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Abstract. We derive new holonomic ̂ -difference equations for the matrix coefficients
of the products of intertwining operators for quantum affine algebra Uq(g) representa-
tions of level k. We study the connection opertors between the solutions with different
asymptotics and show that they are given by products of elliptic theta functions. We
prove that the connection operators automatically provide elliptic solutions of Yang-
Baxter equations in the "face" formulation for any type of Lie algebra g and arbitrary
finite-dimensional representations of Uq(§). We conjecture that these solutions of the
Yang-Baxter equations cover all elliptic solutions known in the contexts of IRF models
of statistical mechanics. We also conjecture that in a special limit when q —> I these

solutions degenerate again into Uq/(§) solutions with q' = exp I J. We also

\k + g J
study the simplest examples of solutions of our holonomic difference equations asso-
ciated to Uq(sl(2)) and find their expressions in terms of basic (or q—)-hypergeometric
series. In the special case of spin — | representations, we demonstrate that the connec-
tion matrix yields a famous Baxter solution of the Yang-Baxter equation corresponding
to the solid-on-solid model of statistical mechanics.

1. Introduction

The recent development in mathematics and physics related to conformal field theory
[BPZ, FS, S, MS] and quantum groups [Kr, Drl, J2] is a result of an astonishing
interplay between various ideas of both sciences (see [0] for a partial bibliography).
Mathematical roots of these theories lie in the representation theory of infinite di-
mensional Lie algebras and groups, algebraic geometry and Hamiltonian mechanics.
The physical intuition arises from quantum field theory in two dimensions, integrable
models in statistical mechanics and string theory. For mathematicians conformal field
theory is a representation of certain geometric categories of Riemann Surfaces [S] or
a regular representation of a "Lie algebra depending on a parameter" (vertex operator
algebra) [FLM, MS]. For physicists, it is first of all the theory that characterizes the
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critical behavior of two dimensional physical systems; another fundamental role of
conformal field theory is that it describes the classical limit of string theory. Presently,
the general picture of conformal field theory is well understood from both mathemat-
ical and physical points of view and one can wonder about its further generalizations.
Here the different approaches suggest its own program of research (see [1-3] for ex-
amples of several directions). In this paper we propose a few steps of an extension of
conformal field theory using the ideas of the representation theory [1]). However, as
a result of our work, we unavoidably arrive at new connections with the other areas
of mathematics and physics [2, 3], which were previously essentially unrelated. Thus
our work can also be thought of as another contribution to the remarkable synthesis
that takes place in mathematics and physics.

One of the most fundamental examples of conformal field theory is the Wess-
Zumino-Novikov-Witten model (WZNW) [Wl]. It is based on the representation
theory of affine Lie algebras (or loop algebras) and the corresponding groups [Koh,
PS]. In particular, the genus zero correlation functions of WZNW model are the ma-
trix coefficients of intertwining operators between certain representations of affine
Lie algebras [TK]. The monodromy properties of the correlation functions contain
the most essential structural information about specific conformal field theory. Thus
the algebra of intertwining operators present a special interest for the WZNW model.
One way to study this algebra is to show that the matrix coefficients of the in-
tertwining operators satisfy certain holonomic differential equations first derived by
Knizhnik and Zamolodchikov [KZ]. Since the simplest nontrivial examples appear
to be differential equations for the hypergeometric function and its classical gener-
alizations, the theory of Knizhnik-Zamolodchikov equations can be thought of as a
far-reaching extension of the theory of hypergeometric functions. In fact, one can
view the Knizhnik-Zamolodchikov equation as a connection on certain flat vector
bundles on P 1 and more generally on an arbitrary Riemann surface and then proceed
to study their structure by the methods of algebraic geometry. The relation of the rep-
resentation theory and algebraic geometry via the Knizhnik-Zamolodchikov equation
has a deep parallel in the quantum field theory in the Wightman program relating the
algebraic structure of the Hubert space of states to the properties of the correlation
functions. The theory of Knizhnik-Zamolodchikov equation thus provides a perfect
example of the realization of this program.

The most substantial examples of quantum groups are certain ^-deformations of
the linear space of regular functions on a simple Lie group G. Its dual algebra Uq(o)
is naturally identified with a g-deformation of the universal enveloping algebra U(φ
of a simple Lie algebra g corresponding to G. One can extend the definition of Uq($)
to an arbitrary Kac-Moody algebra, in particular, to the affine Lie algebra § associated
to Q. We will call, for shortness, Uq(o) quantum algebra, and Uq(§) quantum affine
algebra.

It was gradually realized that the WZNW conformal field theory and the represen-
tation theory of quantum groups have a profound link. In particular, the monodromies
of the Knizhnik-Zamolodchikov equation are directly related to the intertwining oper-
ators for the tensor products of quantum groups [Koh, D2]. Thus the quantum groups
can be viewed in some sense as hidden symmetries of conformal field theory [MR].
This amazing relation is still not fully understood and is a subject of an intense study
[SV1, SV2, KaL].

Apart from the remarkable but still mysterious relation to the conformal field
theory, the theory of quantum groups and quantum algebras can be developed to a
great extent parallel to the theory of simple Lie groups and Lie algebras. Practically
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any aspect of the theory of simple and affine Lie algebras admit an appropriate q-
deformation. To begin with, besides a ^-analogue of the universal enveloping algebra,
there exists a corresponding deformation of the highest weight representations [L,
RO1]. However, the correct quantum analogues are not always straightforward and
one should expect to encounter radically new phenomena. An important program for
future research is a g-deformation of the entire structure associated to conformal field
theroy. Only a few isolated results in this direction are presently known [FJ, BL].
One of the key questions towards realization of this program is to find an analogue
of the Knizhnik-Zamolodchikov equation, study its solutions and identify its hidden
symmetries. We address these problems in the present paper.

Our main result is a derivation of an analogue of the Knizhnik-Zamolodchikov
equation for quantum affine algebras. The new equation appears to be a certain linear
g-difference equation satisfying holonomy conditions. As in the corresponding case
of conformal field theory, this equation is deduced for the matrix coefficients of a
product of intertwining operators. Our derivation uses the multiplicative approach
to quantum affine algebras [RS], which we develop further in the earlier sections.
Our next result concerns the properties of connection matrices for the solutions with
different asymptotics. These matrices, which play the role of monodromies in the
conformal field theory case, are not constant in the quantum case but they depend
on a spectral parameter. Using a classical result of Birkhoff [Bi] from the theory of
^-difference equations, we show that matrix coefficients of connection matrices can
be expressed in terms of ratios of elliptic theta functions, or in other words, sections
of a line bundle on an elliptic curve. We show that connection matrices satisfy a
version of the Yang-Baxter equations known as star-triangle relations in accord with
the terminology of the book [B2].

For quantum 51(2) we find an explicit expression of solutions of our ^-difference
equations in terms of basic (or g-)hypergeometric functions introduced in the last
century [HI, H2], and we compute explicitly the connection matrix and identified it
with the Baxter solution of the star-triangle relation for the solid-on-solid model [Bl],

Our results have two immediate implications, one in mathematics and another in
physics. We mentioned before the relation between monodromies of the Knizhnik-
Zamolodchikov equation and quantum algebras Uq(o) [Koh, D2, SV1, SV2]. This
relation alone involves a substantial number of different mathematical structures. In
this paper we conjecture that a similar relation exists between the trigonometric limit
(see below) of connection matrices and finite-dimensional representations of quantum

2πί

symmetries. Since this correspondence reduces to the previous one when the spectral
parameter tends to infinity, one can expect a new level of mathematical structures.
The elliptic case is even more interesting. The algebras that describe the hidden
symmetries of our g-difference equation have not been defined yet. They must be
further deformations of Uqf(o), which yield elliptic solutions of Yang-Baxter equations
as intertwining operators. Since the solutions of ^-difference equations are given by
generalized basic hypergeometric functions, one can expect that the representation
theory will allow to understand the conceptual meaning behind numerous remarkable
identities in this chapter of mathematics [SI, GR], and will suggest far-reaching
generalizations.

The physical implication of our results concerns integrable models in statistical
physics. There exist extensive generalizations of the original Baxter solution of the

affine algebras Uqt(g) with q1 = exp ( — — ), which now plays the role of hidden
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star-triangle relation for other types of Lie algebras and various finite-dimensional
representations [DJMO, DJKMO, JMO]. We conjecture that all these solutions come
from the connection matrices of our ̂ -difference equations. The star-triangle relation
is only the very first fundamental aspect of integrable models in statistical mechanics.
We expect that many other physical concepts will also find their place and explanation
in the representation theory of quantum affine algebras.

There is another remarkable relation with physics. When the central element in g
acts by zero our g'-difference equation coincides with one of Smirnov's equations for
form factors in integrable two-dimensional models derived from basic principles of
quantum field theory and the factorizability of the ̂ -matrix a few years ago [Sml].
This relation connects in a conceptual way deformations of universal enveloping al-
gebras of affine Lie algebras and massive integrable deformations of conformal field
theory [Z]. These models might be another class of examples where Wightman's pro-
gram can be explicitly realized. We also believe that interpretation of form factors
as deformed Knizhnik-Zamolodchikov equations will help to understand infinite dy-
namical symmetries of integrable models [Be, LSm] and may lead to interesting new
aspects of representation theory of infinite dimensional algebras.

We will delay further discussion of the future problems and perspectives to the
conclusion and will turn to the more technical description of our results.

In Sect. 2 we recall the derivation of the Knizhnik-Zamolodchikov equations in
the form convenient for our generalizations. To any irreducible finite dimensional
representation Vχ of a simple Lie algebra 9 indexed by a highest weight λ one can
associate two types of representations of the corresponding affine Lie algebra Q. One
type is again the highest weight representation V\^ of level k (equal to the value of the
central element c). This representation has a Z-graded structure Vχ,fc = φ Vλ,fc[~^]

neZ+

compatible with the one of Q and its top subspace V^tO] is naturally isomorphic to
Vχ. The second type is just a finite dimensional evaluation representation Vχ(z),
z e C\0, isomorphic to Vχ as a vector space for which k = 0. The operators of
the central interest to the conformal field theory are the intertwining operators Φ(z),
between Vχ^ and Vv^ ® Vμ(z). To formulate the properties of Φ(z) it is convenient
to introduce a generating function J(z) for g acting naturally on 7 ^ 0 1 ^ . Let {Ja}
be an orthonormal basis of g with respect to an invariant form normalized by the
condition that the square norm of the highest root is 2, and let { J J n ] ; c } , n G Z, be
the corresponding basis of Q. Then we define J(z) — Σ Jain] ® Jaz~n~ι and the

a,n

commutation relations of Q can be written solely in terms of this generating function.
We deduce from the intertwining property of Φ{z) that under the natural normal-

ization it satisfies an operator of the linear differential equation

{k + g)^-Φ(z)= :J(z)Φ(z):, (1.1)
dz

where g is the dual Coxeter number and : : is a normal ordering of operators defined
by means of the decomposition of J(z) into the sum of "analytic" and "antianalytic"
parts (2.12).

The operator linear differential equation (1.1) immediately implies that the matrix
coefficients of the product of Φ's

&= (vo,Φi(zι)...ΦN(zN)υN+ϊ) eVι®---®VN, (1.2)
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where VQ belongs to V\,fc[0] and VJV+I is the highest weight vector in VQ^ satisfies
the Knizhnik-Zamolodchikov equation

where Ω^ = π^(Jα) ® τrj(Ja) and π^ is the representation in V$. Equation (1.3) is a
holonomic differential equation and defines a flat vector bundle over Fι\{zι, . . . , zjy}.

The holonomic property of the Knizhnik-Zamolodchikov equations is tied to the

fact that rij(zi — Zj) = — is a solution of the classical Yang-Baxter equation
Zi — Zj

- z3)] + [ri2(zi - z2), r23(z2 - z3)]

- z3), τ23(z2 - z3)] = 0. (1.4)

We show how to transform the Knizhnik-Zamolodchikov equation to the "trigonomet-
ric" form with r^ fe — Zj) replaced by a trigonometric solution of the Yang-Baxter
equation f̂  fe/^ ). Choosing VQ and v^+i to be lowest and highest weight vectors
and multiplying Ψ by apropriate powers of z^s (denoted Φ) one obtains

) ! Φ, (1.5)

where λ = (λo+λiv+i -\-2ρ)/2, and ρ is a half sum of positive roots of g. Two forms of
Knizhnik-Zamolodchikov equations admit two entirely different quantizations, which
are now related to rational and trigonometric forms of the quantum Yang-Baxter
equation

ι ι 1 ^ ^ 1 ) . (1.6)

In this paper we concentrate on the trigonometric case, which is based on the repre-
sentation theory of quantum affine algebra Uq(g). The rational case is related to the
representation theory of full Yangians (the double of the Yangian [LSm]) and can be
obtained as a certain limit of our constructions.

To prepare the necessary tools we first recall the basic facts on the representation
theory of quantum algebra Uq(g) in Sect. 3 and then we proceed to the quantum affine
algebra Uq(g) in Sect. 4.

The main result of Sect. 3 is Theorem 3.2 which will be used in Sect. 5 when we
derive the quantum analogue of the Knizhnik-Zamolodchikov equation.

In Sect. 4 we remind basic properties of the algebra Uq(g) and their representations.
This algebra (as well as U(Q)) has two different classes of irreducible representations:
highest weight modules Vλ^ and finite dimensional modules Vχ(z). Intertwining oper-
ators Rvw(z) between two products of finite dimensional modules V{xz) and W(x)
are determined by the universal i?-matrix for Uq(Q). These intertwiners satisfy the
Yang-Baxter equation. We prove that Rvw(z) is a meromorphic function of z and
that it satisfies the "crossing-symmetry"

, (1.7)

)), (1.8)

and the "unitarity" relations:
v w ^ v 1 (1.9)
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Then we describe "multiplicative realization" of Uq(g) [RS] using the universal R-
matrix. The multiplicative realization is crucial for our exposition since it allows us
to define a quantum analogue L(z) of the current J(z) for afflne Lie algebra. We end
this section with the definition of intertwiners Φ{z) parallel to those for Q and obtain
their relations with generators in multiplicative realizations.

In Sect. 5 we deduce the operator linear difference equation for the intertwining
operator

Φ(zq-(k+9)) = :L(zq-9)Φ(zq(k+9)):. (1.10)

Here the normal ordering :: is defined using the factorization of L(z) into the "ana-
lytic" and "antianalytic" parts (see Sect. 4). The relation (1.10) is a ς-analogue of the
differential equation (1.1). We define a general matrix coefficient of the product of
intertwining operators as

& = < , Φi(*i) ΦN(ZN)') eVo®Vι®~'VN®

where V& and V/v+i are the top subspaces of the corresponding infinite dimensional
modules.

