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Abstract. The K-property is demonstrated for a class of planar billiards satisfying
Wojtkowski's principles. Their boundary may consist of convex-scattering,
concave and linear pieces. Earlier Wojtkowski showed that these billiards had
non-zero Lyapunov exponents.

1. Introduction

A highly intriguing and actual aim of the theory of Hamiltonian dynamical system
is to understand the nature of coexistence of integrable and nonintegrable
behaviors. There is a natural concensus that the simplest and most hopeful case to
be studied is the two-dimensional one but there are different views as to whether
which models are easier to attack. Two most concurrent families are billiards and
standard maps. [In fact, an interesting example was constructed in Przytycki (1982).]

Billiards show a rich variety of phase portraits also encountered in general
Hamiltonian dynamical systems. Nevertheless, their simpler geometrical pro-
perties might help to understand this variety more easily and serve as a starting
point to learn more about general systems.

In 1979 Bunimovich proved the ergodicity of a billiard in a stadium. After that
Wojtkowski (1986) constructed an extension of the class of billiards considered by
Bunimovich. Later Markarian (1988) gave another extension of this class of
billiards. Both Wojtkowski and Markarian proved that billiards in their classes
had non-zero Lyapunov exponents. In the present note we demonstrate that
billiards satisfying Wojtkowski's principles are, in fact, ergodic and even
X-systems. A better understanding of the mechanism of ergodicity is hoped to
provide tractable models where the nature of coexistence of integrable and non-
integrable domains in the phase space can be revealed.
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2. Statement of Result

Our starting point is a simple observation according to which Bunimovich's or
Wojtkowski's convex scattering billiards can be represented or behave as semi-
dispersing billiards. We claim that

(i) by introducing a different, homothetic metric in the phase space depending on
the curvature of the boundary;
(ii) and, by improving the technique of showing convergence and continuity of
continued fractions;

the approach through the fundamental theorem for semi-dispersing billiards also
works for the case when the convex components of the boundary satisfy the

convex-scattering property of Wojtkowski [W(1986)]: -r-y ^0, where r(s) is the
as

radius of curvature as the function of the arc length parameter on the curve. As
it was also mentioned in [W(1986)], examples of convex scattering curves in-
clude (epi) (hypo) cycloids, the cardioid, etc. For C4 curves, an equivalent
geometric formulation of the convex-scattering property is expressed by Eq. (5).

Let Q be a bounded, closed domain with a connected interior in the Euclidean
plane R 2 or on the 2-D torus T2 with the flat metric. We assume that the boundary
dQ consists of a finite number of smooth non-selfintersecting curves dQ(,
i = l,...,p, the regular components of dQ. The boundary is equipped with a field of
unit outer normal vectors n(q), q e dQ. We assume that the curvature of any regular
component is either identically zero or does not vanish. Regular boundary
components with positive, negative, and zero curvature will be called convex,
concave, and neutral, respectively, and the union of all convex, concave, and
neutral boundary components will be denoted by δQ + , δQ", and dQ°.

The class of billiards considered in [W(1986)] is described by the following
principles:

P o : The set of trajectories confined to neutral boundary components is of measure 0
(in particular, Q is not a polygon, i.e. dQ + udQ~ ή=0).
i V All the pieces of dQ+ have to be convex-scattering.
P2: Any piece of dQ+ has to be sufficiently far away from other non-neutral
pieces of the boundary.
P3: If two components of dQ meet at a vertex, then the internal angle at the vertex
has to be bigger than π when both pieces are convex, not less than π when one piece is
convex and the other concave, and bigger than π/2 when one piece is convex and the
other is flat.

The meaning of "sufficiently far away" in P2 will be seen from the proof, in
particular, from the remark after Lemma 4 and from the proofs of Lemmas 6 and
14. Here we just mention that, if applied to one convex piece of the boundary, then
this condition is equivalent to requiring that it is, in fact, convex-scattering.

