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Abstract. All finite dimensional irreducible representations of the quantum Lorentz
group SL,(2,C) are described explicitly and it is proved all finite dimensional
representations of SL,(2,C) are completely reducible. The conjecture of Podle$
and Woronowicz will be answered affirmatively.

0. Introduction

The quantum Lorentz group SL,(2, €), where q is a real parameter #0, 1, was
introduced by Podles and Woronowicz [PW], and the Iwasawa decomposition
and representation theory were studied. This quantum group is combined with the
double group of SU (2), a g-analogue of the compact group SU(2) [W, MMNNU],
through the Iwasawa decomposition. Let A, (respectively B,) be the *-Hopf algebra
corresponding to the quantum group SL,(2, C) (respectively SU,(2)). (A *-Hopf
algebra means a Hopf algebra over € with a *-operation satisfying some properties.
See Sect. 4.) The dual vector space B, =Homg(B,,C) has a topological Hopf
algebra structure. By a topological Hopf algebra, we mean a topological analogue
of the usual Hopf algebra, in which the underlying vector space is assumed to
have a linear topology and the complete tensor product ® plays the role of the
usual tensor product. (See Sect. 1.)

Podles and Woronowicz have introduced some topological Hopf algebra
structure as well as some *-operation on B, ®B’ and have proved there is an
injective *-Hopf algebra map of 4, into B, ®B’ We call

&,=B,®B,

the quantum double of B,. This is the dual version of Drinfeld’s quantum double
[D], and corresponds to the double group of SU,(2).

The topological Hopf algebra &, has the largest (non-topological) Hopf
subalgebra E,, and what they have done is the construction of an injective *-Hopf
algebra map of 4, into E,. This is not surjective. There is a central group-like
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element 7 of order 2 in E, outside A,. The conjecture 6.4 [PW] tells that we have
E,=A4,® A,

The purpose of this paper is to prove this conjecture is true.

This conjecture has a close relation with representation theory. By a
representation of the quantum Lorentz group SL,(2, C) we mean a (right) comodule
for &,. This concept involves a linear topology, since &, is a topological Hopf
algebra, but we consider only discrete comodules. Thus the structure map of a
comodule V is a linear map p: V— V®c§’q with discrete topology on V. We see
p(V) is contained in V® E, if and only if V is locally finite, i.., it is the sum of
finite dimensional subcomodules. In other words, locally finite representations of
SL,(2,C) are the same thing as comodules for E,.

In the previous paper [T2], we showed how the finite dimensional
representation theory of U, = U,(sl(2)) leads to an explicit description of the dual
Hopf algebra U; which is the largest (non-topological) Hopf subalgebra of the
topological dual U;. One sees we are precisely in the same situation.

We will think A4, is a Hopf subalgebra of E;,. Comodules for 4, are called
smooth representations of SL (2, C). The above conjecture literally tells that if V'
is a comodule for E,, there are smooth representations V, and V, (uniquely
determined up to isomorphisms) such that

VeV, @V, C).
One sees this is equivalent to the previous statement.
To prove the conjecture, first we observe that comodules for &, are the same

thing as crossed bimodules for B, in the sense of Yetter [Y]. Next, we note that
there is an isomorphism of coalgebras (but not Hopf algebras)

B,®B, =4,

q¢ ' =
This means all comodules for 4, i.e., all smooth representations, are completely
reducible, and if V), (respectively V) denotes the k + 1-dimensional simple comodule
for B, (respectively B,-:), then V, ® V', k,leN, give all mutually non-isomorphic
simple comodules for 4,. (See [PW, Theorem 6.3].)
Therefore, the conjecture reduces to the following theorems.

Theorem A. V, @V} and V,@Vi®C:, kleN, give a complete set of
representatives for the isomorphism classes of all finite dimensional simple crossed
bimodules for B,.

Theorem B. Allfinite dimensional crossed bimodules for B, are completely reducible.