Equation (1.10) implies the difference equation for the matrix coefficients of the
product of the intertwining operators

Ai&Ί (1.11)

where Tif(zu . . . , zu . . . , zN) = f(zu . . . , pzu . . . , zN), p = q-W+a), and

Mz) = Rii-i (ψλ ...Rn ί^~\ Rio7Γi(q2ρ)(RiNrι

) i M ( ) (1.12)
ZNJ ^

Here Rij(z) G Έnd(Vi®Vj) are the intertwining operators (iϊ-matrices) corresponding
to the pair of finite dimensional Uq(§) modules Vi and Vj and Rij are corresponding
Uq($) intertwining operators. Then we show that the Yang-Baxter equation for Rij(z)
implies that (1.11) is a holonomic difference system in the sense of [Al]:

{TiAό)Ai = (TjAMj

We begin Sect. 6 with the study of the properties of solutions of our difference
system (1.11). We show that the subspace of t/ς(g)-invariant solutions to this system
is naturally isomorphic to

We show that solutions with different asymptotics can be analytically continued and
we define connection matrices between them. The space (1.13) admits a factorization

vlvHKlχvHK:N_^^ (1-14)
λ l λΛΓ-l

which provide corresponding natural choice of basis in (1.13). We describe explicitly
the action of the connection matrices in this basis (1.14) and show that they can be
expressed in terms of a product of elementary connection matrices arising from the
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difference equations with N = 2 as in the classical case. We proved that the ele-
mentary connection matrices satisfy the Yang-Baxter equation, a "unitary" condition
and that their entries are ratios of theta functions. On the basis of these facts we
conjecture that the elementary connection matrices of the system (1.11), (1.12) cover
all known solutions of the Yang-Baxter equation [DJMO, JMO]. One of the corollar-
ies of these results is that matrix coefficients of the intertwining operators allow an
analytic continuation from formal power series to complex values of z. The analytic
continuation, together with the factorization property of connection matrices, yield
an exchange algebra for the intertwining operators (6.40). We also conjecture that in
the limit q —• 1, Zi = qXi and xι fixed these connection matrices coincide with the
action of Uqι(§) intertwiners on the Uq(φ invariant subspaces of tensor products of

finite dimensional [/g/(g)-modules with q' = exp I 1. This property of connec-
\k + g J

tion matrices for the system (1.11), (1.12) can be regarded as a generalization of the
correspondence between £/(g)-modules of level k and the algebra Uqr(g) [MR, Dl,
SV1, SV2, KaL] and others.

In Sect. 7 we consider a special example of solutions of our difference equation
when g = sί(2). It turns out that they are expressed in terms of the basic or q-
hypergeometric series introduced in the middle of the last century [HI, H2]. We recall
some facts of this theory including the integral formulas and the connection formulas.
Applications of the connection formulas for basic hypergeometric series allows us to
find explicitly the connection matrices in certain special cases. In particular, when V\
and V2 are both two-dimensional representations of Uq(sl(2)) we obtain

WVιV2(z) K
κ±\

K

K = 1,

[u + 1] [K + 1] '

[u] [K + 1 ± 1]

(1.15)K±\ K±ί
K
K

K±\ ΛΓτl
K

where q = exp(-πiτ), z = exp(2πiτu), [x] = θ(e2πττx) and θ is the Jacobi elliptic
theta-function (6.29). This is exactly the famous Baxter solution of the star-triangle
relation for the solid-on-solid model [Bl].

In the concluding Sect. 8 we discuss some further problems and new directions
of research, arising from our results and their comparison with the known facts from
conformal field theory and quantum groups.

2. Affine Lie Algebras and the Knizhnik-Zamolodchikov Equation

We recall first several standard facts about finite-dimensional simple Lie algebras and
fix the notation. Let g be a simple Lie algebra over C. We will denote by (,) a
symmetric invariant bilinear form on g and identify g with its dual by means of this
form. The form (,) is unique up to a constant which we will fix by the requirement
that (0, θ) — 2 for the maximal root θ of g. We choose a triangular decomposition
g = n + Θ ϊ) θ n _ , where f) is a Cartan subalgebra and n+, n_ are nilpotent subalgebras
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of g, corresponding to positive and negative roots Δ+ and (—Δ+), respectively. We
will denote by ρ the half sum of positive roots, and by g the dual Coxeter number.

dim 0

Let {xi}^9 be an orthonormal basis of g, then C = Σ x\ *s t n e Casimir element
i=\

in the universal enveloping algebra U(Q). Let {Vχ}χeP++ be a set of all irreducible
representations indexed by their highest weight, which belongs to the positive cone
P++ of the weight lattice P and we denote π Λ :g —> End Vχ the action of g. We will
often use the module notation xv, instead of π\(x)υ, x G g, υ G V\ We denote by
C(λ) the value of the Casimir operator in the representation V\.

Next we recall some facts about the affine Lie algebra g associated to g (for more
details see [Koh, FLM]). By definition g = 0 gn Θ Cc, where gn ^ g, n G Z

nGZ

as vector spaces, and c is in the center of g. Then the commutation relations of the
elements J£ G gn, corresponding to z G g, are

[J^1, Jy

n] = J™+f +m<Wn, 0(z,2/)c. (2.1)

We will identify g with the subalgebra g° of g and we will also write Jx instead of
x for x G g. It is often convenient to use the language of the generating functions,
namely

Jx(z) = J+(z)-J-(z), (2.2)

n>0 π>0

where z is a formal variable. The commutation relations (2.1) admit the following
form:

{tx,yp) tx,y](» - (2-4)

Jί(z), J^(tι;)] = j ^ (4 , y ] ( , ) - J^y](w)) + ^ ^ . (2.5)

Here (z — w)~ι and (z — w)~2 should be understood as power series expansions

y ^ ( I d y ^ [— I and -T; y ^ n [ — ) , respectively, and the identities (2.4) and (2.5)

as the identities over C[z±ι,w±ι] and C[z,w~ι], respectively. For more details on
the formal calculus of generating functions for affine Lie algebras see [FLM].

Let g+ = 0 gn Θ Cc be the maximal parabolic subalgebra of g and V be a
n>0

g-module. We introduce in V the structure of the g+-module such that QnV = 0,
n > 0, cV = kV. With each such a module we associate the induced representation
of g

T 4 = I n d | + y . (2.6)

The space Vk has a natural grading consistent with the grading of g,

k[-n]. (2.7)
n > 0
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If V is finite dimensional the spaces Vk [n] are finite dimensional as well. We define
a graded dual module 0 4 ) * as a linear space

n>0

with the following structure of g-module on it:

(xυ',υ) = — (υ\xυ).

Here vf G (14)*, υ G T4, a? G g and (, ) is a pairing 04)*®Vfc —• C. The top subspace
Vk[0] can be naturally identified with V. The representation V\:k induced from an
irreducible finite-dimensional representation Vχ9 λ G P++, of 9 is irreducible for
fc 3 Q. If k G Z+, V\,fc is reducible and its factor by the maximal ideal is an integrable
dominant highest weight representation for λ G P+ + = {μ e P++ | (μ, 0) < k}. Any
induced representation Vk of § can be extended to the semidirect product of 9 with
the Virasoro algebra. In particular, Lo is the degree operator on Vk and its value on
Vk [0] called conformal weight, is equal to h(λ) = C(X)/2(k + g) for V = V\. We
note, however, that in this work the Virasoro algebra is never used and the choice
of the shift h(\) in the definition of the degree operator will be motivated also by a
certain differential equation.

To any representation V of g and a formal variable z, we can also associate a
representation V(z) of g, in which k is 0. As a vector space V(z) = V 0 C((z)),
where C((z)) denotes the Laurent series in z, and J ^ acts by x ® zn. One of the
central objects of the conformal field theory associated to representations of affine
Lie algebras are the intertwining operators

Φ(z): Vμ,k -> VVik ® F λ ω ^ - Λ ( λ ) " M μ ) + Λ ( l / ) , (2.8)

where λ,μ,ve P + + , and the shift in grading z-h(λ)-Kμ)+Hv) c o m e s from m e grading
of representations and will play an important role. A fixed choice of an element
v G V* gives rise to an operator

Φv(z): Vμ,k -> VVtk ® C((z))z-^ ( λ ) -^ ) + / ι ( ι / ) , (2.9)

or in the component form

ΦV(Z) = Σ Φv[n]z-n-h{λ)-h{μ)+h{l/). (2.10)

neZ

Since the intertwining property of Φ(z) does not depend on a multiplication by any
power series of z we require in addition that the grading (2.10) is consistent with the
graded structures of the representations,

Φv[n]:Vu,k[m] -> Vμ,k[m + n ] . (2.11)

By definition the intertwining operator Φv(z) satisfies

z — w

) ~ ι

Φxv(z), (2.12)

where (z — w)~ι should be underestood as the corresponding positive or negative

power series in ί — 1 depending on the sign of J^(w). We also define a normal
ordering ^ z '

:Jx(z)Φv(z): = JΪ(z)Φv(z) - Φv(z)J-(z). (2.13)
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Remark 2.1. Heuristically, when z is set to be a complex variable, the definition (2.13)
is motivated by the following expression often used in physics literature [BPZ]:

: Jx(z)Φv(z): = - L / T(Jx(ζ)Φυ(z)) -β- ,
2πι J ζ — z

cz

where Cz is a circle with the center in z with the counterclockwise orientation and T
is the radial ordering of operators, namely T(Jx(ζ)Φv(z)) = Jx(ζ)Φv(z) if \ζ\ > \z\
and Φv(z)Jχ(ζ) if \z\ > \ζ\. The latter can be rewritten, using the Cauchy theorem
for an analytic function of ζ with the three singular points 0, z and oo, in the form

:Jx(z)Φv(z): =— ί Jχ(ζ)Φv(z) -β- - - ^ / Φv(z)Jx(O -β- , (2.14)
zπi J ζ - z 2πι J ζ - z

CR Cr

where CR and Cr are the circles with center in 0 and the counterclockwise orientation
of radii R and r, respectively, and R > \z\ > r. Here z and ζ are complex variables
and all such identities should be understood in the weak sense, i.e. as the equality of
arbitrary matrix coefficients of the corresponding operators. For more detail on rela-
tions between the formal variable identities and their complex analytic counteφarts,
see the Appendix in [FLM]. One can show that in this form (2.14) the right-hand side
is well defined and then this definition of normal ordering is immediately reduced to
(2.13).

We deduce first an operator analogue of the linear differential equation for Φv(z),
which we consider one of the cornerstones of the conformal field theory associated
to the highest weight representations of the affine Lie algebra Q (cf. [KZ]).

Theorem 2.1. The intertwining operator Φv(z) defined as (2.8)-(2.12) satisfies the
following differential equation:

/
(z): , (2.15)

where the sum is taken over an orthonormal basis of g.

Proof We will give an induction proof. Let us first consider the matrix coefficient of
Φv(z) on the top level. One has

υ0)
v) , (2.16)

where υ G Vλ*, υ0 β V~k[0] ^V^v^e (V^ίO])* ^ (K)*, and / is a g-invariant

functional on V* <g) V* (8) Vμ. Then we find

= _ ( f t (λ) + h(μ) - h(y)) hw+h(μ)-h(,)+ι ' <2 1 7 )

[Voo,Φav(z)JaVθ)

o Θ JaV ® JaVo)
zh(\)+h(μ)-h(ι>)+l (2.18)
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Using the g-invariance of / we get

Σ J(υ<χ> ® Jav ® Javo) = \ /(Id ®(Δ(C) - C <8> 1 - 1 <8> C)^oo <g> v ® υ0)

= ± (C(i/) - C(μ) - C(λ)/(Voo 0 ^ ί ) o ) ,

where Z\ is a standard comultiplication. Now, using h(λ) = C(X)/2(k + #) we obtain
(2.15) at the top level.

The induction step is an immediate corollary of the following identities:

JΛk + ) 4 φ ( ) Σ : Jb(z)Φbv(z): 1 = 0,JaΛk + g)4 φv(z) Σ : Jb(z)Φbv(z): 1 0,
z-w dz ^ \ (2.19)

In fact, since Vχtk is generated by its top level we only need to prove that the
commutator of J™, n £ Z, with the left- and right-hand sides of (2.15) has the same
matrix coefficients. Then by induction arbitrary matrix coefficients are reduced to the
top level, where Eq. (2.15) has been checked.

The proof of the identities (2.19) uses only the commutation relations (2.4), (2.5)
and (2.12). One has

J a , — - Φ v ( z ) \ = - Φ ( )
d z J

( ι u ) J a , Φ v ( z ) \ j
z — w dz J (w — z)L

1 1 k
Z^ φbv(z)Jfab](w) - j - ^ J+M(w)Φbv(z) - ^ — ^ Φav(z)

Φ i ) Φ() + ^ Φaυ{z) ,
(z - w)i l a o i O V ^ (z - w)i avy~' (z -

since

Σ [ab]bv =\Σ Wba^v = \ C(θ)av = gav ,
a b

and similarly for J~(w).
One can also reformulate the statement of the theorem in terms of the intertwining

operators Φ(z). Let us introduce the generating function J(z) = Σ Ja® Ja acting in
a

the tensor product Vv^ 0 V\(z). Then the operator differential equation (2.15) admits
the especially elegant form

(k + g)γz Φ(z) = : J(z)Φ(z): , (2.20)

where :J(z)Φ(z): = Σ{J+(z) <g> Ja)Φ(z) - X)(l 0 Ja)Φ(z)J~(z). The equation in
a a

this form will have a natural generalization for quantum affine algebras.
The proof of the theorem implies the existence of the intertwining operators sat-

isfying (2.16) on the top level. This shows that the dimension of the linear space of
intertwining operators (2.8) is equal to dimHomg(V^, Vv 0 V\).

The differential equation for the intertwining operator now immediately implies
the Knizhnik-Zamolodchikov equation [KZ].
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For abbreviation we will write

Φι(zι)... ΦN-ι(zN-ι)ΦN(zN) = (Φι(zι) 0 1 0 1).. . (ΦΛΓ-I(*ΛΓ-I) ® 1)ΦN(ZN)

Proposition 2.2. Matrix coefficients of a product of intertwining operators

» e ^ ( 0 ) ® v λ l ® • ® vλN ® (

where VJ^ is the target space of Φ\{z\) and V^ + 1 ) w ίΛe source space o
satisfy the following system of partial differential equations

where ZN+\ = 0 α«(i Ωij = ̂ I 0 0 α 0 0 α 0 0 l , α appears at the ith

and j t h position. a

Proof. In order to avoid the vector notation, one can introduce a scalar function

Ψ = {Ψ, υ0 0 ϋ ! 0 <S> VN

Then, applying (2.15) and (2.12) one obtains

(̂ 0 . . Φavj (Zj) . . . ΦavMi) . . . VN+ι)

j<i Zi Z3

- 1
— — (υ0, . . . Φaυi(Zi) . . . Φavj(Zj) . . . VN+ι) .

a j<i "3 %

This is equivalent to (2.21) for the vector-valued function Ψ. We note that in the
quantum case we will have to work exclusively in the "vector" notation.

Finally, one can deduce from the derivation of the Knizhnik-Zamolodchikov equa-
tion and also easily check directly

Proposition 2.3. The system (2.21) is consistent, i.e

The consistency property of the Knizhnik-Zamolodchikov equation directly follows
from the fact that

Tijizi - Zj) =-Qi- (2.22)
3 Z Z

is a solution of the classical Yang-Baxter equation

- z3)] + [rn(zι - z2)

- z3\ r23(z2, z3)] = 0. (2.23)

Besides the rational solution such as (2.22) the classical Yang-Baxter equation also
possesses trigonometric and elliptic type of solutions studied in [KS, BD]. An example



Quantum Affine Algebras 13

of a trigonometric solution for any simple Lie algebra Q (written in a multiplicative
parametrization) is well known

rtj(Zi/zj) = -*- f-2-,
Zi — Zj

where

f = I

is a "half-Casimir," {hi}r

i=x is a basis of rj and x α G βα, α e A and (xα,x_α) = 1
for all a G Λ

It turns out that a simple transformation of the Knizhnik-Zamolodchikov equation
(2.21) allows us to rewrite it in the trigonometric form with r^ fe — Zj) replaced
by fij(zi/zj). This transformation is related however to a more fundamental fact of
changing the polarization of the affine Lie algebra g. Instead of "parabolic type"
polarization (2.2), (2.3) we can choose the "Borel type" polarization

Jx(z) = J+(z)-J-(z), (2.24)

where Jx(z) = zjx(z),

Jϊ(z) = ± (J°ίχ0+χψ + Σ JΓz±n) (2-25)
V 2 n>0 /

and x+, x°, x~ are, respectively, components of x G Q in the triangular decomposition
Q — n + 0 rj Θ n_. We can then define a normal ordering corresponding to the new
polarization

\jx(z)Φυ(z): = Jί(z)Φυ(z) - Φv(z)J~{z) (2.26)

and similarly : J(z)Φ(z)\. One immediately obtains

Proposition 2.4. Normal orderings are related as follows:

z: J(z)Φ(z): = :J(z)Φ(z)l - 1 ® ί - ^ + ί? J Φ(z), (2.27)

where C is the Casimir operator and ρ is the half sum of positive roots.