Finally, we have to introduce a mild, additional postulate that can be easily
checked in the particular models. It excludes counterexamples of the type of
[W(1986)] where several ergodic components appear for the Chernov-Sinai
Ansatz is hurt. (In fact, the method of our proof also provides that in Wojtkowski's
stadium with semi-ellipses the number of ergodic components is exactly 3 if the
stadium is sufficiently long.)
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P4: The set of trajectories where the dynamics is not defined forms a zero-measure
subset of the set of the singular trajectories (with respect to the Riemannian
measure).

The theorem we claim is the following:

Theorem. Any planar billiard satisfying the principles P0-P4 is a K-system.

3. Proof

For economy of exposition, we rely upon [BUN (1990)] by accepting its notions
and notations and by only indicating those points where new ideas are involved.

Denote by (M,SR^) the flow and by (dM, Tz

9μx) its Poincare section map.
In fact, for simplifying the discussion, the Poincare section is defined by the
curved parts of the boundary δg, only, and thus δM: = δM+u3M~, where
dM±:= U dQi x [—π/2,π/2]. The choice of the angular interval indicates our

dQiβdQ*

preference to work with incoming velocities. Both the omission of neutral
boundary components and the choice of precollision linear elements differs from
the usage of [BUN (1990)], but the initial idea is intact: the flow does not possess
any good invariance or dilation property for orthogonal curves, but - as a
consequence of the principles - the Poincare section map does!

It is easy to see that from among the conditions of the fundamental theorem of
[BUN (1990)], notably conditions G1-G6 and A, conditions G1-G3 and A also
hold for the billiards considered in [W(1986)]. First of all, G4, requiring that
convex arcs be focusing in the sense of [DON (1991)], is a trivial consequence of
the convex-scattering property [see (5) below]. Thus our task is to verify
conditions G5 on the local uniform dilation and G6 on the convergence and
continuity of the continued fractions determining the curvatures of the local
invariant manifolds. As to the necessary results on absolute continuity, we
refer to [K-S (1986)].

The necessary arguments, however, should be preceded by certain general
comments on the idea of the proof of the fundamental theorem. It was first proved
in the papers of Sinai [S (1970), S (1979)] for dispersing billiards, then by Sinai and
Chernov [S-CH(1987)] for semi-dispersing billiards and later modified in
[K-S-SZ (1990)]. We want to use the fundamental theorem in a more general form
than formulated in [BUN (1990)]. The first remark is that the basic objects of the
whole proof are suitably chosen local orthogonal manifolds whose tangents lie in
the corresponding element of the invariant cone-field.

The first, and most important deviation from the exposition of [BUN (1990)] is
that, on components of dM+, we want to introduce a different metric. For that we
have to make an important remark related to the proof of the fundamental
theorem. The original proof [S-CH (1987), K-S-SZ (1990)] works with convex local
orthogonal manifolds. In the version of [BUN (1990)] these are replaced by
expanding curves, i.e. with (projections to the phase space of the Poincare section
map of) local orthogonal curves whose differentials belong to the introduced
invariant cone field. Let Σ denote an infinitesimal local orthogonal curve of the
flow through a point x = (q,v~)edM that is incoming, i.e. is just before collision.
For simplicity, we will denote in the same way its natural projection to Q [the
curve in the phase space can be reconstructed from its projection by attaching
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orthogonal velocities to its (configuration) points]. If q e dQ ~, then we only require
that Σ be convex in the classical sense. (In this case, its projection to dM is an
increasing curve.) If qedQ + , then beside convexity we also assume that its

curvature BΣ be bounded: 0^BΣ^ -, where h = k(q)~ί cosφ and k(q) denotes the
n

curvature of the boundary at q and cos φ = (n(q),v~). The projections of these
curves to dM are called in [BUN (1990)] expanding ones. A further important
remark is that by changing the metric angles will also change. Having got
acquainted with the proof of the fundamental theorem, the reader can, however,
convince himself easily that here, too, the continuity of the continued fractions
implies the necessary bounds on the angles (these are local!; see Lemma 4.9 in
[K-S-SZ (1990)]).