The paper is outlined as follows. In Sect. 1, we state basic facts on topological
Hopf algebras. In Sect. 2, we review the construction of the quantum double. In
Sect. 3, we establish the correspondence between comodules for the quantum
double and crossed bimodules. In Sect. 4, we review the construction of the quantum
Lorentz group SL,(2, C) as well as the description of *-Hopf algebras 4, and B,
and the embedding of 4, into the quantum double of B,. In Sect. 5, we express
the crossed axiom for B, in terms of (U,, B,)-bimodules. Using this expression, we
prove Theorem A in Sect. 6 and Theorem B in Sect. 7. The final section, Sect. 8,
which is an appendix, describes the braid structure on A4, arising from the braid
structure of the category of crossed bimodules.
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The first three sections deal with generalities, and we work over a general field
k. In the rest of the sections we let k = C the complex numbers.

The symbol * is limited to mean the *-operation. Hence we denote by V' the
dual vector space Hom, (V, k) (not by V*).

1. Topological Hopf Algebras

We state basic facts on topological Hopf algebras. Generalities on topological
coalgebras are developed in [T1].

We work over a field k. A topology on a vector space V is linear if all translation
v+ (veV) is continuous and if there is a fundamental system of neighborhoods of
0 {V,} consisting of vector subspaces. In this paper, we consider only Hausdorff
topological vector spaces. This is equivalent to saying ﬂ V,=0. The completion

of V is defined to be *
V=1limV/V,

T a
which has the prodiscrete topology.

If V and W are topological vector spaces with fundamental systems of
neighborhoods of 0 {V,} and {W,} we give the linear topology on ¥V ® W such
that {V® W, + V,® W} is a fundamental system of neighborhoods of 0. V® W
is Hausdorff if ¥ and W are Hausdorff. The completion of V' ® W will be denoted
¥V ® W, and this plays a basic role in the paper. Note that we have

V®W=l<%] ViV, W/W,.

We always give the discrete topology on k.

If M is a vector space, we give the linear topology on the dual space M’ such
that L* for all finite dimensional subspaces L of M form a fundamental system
of neighborhoods of 0. More generally, if M and N are vector spaces, Hom, (M, N)
will be given the linear topology such that Hom,(M/L, N) for all finite dimensional
L form a fundamental system of neighborhoods of 0. There is a natural isomorphism
of topological vector spaces [T1,p. 513],

N®M’' ~Hom,(M, N),

where N is given the discrete topology.
By a topological coalgebra we mean a topological vector space ¢ with linear
continuous maps

AC>CRE, c€—k

satisfying the coassociativity and the counit condition [T1,p.510].
A topological algebra, its dual concept, consists of a topological vector space
&/ and linear continuous maps

mAQA >, wk—oo.

If Ais an algebra and C is a coalgebra, then the dual topological vector spaces
A" and C’ have natural structures of a topological coalgebra and a topological
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algebra respectively. More generally, the topological vector space &/ = Hom,(C, A)
has the following topological algebra structure:

i =Hom, (A,m):/ ® o4 > o,

i = Homy (¢, u):k — o,
where we identify .« ® .« = Hom,(C® C, A® A) [T1, 1.14]. The multiplication 7
is called the convolution product [S, pp. 69-72]. If we consider A is a discrete
topological algebra, we have an isomorphism of topological algebras

A=ARC.

If H is a bialgebra, End, (H) has two algebra structures. The convolution
product will be written as f~g, while the composition will be written as f°g or fg.
Note that we have an isomorphism of topological algebras (with convolution
products)

End, (H ® H) = End, (H)® End, (H).

Let € be a topological coalgebra. Since we assume it is Hausdroff, #®% is a
subspace of ¥ R A subspace C of € is called a subcoalgebra if we have
A(C)=c C®C. (We consider no topology on C.) Obviously the sum of all
subcoalgebras is the largest subcoalgebra of €. For example, if A is an algebra,
the largest subcoalgebra of the topological coalgebra A’ is denoted by A°
[S, Chap. VI].

By a comodule for €, we mean a discrete vector space V with a linear map

mV~V®%
satisfying the usual axiom:
IR®A)p=(p&®I)cp asmaps VoVRERE
and (I®e)op is the canonical map V-V ®k.

All commodules are right in this paper. If € = A’ the dual topological coalgebra
of an algebra A, then the comodules for € are naturally identified with the left
A-modules [T1, Theorem 1.19].