It is also natural to introduce

φ(z) = z- Mk) Φ(z). (2.28)

Then the differential equation (2.20) admits the form

(k + g)z -^ Φ(z) = \J(z)Φ(z)\ - 1 ® ρΦ(z). (2.29)

Now, choosing vo and VN+\ to be the highest weight vectors we obtain the trigono-
metric form of the Knizhnik-Zamolodchikov equation for Ψ from

Corollary 2.1.

dΦ
(k + g)Zi — = / V fijizi/zj) + I π<((λo + ρ) + (λn+α+i -t- ΰ))\ ψ > (2.30)

3φi
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where

9 = (vo,Φι(zι)...ΦN(ZN)VN)

This equation can also be obtained directly from the Knizhnik-Zamolodchikov
equation (2.21) using the fact that

π+l

rji = few, a n d f™ = Έi(\ C ~ Q) ( 2 3 1 )

Remark 2.2. We have seen that the parabolic and Borel type polarizations of the
afίine Lie algebra g are related by a simple transformation, which gives rise to the
corresponding relation between the rational and trigonometric form of the Knizhnik-
Zamolodchikov equation. However these two polarizations lead to two different Lie
bialgebra structures on g. Furthermore the quantization of two bialgebras yields two
different quantum analogues of g, namely "full" Yangian Ϋ(Q) (or the quantum double
of the Yangian Y(g) [S]) in the rational case and quantum affine algebra Uq(g) in
the trigonometric case. A generalization of the results of this section to the above
quantum analogues is our main goal.

Remark 2.3. We also would like to note that one can deduce a differential equation
for

9 = tt| vλfJfe(Φi(*i).. ΦN(zN)qL°),

where LQ V\,/cM = (h(\) — n)V\yk\ji\. Then f(z) is likely to be replaced by an
elliptic solution of the classical Yang-Baxter equation on g-invariant subspace in
Vι <g> 0 VN.

We would like to recall briefly the approach of [TK] in a slightly modified form,
which we will extend to the quantum case in Sect. 6. We have seen that the solutions
of the Knizhnik-Zamolodchikov equation can be obtained as matrix coefficients of
the product of intertwining operators

Φ3{z3y.VXjk - VXj_χk ® y μ j ( ^ ) / ( Λ ^ l ) " ^ ) " V ^ ) (2.32)

In this case we will need to specify the source and the target space of the intertwin-

ing operator (2.32). We will use the notation ΦJ(ZJ)X{~1 . By the proof of Theorem 2.1,

these operators are in one-to-one correspondence with elements of the vector space

H^~ιμj - Hom g (F λ j , VXj_λ ®Vμj). (2.33)

We will write ΦJ(ZJ \ α), a 6 Hχ

J~ιμj, to specify a particular intertwining operator.

Then Φj(z \ •) maps Hχ

3~ιμj into the space of intertwiners of a given type. Thus any

element of the space

gives a g-invariant solution of the Knizhnik-Zamolodchikov equation (2.21). We ob-

tain these solutions in terms of the formal power series in — , . . . , and the
Z\ ZN-1

general theory of linear differential equations asserts that these series are analytic
functions in the domain \z\\ > \z2\ > ••• > \zN\. The analytic continuation of
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the solutions into the domain, where \z{+\\ ̂  \zi\, and the rest of the order is un-

changed can be done in two different ways (arg — ι—— > 0 or < 0 at the point

\ \ Zi+\κt)
\zi(t)\ = \zi+\(t)\9 t G [0,1] ) and defines a map of (2.34) into the space

• <8> H^-ιμN . (2.38)Θ

One can show from the analysis of the Knizhnik-Zamolodchikov equations (2.21)
[see Sect. 6 for the case of Uq(§)] that this map has a local form

1,

where

(2.39)

will be called the braiding map. All the structure about monodromies of the Knizhnik-
Zamolodchikov equation is encoded in this map.

Remark 2.4. Since the braiding map (2.39) arises from N = 2 case of Knizhnik-
Zamolodchikov equation, the whole structure of monodromies is reduced to this case.
After a simple substitution Φ — (zιZ2)hχ°~hχ2Ψ, the latter becomes an ordinary
differential equation in a variable z = z\z^1 with three singular points z = 0,1 and

oo. In the simplest nontrivial case, when § = sl(2) and m = 1 in λ2 = μi+/i2+λ—ma
the system of differential equations has order 2 and the solutions are given in terms
of the Gauss hypergeometric function F(α, 6, c; z). General m and N give various
generalizations of the hypergeometric function studied in [FZa, DFa, SV1, SV2]. We
will consider a different generalization of the Gauss function arising in connection to
the quantum analogues of sί(2) in Sect. 7.

Since the solution of the Knizhnik-Zamolodchikov equation can be analytically
continued from formal power series to complex values of Zi we can define the analytic
continuation of the product of intertwining operators &±(Φi(z\)Φ2(z2))9 where ±
corresponds to two nonhomotopic paths as above.

Theorem 2.2. Intertwining operators satisfy the following exchange algebra:

•)X

X°Φ2(Z2 I )λ')
w _,_ Γ λ °

Bί.M2 λ ' l λ

v," ' L λ2

where Pγι is the permutation of the factors in the tensor product Vμi
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Corollary 2.2.

Σ
λ 2 V

1 Btm

λ2

A',

λί

A',

M

λo

λ 2

λ', λ , (2.40)

B
λ 3

λ 3

λo
λl

MlM3

λo

>«ί,Jλ'l
λl

λl
λo

λ2

λl

λo
A; λi

λ2

(2.41)

arises whenThe important special case of the braiding map B* μi

λ0 = 0. We denote it by A^ i μ 2 [λ 2 ], since in this case λi = μι and λ'j = μ2. We can

also identify HχX = C by singling out the intertwiner corresponding to 1 e C,

(υo,Φ(z)υ) = υ, (2.42)

where υo € V£k is a fixed lowest weight vector. Using this identification, we obtain

. (2.43)

The relations for i ^ can be best understood from the point of view of a braided
monoidal category, which we briefly describe [ML, RT]. By definition of a monoidal
category W, there is a bifunctor (tensor product) ®: W x ̂  —• £P, identity object / ,
and three natural isomorphisms

αχ,y,z :(I0F)®^^I^(F®Z), (2.44)

so that a satisfies the pentagonal diagram [ML], α, λ, ρ satisfy elementary triangular
diagrams \χ®γ o ai,χ,γ = \χ (8) idy, (idχ (8) λy) o aχ,γj — ρχ<&γ and λ/ = ρi. A
monoidal category is called a braided monoidal category if in addition there are two
natural isomorphisms

Ί±Y:X®Y ->Y®X (2.46)

so that

(idy idz) =

(2.47)

, (2.48)

and also ρx = \χ ojχ χ. In this paper we will call tensor category an abelian braided
monoidal category. We call pre-tensor category a tensor category without the axiom
given by the pentagonal diagram.
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Let us introduce a natural transformation which we call braiding,

(X ® Z) <g> Y, (2.49)

o (75 > y ® id z ) (2.50)

One can now reformulate the axioms of the (pre-) tensor category using the braiding
constraint. In particular, one easily checks

Proposition 2.6. The axioms (2.47) and (2.48) are equivalent to the following ones:

A?x,yo/^,x= i d> (2.51)
(β^z ® idx) o β%YfXtZ o (β±XfY ® idZ)

= ^ w o <β±XtZ ® idy) o ̂ X f V j Z . (2.52)

Now let us assume that W is semisimple, namely that every object is a direct sum
of simple objects Xi9 i e Ω, and / = C, Hom(X^ Xτ) = C. Then we have:

Xi 0 Xj - Hlj 0 Xk , (2.53)

where ϋ ^ 7 is a vector space. Let

© £ ^Γ f e ® ̂ n (2.54)
771, Π

Then /?χ y z induces on the vector space 0 H% (g) fί^1^ a linear map

β? m
n

m k > Hik

and the identities (2.51) and (2.52) imply the identities (2.40) and (2.41), respectively.
Thus we have seen that the monodromy of Knizhnik-Zamolodchikov equation

yields a semisimple pre-tensor category with simple objects indexed by P++. Operator
product expansions of intertwining operators or further analysis of the Knizhnik-
Zamolodchikov equation reveals that the pentagon diagram holds and we have in
fact a tensor category, which will be denoted by Monfc(g). It also has an additional
structure of rigidity and balancing, which will be important for us in the case of another
tensor category associated to the finite dimensional representations of quantum groups
considered in the next section.

3. Quantum Algebra Uq(φ

Let q be a formal paramter, Q be a simple Lie algebra with fixed Cartan matrix
A = (cbij), i,j = 1, . . . , rankg and d{ = 1,2,3 such that c^α^ = djdji.

Definition 3.1 [Drl, J2]. The algebra Uq(Q) is an associative algebra over formal
power series C[[q— 1]] with generators e^, f% and invertible ki, i = 1, . . . , / = rankg
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and with relations:

7 7 7 7 7 aij Ί Ί £ ~aij £ 7

/î /ij — KjKi , hitj — qi VjKi , i^ijj — q^ jji^i ,

pί. £ Ar _ g ^ ~ ^i

eιjj ~ J Jeι — °ιj zy J

e 1 " α i j ~ ' ϊ e e f c = 0 1 ^ 7 ( 3 ' 1 }

fc=0

l - O y

Here

and [ή]ql = [n] , . . . [1],, [n], = 9 " _ 9 _ " , % = ςΛ.

Remark 3.1. Over C[[g — 1]] we can define elements

h = log q = log(l + g - 1) = Y^ - — (q - If

and

We will also use notation
gA =

The algebra Uq(g) is a Hopf algebra [Ab] with the comultiplication

= h®ki,

= eiΘki + l®ei, (3.2)

From relations (3.1) and this form of the comultiplication it is easy to compute
the action of the antipode on the generators:

S(ei) = - akT1 , S(fi) = - kifi, S(ki) = k;1 .

The subalgebra of Uq(o) generated by kι is isomorphic to the universal enveloping
algebra U{\)) of a Cartan subalgebra ί) of Q over C[[q — 1]]. We denote by Uq(b+)
(respectively Uq(b-)) the subalgebra of Uq(o) generated by ê  and ki (respectively fa
and ki).

The remarkable property of Uq(o) is that it is a quasitriangular Hopf algebra, which
means the following.
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Proposition 3.1 [Dr3]. There exists a distinguished invertible element R G Uq(o)<8)
Uq(Q) (here 0 is a tensor product completed over C[[q — I]]) which is called universal
R-matrix and has the following properties:

Λf{ά) = RΔ(a)R~ι,

(Δ® id) (R) = Rl3R23, (3.3)

where Δ'(a) = σ o Δ(a), σ is a permutation in Uq(Q)®2(σ(x 0 y) = y 0 x) and

Rn = R 0 1, #23 = 1 0 Λ, i?i3 = (σ 0 id) (#23) αre elements ofUq(%)®3.

This proposition follows from the double construction of the algebra Uq(g) [Dr3],
(see also [RSI]): Uq(a) = D(Uq(b+))/U(t)), where D(A) is a "quantum double" of a
Hopf algebra. Using this description of Uq(g) it is easy to write a few first terms in
the decomposition of R as a power series in e* and fa:

Λ d ( 8 ) / t + ... ] . (3.4)
/

Here B = (5^) is a symmetrized Cartan matrix: Bij = diCLij. It follows immediately
from the double construction that R = Σ a^bi, where α̂  G £/g(b-i_) and 6̂  G Uq(b-).

i

We did not write in (3.4) terms of the type x®y, where x G Uq(b+), y G Uq(b-) are
monomials of ê  and fi9 respectively, of degree(x) = degree(y) > 1.

The explicit description of R in terms of generators, e*, fa, ki can be found in
[Ro2, KR2, LSo].

We recall a few standard definitions and facts related to a [/^(g)-module V. A
vector v G V is called a weight vector with weight λ = (λi, . . . , λ n ) if

kiv = qXiυ, 2 = 1 , . . . , / . (3.5)

A vector υ G V is called primitive if

e{v = 0, i = l , . . . , / . (3.6)

The [/ς(£θ-module V is called a highest weight module with the highest weight λ if
it is generated by a primitive vector v\ G V of weight λ. The vector υχ is called
the highest weight vector. Replacing e* by /̂  in (3.6) one can define a lowest weight
module generated by a lowest weight vector v'x.

Theorem 3.1 [L, Rol]. i) any finite dimensional representation ofUq(g) is completely
reducible, ii) An irreducible finite dimensional Uq(Q)-module is uniquely characterized
by its highest weight and weight subspaces in such modules have the same dimensions
as the corresponding weight subspaces in an irreducible ̂ -module with the same high-
est weight.

We will need some further facts about the category of finite dimensional represen-
tations of Uq{φ. Let us denote it as Repς(g) and let us recall some basic properties of
this category. As we will see, the category Repς(0) is a tensor category (in the sense
of Sect. 2, i.e. abelian braided monoidal category) with a certain additional structure.

First, the structure of the monoidal category on Rep^(^) is determined by the
comultiplication in Uq(g). For, given two C/ς(0)-modules V and W, define the repre-
sentation τrv®w ' Uq(o) —> End(y 0 W) as

= (πv 0 πw) (Δ(a)), a G Uq(g). (3.7)
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The associativity constraint <^χ,y,z 'X 0 (Y ® Z) -* (X ®Y) ® Z is trivial because
of the coassociativity of Uq(g). An identity / object is by definition C considered as
a trivial Uq(o)-modu\e and the natural transformations \χ, QX (2.45) are also trivial
for any object X.

It follows from Proposition 3.1 that the category Repς(g) is a braided monoidal
category [JS] with the commutativity constraint ηχ,γ : X 0 7 —> Y 0 X given by

Ίx,γ = PXY(πχ 0 TΓY) OR), (3.8)

where Pχγ: X 0 Y" —> Y 0 X is the permutation map Pxγ(x 0 y) = y 0 x. From
the action of the comultiplication on the universal .R-matrix we deduce the hexagon
identities for 7:

0

0 7χ,z) (ifx,γ ® idz).

Moreover, Theorem 3.1 implies that Repς(g) is a semisimple abelian category with
irreducible finite dimensional representations as simple objects.

Let us recall that a tensor category W is a rigid tensor category if for any object X
of the category W there exists an object X* and a pair of morphisms 6χ: X * 0 X —>
/, £χ: / —> X 0 X* such that

λχ*(εχ 0 id) (id 0 iχ)ρ~χ* = id x* , £χ(id 0 εx) (ix 0 id)λ^ = iάx .