Now the proof of the fundamental theorem uses dilation of expanding curves.
To obtain this we are going to introduce a new measure of arc lengths of such
infinitesimal curves. The relevant metric of the proofs is always the one defined on
curves orthogonal to an incoming vector. Denote this arc length of orthogonal
curves by dl% that at the same time also defines a length for projections of these
curves to dM (the ratio of the length of an infinitesimal orthogonal curve and of its
projection to dM is, of course, cosφ where φ is the incoming angle, cf. [S (1970)]).
This arc length dl^ has been used in the earlier papers, e.g. in [S (1970), B-S (1973),
S-CH (1987), K-S-SZ (1990), BUN (1990)]. Now the new arc length dl is defined as
follows: on infinitesimal, orthogonal curves incoming to components of dM~ let
dl = dlχ while on those incoming to components of dM+

ί
where h is as above.

Next recall some necessary notations from [BUN (1990)]: for xedM,
φc): = suρ{ί>0: for all 5, O^s^ί, S'xφdM},

i.e. Tx = Sτ{x)x. Further, if Σ denotes a local orthogonal curve, and x e Σ, then we
denote by κo(x) its curvature at the point x. If Σt = S'Z1, then we denote by κt(x) the
curvature of Σt at the point S'x We recall the evolution equations for the
curvatures of local orthogonal curves: if S[O' ί]xnδM = 0, then

while if S'xedM, then

where κt±(x) denote the curvatures of the local orthogonal curves before and after
the collision [cf. Sinai (1970)], and, as usual, π:M->Q denotes the natural
projection onto the configuration space.

For an x e dM, let Σ denote an incoming expanding curve (just before collision),
let Σ+ denote its image just after reflection and let Σx denote the image of Σ+ just
before it reaches again dM: of course, Σί = Sτ{x)Σ. Denote finally the curvatures of
Σ and Σ+ at x by K and κ+ and the curvature of Σγ at Tx by κί. Then by (2),

2k(πx)
+ cosφ{x)
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and

* i = ^ > (3)

2k
K—

cosφ

where we omitted to indicate the dependences on the point x.

Lemma 4. T maps (pre-collίsion) expanding curves into (pre-collision) expanding
ones.

Proof was given in [W (1986)]. Since we are starting our proof in medias res, for
warming up with the notations it is, nonetheless, worth briefly recalling. The
statement is trivial if x, TxedM~, or if xedM+ and TxedM~ and τ(x) is
sufficiently large (see P2). If x, TxedMf, then the condition that Σ is expanding

says that 0 ^ κ g - . Thus - - g κ + ^ - -, and finally by (3),

_!_<*< J_<±

where hί = k(πTx)~ί cosφ(Tx), and the inequality

(5)

is just another way of expressing the convex-scattering property (cf. [W (1986)]).
The last inequality should hold again if xedM*, TxedMf, i+j that can be
attained on behalf of P 2 The same property trivially settles the case xedM~,
TxedM+, too. •

Remark. Since the fundamental theorem is only applicable in neighborhoods of
sufficient points in the terminology of [S-CH (1987)] and of [K-S-SZ (1990)] (or in
the language of cones one has eventually strict inclusion (cf. [W (1986)]), or else the
cones are perfect, cf. [BUN (1990)]), it will be useful to survey which cords lead to
immediate sufficiency. This is always the case if a) x, Tx e dM~ or b) x, Tx e dMf
and τ>h + hί. On the other hand, the property P2 ensures sufficiency whenever c)
xedM+ and TxedM' or d) xedMf and TxedMf (ί+j) or e) xedM~ and
TxedM+.

Lemma 6. The l-length of (pre-collision) expanding curves does not decrease under
T9 and it always increases if we have strict inequality in (5).