1.1 Proposition. Let € be a complete topological coalgebra with the largest
subcoalgebra C. Let (V, p) be a comodule for €. We have p(V) < V ® C if and only
if V is locally finite, i.e., it is the sum of finite dimensional subcomodules.

Proof. The “only if” part follows from [S, Theorem 2.1.3]. To prove the “if” part,
we may assume V is finite dimensional. Note that V®% =V ® ¥, since € is
complete. Take a base v,,...,v, for V and write

p(vj) = Zvi@xij'

It is easy to see

Alx;) = 12X ® Xsjo

hence x;; span a subcoalgebra and we have p(V)c V®C. O
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A topological bialgebra is the topological version of the concept of a bialgebra.
The underlying vector space # is assumed to have a linear topology and the
structure maps which are linear continuous

mARQH —>H, uk-H,
AKX > HRH, c¢H—k

are assumed to satisfy the same axioms as a usual bialgebra. (Read ® for ® in

the diagrams of [S, p. 52].)
If H is a bialgebra, then the topological dual vector space H' has a natural

structure of a topological bialgebra.
For a topological bialgebra 5, let E = End__, (5#) be the vector space of all
linear continuous endomorphisms. This space is closed relative to the convolution

product

frg=me(f ®g)°A.

E is an algebra with this product and unit ue. If the identity I has an inverse S in
the algebra E, we say J is a topological Hopf algebra and S the antipode. Just as
the non-topological Hopf algebras [S, Proposition 4.0.1], one sees the antipode
is an anti-endomorphism of the topological bialgebra.

1.2 Proposition. The largest subcoalgebra H of a topological Hopf algebra # is a
Hopf algebra.

This follows easily, since k, HH, and S(H) are subcoalgebras, hence they are
contained in H.

2. Quantum Double

Podles and Woronowicz [PW, Sect. 4] introduced the dual concept of Drinfeld’s
quantum double [D] under the name “double group.” The construction is reviewed
in the context of topological Hopf algebras. We include all proofs for self-contained-
ness.

Let H be a Hopf algebra with structure maps m, u, 4,¢. Assume the antipode
S of H is bijective. We will make the topological algebra & = End,(H) into a
topological Hopf algebra. Let /it = Hom, (4, m) and & = Hom, (¢, u) be the structure
maps of &, and recall we have

£®&=End,(H® H)

as topological algebras (Sect. 1).
The comultiplication A:6 - & ® & is defined to be the following continuous

homomorphism of topological algebras:
A:End,(H)— End,(H ® H)
A(f)=o"(4c fom™) 57",
where 6 = (u® I)°(I®¢), hence 6! =(u®I)°S°(I ® &). We have
AN x®¥) = Y1 ®x A (rx )1 ® S(x3)), X, yeH,
where and in the following we use the sigma notation [S, p. 10].
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2.1 Lemma. A is coassociative.
Proof. If FeEnd,(H® H), then x® y® zin H® H ® H is mapped by (I & A)(F) to
Y@ 1@y I ®A)(F(x®2y,)) (1 ®1®S(y3)
and by (A® I)(F) to
Y1 ®x;,® NA® DN(F(yx 5 ®2)(1® S(x5)® ).
If F = A(f), both are equal to
where A,:H—> H® H® H the iterated comultiplication. []
Define the counit &:& = End,(H)— k,
&) =e(f(1)).
2.2 Theorem. & is a topological Hopf algebra.

Proof. The counit condition is easy to check. Define a continuous linear map
S:£-6,

S(f)=S8(SefoS71)I

which maps x in H to Z§()&”)SfS'l(x(2))x(3). We show S is an antipode of &. If
FeEnd,(H® H), then (I ® S)(F) maps x®y in HQ H to

2LUABSY I ®SF(x®S ™ (y))1 ® ).
If F = A(f), this becomes
2 ®S(y1))S* (xm U @ S)AS (S ™' (¥)X ;)N ® S(x))¥ 3))-
Hence (I & S)A(f) maps x in H to
m(Y (1 ® 8(X4))S?(x3) )T @ S)A(S (™ 1(x(5))% )1 ® S(x(1))X5))
which reduces to &(f(1))e(x). This means we have
m(I ® )4 = iié.
Similarly, (§ ® I)Z( f) maps x®y to
- 28 ®S T xS ® DAS (¥S ™ (x3))(X(5) ® X 3.
Hence m(S ® I)A(f) maps x to
2S0x1)S(f (x6)S ™ (3% (S ™ X)) S (68 ™ (32X 2y
which is equal to ¢(f(1))e(x). This means we have
m(S & I)A = iié.
Hence S is the antipode of &. [
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2.3 Definition. The topological Hopf algebra & is called the quantum double of H.