The category Repς(g) is a rigid tensor category. The module V* dual to V is by
definition a dual linear space to V together with the following structure of Uq(o)-
module:

where 5 is the antipode for C/ς(g), I G F * , f G V, α G £/ς(fl).
The next important property of the category Repg(g) is balancing. In a balanced

tensor category W we associate with each object V G W an automoφhism ry such
that

] * , r/ = id.

For a tensor category g^ and an object V e W define a morphism vy which is
given by the following composition:

υv:V J^L. v®v*®v** - ^ v*®v®v** ^ ^ v**.

This is an isomorphism with vγι given by the composition

A remarkable property of balanced categories is that the isomorphisms

δv:V-+ V**, δv = υvoτyl

are functorial [KaR]: ^y^v^ = δv 0 ^w? 5/ = id, (<5χ*)-1

Following [RT] we will say that a quasitriangular Hopf algebra A is a ribbon Hopf
algebra if there exists a central element υ e A such that

Δ(υ) = (R2ιRι2Γ
lv 01;, S(v) = v .

Here R2\ = σ(Λ), σ(o 0 6) = 6 0 a. The category of representations of any ribbon
Hopf algebra is a balanced tensor category.
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The algebra Uq(o) is a ribbon Hopf algebra [Dl] with

v = uq~2ρ,

where, if we write R = Σ aί ® ̂  f° r m e universal i2-matrix, u = Σ S(bi)a,i; and
i i

ρ is half sum of positive roots. For an irreducible representation V we have:

πχ(v) = qC(X) Iy , (3.11)

where C(λ) = (λ, λ + 2g) and (λ, μ) is the bilinear form introduced in Sect. 2. The
functorial isomorphism δy: V —> V** is given by the map a \—> q2ρa.

The functoriality of δy implies the following relations for Rvw = (πy Θ π ^ ) (i^)

[R],
^ ) * 1 ) " 1 ) * 1 ) " 1 = (Q~2ρ ® Iw)RVW(q2ρ ® V ) (3.12)

and
fo2' ® ^ ) Λ V W = i ? y ^ ( g 2 ρ 0 92 ') (3.13)

For a finite dimensional C/g(0)-module V we denote by L±iV the following ele-
ments of Uq<&) (8> End(F):

L + ' y = (id (8) π y ) (Λ21), L~y = (id 0 πv) (R~ι). (3.14)

If we fix a basis {e^} in V, we can regard L 1 ^ as matrices with matrix elements

LfjV being elements of Uq(o). From the Yang-Baxter equation for R we get relations

between L ± > y :
J ? y w L + ' y L + ) W = L + ' ΐ y L + ' V Γ

J R y w

RvwL+

γ'
wL-'w = L~2'

w L+'v Rvw , (3.15)
pvv^7--,vr-,v^ _ Γ-,vι^Γ-,ypyv^

XL l-/i X-/9 — -L/9 1 •**'

By Z/f ' y , I/^ jV^ we understand the following matrices in V 0 VF:

Lj = L ' 0 ivί/ , L2 = iy 0 L ' ,

where 7χ is the unit matrix in X. From the quasitriangularity of Uq(o) we can obtain
the action of the comultiplication on matrices L ± ? y :

ΔΊL^-ΣLFvLtf. (3.16)
k

Proposition. For any finite dimensional representation V matrix elements L^ gen-

erate Uq(g) (over C[[q - 1]]), such that LfjV generates Uq(bΨ) <-* Uq(Q)

Let (Φλ)% be an intertwiner

(ΦxK'.Vu^Vμ®Vx. (3.17)

When V is Vλ we will often write λ instead of V\ in various indexes, e.g. L ± ' A

instead of L±'Vχ. The following result will be important for the future.

Theorem 3.3. Let e$ be a basis in V\ and (Φλ)i be a corresponding map Vv —> Vμ,
then

dim(\/λ)

j,k=\

where C(λ) is the value of Q-Casimir elements on V\ as in (3.11).
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Proof. First let us prove the following lemma.

Lemma 3.1. The map Y,{L+^)ij{Φx)k{q2ρ)kkS{L-^)jk:Vv -> Vμ coincides with

the map Ai, where A{ is a component of the composition map

A:VV

Vχ®Vμ
V** <

(3.19)
vμ®vλ,

where the morphisms i\, η\μ, Φ, q2ρ, εχ are as above.

To prove the lemma it is enough to compute the action of the composition map
and to compare it with the map in (3.18). The computation gives

(τr λ (g 2 ρ ) ) t {eμ

t
(3.20)

Here we use matrix notation xβi = Σ xίej> a n d CLU h are components of the universal
3

i?-matrix: R = ]Γ) aι 0 h. From the definition of L±>A we conclude that (3.19)
i

coincides with the left-hand side of (3.18).
Now, using the identities of a tensor category, the functoriality of the morphism

q2ρ in (3.19) and the balancing property of the category Repg(g) one can show that

A = qC(u)~C(μ)Φ. (3.21)

The simplest way to do it is to use the "graphic representation" [Rel] of the category
W. As it was shown in [RT] there exists a functor from the category of framed graphs
to the category Repg(g). The identity (3.21) corresponds to the following isotopy of
framed graphs:

Fig. 1

= qc(v) - c(μ)

Finally we would like to note that in Sects. 2 and 3 we have studied two classes
of tensor categories namely Mon^ίg) and Rεip(Uq(Q)). The following deep theorem
establishes an explicit relation between them.

Theorem 3.3 [D2]. For q = exp(2τri/(/c + g)) and k φ Q there is an equivalence of
tensor categories

We will not use this result in the present paper. However in the subsequent Sects.
4, 5, and 6 we will study the quantum analogues of the above (pre-)tensor categories.
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The statement of Theorem 3.3 will suggest the corresponding conjectures which we
will state at the end of Sect. 6.

4. Quantum Affine Lie Algebras

Let 9 be an affine Lie algebra associated to g with extended Cartan matrix Λ = (α^),
i,j = 0, ... , I = rankg and let q be a formal variable.

Definition 4.1 [Drl, J2]. The algebra Uq($) is an associative algebra over the ring of
formal power series C[[q — 1]] with generators ki, e*, fa, i = 0,1, . . . , Z, and with
relations (3.1) between them.

Definition 4.2. The algebra Uq(§) is an algebra over C[[q — 1]] with generators e*,
ki, fa, i = 0, . . . , l\d and with relations (3.1) and

[d,fc»] = 0, [d,ei] = 5 ί > oei, [d,/i] = - ί i ,o/ i . (4.1)

Algebras Uq(§) and C/g(g) are Hopf algebras with the comultiplication (3.2) and

Δ(d) = d 0 1 + 1 0 d. (4.2)

Let 2τ be a formal variable. Define an automorphism Dz of Uq(g) 0 C[^, 2:"1] as

D z f e ) = A θ e . ? £ ) z ( Λ ) = z-δitof. ?

Dz(ki) = ki, Dz(d) = d,

and define maps

4*(α) = ( ^ ® id)Δ(a), ^ ( α ) = φ z ® i d ) ^ ( a ) ,

where Z '̂(a) = σ o zA(a), σ(a (g> 6) = 6 0 a.
Drinfeld's construction of universal jR-matrix that we used in Sect. 3 (Proposition

3.1) can be generalized to an arbitrary Kac-Moody algebra [Dr3, Sect. 13], in partic-
ular, to the affine case. We denote by M the universal i2-matrix for Uq($). It follows
from the Drinfeld construction that

Ή e Uq(b+)®Uq(b-) ^ Uq(S)&Uq(s)

For any two finite-dimensional representations V and W of Uq(g) we would like to
define an operator 3%vw as a projection of &> acting in V 0 W as in Sect. 3. This
cannot be done in a straightforward way for two closely related reasons. First is that
finite dimensional representations are in fact representations of Uq{%) and not Uq(g)9

second is that if we would "gauge out" the element d the projection of JB still would
be meaningless as observed in [Dr3]. We will resolve this problem in two steps. First
we define a universal iϋ-matrix $B(z) for Uq(g) depending on a formal parameter z
by the formula

M(z) = (Dz

Then the Drinfeld construction implies that following.
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Proposition 4.1. (1) There exist unique elements M{z) G Uq(b+)<S>Uq(b-)lS>C[[z]] ι->

Uq(Q®2 ® C[[z]], where <g> is the completion of® over C[[q - 1]] such that

JB(z)Δz(a) = Δ'z(a)M(z),

(Δz ® id) {M(w)) = ^Bl3(zw)M23(ιυ), (4.5)

(id ® Δw)

Here

Ml2(z) = M{z

(2) The element JB(z) has the followimg form:

= exp(ft) (

βi <g> fi + 2z sh ( - ) e 0 <g> /o + . . . I . (4.6)

Here di — a( /aifor i = 1, . . . , / , -B^ = c^α^ , z, j = 1, . . . , Z/ aι, a( are labels of
the Dynkin diagrams of Lie algebras g and g v (with dual root system) respectively;
c = HQ + HQ where θ is a maximal root in g. We omit the higher order terms over z,
q — 1 and e$, /*. All these higher order terms do not depend on d.

The proof is based on the double construction for Uq(§) and is parallel to the proof
of Proposition 3.1 [Dr3]. We omit the details of the arguments.

An important corollary of Proposition 4.1 is the Yang-Baxter equation with spectral
parameter (cf. [F]) for the element JB(z):

All factors in this equation are elements of Uq(o)®3 ® C[[z]] ® C[[κ;]]. We will call
J8(z) the universal .R-matrix for Uq(§).

Since the dependence of the element J8(z) on d is explicitly given by (4.6), we
can define the universal i2-matrix for Uq(Q) as

R(z) = exp(-ft(c <g> d + d <g> c)38(z). (4.8)

Relations (4.5) give the following properties of M(z)\

R(z)Δz(a) = (D~c\ 0 D~c\) (Z\») R(z),

(Δ 0 id) (R(w)) = Rl3(wqci)R23(w), (49)

(id 0 Z\) (Λ(^)) - Rl3(wqci(Rl2(w),

Here ci = c <g> 1, c 2 = 1 0 c in the first relation and c2 = 1 (8) c (g) 1 in others.
Now, for any two finite dimensional representations V and W we can define an

operator
Rvw(z) = ( π y (8) 7ΓW) (Jϊ(^)) (4.10)
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as in Sect. 3. Since for any finite dimensional representation V τry(c) = 0, the oper-
ators of the type (4.8) satisfy the Yang-Baxter equation with argument as in (4.7).

Let V be a finite dimensional Uq(o)-moάu\c with πv'Uq(o) —>• End(V), and let
Dz be the automorphism (4.3) of Uq(g) <S> C[z, z~1]. We define a new representation

πV(z): Uq(g) -> End(F) ® C[z, z'1]

by the formula πy ( z )(α) — πv(Dz(a)), a G C/ς(g). Spezialising z to a complex number
we get a one-parameter family of finite dimensional modules V(z) connected by the
action of the automorphism (4.3): πv{zw)(β) = ^v{z)Φw{a)). The definition (4.11)
and the first equation in (4.9) also imply that

Rvw(z)πV(zw)®W(w)(Δ(a)) = 7rV{zw)®W(w)(Δ'(a))Rvw(z).

As in Sect. 3, for any module V we define a right dual module V* as a linear
space which is dual to V and has the following structure of Uq(§)-module:

υ'eV*, veV. (4.11)

Proposition 4.2. V(z)**-^V(zqg), υ ι—» q~2ρv, where g is a dual Coxeter number.

Proof. To prove this proposition, it is enough to compute the action of the square of
antipode:

S2(a) = q2ρDq9(a)q-2ρ.

The latter can be checked easily on generators.

Proposition 4.3.

(S (8) id) (R(z)) = R(zΓι, (id ® S"1) (R(z)) = R{z)~ι. (4.12)

Proof. This proposition follows from the action of the comultiplication on R(z) from
the property of the antipode: m(S <S> iά)Δ = ra(id <8> S)Δ = tε and from the identity
(ε <S> id) (R(z)) = 1 = (id ® ε)R(z), which is a corollary of (4.5) and the identity
(ε 0 id)Z\ = (id (8) έ)Δ — id. Here ε is a counit and m i s a multiplication for Uq(§).

Proposition 4.4.

RT w(z) = (Rvw(zΓlΫι , (4.13)

where t\ is a transposition over the first space.

Proof. Let

R(Z) = Σ Σ α^(n) 0 bί(n)zn (4 14)

n>0 i

For i ϊ ^ * ' ^ ^ ) , we have:

Rv*>w(z) = ( ( π y ® πw) ((S ® idjiϊ^)))*1 . (4.15)

Now the statement follows from Proposition 4.3. Similarly to the right dual V*, we
can define a left dual module * F as a dual linear space to V with the following
Uq{Q)-moάu\t structure:

(av\ v) = (v', S~ι(a)v), υ'e*V,veV. (4.16)

Proposition 4.5. (1) **W(z)^W(zq~9), υ -> q2ρυ.
(2) Rv*w(z) v w
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The proof is similar to Propositions 4.2 and 4.4.

Proposition 4.6. Rv^w\z) = (Rvw (z))^.

Proof. This proposition follows from the definition of V* and from Proposition 4.3.

Theorem 4.1. For any pair of finite dimensional Uq($)-modules, we have:

^*)" 1 )* 1 )" 1 )* 1 = (τrv(q2ρ)®lw)RVW(zq2g)(πv(q-2ρ)®lw), (4.17)

Proof The theorem follows from Propositions 4.2-4.5. The first equality is a repre-
sentation of Rv**>w(z). The second one is the representation for Rv**w(z).

Theorem 4.2. Let V and W be two finite dimensional irreducible Uq(§)-modules.
(1) The operator Rvw(z) has the following presentation:

RVW(z) = fvw(z)QVW(z), (4.19)

where Qvw(z) is a matrix polynomial over z without common zeros. The function
fvw(z) is a meromorphic function on C such that fvwΦ) = 1 and fvw(z) ~

Z-P(V,W)^ w n e r e p(y^ j ^ ) is tne degree of the polynomial Qv>w(z). This representation
is unique.
(2) The operator Rvw(z) satisfies the following unitarity condition

R (z)R2ι (z ) = Iv®w (4.20)

Proof (1) By the definition of Rvw(z) and of R(z) the map PvwRvw(z) is an
intertwining operator: V(z) 0 W —> W 0 V(z)9 W = VF(1). If z is a formal variable,
modules V(z) 0 W and W 0 V(2r) are irreducible. Therefore, such an intertwining
operator is unique up to a scalar factor.

Therefore, up to this factor, it is defined by the system of linear equations

Rvw(z)(πv®πw)(Dz®id)(Δ(a)) = (πv®πw)(Dz®id)(Δf(a)) Rvw(z) (4.21)

for a — hi, βi, fi, i = 0, . . . , / . Since this equation is linear over z, z~ι we have a
factorized representation (4.19), where polynomial Qvw(z) is fixed uniquely up to
the constant. Fix this constant by the condition fvwΦ) = 1.