Proof. Case a) is trivial. The most interesting case is b). Assume x, Tx e dMf. Then,
by elementary geometry, we have for the infinitesimal arc-lengths

1
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and, consequently, by taking the projections to dM and changing the distances
from l^ to /, the necessary inequality will be

1
τ — \κ+\

Note that, for the pre-collision expanding curves we are working with, the law (1)

leads to multiplying their Euclidean arc-length by - ! By simplifying the left-hand

side (note that \κ+\h^ 1!) we obtain

but this is again the convex scattering property (5).
Next consider case c). Then

dl(Σ) dl*(Σ)

where the last, strict inequality can be reached on behalf of P 2 . Case d) is similar to
b). Finally, in case e)

dl{Σγ) = 1 dltfj ^ dl^ΣJ
dl{Σ) hx dlJP) = dlJΣ)

whenever h1^rmax^\ where

The inequality rmax < 1 can be postulated by choosing the length unit appropriately
and only then we are allowed to choose τ > rmax +1 by virtue of P2 [as needed in
case c)]. •

Important Remark. Since we have changed the metric, we should also check
whether Lemma 1 of [BUN (1990)] keeps its validity if now the function
zί: <5M-»IR+ measuring the distance from the singularities is defined in terms of
our new metric. Before giving the precise definition of zί we should introduce some
notations. Let T+ :M-+dM be given by T+(x): = Sτ(x)~°x and T~ :M-+dM be
given by T~(x):= —Sτ{~x)+0( — x), where — x= —(q,v) = (q, —υ). Let, moreover,
^m+cdM be the set of singular reflections (see [K-S-SZ (1990), p. 540]). For
x = (g? v) φ dM define the function vφc) as follows. First we want to determine the
sets Lr, where r>0 is small (r^r 0 , say). Set L 0: = π[T"x, T+x]cQ and assume
that, for some small and fixed ε>0 and some /ceZ+, LkεeQ is defined (fcε<r0).
Then, if moreover (fe + l)ε<r0, set L ( k + 1 ) ε := [Jπ\T~y, T+j;], where the union is
taken for every y such that p(y) = p(x) = v and π(y)eϋξ] (here Λε denotes the
ε-neighborhood of the set A in Q measured in Euclidean metric). Since ε is
arbitrarily small, this recursion determines Lr: 0 < r ̂  r0 uniquely. Now let

: = min{r0,sup{r: r^r0, Lrn^^+ =0}}
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and for x e dM extend this equation by assuming that z^S'x) is left-continuous in t.
In plain words, zJ|ί(x) is the width of the maximal tubular configurational
neighborhood of a trajectory segment π[T~x, T+x] disjoint of any singularities if
lifted to the phase space with velocities parallel to p(x). Finally, set z(x): = zjjc) if
xedM~ and z(x) = width of the same maximal tubular neighborhood as before
but measured in the metric dl rather than in dl% if x e dM+. It is now easy to see that

implying that the aforementioned Lemma 1 still holds. We suggest that the reader
convince himself that this inequality is, indeed, the one that we need in the proof of
the Tail Bound (cf. [S-CH (1987, K-S-SZ (1990)]). •

Assume now for a moment that x e dM is fixed and denote by Σ and Σ any pair
of (pre-collision) expanding local orthogonal curves through x and by Σn and Σ'n
their (pre-collision) images under Tn. Introduce some shorthand notations:

τn: = τ(Tnx), cos φn: = (n(π Tnx\ v ~(Tnx)),

) , * : = ^ , (7)

κi

n

): = curvature of Σ(

n

} (neZ).

If rc = 0, then the index 0 will be omitted, e.g. for xedM+ we write χ= — τ .
h

Lemma 8. For any x e dM

< W % (9)

Proof follows directly from (3). •

Corollary 10. IfxedM', then

1

where χmin: = min{k{πx): xedM~}.

Corollary 11. If xedM+,then

Proof. For the denominator of the fraction on the right-hand side of (9) we have

since 0 ̂  K, K' < -. Hence the statement. •
h

Since Corollary 11, unlike Corollary 10, does not ensure the contraction we
would like to use, it is again useful to change the units on dM+. For a (pre-collision)
expanding local orthogonal curve through x let

κ{x) i f x e 5 M ' (13)
h{x)2-κ{x) if xedM+. { '
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All other forthcoming notations will be used with natural modifications of the
previous ones.