_ Ifweidentify & = H &® H' as a topological algebra, the structure maps A, & and
S have the following expressions:

~ ~ A® AP - - 1®0®1
AHR®H — (HH)®H ®H)——
I®w®I

(HRH)®H ®H) (HRH)®HH'),

R ode . 2.4)
EHOH — k®k=k,

~ ~ w N s@s™! -
SSH®H — H®H —— H®H',

where w denotes the inner action fi—1I- f-S. (We think I, S are elements in H ® H'.)
One sees our construction of the quantum double coincides with the double group
[PW, Sect. 4].

It follows we have the following homomorphisms of topological Hopf algebras:

1, =1®e6=H®H —H,
n,=e®1:6=HQH — H",

where H is given the discrete topology and cop means the coalgebra opposite.

(2.5)

2.6 Proposition. The composite
i mén
E—ERE ———o>HXH
is equal to the identity.

Proof. If we identify & ® & = End,(H® H) and H® H' = End,(H), then n, ®,
maps F in End,(H® H) to the composite (I®¢)oFo(u®I). If F=A(f), this
composite reduces to f. []

3. Crossed Bimodules

This section gives a correspondence between comodules for the quantum double
and crossed bimodules in the sense of Yetter [Y].

Let H be a Hopf algebra and let & = End,(H) its quantum double.

By a right bimodule for H, we mean a right H-module and a right H-comodule
V. The coaction will be denoted [S, p. 32]

VY 00, ® vy, VEV.
3.1 Crossed Axiom [Y, Def. 3.6].
Lol @ v = Y 0h) 0@ hyyvh,) ), veV, heH.

A crossed bimodule for H means a right bimodule for H satisfying the crossed
axiom.
Let V be a comodule for the topological bialgebra & with structure

pVoVRE.



564 M. Takeuchi

By means of the topological bialgebra maps =#,, n, (2.5), we have the following
comodule structures:

pVLov®e L veH,

a 1®n ~
PV Lov®e 2 v @ Heor.

The second comodule structure p, can be thought of as a right H-module structure.
It follows from 2.6 Proposition that we have

p1®I

P VLo VOH™ " VQHRH P =V RE.
Conversely, when V is a right H-bimodule, define p as the above composite.

3.2 Proposition. (V, p) is a right comodule for & if and only if the crossed axiom holds
for the bimodule V.

Proof. The counit condition for p is always true. Identify
V® & =V ®End,(H)=Hom,(H,V® H)

as topological vector spaces. To say (¥, p) is a comodule means that we have the
following commutative diagram:

%4 Hom,(H, V® H)

19 [

Hom, (H, V ® H) ——— Hom,(H® H, V ® H ® H)

with comultiplication A of &. Let f=p(v) with veV. Then f maps heH to
Y (Vh) 5, ® (vh), ;. One sees by definition of a

(P ®DNx®Y) =Y. p1((07)0%) ® ®Y)y)s
IR D(Nx®Y) =Y (09X 2)0)® (1 ® X1 YAV 3)) 1)) (1 ® S(x3)))

for x, yeH. Note that both are functions of vy and x. So, we may assume y =1,
and the comodule condition tells that we have

200 %00 @ C0Xw)n) ® VX = 20Xz 0 ® 1% 2)) 1) ® X(1)(tX2)) 2

for all veV, xeH. This follows from the crossed axiom by application of the map
p1 ®1, and conversely, the crossed axiom follows from this by application of the
map I®e®I. Hence the comodule condition is equivalent to the crossed
axiom. []

It follows that the crossed bimodules for H are the same thing as the comodules
for the quantum double &. In particular, if E denotes the largest (non-topological)
subcoalgebra (which is a subbialgebra) of &, then the category of right E-comodules
is completely identified with the category of locally finite crossed H-bimodules.

