,1) &...,£,£), N = 2r+l.

The corresponding vectors in the NS sector that have these eigenvalues with respect
to the chosen Cartan subalgebra are

(0): INS),

(v): (&!_1/2 + i6i1

for the trivial and the vector representation, respectively. Acting with all bilinears
bl_ 1 / 2 &ι/2 on (^ - 1/2 Ί" ̂  - 1/2)1^8), we generate the JV-dimensional space spanned
by the vectors (2.23), i.e. the vector module, while acting on |NS> we always get
zero, i.e. |NS> spans the trivial one-dimensional module. Thus the so(AΓ) singlet and
vector modules appear precisely once in the zero grade subspace of the Neveu-
Schwarz sector. These multiplicities are also the multiplicities of the basic and vector
representations of sb(N) in πNS because bilinears do not make transitions between
<^>even OMΛ1 <ypoddJΓNS and JV N? .

The analysis of the R sector is more involved. We begin by introducing some
notation. Define B(*}k, with ε, η = 0, 1 mod 2, k = 1, . . . , r, as follows (abusing notation
for η, we will use both the multiplicative notation ± and the additive notation
0,1 mod 2):

(A.8)

v ^

Immediately we obtain

B(ε

±

+l)k (A.9)

and

[&i,£(f] = 0 for j* 2k -1,2k,

bj

QB(f = ξB(^+1* for j = 2k-l,2k

with ^/2ξ€{l9i9—ϊ}. The step operators from (A.I) are in this notation EΛk =

j B <i)*β<i)fc+i j for ^=1,...^-!, and E** = β(

+

1)r~1^+)r for JV = 2r, respectively

E** = ^/2B(l}rb2

0

r+1 for N = 2r + 1.
Now consider first the case N = 2r. Obviously the 2N-dimensional space spanned

by the basis (2.28) can equivalently be described by the basis consisting of the vectors

(A.ll)

with ~S,βe(Z2)
r. This big space breaks up into irreducible subspaces under the

action of so(ΛΓ) or equivalently under the action of bilinears bl

0b
J

0 with ij = 1, . . . , N.
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Usinjg (A. 10) the following is obvious. If both i and j are in {2k — 1, 2k} for some k,
then b'0fc

J

0t;(o?, β) is proportional to ι?("α,/ϊ). If ίe{2k- 1,2k} while j e { 2 k f - 1,2k7}
with k φ fc', then the elements of the two pairs (αk, βk) and (αk,, βk>) are "flipped," and
because we are acting with bilinears we always flip two pairs. As a consequence the
irreducible subspaces can be described as

(A. 12)

where

y = 0 mod 2 for spinors,
(A. 1 j)

7 = 1 mod 2 for conjugate spinors,

and \β\ = βi + — h βrmod2. Each of these spaces KN(lf;y) has dimension 2r~1.
From (A.9) it is clear that the highest weight vector of the spinor module VN(~ε; 0)
is V(~B; ( + — h + )) while the highest weight vector of the conjugate spinor module
KNfε; 1) is t;(T;( +•••+-)).

Consider now the case of odd N = 2r + 1. The 2N-dimensional space is spanned
by

v(*;ftS):=(b*'+1)0v(S9~$) (A. 14)

with "α, βe(Z2Y
 and δeZ2. Acting with so(ΛΓ) on a vector like this it is clear that

both oΓ -I- β and \β\ + δ remain unchanged, i.e., we have irreducible spaces

(A. 15)

Each of these spaces has dimension 2r. The highest weight vector in such a space is
υ(T;( +••• + +);?).

Finally let us consider the action of arbitrary fermion bilinears bl

pb
j

q9ij =
l,...9N,p, qzTL. Obviously for N = 2r the fermionic Fock space Maj | R > is spanned
by (b < )*ϋ(όΓ, ~β) with όΓ, ~βe(Z2)

r, k = 0, 1, 2, . . . , and (ft < )k being any product b1^ bl

p\ - - -

bl*k with all pt < 0, while for N = 2r + 1 the Fock space is spanned by (fo<)fcι;(α'; β; δ).
In a way analogous to the finite-dimensional case we may argue that

V2r(^y) = {(b<)
kv(aJ)\a^ = ̂ mod(Z2γ9\β\-^k = ymoά2} (A. 16)

provide the irreducible spaces of the spinor (γ = 0) and the conjugate spinor (y = 1)
representations for even ΛΓ, and

^2r+ι(^;7) = {(^<)Mα;?;δ)|α-f^ = 7mod(Z2)
r,|jβ| + ̂  + k = ymod2} (A. 17)

give the irreducible spaces of the spinor representations for odd N. In fact it is readily
checked that these subspaces are irreducible under the action of any (finite or
infinite) linear combination of fermion bilinears. As a consequence, they provide
irreducible subspaces of the whole Lie algebra .3? of global observables.

As an illustration, let us describe the so(N) spinor modules explicitly for the zero
grade subspace in the case N = 3. Passing to the notation

\(-lTyab:=v(a + η;η b + η) (A. 18)

for α,fr,fjeZ2, the highest weight vectors are given by

(A.19)
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They ate annihilated by the single raising operator E = (b J + \b^)b^ while the
lowering operator F = (— b j + iί?o)^o acts as

f | + >«f tθc |->α* (A.20)
for a,b = Q, 1, where

(A.21)

Finally, the states | — >flft are annihilated by F, and the Cartan subalgebra generator

H= -i^o^o acts as

H\±yab=±±\±yab. (A.22)
Thus there are four irreducible two-dimensional modules K3(α;fo) each of which is
spanned by | + >αb and | — >flfc for fixed α, f>e{0, 1}.

A3. Action of the Endomorphisms. Let us also check that pv(Ja

0) and ps,c(Ja

0)
respectively pσ(Ja

0) indeed provide the vector and spinor representations of so(N)
on the space Jf0. We start with the endomorphism pv. To save space we consider
first the antisymmetric basis

4' = *- 1/2*1/2 -#- 1/2&Ί/2 (A 23)

of so(N). One finds

Pv(^)|0> = IO-L/>, (A.24)

where

and

Pv(^^)l/> = (~ - ^')l' > - (^ - 5")l7> + jj(δtt - δjl)\0>. (A.26)

Thus pv(JJΪ) closes on the vacuum and the states (A.25). Also, since

0, (A.27)

only N — 1 of the states |ί> are independent, and hence together with the vacuum
|0> there are N independent states. Thus these states span the vector module of
so(ΛΓ).

Moreover there is a representative of the vector endomorphisms, namely
pv:=σ(j with

u:=^(fri/ 2-ifc;/ 2 + fr!.1/2 + ifr2.1/2X (A.28)
V 2

such that the map

U\tf^tfQ (A.29)

maps the highest weight vector of the vector module to the highest weight vector
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of the singlet,

~ 1 ~

72

and obeys the intertwining property

π0°ρv(a)U = Uπv(a). (A.31)

Similarly one verifies that

p s(#o)|0>=±|0> for ί=l,. . . ,r,

• ί i|0> for /=!, . . . , r- l , (A.32)

[—^|0> for ϊ = r

for N = 2r, and

pσ(^o)|0>=^|0> for i = l,...,r (A.33)

for N = 2r 4-1, as well as

- = 0 for ΐ = l , . . . , r . (A.34)

Thus the vacuum state in the NS sector provides us with the highest weight states
of the various spinor representations through the action of the corresponding spinor
endomorphisms. Therefore the identification maps

?̂ _ . <t/&
" ° (A.35)

for u = s, c, σ map the equivalent highest weight modules into each other and obey
the properties that the image of the highest weight states are again highest weight
states.
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