Let us prove that the formal power series fvw(z) has an analytic continuation.
Consider intertwiners F**(z) 0 W -> W 0 V**(z). Since z is a formal vari-

able both of these representations are irreducible and therefore all such intertwining
operators differ up to a scalar multiplier. From the definition of F * * we have that
Pv*^w(((Qvw(z)-1)^)-1)^ is one of them. The isomorphism V**(z) ^ V(zq2d)
implies that Pv*^w . (πv(q2ρ) 0 Qvw(zq29)(πv(q-2β) 0 Iw) is also an intertwin-
ing operator V**(z) 0 W —> W 0 V**(2r). Therefore, there exists rational functions
rVw(z) such that

( ( ( Q ^ ^ ω - 1 ) * ! ) " 1 ) * 1 = rvw(z)(πv(q2ρ) 0 1 W ) Q V W ( ^ ) ' (πV(q~2ρ) ® l w ) .
(4.22)

Since Q y v ^(z) is a polynomial the function ryw(z) must be a rational one. If p(V, W)
is a degree of the polynomial Qvw(z), w e have for the rational function rγw(z)^

rvwφ) = 1, r v w ( z ) ^ q-*yW29 j z ^ oo. (4.23)

From the definition of Q y M Λ , we have also

rvw(
z) = 1 mod(g - 1). (4.24)
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Comparing (4.22) with (4.17), we obtain difference equations for fvw(z)-

fvwizq29) = rvw(z)fvw(z) (4.25)

with the condition fvwΦ) — l
Let

rvw(z)= Π V*\-qβ3z

p(V,W)

where £ (aά - βj) = 2gp(V, W) and aJ9 βά e C.

Proposition 4.7. Equation (4.25) w/ίΛ ίΛe function rγw(z) given by (4.26)
unique solution over C[[z]]®C[[q— I]]. It has the following form:

n>0

The proof is a straightforward computation. Uniqueness is obvious over C[[z]].
It is clear that we can continue the solution (4.27) from C[[q — 1]] to complex

values of q such that \q\ < 1. Then we can continue the result from power series over
z to complex values of z. As a result, we obtain meromorphic functions of z (for
\q\ < 1) such that it satisfies (4.24) and fvw(z) = z~p(V^w\ where \z\ -^ oo.
(2) Now the equality (4.20) makes sense. Moreover, from the irreducibility of V(z)<g>
W (we assume now that z, q e C, z φ qn, n e Z) we conclude that

RY2

w(z)R%v(z-1) = gvw(z) 1VQW (4.28)

for some scalar function gvw(z). Or equivalently,

If we substitute this equality to the first relation from Theorem 4.1, we get:

9vw(zqZ

or

gvwKzq1

Now from the second relation of Theorem 4.1, we conclude that

9vw(zq2g) = gvw(z). (4.29)

Lemma 4.2. gvwΦ) = l

Proof The definition of R(z) implies that Rvw(0) = Rvw, where Rvw is the Uq($)
-R-matrix in V (8) W regarded as Uq(g)-modu\t. From the relation (4.28) we conclude
that Rvw(oo) = gvw(R^2\V)~ι for some gyw = 9vwΦ)- The definition and the
properties of Rvw(z) imply that the morphisms PVWRVW (oo): V®W ^W®V
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satisfy the hexagon identities (3.9) in the category Repς(g) as well as other identities
for the commutativitiy constraint jv,w (3.8). Therefore gyw is such that gv®w,u =

9v,u9w,u, ΰv,u®w = gv,ugv,w, and gv\w = gγ]w = gv,w* The category Repg(g)
is a semisimple tensor category, i.e. any representation can be obtained as a summand
of tensor product of fundamental representations (for most types of g it is sufficient
to consider just one fundamental representation). The above identities imply algebraic
equations for gv,w for fundamental irreducible representations V and W. Because of
this and the condition gyw — 1 mod(g — 1) we conclude that gvw — l

Since there is only one solution to (4.29), with the condition gvwiβ) = 1, we
have gvw(z) = 1> which ends the proof of the theorem.

Remark 4.1. Let υ and w be t/ς(g)-highest weight vectors in V and W respectively.
Since Qvw(z) is an intertwining operator

Qvw(z)υ ®w= pvw(Φ (g) w , (4.30)

where pvw(z) is a polynomial of degree p(V, W). This polynomial is quite remark-
able. It is closely related to polynomials introduced in [Dr2] for a description of finite
dimensional representations of Yangians.

In some cases polynomials Qvw(z) can be computed explicitly [Jl]. For example,
if V, W are fundamental n-dimensional representations of Uq(o) for g = sί(n), we
have:

Qvw(z) = (q- zq~x) Σ E

+ (1 - z) Σ En

The function ryw(z) can be easily computed in this case as well:

v . -zqn~ι)(l - zqn+1) '

As a simple corollary of relation (4.7), we obtain the Yang-Baxter relation for
Rvw(z):

v{z). (4.31)

Now we are going to introduce "current type" generators for Ug(g).
Let

L+ V(Z) = (id ® 7ΓV(D)(Λ2I(*«*)) ,

L~ v(z) = (id Θ nvm) (R(Z-
ιq-i)).
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So, by definition L^v(z) G End(F) 0 Uq(g) 0 C[[z±ι]],

it I — I Li ' m L 9 (iί;) = L 9 ' w)L, (z

- <?+c ] , (4.33)
w J

^vw ί ̂ _

Here V and W is a pair of two finite-dimensional representations.

From the formulas (4.9) for the action of the comultiplication on R(z) we have:

(4.34)

where 0 means the tensor product over End(F).

Fix some basis in V. Let L±y(z) = £) Lf^z^n. Then the explicit form (4.6)
n>0

of the expansion of R(z) implies the following:
Proposition 4.8. For any V, the matrix elements of L^ generates the algebra Uq(g)
(over C[[q — I]]) and L^, L^f generate subalgebras Uq(b-) and Uq(b+) respec-
tively.

Let Uq(§+) be a subalgebra of Uq(§) generated by eo, e i ? fc, i — 1, . . . , /. It
is a quantization of the universal enveloping algebra of the maximal parabolic Lie
subalgebra Q+ -̂> g. For C/g(g)-module V we define a Uq(g+) module structure on
V such that e^V = 0, τry(c) = kly. Set Vk to be C/q(g)-module induced from

V:

If the representation V is irreducible with the highest weight λ we will denote corre-
sponding C/ς(g)-module as Vχ,/e

As well as corresponding g-modules, representations Vk are naturally Z-graded
modules Vk = 0 Vk[-ή], where T4[0] ^ V.

n>0

Let us describe the action of L ± ' y (z) in highest weight modules.

Proposition 4.19. Let πχtk - Uq(§) —> End(Vχ,fc) ^ « highest weight representation of
Uq($) then

(πXtk 0 id)L^v(z) e End(Vλffc) 0 End(V) 0 C((z)). (4.36)

This proposition follows from the definition of L ± ' y (z) and from the fact that any

vector of the finite level from V£ is annihilated by L^f for sufficiently large n.

Let V*k be a Z-graded i7g(g)-module dual to Vχ)k:

Vχik[-ή\f, (4.37)
n>0

where (Vχik[—n])* are finite dimensional spaces which are dual to Vχik[—n]. The
action of Uq(§) in Vχ,fc is usual:

(aυf, v) = (vf, S(a)v), v ; G F λ % , v G Fλ,fc . (4.38)
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The module V*k is a lowest weight module with the lowest weight vector υ'χ which
is dual to highest weight vector vχ G V\tk. We have:

hv'x = q~Xivf

χ, fiv'χ = 0 , cv'x = kvf

x. (4.39)

Lemma 4.3. (1) Elements L±iV(z) have the following action on zero-level subspaces
ofVχ,k and V*k respectively:

L+>v(z) (uf <8> v) = Rv^m>v(u' <8> υ),
(4 40)

{z) (u®v) = (Rv>v*M°lyι(u <8> υ).

Here u G Vλ>fc[O], v! G Vfk[O], υ β V and Rv>w is a Uq(o) - R-matrix acting in
V®W.
(2) Ifu = vχ or u' = v'χ, we have

v) = qχvfΛ 0 v ,
λ (4.41)L~y{z) (vx ®v) = υλ® q~λ

v.

Proof. As it follows from the definition of L+>v(z), it has the form L+>v(z) —
Σ Σ πvΦ\n)) ® ai(n)zn, where a^n) G £/g(6+), ft^n) G Uq(h-). Any monomial

n>0 i

from Uq(b+) which contains ep, annihilates any vector of level zero. Therefore in
(4.41), only those monomials aι(n) will act nontrivially which contain only real root
generators. As we have seen in Sect. 3, these monomials form RVjW. The proof of
other statements is similar.

Now we would like to exhibit the relation between the generating functions
L±'y(2:) and their undeformed analogues ^(z). Since the algebra Uq(§) is a de-
formation of [/(§) in the sense of the identification U(Q) = Uq(§)/(q — l)Uq(§) we
can identify the first nontrivial term of the (q — l)-expansion of L ± ' y (z) with an
element in U(Q). One can show that

dimg

L±y{z) =l®Iv + (q-l)Σ Ja(z) ® πv(Λ) + O((q - I ) 2 ) , (4.42)

where a is a basis of g, J^{z) are the generating functions (2.24) for g, in the Borel
polarization, whose components satisfy the commutation relations (2.1) of the affine
Lie algebra.

For any highest weight module V with c = k, define the operator

(πγ 0 id) (Lv(z)) = (πγ 0 id) (L+>v(zq-ϊ))

x (πΫ ® id) (S(L~y(zq%)) G End(ΐθ (8) End(F) (8) C((z)). (4.43)

Assuming that it acts only on highest weight modules, we will denote this operator
just as Lv(z).

From (4.33) we have the following relations for Lv(z):

= L2(w)Rl2 [ - q~lk ) L2(w)R^ I - ) . (4.44)
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This operator is a quantum analogue of "current" generator:

Lv(z) =l®Iv-(q-l)J2 Ja(z) <8> πv(Ja) + O((q - I)2), (4.45)

where Ja is a basis in g, Ja(z) are "currents" for g (see Sect. 2).

Remark 4.2. In the case of affine Lie algebra g any finite-dimensional represen-
tations can be obtained from the tensor product of the evaluation representation
Vχ(z) described in Sect. 2. In this case the parameter z is fixed by the conditions
ττλ(eo) = zπχ(x-β) and πχ(fo) = z~ιπχ(xo), where XQ and X-Q are elements of the
Chevalley basis of g, corresponding to the maximal root θ and its negative. In the
g-deformed case of Uq(§) there exist analogues of the evaluation representations. In
particular, one can always extend an irreducible representation V\ of Uq($l(n)) to a
representation V\(z) of Uq(sl(ή)). Then the parameter z can be chosen consistently
with the undeformed case. For other types of quantum algebras Uq(o) one generally
has to enlarge V\ by adding certain "smaller" irreducible representations in order to
extend the resulting representation to Uq(§). An explicit description of this extension
is an important open problem.

We conclude the section introducing intertwining operators which are analogues
of (2.8). For highest weight Uq(g) modules V\,fc and Vμ^ with c = k and for finite
dimensional V we define intertwining operators

(Φv(z)Tχ: Fλ,fc -> Vμ,k ® V(z) 0 C((z)) ^(λ)-Λ(μ) ? (4Λ6)

where h(λ) and h(μ) are the same as in Sect. 3.
From the definition of these intertwiners and from (4.34), we have the following

relations (we will omit indices λ and μ of Φv(z) when it is not misleading

ΦΪ(z)Lpw(w) = R%v (H q-ή Lpw(w)ΦY(z),
(4.47)

ΦY(Z)L; W(W) =

In the next section, we derive difference equation for intertwining operators (4.46),
which is an analogue of Eq. (2.29).

5. Difference Equations for Intertwining Operators

In this section with all definitions in hand we are ready to derive the quantum analogue
of the Knizhnik-Zamolodchikov equations following the similar line of arguments as
in Sect. 2.

Theorem 5.1. The intertwining operator Φv(z) satisfies the following difference equa-
tion:

Φv(zq-{k+9)) = \Lv{zq-9)Φv(zqk+9)\, (5.1)

where

\Lv(z)Φv{z): = L+(zq-i){ΦV{z)t(q^)tS(L-{zqHt)t • (5.2)
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Proof. The proof is similar to the proof of Theorem 2.1 and uses an induction by the
level of vectors in the matrix coefficients of both sides of (5.1). We have to prove
that for each v G Vχ,fe a n d for each v' G V*k we will have:

(t/, Φv(zq-(k+9))v) = (v\ :Lv(zq-9)Φv(zq(k+9)):v). (5.3)

Assume that v' G V^fc[—n], i> G V\,fc[—m] are elements of corresponding graded

components of T/ f̂c and V ^ , respectively.

Lemma 5.1. Left- and right-hand sides of (5.1) have the same relations (4.48) with
elements Lτ>v(z). They are both intertwining operators of type (4.47).

Proof. Direct computations and Proposition 4.9.

We will prove (5.3) by induction over n + m using this lemma.
1. Proof of the induction step. Assume that we proved (5.3) for any (n, m) such that
n + m < N. Any υ G Vχ^[—(m + 1)] can be presented as a linear combination
of the vectors L^_r)u for some u € 0 Vχ^[—s] and r > 0. By Lemma 5.1, the

s<m

commutation relations of L^r) with both sides of (5.1) are the same. Besides the
result of the commutation belongs to the level (n — r,m — r). The similar argument
can be applied to any v' G V*k[n+1], which can be presented as a linear combination

of the vectors L^^u1 for some ω ' e φ ^μ*/eM a n d r > 0
s<n

2. Proof of the induction base. Let n = m = 0. From Lemma 4.4 we conclude that
we have to prove in this case the following equality:

We have used here isomorphisms:

Now, using Theorem 3.2, we can transform this equation to

υ1 ,ΦV{z)υ).

From the definition of Φv(z) we have

(v',Φv(z)v) = zh(μ)-hW(v\Φ

And therefore Eq. (5.3) holds.
The relation (4.46) shows that (5.1) is indeed a g-analogue of (2.29) in the sense

that it gives the last one when q —> 1.
Denote

Corollary 5.1. The dimension of the space of intertwining operators (Φv(z))^ is equal
to άim(HXμ).

Proof. The proof of the previous theorem was constructive and, in fact, we proved
that if (υ',Φv[0]v) is nonzero then Φv(z) is also nonzero. But Φv[0] acts on zero
level as Uq(o) intertwiner from H^x.

Let a e H^x, then the corresponding intertwining operator (Φv(z))χ will be also

denoted as (Φv(z | a))x.
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Now we consider a product of intertwining operators

// £2 £3

(5.4)
We will also use the abbreviation as in Sect. 2:

We will omit the subindices λo, .. . , XN when it will not lead to misunderstanding.
Let

u . . . , zN)) = Φvi" v*(zu . . . , zjq-
2(k+9\ ...,zN) (5.6)

and denote p = q-2(k+9\

Theorem 5.2. The product of intertwining operators (5.4) satisfies the following sys-

tem of difference equations:

u . . . , z N ) . (5.7)

Proo/ Relations (5.1) and (4.48) imply:

From (4.48) we can also deduce the following relation:

Using repeatedly this relation, we obtain (5.7).
Now we consider matrix coefficients of products of the intertwining operators

u .., zN) e vXo ® vN

TT
II
f

h(λi_ι)h{λi)c( ( 2
z i ^X \ z i i — J •••

VV 1̂ ZN-\
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Theorem 5.3. The matrix coefficients defined by (5.8), (5.9) satisfy the following sys-
tem of difference equations:

zά \ vjVj_x ( ZJ \ ^vx...vN( Λ

j ^;;xN (5.10)

Here Rv'w is the Uq(a) - R-matrίx, acting in V (g) W; Rvw = Rvw(0).

Proof The theorem follows immediately from Theorem 5.2 and from the action
of LΨiV(x) on zero level subspace in lowest weight and highest weight modules,
respectively. The explicit expression for this action is given by Lemma 4.4.