The following remarks will be useful in later discussions.

3.3 Remark. The crossed axiom is enough to check for generators of the algebra H.
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In fact, the set of heH satisfying the crossed axiom for all veV forms a
subalgebra.

Assume H is a Hopf subalgebra of U° for some Hopf algebra U. For xeU and
heH, define the actions [S, pp. 46, 100]

x—=h=Yh,<x, Ry, hex=Y X, hy dh,,.

Recall [S, Sect. 2.1] that every right H-comodule has a natural left U-module
structure. Hence, if V is a right H-bimodule, we can think we have a bimodule
vVy for the algebras U, H.

3.4 Remark. With the above assumptions, the crossed axiom is expressed

Z(x(l)v)(x(z)_‘h) = Zx(z)(v(h‘_xu)))
for veV, xeU, heH.

3.5 Remark. With the above assumptions, if the algebra U is generated by a
subcoalgebra C and the algebra H by a subset A, then the crossed axiom of 3.4
is enough to check for all veV, xeC, and heA.

In fact, the set of he H satisfying the crossed axiom in 3.4 for all veV and xeC
is a subalgebra, and the set of xeU satisfying it for all veV and heH is also a
subalgebra.

4. Quantum Lorentz Group

We review the construction of the quantum Lorentz group SL,(2, €) introduced
by Podles and Woronowicz [PW, Sects. 1,5].

Hereafter, we let k = C the complex numbers. A *-algebra means an algebra
over € with an involutive conjugate linear automorphism #* such that (ab)* = b*a*,
a,be A. The tensor product of two *-algebras has a natural *-structure. A *-Hopf
algebra means a Hopf algebra over € and a *-algebra H such that the
comultiplication A and the counit ¢ are *-homomorphisms, i.e., A(h)* = A(h*) and
e(h) = ¢(h*), heH. If this is the case, the algebra opposite H°® or the coalgebra
opposite H*? is a Hopf algebra, too. This implies that the antipode S of H is
bijective and one has

*o§ =S8 to* or (S°*?=1I

A topological *-algebra and a topological *-Hopf algebra are defined similarly.
If H is a *-Hopf algebra, we give the following *-structure to the dual topological
Hopf algebra H":

x*(a)d=fx(S(a)*), xeH', aeH.
For a *-Hopf algebra H, let & =End¢(H) be the quantum double. As a

topological algebra, this has a natural *-structure isomorphic to HQ H'. If feé&,
we have f*=%ofo*o§ or

f¥a)=f(S(a)*)*, aeH.
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4.1 Proposition. & is a topological *-Hopf algebra.

Proof. We show the comultiplication A commutes with *. If fe&, A(f)* maps
x®yin HRH to
[AN)SE*®@S(y)*)1*
which is
[X(1® S(x3) M)A (S*S(x ) N1 ® x,,*) T*
= Z(l ®x(l))[A(f(S(yx(z))*))]*(l ® S(x(3)))'
Since A and * commute, it follows that A( f¥= A~( . O

Note that the identity I is unitary in the *-algebra & in the sense that
I*=1"(=5).

Fix a real parameter g # 0, + 1 in the rest of the paper. The following notations
will be used throughout.

4.2 Definition. Let B, be the C-algebra defined by generators a,b,c,d and the
following relations:

ba=qab, ca=gqac, db=qbd, dc=qcd,

cb=bc, ad—q 'bc=1=da— qbc.

These relations tell that < d_ B qb) is the inverse of the matrix ( ¢ b).
—q 'c a c d

The algebra B, has the following *-Hopf algebra structure:
A(a b>_<a®1 b®1><1®a 1®b>
c d c®1 d®1/\1®c 1®d)’
<a b) (1 0)
€ = 5
c d 0 1
<a* c*)_s<a b)_( d —qb>
b* dx) “\c¢ d —q7 ¢ a )

The *-Hopf algebra B, corresponds to the compact quantum group SU,(2)
[W] [MMNNU].