Lemma 14. Under the constraints used in the proof of Lemma 6, for any pair of
(pre-collίsion) expanding local orthogonal curves we have

Proof Consider again the cases of the remark after Lemma 4 separately. Case a) is
trivial by Corollary 10 and (13). In cases b) and d) a simple calculation yields that

This inequality implies for case c) the relation

If - H 1

while for case e) we deduce from Corollary 10 that

ιCi-ζΊi<Λ?ιc-α

Now exactly then, when the expansion bounds provide the statement of Lemma 6,
one also obtains the contraction claimed in our lemma. •

Proposition 15. Except for a finite number of phase points x e dM the following is
true: For every ε>0 there exists a positive integer nε and a suitably small
neighborhood Uε(x) such that for every n>nε and almost every y e Uε(x) and every
(pre-collisίon) expanding local orthogonal curve Σ (T~nyeΣ),

\κ{u\x)-κτnΣ(y)\<s.

If Tzx intersects a singularity (singularities), then the statement is true on each
component of the neighborhood Uε(x) where all non-positive powers of T are smooth.

Proof. It is sufficient to prove the statement for phase points x whose negative
semitrajectories do not intersect singularities. By (3) we have

κTnΣ{y) = .

2k.2(y)

(18)

First we claim that there exists an nε such that for any (pre-collision) expanding
local orthogonal curve Σ (TnxeΣ)

\κ(u\x)-κτnΣ(x)\<ε
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holds. A glance at Corollary 10 and Lemma 14 should convince the reader about
the truth of the claim whenever Tz~x possesses the following property: there exist
no index i and no time moment ή such that for any n^n,T~nxe dM*. Indeed, since
χ m i n >0, the contraction claimed in Corollary 10 and Lemma 14 is also uniform
except for the case when τ becomes arbitrarily small. This is only possible close to
the intersections of components of dQ~, and even then for a bounded number of
consecutive collisions after which τ should become larger than a suitable small
threshold (cf. [B-S (1973)]). Hence the claim.

The claim, however, implies the statement of the lemma, by the continuity of
the finite continued fractions (18). •

Since Conditions G5 and G6 of [BUN (1990)] are ensured by our Lemmas 6
and 15, the theorem now follows from the appropriately modified version of the
fundamental theorem of the aforementioned work. Indeed, if once we have local
ergodicity apart from a finite number of points, then global ergodicity - also
implying the K-property - trivially follows.

4. Remarks

1. A further interesting question is whether and when generalizations [by
Markarian (1988 and 1991), Donnay (1991), and Bunimovich (1991)] of
Bunimovich's and Wojtkowski's billiards known to have non-zero Lyapunov-
exponents are, moreover, ergodic. There are two recent announcements by
Bunimovich (1991) and Markarian (1991) promising progress in this direction. The
first work also announces an interesting converse statement.

It is worth stressing that the billiards considered here are not everywhere
smooth. In fact, examples of 2-dimensional billiards in smooth convex domains
had been known to be integrable well before Lazutkin (1973) [and later Douady
(1982)] established that they, in general, possess caustics, topological objections
for their being ergodic. [Here the role of dimension is quite important. According
to a recent result of Berger (1990), if a local surface in the three-dimensional
Euclidean space admits a caustic, then it is necessarily part of an ellipsoid.]
2. A further phenomenon to be understood is the role of zero curvatures in
convex-scattering components of the boundary. If this happens, then our method
breaks down, though as we know from Mather (1982), zero curvature excludes the
possibility of having invariant tori close to the boundary, an effect that should, in
fact, promote chaotic behavior.
3. We expect that, by using the methods of [CH (1991)] and our Proposition 17,
Sinai's entropy formula can also be established for the billiards investigated
here.
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