Thus we obtained a new system of difference equations together with its solutions
given in the form of power series. In fact, the matrix coefficients (5.8), (5.9) form a
certain subspace in the space of all solutions of the system (5.10). The description of
this subspace is given by the following proposition.

Proposition 5.1.

(VχNf)

(2) The dimension of the space of intertwining operators of type Φλ

ί"λ

N(z\,

where λ̂ , i — 1, . . . , N, run through all the dominant weights, is equal to

) V{ (8) ® VN 0 (VχNf).

(3) Invuq(Q)(V\0 Θ Vi ® -®VN®(V\N)*) is an invariant subspace for linear operators
Aj(zu . . . , zN).
Proof (1) This statement follows immediately from the form of & as matrix coeffi-
cients of a product of the intertwining operators, which by definition commute with
the action of Uq(g).

(2) Corollary 5.1 implies that an intertwining operator is uniquely determined by its

zero level component. The space of zero level components for the product Φχ

ι"χN

for all possible A*, i = 1, . . . , N, has the dimension equal to

Vi ® ® VN ® ( 1 ^ ) ) . (5.11)

(3) It follows from the commutativity Aj(z\, . . . , ZN) with the action of Uq($). The
latter is a corollary of the formula for the comultiplication [see (3.16)].

(τr λ o ® τri ®

= Rvv>*R

(similar for L~5^) and the Yang-Baxter identity (4.31) with z = 0.
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We will see in the next section that the system (5.10) gives an alternative character-
ization of matrix coefficients of products of intertwining operators, as £/g(g)-invariant
solutions of (5.10) meromorphic for all values Zi φ 0, oo. As a corollary, we will
obtain an "exchange algebra" for the intertwining operators.

The system (5.10) simplifies if we define a vector function

as

* Ή > . -,**) = <t/v*£:.S<*i. ••• ' * " K v > , (5.12)

where v'x is a lowest weight vector in V^ k and v\N is a highest weight vector in

VχN,k.
It follows from Theorem 5.3 that

We will use this system in Sect. 7 in order to compute explicitly solutions of (5.10)

for £7g(«ζ).
Thus we found a collection of systems of commuting difference equations from the

analysis of the representation theory of Uq(§). The main ingredients in these systems
are solutions of the Yang-Baxter equation. Systems of this type are interesting by
itself. They are examples of (/-holonomic systems studied by Aomoto and others [Al,
A2, A3, M]. Now we can construct generalizations of systems (5.11) to a more general
class of solutions to the Yang-Baxter equation.

Let us assume the following:
1°) For a collection of vector spaces VI, .. . , VAT and a set Γ c C of complex
codimension 1, we have a set of linear maps RVιVi(x), where x 6 C and Rvw(x)
are nondegenerate for x £ C\Γ.
2°) The maps RV%VJ(X) satisfy the Yang-Baxter relation:

B$vHx)R*vHx + y)R%V3(y) = Bζf\y)R\f\x + y)B$vHx). (5.14)

3°) For each i = 1, . . . , N we choose di £ End(V^) such that

(di (8) dj)RViVi{x) = Rv*vi(x) (di <g> dό). (5.15)

Then we have a theorem

Theorem 5.4. Let K G C, xι — Xj e C\Γ and

(5.16)
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Here we use the notation for R-matrices acting inVγ®- -<S>VN as in the previous
sections. Then the system of difference equations

. . . , Xi + tt, . . . , xN) = Ai(xu . . . , xN)^{xu ... , Xi, . . . , xN) (5.17)

is a system of commuting difference equations.

Proof. The proof follows directly from the Yang-Baxter equation (5.14). We have to
check that

(TjAi) (x)Aj(x) = (TiAj) (x)Ai(x),

where Tif(xu ... , xN) = f(xu . . . , Xi+κ, . . . , xN) and Ai(x) are given by (5.16).
In terms of i?-matrices, this is the following identity (we assume i < j)

xi -x\+ κ)di

Rjj-ι{Xj - Xj

. . . Rj\(Xj — X\ + K)djR

- vx)~x

x djRNj(xN - XjY1...

- xi + κ)diRNi(xN - Xi)

Here we omit the indices Vu Vj in R^ j(xi — Xj). We first move Ri+u(xi+ι — Xi)~ι

in the left-hand side to the right and at the same time Rji+\(xj — xi+\ + K) to the left
using

Ri+H{xι+x - Xi)~lRji+i(xj - xi+ι)Rji(xj - x% + K)

= Rji(xj -Xi + κ)Rji+ι(Xj - xi+\ + κ)Rilhi(xi+\ - Xi),

which follows from the Yang-Baxter relation. Then we repeat the same with
Ri+2i(%i+2 — %i)~ι until we reach RJΪ(XJ —Xi + κ)~ι which cancels RJΪ(XJ —Xi + K).
Then we consider the right-hand side and move Rjt-ι(xj — xι-\ + K) to the right and
simultaneously Ra-\{xi — x\-\ H- K) to the left using

and so on until we cancel Rji(xj — Xi) and Rjiixj — Xi)~ι. Once we use the identity
(5.15).

Remark 5.1. In light of this theorem, we can regard the Yang-Baxter equation as a
"flatness condition" for a "difference connection" (5.16), (5.17). Of course, in order
to make sense of this sentence, we have to define what is the "difference connection."

There are three known basic types of ϋ-matrices:
(i) with rational dependence of additive parameter x,

(ii) with trigonometric dependence of this parameter,
(iii) with elliptic dependence of the parameter x.

The representation theory of quasitriangular Hopf algebras Uq(§) gives us trigono-
metric solutions of the Yang-Baxter equation and we studied them above. As it was
pointed out earlier, trigonometric solutions Rvw(z) related to Uq(g) in the limit
when z = qx, and q —• 1 yield solutions of the Yang-Baxter equation with rational
dependence of x. These solutions arise from representation theory of Yangians.
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The algebraic structure of the elliptic solution of the Yang-Baxter equation [Bl,
Bel, JKMO, JMO] has not been studied enough yet. Some results in this direction
can be found in [Chi]. For elliptic R(x) the system (5.16) is a holonomic system on
a torus and the rationality of K (with respect to module of the torus) will be important
in this case.

In all three cases, it is natural to look for solutions of the difference equations with
certain analytic properties, e.g. meromorphic in CN. In the next section we will show
that the matrix coefficients of products of intertwining operators represented above
by formal power series do have the right analytic properties.

6. General Analysis of Solutions of the Difference Equations

In this section we will study solutions of the system (5.10) for complex values of z.
Let us start the analysis from the description of specific convenient basis in spaces

ln^uq(Q)(Vχ0 <8> Vι ® ® VN ® (VχN)*).

We have isomorphisms of linear spaces:

q s o N ^ f N 0 X Λ X , (6.0)

where

and chains λi, . . . , λ^v-i of highest weights are such that there exist nonzero em-

beddings Vχi ̂ -> Vχi+ι ® Vi+\. Denote this composition isomorphism as (η%ι'χVN)~ι.

The inverse map is a direct sum

Vλ...VN _ /T\ Vγ...VN

\χ...\N_λ

where

X X ^ ® Vi ® ® VN ® (F λ j

(6.1)

Let {α^} be a basis in i7Λ* λ . . Then

is a basis in lnvUq(9)(Vχ0 0 ^ (8) (g) VAT) Θ (VA^)*).

According to the factorization (4.19) we represent ^ ^ ( z ) as

where

^ ^ ω = VWί [ , /vwω = Pvwiz)fvw(z),
ί r ^(z)

and Q y ΐ y ( ^ ) , Pvw(z), fvw(z) are defined in Sect. 4.
Then we can write & in the factorized form:
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where

= fviVj {zq-^+^Gφ), (6.2)

and FVI" VN(Z\, . . . , ZN) satisfies the following system:

TjF
v^v"(zu , zN) = Af-VN(zu . . . , zN)Fv*~v*(zu ...,zN). (6.3)

Here z\, . . . , ZN G C X and

(6.4)

Starting from now we assume that q e C x , \q\ < 1, and, for convenience, that
< 0. Then p = q~2(k+9) j s s u c h that \p\ < 1. The function fy^iz) is an analytic

function at z = 0. Equation (6.2) has a unique solution over z 2(k+& C[[z]], which
can be continued from C[[q — 1]] to complex values of q with \q\ < 1. For these
values of q this solution is given by the following product:

i = Z

n>\

Jy.yAZp ), (CO)
n>\

where μι and μj are I7g(9)-highest weights of V* and Vj, respectively, and fy.v (z) =

We will study first the system of (/-difference equations (6.3), (6.4) with rational
coefficients. Its solutions differ from the solutions of the original system (5.10) by a
product of the scalar functions (6.5). We also consider only [/g(g)-invariant solutions,
therefore we restrict the system (6.3) to the subspace (6.0). Generally speaking, there
exist infinitely many linear independent solutions of this system even if we require
the analyticity of solutions in a certain neighborhood of CN. In fact, one can always
multiply a given solution by an analytic function invariant with respect to the shift
operators (5.6). However, if we fix an asymptotic behavior of solutions at \z\\ ^>
1221 ^> ^> \ZN\ (or any permutation of the indexes) by considering the limit of

the coefficients (6.4) at oo for i = 1, . . . , N — 1, we can construct formal
Zi+l

s o l u t i o n s i n t e r m s o f t h e p o w e r s e r i e s i n C ( ( z \ , — , . . . , —^— ) ) m u l t i p l i e d b y
V V z i ZN-\) )

an appropriate asymptotic function. By the general theory of (/-difference equations
developed in the case of one variable in [Ad, Bi, C] and generalized to several
variables in [Al] these formal power series solutions are analytic functions in the
domain \z\\ > > \ZN\. One can then show (see [Al]) that for generic coefficient
functions (6.4) these solutions can be extended to meromorphic functions in (CX)N.

Here generic means that the eigenvalues of functions (6.4) in the limit oo
+

for i = 1, . . . , TV— 1, do not differ by an integral power of p. In our case of Eqs. (6.3),
(6.4), this is guaranteed by the condition k φ Q (see Lemma 6.1 below), which we will
assume in this section. By the construction, the dimension of the space of solutions
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obtained by the analytic continuation of the formal power series with asymptotics
determined by the limit of the coefficient functions is equal to the dimension of the
g-difference system. This fact justifies the name g-holonomic system of difference
equations and makes it analogous to holonomic systems of differential equations such
as the Knizhnik-Zamolodchikov equation.

In order to describe an asymptotic basis of solutions of (6.3) at \z\\ > \z2\ >
• > \ZN\, let us consider first asymptotics of Aj(z) in this limit. We define

where rrij(N, 1) = (μj.

weight of Vj regarded as t/g(g)-module. Clearly, if
we have:

Lemma 6.1.

H h μj+\ - μj-\ μ\) and μj are £/ς(fl)-highest

^i+l
oofori = 1, . . . , N—l,

Proof. This lemma follows from the formula for the action of the comultiplication
on iϊ-matrices and from Theorem 3.2 combined with the definition of 77-basis.

Now we can construct a basis for the solutions of the asymptotical system obtained

>oofor2= 1, . . . , iV — 1,from the system (6.3) in the limit
z%+\

(6.7)

Definition 6.1. Let (λ,α) = ((λo,λi, . . . , λjv),(αi, ••• , CLN)) be as in (6.1). We

define F$'^N as a solution of the system (6.7) such that

r(A,a) - π
i=\

(6.8)

It is clear that these solutions form a basis in Invc/9(g)(Vλ0®Vi<8> ® V N ® ( V \ N ) * ) .

Definition 6.2. Let F^'^N(z\, . . . , ZN) be a solution of the system (6.3) such
that

(6.9)

at |z| > |z2| > > \zN\.

Proposit ion 6.1. (1) Solutions &x

 !

αT
 N form an asymptotic basis of solutions of (63)

at
z%+\

o o , z = l , . . . , N - 1.
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Zi
(2) Let oo for a fixed index i. In this limit, the basis -F(λ,α)(̂ i ZN) has

the following factorization property:

3=1 3=M

where hj{k, I) = (Mj, Mfc + Mfc+i H \~ μύfor k<l.

Proof. Let (Aj(z\... -z/v))^'^') ^ e m a t r i χ coefficients of Aj in the 77-basis:

) = Σ (AAzi 2 w ) ) ' > 77(V0

Using the formula for the action of the comultiplication on R and the explicit
form of Aj we obtain the following factorization of these matrix elements when

-» oo: for j < i,

N

X

for j > i,

i=0 1=1

Together with the definition of F(λ,α)-basis of solutions of (6.3) this gives the
factorization.

Theorem 6.1. Let SN be a symmetric group of order N and let w G SN Solutions

F(\a) N c a n be analytically continued to \zWχ\ ^> ^> \zWN\ for any w and they

form a basis of linearly independent solutions in each of such regions.

Proof Our holonomic system (with matrices of coefficients Aj(z\, . . . , ZN)) sat-
isfies the conditions of Lemma (6.1). It follows from [Al] that under these con-
ditions the solution of the holonomic ^-difference equation with rational functions
Aj(z\, . . . , Z]\[) with asymptotics (6.8) can be analytically continued into the region

Another basis of solutions of (6.3) in the asymptotic regions \zW(l)\ > ••• >

\zW{N)\ can be obtained from the following symmetry of AJ1'"VN(Z\ . . . ZN)
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Proposition 6.2. Let ίζp (zi/Zj) = P^Vj R^Vj ( — ). The following relations hold

zi+l

V » i % ^ ( ^ ) , (6.11)

(6.12)

_ vv..vj+}vr..vN

- Λj+ι (• •

Proof The relation (6.11) follows from the Yang-Baxter equation, others are corol-
laries of (4.20).

For a given vector spaces {V^}^, w G SN and

u ...,zN)€ (CxfN

*3

let [τ]W9 r, w G SN, be a space of functions F:ΩW —> y r ( 1 ) 0 ® K-(AΓ). For a
simple transposition s^ G 5/v we define a map i ϋ S i : [τ]w —> [Sir] S i l / , such that

i ? s i ( i Γ ' v r τ ( 1 ) ' " 1 ^ τ ( j V ) ( ^ i > ••• 5 z i v ) )

= RΪί+ϊVτ(i+l) {^-) Fv^-v^NKzu , zN), (6.14)

where -R^^ r ( ϊ + 1 )(z) = -P^ ί̂f τ(ι+l)(z).
For any σ G SN let σ = s^ . . . six be a minimal decomposition of σ in the product

of simple transposition. We define

nσ = nSiι -.. n.3iι

Proposition 6.3. The operators Rσ, σ G SN, are well defined and the map σ ι—>- Rσ

is a representation of the symmetric group SN-

Proof. Relations R?s = 1 follows from (4.20), other relations follow from the Yang-

Baxter relation for RViVi(z) and from the definition of Rs%. The SN -relations imply

that the definition of Rσ does not depend on a decomposition.

Proposition 6.4. If F G [r]w and if it is a solution of the system

then RσF G [ σ τ ] σ u is a solution of the system 6.15 with ω ι—> σω, r H-> σr.

Fr6><9/. The statement is a corollary of Proposition 6.2.
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Therefore, if we have a basis for solutions to the system (6.3) for (z\, . . . , ZN) £
Ω\ we can continue it to other sectors Ωω in two ways. First, we can use Theorem
6.1 and continue it analytically. Second, we can use Proposition 6.4. Bases obtained
in these two ways will be different. We will call the matrix, which transforms one
basis into another (according to [Bi]) the connection matrix.