Let &, =End¢(B,) the quantum double. The topological *-Hopf algebra &,
represents the double group of SU,(2) [PW, Sect. 4]. The quantum Lorentz group
SL,(2,€) was introduced by Podles and Woronowicz as a *-Hopf subalgebra of
&,. We define a *-Hopf subalgebra C, of the topological dual B}, and then a

-subalgebra A, of B,®C,. We show A is a Hopf subalgebra of E,= B,,®B’
One sees later the * Hopf algebra A, corresponds to the quantum Lorentz group
SL,(2, D).

Begin with two algebra maps B, - C,

a b) (q”z 0
p: - PP N
¢ a)"\o g
(oo )
T - )
c d 0 —1

IS
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We think p and 7 are group-like elements on B;. The actions 7 —, <7 on B, (see
above 3.4) are the algebra automorphism

a b) ( —a - b)
H b
c d —c —-d
hence the group-like t is central in B;. We have

p if ¢g>0,

4.3
wp if g<0 #3)

=1, p*={

in the *-algebra B. Here, and in the following, we note that the involution of B,
x—S(x)*, preserves a and d, and exchanges b and c.
For any e, there is an opposite algebra map n,: B, — M ,(T)

12 00
a|—><q _01/2>, b|—>< ),
0 ¢ 0 0
-1/2
cn—><0 e>, d»—»(q 0 )
0 0 0 q'?

. (x)=<P(x) n(x) > <eB
¢ 0 plx)) !

with n,eB;. The fact that =, is an opposite representation means we have in the
topological Hopf algebra B,

An)=p~'@n,+n,®p, e&(n,)=0.

In other words, n, is a (p~ !, p)-primitive.

Let us express

4.4 Lemma. In the topological *-algebra B, we have
(1) p*p=pp*,
(2) nep = qpn.,
() np*=qp*n,,

@) nine—nt = (ot = T

Proof. (1) follows from (4.3), and (3) from (2) plus (4.3). To prove (2) and (4), note
that pnp~'is a(p~!, p)-primitive and [n*,n,] isa (p~'(p~!)*, pp*)-primitive. (The
latter follows from the fact that p~!®n, and n*®p* commute. This fact is a
consequence of (3).) In general, if x, y are two (g, y)-primitives in B] with group-likes
g,7, then a linear relation y = Ax (1eC) will hold if it does on the generators

. . . . b
a, b, c,d. The linear relation (2) becomes at the generating matrix < ¢ d)’
c

(0 o) Sa)=eld ) o)
e 0f\o ¢ 2)"No 42 )\e o)

which is true. Similarly, one can check (4). [J
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Let n=n, for e = q"*(1 — q~?) so that we have
[n*,n]=(1—q" ) (pp* —p~(p™ ).

4.5 Definition. Let C, be the *-subalgebra of B, generated by p, p~ !, and n.
It is a *-Hopf subalgebra. It will be natural to consider C, as a *-Hopf sub-
algebra of B**? (but not of B;), since we started with anti-representation r..
We have the following inclusions of *-algebras:
B,®C,=B,®B,=B,®B,=§,.

4.6 Definition. Let A, be the *-subalgebra of B,® C, generated by the elements
a, f,7,0 defined as follows:

o B a b\(p n
(? 5>=<c d><0 p“>'
Note that we have
(R (R
pro o) \m* (p"*/\=q7'c¢ a )

4.7 Proposition. The following 17 relations hold among a, B,7, 6:

(1) Bu=qop, (2) ya=gqay, (3) SB=qBs, (4) oy =qyd,
(5) yB=PBy, (6) da—qpy=1, (7) ad—q 'Py=1,
(8) a*6=20a*, (9) B*y=yp* (10) y*y=yy*
(11) a*y = qya*, (12) y*3=q" 'oy*,
(13) a*o = aa* + (g~ 2 — l)yy*, (14) 6*6 =66* + (1 — g~ Hyy*
(15) a*B=q'Ba* +q~ (g~ * = )oy*,
(16) p*o = qop* + q(1 — g~ ?)ya*,
(17) B*B=BB* + (1 — q~ *)(aa* — 86*) — (1 — g~ ?)*yy*.
Proof. By using the previous Lemma 4.4, one checks that a,b,c,d and p,n,0,p~

satisfy the 17 relations. Since they commute “doubly,” the claim will follow from
[PW, Proposition 1.1, p. 389]. [

4.8 Proposition. We have

i(; 5)=Car 5oy tan) 7 5)=(o 1)
y 5 y®1 s@1/\1®y 1®s) \y 6/ \o 1)

where A, & the coalgebra structures of &,.