Let F ( λ ^ } T{N) (z\, . . . , ZN) be a basis for solutions to (6.3) in [τ]\ define the

elementary connection matrix {{CJ{z\... ZN))\X ^ ) as the following connection ma-

ι t 0) W (ZU . . . , ZN) = 2 * {

trix:

\χ$
). (6.16)

Note that here (λ, α) is a sequence corresponding to the set (VT(l)1 . . . , VT{N)) and

(λ', a') is the sequence corresponding to (... VT(i+l), VT(i)...).

Theorem 6.2. The elementary connection matrix CJ is a function ofzi/zi+\ and does
not depend on other z-arguments:

(6.17)

and it acts "locally" on the basis î (λ,α) '

x Π V , Π δ^'k < 6 1 8 >
j=\ k=0

Here (λ, α) is a set corresponding to (V̂  (1), , VT^N)) and (λ7, a') is a set correspond-
ing to (Vσ(ι)1 . . . , Vσ(N)) where σ = s<ί.

Proof The connection matrix CJ can depend only on the ratios —, . . . , ——, ...,
N~1. From the factorization property (6.10) we conclude that it does not depend on
zN

— with j φ i, "locality" of C\ also follows immediately from this factorization
3

property.
We can reformulate the statement of Theorem 6.2 in a more invariant language.

We proved that the connection matrix CJ(z) is a linear map:

CJ(z) = 1 0 0 W^w^+Hz) 0 Θ 1.
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Here the linear map

43

is given by

λi-

λ'
• i - 1

(6.20)

where

in a specific basis admits a form as in (6.18):

«tt+i .α»_i

ϊτ(\

(6.21)

τ ( i + 1 ) , ^ t ! ' , and in Y τ ( i )where α i ; ai+ι, a' α' are bases in β$ϊτ(\ , J^fτ

λ

(i

τ ι + i % λι-lλi λiλi ^ ^

respectively.

Theorem 6.3. Elementary connection matrices satisfy the following relations:

Cli^SiT(w)C^\(zw)Cτ

i{z) = Cl\s^τ(z)Cti+λT(zw)Cl+ι{w), (6.22)

C?τ{z-ι)CT{z) = I* . (6.23)

Here 1^ is the identical operator in ̂ x^χy" τ(N\r).

Proof Both of these relations follow from Proposition 6.3.

A remarkable consequence of the locality (6.19) of connection matrices is that we
can compute them from the analysis of a two point correlation function FVlV2(z\,Z2)
Therefore, let us consider the case of two point correlation functions in more detail.

Proposition 6.5. Let F(\yCί) be a basis of solutions for the system (6.3) described above
then for N = 2,

^(λ,α)(^lj^2) = (^1^2)

Fwo/. From (6.3) and (4.20) we have:

(TιT2)F(zuz2) =

(6.24)

Since F(zι,z2) € Invug(g)(Vλ0 ® V\ ® V2 <B> (Vχ2)*), it follows from Theorem 3.2 that
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This implies
(TiT2V(λ,α)Ol, Z2) = φ(\,a)(ZuZ2) ,

where φ is given by (6.24). From the definition of F, we conclude that

/t(Λ0)+/ι(λ2)-2/t(Λ1 )-2/t1 (2,2)

and therefore ^(λ,α)(^b^2) = ^(λ,α)( — )• Remember that h\(2,2) = — b and

i is a t/g(g) highest weight of V*.
So, the functions φ(\ja)(z) form a basis for solutions to the system

and

Tφ(z) = q 2 Λ1(J
 Λ ° (^) 1 i? 1 3 λ ^ Rn(z)φ(z) (6.25)

/ι(A0)+/ι(A2)-2/ι(A1)-2/ι1(2>2) / / 1 \ \

<P(X0Xl\2)(ala2)(z) £ Z 2 C \ V ί / /

The general theory of linear g-difference equations has been studied in [Ad, Bi, C]
(and references therein). In particular, in the case when the coefficients are rational
functions bounded at z = 0 and z = oo, the solutions to the difference equations
are well defined meromoφhic functions in the complex plane with possible essential
singularities at z = 0 and z = oo. We can apply this general theory to the equation
(6.25).

First consider an example of scalar difference equation (we had such an example
earlier in Sect. 4):

1 - zpa

φ{z)

There exist a unique solution to this equation in C[[z]]:

and a unique solution over z a ^ 1

where
(z;p)oc = Π(l-zpn). (6.28)

n>0

Clearly, φo(z) can be continued for \p\ < 1 to a meromoφhic function on C with
essential singularity at z = oo. In the same way z^~aφOQ(z) can be continued to the
meromoφhic function on C x , regular at z = oo with essential singularity at z = 0.
The ratio

ψ
is called the connection matrix and (6.26), (6.27) imply that
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where
θ(z) = H (1 - pn+x) (1 - zpn) (1 - z~lpn+l) (6.29)

n>0

is the Jacobi elliptic theta function. Since

C(zp) = C(z) (6.30)

such functions are also called pseudoconstants [Bi].
Now we return to a nonscalar case of (6.25). As it follows from the analysis given

in the beginning of this section there exist two bases of fundamental solutions to this
equation

_ MΛ0)+MΛ2)-2/ί(Λ1)_

(λ,α) W — z V</?(λ)(α)

, i/i/ , h(λo)+h(\2)-2h(\f)
1)^^) ^ L

Here (φ^χχ^iz))^ is a regular function at z = oo, and (^X1/^/)(2;))o regular at z = 0.

Let us write these fundamental solutions simply as z^iφ^^iz))^ and

zai(φ^ιV2(z))o, respectively.

Since coefficients RVχV2(z) of the system are rational functions regular at z = 0, oo
we can analytically continue both these solutions to meromorphic functions [Bi]. We
can continue (φ^lV2(z))o to C and (φ^^iz))^ to C x . Therefore, for finite values of
z there must exist the connection matrix

^ , (6.31)
3

where the coefficients Cij(z) are pseudoconstants (6.28). The results of [Bi], part IV,
implies

Proposition. The coefficients of the connection matrix Cij(z) have the form

^ φ ^ > , (6.32)
θ(zpv) -θ(zpv)

where α^ , br-, Cij are constants and

Thus the connection matrices for the system (6.3) satisfy the Yang-Baxter equation
and the unitarity (6.22), (6.23) and matrix elements of these matrices have the form
(6.32). In fact, as it follows from the explicit form of chosen basis for solutions, we
can "gauge out" power functions form matrix elements of connection matrix. Indeed,
from (6.31), we conclude that

where Cij(z) is a ratio of theta functions. Since elementary connection matrices
are determined by two-point function connection matrix, we proved the following
theorem.
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Theorem 6.4. Let F^χjj be a basis to solutions 0/(6.8) described above, then

RsXa-Vτm^ -, **) ft ϊ(Xi-ύ-h(κ

where matrix elements of C\{z) are ratios of theta functions and C\(z) satisfies Eqs.
(6.22) α/irf (6.23).

Elliptic solutions to the Yang-Baxter equation were constructed for all classical
types of g, when V* are vector representations, in a series of papers [Bel, JKMO,
JMO] which are far reaching generalizations of the first solution of these equations
by Baxter. For g = sin series of solutions were also constructed corresponding to
symmetrical and antisymmetrical powers of vector representations (DJKMO, DJMO].
All such known solutions are expressed in terms of ratios of theta functions. So, we
propose the following conjecture.

Conjecture 1. All unitary solutions to the Yang-Baxter equation obtained in [DJMO,
JMO, JKMO] are equivalent to solutions given by the connection matrix C(z) for the
appropriate type of a simple Lie algebra Q and finite-dimensional representations of

Now we consider functions ^VI'"VN(Z\, . . . , ZN), which are solutions of the orig-
inal system (5.10). Let ^[X^N(z\ > > ZN) be a basis for solutions to (5.10), such
that

S$%v»(zu , zN) = Π G« (ZA F$g»(zu . . . , z N ) . (6.34)

Then the asymptotic behavior of Gi3( — 1 and F^χ"^N (z\, . . . , 2;v)at |2 i | >• | ^ | >
\zj /

given by (6.5), (6.8), and (6.9) implies

£v«ίzu ..., zN) e

and

N

i, . . . , zN)-^ \\ zi Vχ.Xi\Λau . . . , α/v) (6.35)
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Moreover, these functions can be analytically continued to any region Ww and

N
Ks%^{\a) {ZU ... , ZN)

i=\

Π ) )
7=1 V Wl//(λ,α)

Here (5^"(z))^ ^ } are matrix elements of a linear map

and

z), (6.37)

where C[(z) is given by (6.33) and Kij(z) is a "gauged out" connection matrix for the
system (6.2). Since RVtVJ(0) = Λ^V?, and, by definition, βyiVj(2;)ί;o(8)^o = ^ o ^ ^ o
(vo and tϋo are C/g(g) highest weight vectors in Vi and Vj, respectively) we have
fviV3Φ) — q(μiμi\ where μι is a ί/g(g) highest weight of Vi and μj is a highest
weight of Vj. Then, using the unitarity (4.20) of RViVi(z) we obtain two solutions
for (6.2) given by power series at z = 0 and z = oo, respectively:

n>0

where fyw(z) = q'^^fvw(z).
Therefore,

Let us identify now solutions to the g-analogue of the Knizhnik-Zamolodchikov
equation with matrix elements of intertwining operators.

Theorem 6.5. Let 3^x

a)

VN (z\, . . . , ZN) be the basis (6.34) for Uq{φ-invariant solu-
tions to the system (5.10), then

T-VΪ s I \XQ /F^N / I \^N— 1 \

>φ\ w I αi)λj >-ΦN (ZN\ a>N)XN '),

)χ is a Uq(g)-intertwining operator corresponding to a £

N / / z z

the equality holds over J | zi

 x~x ι C ^ , —, . . . ,
i=\ \ \ Z\ ZNX
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Proof. By definition left and right sides of (6.39) satisfy (5.10). Both of them have
the same asymptotics at \z\0 » \z2\ > ••• > \ZN\- Therefore they, coincide on

π h(,\i_\)-h(\%) r^( ( ZΊ Z1S

Π z i CI [ z u — , ... , —
t=l VV Z\ ZN-X/

Since we have analytic continuation of the solution î ~λ ^" ^(zi, . . . , ZN) to other
regions, this theorem also describes the analytic continuation of products of vertex
operators. In fact, all matrix coefficients of the composition

W, Φ? {z^Φ^itv), v 6 Vλ2,k, v' e V*0>k

can be extended to meromoφhic functions defined for all nonzero complex values
of z\, z2. Thus we can define an operator ^(Φ^1 (z\)φζ2 (z2)) defined by its matrix
coefficients.

Consider the following intertwining operators:

Mλo)-/ι(λi) h(Xι)-h(X2) r

1 2 '

i ί ^λ 2 l f c

Z\

^VχO:k®Vι(zι)ΘV2(z2)(8)zι

 ι z2

 1 C ( ( z 2 , —

For analytical continuation of these operators, we have the following.

Theorem 6.6. Intertwining operators satisfy the following exchange algebra:

a\a'2

*1 ^ 0 " 1

'} λ l

-o λ ? Q-2

λ' - ) , (6.40)

where SVχVl is given by (6.37) and both RVιV2(z) and SVχVl(z) are unitary, crossing-
symmetrical solutions of the Yang-Baxter relation (in vertex and IRF formulation, re-
spectively).

Another quantization of U(Q) is the full Yangian Ϋ(Q). The Yangian Y(Q) is an
infinite dimensional Hopf algebra described in [Drl] which is a deformation of the
universal enveloping algebra of the parabolic Lie subalgebra g+

 c—• Q. We call the
full Yangian corresponding deformation of U(Q). The algebra Y(&) can be naturally
considered as an appropriate quotient of the double &(Y(Q)). Such a description of
Ϋ(Q) was given by Smirnov [Sml].

Similarly as we did it for Uq(§) one can construct for Ϋ(%) elements S?±'v(x)
which will play the role of currents J(x) in a parabolic polarization. All relations
between J&±>v(x) and intertwiners one can obtain in the limit z = qx', q —> 1 from
our formulas. In particular, this limit in Eq. (6.40) gives us a difference analogue
of Knizhnik-Zamolodchikov equations for Ϋ($). In the same way, one can define
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connection matrices for Ϋ(Q). But now they will be trigonometric functions of x.
Since the intertwiner of Y(2) can be obtained from ί/ς(g)-intertwiners, we expect that
the following conjecture is true.

Conjecture 2. Let qf = exp ( ) and RVχVl(z) is a finite-dimensional R-matrix

for Uq'(o) and rjχ

lχ2 is the isomorphism (6.0). Then

λ' λl («*), (6.41)

where λi map

λ 0

λ2

determined by (6.37).

This conjecture can be thought as a generalization of Theorem 3 on the equivalence
of the tensor categories Mon^Q) and Rep^(g). In fact, the Yang-Baxter relation (6.22)
and the unitarity condition (6.23) generalize the alternative axioms (2.51), (2.52) of
pre-tensor category defined in Sect. 2. The new ingredient in our case is the analytic
dependence of the connection matrices on the complex parameter. This suggests the
notion of analytic pre-tensor category, which differs from the pre-tensor category by
assigning now to any three objects X, Y, Z a family of meromorphic maps

where X G C , C/Z or C/Z 0 rZ, satisfying the star-triangle relation and the unitar-
ity. The three cases correspond to the rational, trigonometric and elliptic solutions,
respectively. In the trigonometric case setting

βχ,γ,z = Jnn βχ,v,z(x)

we recover a pre-tensor category.
The above considerations point to the problem of defining a natural notion of

analytic tensor category, which should include an appropriate generalzation of the
pentagon identity. For our example, this translates into the problem of finding a quan-
tum analogue of the operator product expansion in conformal field theory. Here the
positions of poles and zeros of operators Rvw(z) should play an important role.
Additional structures of solutions of star-triangle relations (and/or Yang-Baxter oper-
ators) such as the crossing symmetry (4.17), (4.18) should provide the analytic tensor
category with the additional structures generalizing the rigidity in the case of tensor
category defined in Sect. 3.

7. Examples of Solutions of the Difference Equations for Uq(sl2)
and the Theory of Basic Hypergeometric Functions

Solutions of the Knizhnik-Zamolodchikov equations are given by the vast general-
ization of the hypergeometric functions associated to any simple Lie algebra. These
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solutions have a very rich structure. In particular, the monodromies of the solutions
are closely related to the trigonometric solutions of the Yang-Baxter equation and
manifest hidden symmetries realized by quantum groups. It is natural to expect that
the solutions of the holonomic difference equations associated to the quantum affine
algebras are certain ^-deformations of the generalized hypergeometric functions and
that connection matrices for these g-hypergeometric functions are elliptic solutions of
the Yang-Baxter equations, which is fully confirmed by the results of Sect 6. It is an
important open problem to find an algebraic structure of hidden symmetries of our
difference equations, which should be an elliptic version of quantum groups.

In this section we will consider the simplest nontrivial example of our equations
associated to quantum affine algebra Uq(sl(2)). However, already this example allows
us to grasp the essence of one of the classical chapters of mathematics, the theory of
basic hypergeometric series.

A g-analogue of the hypergeometric series known as the basic hypergeometric
series was introduced in the middle of the last century [HI, H2]:

q )n n (π 1Λ

(the standard notation is 2φ\(qa, qh; qc; qz)), where we denote

(a)n = (1 - o) (1 - aq)... (1 - aqn~ι). (7.2)

The basic hypergeometric function Fg(α, 6, c; z) satisfies the difference equation

(z[δ + a] [δ + b] - [δ] [δ + c- l])Fq(a,6,c,z) = 0, (7.3)

where

(7.4)

and
δ (7.5)

Omission of the square brackets in (7.3) yields the ordinary differential equation for
d

the classical hypergeometric function with δ = z —. There also exist g-analogues of

various special functions. For example, the ς-analogue of the gamma function Γq:

Γq(a) — ^ (1 — q)ι~a , (7.6)
W/oo

and the power function

(1 - z)lm = {q J f °° . (7.7)

When q —> 1, these functions tend to their classical counterparts. Most of the identities
for special functions have their g-analogues. However, in some cases, new phenomena
appear.
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One can also introduce g-analogues of differentiation and integration

dj(f)_ί f(t)-f(qt)
( ί )

(7 8 )

C

/

o
OO

j

(f)

f(t)dqt = c(l - q) 2 f(cqn)qn , (7.9)

f(t)dqt = c(l - q) Σ f(c<ln)Qn (7-10)

Again, when q —> 1, these operations become the usual differentiation and integration.
As in the classical case, the basic hypergeometric function has an integral presen-

tation, but now in terms of Jackson integral [Ja],

1

Fq(a, b,c,z) = ———γ—-——— / ta~ι

 c_™ °° dqt. (7.11)

The main property of the basic hypergeometric series that we will need is the
connection formulas between the solutions with prescribed asymptotic behavior at
z —> 0 and z —> oo. In accordance with the general theory of linear ^-difference
equations, the connection coefficients should involve the Jacobi elliptic theta functions.
In fact, the following connection formula for the basic hypergeometric series is valid:

Γq(c)Γq(b - a) Θ{qaz,q)
, b, c; z) =

Γq(c)Γq(a-b) θ(qbz,q)

Γq(a)Γq(c-b) θ(z,q)

x Fqφ, 6 - c + l , δ - o + 1, qc+ι~a-bz-1). (7.12)

When q —> 1, the ratios of the theta-functions in (7.14) tend to (—z)~a and (—z)~b

respectively, Γq and Fq tend to their classical counterparts and we get the connection
formula for the classical hypergeometric function.

Remark 7.1. Basic hypergeometric series appear as the matrix coefficients of the
quantum group associated to SU(2), [SoV, Koo, MMNNU]. However, their most
important properties such as integral presentation and connection formulas can only
be revealed in the representation theory of quantum affine algebras.

Let us consider a simplest nontrivial example of holonomic difference equations
associated to quantum affine algebras, where the above formulas find the conceptual
meaning. Let g = sl(2), and let V be an irreducible representation of Uq(g) of dimen-
sion M + 1, i.e. has highest weight Ma/2, where a is the positive root of si. One,
may choose the basis υo, υ\, . . . , VM SO that

τr(ei)υn = [ n K _ i , π(fλ)vn = [M - n]vn+ι , τr(fci)υn = qM~lnvn . (7.13)

This representation can be extended to a representation of Uq(g) depending on a
nonzero parameter z,

π(eo) = zπ(fχ), π(/ 0) = z~ln(ei), π(A:0) - π(kxT
λ . (7.14)
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Let us show that solutions to the system (6.25) can be naturally described in terms
of g-hypergeometric functions. Consider the simplest case when V\ = V2 = V<* are

two-dimensional Uq(sΪ2) modules. Also in this case, we can directly use system (6.25)
and we will use the isomorphism

I n v ^ ^ o ® Vi Θ V2 0 (Vχ2f) ^ (Vi 0 V2) {λ0 - λ2} , (7.15)

which holds in this particular case and we will reduce (6.25) to a simpler system.
Assume that λo = M s , λ2 = λo ± a. Then, choosing in (6.1), α^ = 1, we have

the following basis in the left-hand side of (7.15):

77 λ ( b λ o + α ) λ o + α = υ0 0 v0 0 υ0 '

( <i \ /

^λo,λo+f Λo = υ° ® [vo 0 vi - [ M + 1 ] vx 0 ^oj 0 0̂

^λo,λo-f Λo = 0̂ 0 v\ 0 0̂ 0 v'o + . . . ,

ϊ?λo,λo-§,λo-« = 0̂ 0 ^1 0 ^1 0 ^ό + •

Here Ϊ Q is the lowest weight vector in (Vχ2)*. In (7.16), we only write terms containing
the highest weight vector in Vχ0 and the lowest weight vector in V\2.

The isomorphism (7.15) is given explicitly by the map

Let us return to the system (6.25). Let <p(\ia)(z) be a basis to solutions of this system.
The following proposition is a simple corollary of (4.42) and (4.43).

Proposition 7.1. Vectors V;(λ,α)(̂ ) = (̂ ό 0 id 0 id 0 υo, φ(\i(l)(z)} a™ solutions of the
system

C(Λ0)-C(Λ2) „

T<ψ(λ,a)(z) = q 2 (qX)2Ri2(z)ψ(χ,a)(z), (7.17)

where λ = λ0 + λ2 + 2ρ, and ψ(χ,a)(z) G (V{ 0 V2) {λ2 - λo}

In our case, since we have the isomorphism (7.15), there is a one-to-one corre-
spondence between solutions to (6.25) and (7.17), and we can study simpler system
(7.17) in order to obtain solutions to (6.25).

By definition of R(z), we have:

R(z)vo 0 vo = vo 0 vo , R{z)v\ 0 v\ = v\ 0 v\.

Therefore, if λ2 = λo ± a, we have the following solutions of (7.17):

h(X2)-h(λ0) M+2

WW)Vo 0 υ0 ,

The case when λ2 = λo is a particular case of the following system. Let in (7.17)

V\ = VMjα, F2 - VM^ , and λ0 = Mo ^ , λ2 = (Mo + Mi + M 2 - 2) ^ . It is not

difficult to find solutions explicitly in this case also. From the definition of Rn(z) as
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an intertwining operator we compute its action in the basis v\ ® υm (see [KR] for
general matrix elements):

R(z)v0

R(z)vx

zq
Mi _ ΠM2

z — qMx+M2 — z

— z

V o Θ V ι

y ~1V1 2
(7.19)

VI®VQ.

Solutions of the system (7.17) in the subspace (Vμi <g> Vμ2) {μ\ + μ2 — a} can be
given in terms of basic hypergeometric functions which we will write in the integral
form:

Then we have

and

u z2)υ0 0 i>i

h(X2)-h(X0)

> v0 .

ff(zuZ2)

-2m!

Z2

-2m2

dpt

/

/ f \ mx-m / f \ m2-m-l / , x

W {72) i1 ~ Ti)

-2m, (7.22)

x d- ( 1 - -

-2mi

dpt,

z"

z\rn2+m

-2m!
1 - — - 2 m 2 dpt

oo

/(T

m2+m -2mχ (7.23)

-2m2

where we denoted 9^ = —^— and
dp±ιt
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Here ra» = Mi/2(k + g), m = (Mo + Mλ + M2 - 2)/4(fc + g). The expression of
our four solutions by means of the basic hypergeometric series immediately yields

the correct asymptotic behavior, thus f2 and fι are power series in — while fι

z Zχ

and f2 are power series in —. Let us denote for simplicity the components of the
Z 2

connection matrix by B(z)lj,i,j = 1 or 2, so that

fι"\ _ (B{z)\
f2') ~ \B(z)2

In order to find Bίz)^, we can either use the connection formula for the basic
hypergeometric functions (7.12) or deduce it directly using the method of Mimachi
[M] from the Cauchy residue formula for the following meromoφhic functions, which
relate in each case three out of four Jackson integrals in (7.22) and (7.23). The final
answer for B(z)lj has the following form:

Proposition 7.2.

B(z)

(7.25)

This concludes the description of the connection matrix for the quantum affine
algebra U\(si(2)) for λo = μ\ + μi + \i — OL. The generalization to the case λo =
μι + μi + A2 — na, where n is an arbitrary positive integer is an interesting technical
problem. It is clear that the solutions are given by multiple Jackson integrals, which
are (/-analogues of the explicit solutions of the Knizhnik-Zamolodchikov equations
obtained in [SV1]. Their monodromies will be given by (n+1) x (n+1) matrices with
entries expressed in terms of the products of elliptic theta functions as in (7.25). For
a given μ\ and μ2, (7.25) give corresponding matrix elements elliptic solutions to the
star-triangle relations, which in the s 1(2)-case were computed explicitly in [DJKMO].
In fact, in the case when n = 1 one can easily check the coincidence of our connection
matrix (7.25) with the corresponding formulas in [Bl, ABF, DJKMO].

Let us return to our case M\ = M2 = 1. Solutions ψ2 (z\, z2) and ψι (z\, z2) are

given by power series in — and it is easy to check that for M\ = M2 = 1,

Ψ2'(ZUZ2) = ^λo,λl+α,λθ ί 7" ) '

φ (ZUZ2) = ^λo,λθ-<*.λo ( —

(7.26)

Therefore, we can identify now matrix elements of (7.25) with matrix elements of
elementary connection matrices C\{z) from Sect. 6 and therefore with solutions to the
Yang-Baxter equation. Formulas (7.25) and (7.26) give the following ratios of theta
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functions. Let us set q = exp(—iπr), z = Qxτp(2πiτu), [x] = θ(exp(2πiτx)). Then
one has

Corollary

Wn M

7.1.

M
- 1

M-

Wu

Wu

wn

wn

-2
-

M

M

M

-

M

M

+ 1

- 1

- 1

+ 1

1
- 1

M

M

M

M

M

M

M

M

(z) = ]

M -

M +

M -

M +

W

1

-

1

•

1

1

Γ
11 M

L
(z) —

(z) —

(z) =

ω =

M

M + 2

[u] [M + 2]

M + l (z)=l,

[u] [M]

[ t * + l ] [ A f + 1 ] '

[M + 1 - u] [1]

[u + 1] [M + 1] '

These formulas are exactly the solution for Eq. (6.22) which was found by Baxter,
[Bl] (see also [ABF, DJKMO]).

The exact coincidence of the formulas are manifest from the comparison with
(2.1.4a,b,c) in [DJKMO], provided that their solution is normalized by multiplication

and the parameter ξ = 1. Note that the star-triangle relations will be preserved
[u+ 1]
under any shift of M, which explains the additional parameter ξ in [DJKMO].

The description of the analogue of half-monodromy for the intertwining operators
in terms of elliptic theta-functions indicates the presence of a new hidden symmetry.
By comparison with the conformal field theory, where the exchange algebra reflects
the presence of the trigonometric solution of the Yang-Baxter equation, our elemen-
tary example yields the elliptic solution of the Yang-Baxter equation. Moreover, the
trigonometric solutions of the Yang-Baxter equations immediately bring us to the
notion of the quantum group, which is the hidden symmetry of the conformal field
theory. Thus we are forced to conjecture that the symmetry of the corresponding q-
analogue is described by a new algebraic structure related to the elliptic solutions of
the Yang-Baxter equation. In fact, a candidate for a new algebraic structure intimately
related to the elliptic solutions of the Yang-Baxter equation, has been introduced in
[Ski, Sk2]. However, until recently it was not clear how this algebraic structure gen-
eralizes the Hopf algebra structure of quantum groups. We believe that the parallel
between the trigonometric and elliptic solutions of the Yang-Baxter equations aris-
ing from the difference equations will shed new light to these previously formidable
problems.

8. Conclusion

Results of this paper provide only the very first steps towards the understanding of
a g-analogue of conformal field theory, of an elliptic generalization of the quantum
group, the relations between them and the mathematical and physical implications of
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these new structures. However, already at this stage we can formulate a number of
concrete problems and directions for future research.

The first problem discussed in Sect. 6 is an extension of the correspondence be-
tween the monodromies of the Knizhnik-Zamolodchikov equation and the representa-
tions of quantum algebras Uq(Q) to the case of the difference and g-difference equa-
tions. We naturally expect that the corresponding connection matrices will be related
to the trigonometric and elliptic solutions of the Yang-Baxter equation. Moreover,
since we know that the trigonometric solutions can be interpreted as the intertwin-
ing operators for the finite dimensional representations of the quantum affine algebra
Uq(§) one can ask for a similar algebraic interpretation of the elliptic solutions; That
is: what is the elliptic deformation of Uq(§) and how it yields the connection matrices
for the g-difference equations? Certainly an appropriate cohomological interpretation
of the relation analogues to [SV2] could be of great interest.

The next problem is to understand the algebraic structure of a g-analogue of con-
formal field theory, in particular, a correct generalization of the operator product
expansion or fusion. The solution of this problem should provide an explicit ax-
iomatic definition of tensor categories with dependence on a complex parameter or,
as we call them, analytic tensor categories.

As we explained in Sect. 6, the connection matrices for the g-difference equations
provide elliptic solutions of the star-triangle relations for any type of the root sys-
tem, thus bringing this large subfield of statistical mechanics into the realm of the
representation theory. It can be fruitful for both fields to further extend the concep-
tual understanding of the integrable models of statistical mechanics. For example,
an explanation of the coincidence of affine characters and local state probabilities
[DJMO1] can now be more accessible than before. The similar remarks also apply
to the massive integrable quantum field theory. As it is shown in [Sml], the latter
admits a striking reformulation in terms of axioms for form factors, which are directly
related to our g-difference equations.

Besides the basic problems related to a correct understanding of a g-analogue of
conformal field theory and its new symmetries, one can pose some further questions
related to other known features of the undeformed case. We will briefly address the
ones we consider most important.

One of the most subtle properties of quantum groups is its behavior when the
parameter q is equal to a root of unity. At these points the naive parallel with the
classical theory breaks down and one encounters new arithmetric phenomena. In the
case of quantum affine algebras and associated elliptic algebras, the role of two special
parameters (namely the deformation parameter q and the level k in the case of the
quantum affine algebras) can be even more significant. The arithmetic of the circle
is now being replaced by the arithmetic of the elliptic curve. It is interesting to note
that the values of q which are roots of unity correspond to the cusps for the modular
group PSL{2, Z). The representation theory of quantum affine algebras may bring a
new meaning to formulas of the arithmetic theory of elliptic curves.

The WZNW-model was first formulated [Wl] as a certain Lagrangian theory and
only later was translated in a pure algebraic language. In the case of its g-deformation,
we can ask an opposite question, what is the geometric, i.e. Lagrangian, formulation of
the algebraic theory that we described in Sects. 4 and 5. Certainly the answer should
involve a certain example of noncommutative geometry. This could be a natural
example for the general program of A. Connes.

Quantum algebras Uq(o) and WZNW conformal field theory have important topo-
logical applications to knot and 3-dimensional invariants [W2, RT1]. One can naturally
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ask about the topological implications of our (/-deformed case. Since our connection
matrices and the appropriate tensor categories depend on a parameter, one should try
to associate with them a pure topological data. One can compare this situation to the
passage from the conformal field theory to the topological field theory one dimension
higher. Since in our case we have categories depending on a parameter, one should
expect that a similar step will yield certain 2-categories, which in their turn are related
to 2-knot invariants in R4 and eventually to the four-dimensional invariants.

Finally we would like to recall the analogy with the quantum mechanics, which
is a quantization of classical mechanics, again admits a classical interpretation us-
ing functional integrals one (functional) dimension higher. One can expect that the
representation theory of the quantum affine algebras can be obtained from the repre-
sentation theory of double loop algebras like quantum groups appear as symmetries
of conformal field theory.
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