1

Proof. Define the following coaction on a 2-dimensional vector space Cu® Cv
u—Uo+0®y, v—upB+ov®0.

The statement means that this satisfies the comodule condition for &,. In fact, this
is precisely the &,-comodule corresponding to the 2-dimensional crossed
B,-bimodule V, (5.2). O
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If S denotes the antipode of &,, we have

G -G - )

It follows that A, is a *-Hopf subalgebra of &,. R
Let = 1®t which is a central group-like element of order 2 in B,® B, = &,.
The following theorem is the main result of the paper.

4.9 Theorem. (a) The *-algebra A, is defined by generators a,f,y,é and the 17
relations of 4.7.

(b) We have A,+ A T=A,® AT

(c) A,® AT coincides with the largest subcoalgebra of the quantum double
é,=End¢(B,).

In the next section, the statement will be reduced to some representation-
theoretic facts.

(a) means the *-Hopf algebra A, corresponds to the quantum Lorentz group
SL,(2, €). One will see (c) answers the conjecture of Podles and Woronowicz [PW,
6.4].

5. Crossed B -Bimodules

We recall the embedding of B, into a Hopf subalgebra of U;, where U, = U,(s1(2))
[T2], and express the crossed axiom in the form of 3.4 explicitly.
Let U, be the C-algebra defined by generators K, K™ ', E, F and the relations

KK '=1=K 'K,
KEK™'=g¢’E, KFK™'=gq"7F,
K—K™1

[E,F]z—_—_

We give it the following Hopf algebra structure:
AK)=K®K, &K)=1, SK)=K™!,
AE)=1®QE+EQ®K, &E)=0, S(E)=—-EK™,
AF)=K '®F+F®]1, &F)=0, S(F)=—KF.

We can embed the Hopf algebra B, (4.2) into U, as follows. Let 1:U,— M,(C) be
the basic representation

k(o ) 2o o) (0 o)
0 ¢! 0 0 10

and write
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i b
‘j 7 induces an injective Hopf algebra

with d,E,E,JeU°. Then, (a b)l—><
1 c d é

map B, - U;, and more precisely, we have U; = B,@® B,y, where y:B,—~C the
algebra map K— —1, E, F—0 (see [T2, 3.11]).
The actions —, — (above 3.4) have the following descriptions:

-1
k= 0)- (o ek (€ a)==(% %)
c d qgc q c d q ¢ qd
(0 o) o (0= %)
c d 0 ¢ c d 00
F_»(a b)=<b 0>, (a b>‘—F=<0 0>‘
c d d 0 ¢ d a b

It follows from 3.5 Remark that the crossed B,-bimodules admit the following
description.

IS

5.1 Proposition. Let V be a right B-bimodule. If we consider V as a left U,- and a
right B,-module, then the crossed axiom is equivalent to the following 12 commutation
relations.

(1) K(va)=(Kv)a, (2) K(vb)=q *(Kv)b,
(3) K(vc) = q*(Kv)e, (4) K(vd) = (Kv)d,
(5) E(va) = q(Ev)a — q*(Kv)e, (6) E(vb)=q (Ev)b + va — (Kv)d,
(7) E(vc) = q(Ev)e, (8) E(vd)=q~ (Ev)d + vc,
(9) F(va)= q(Fv)a+ q(K~'v)b, (10) F(vb)=g(Fv)b,
(11) Floe)=q '(Fv)e +q YK 'v)d —q 'va, (12) F(vd)=q '(Fv)d —q~ 'vb,
where veV.

5.2 Example. Let V, = Cu + Cv a 2-dimensional vector space. Give the following
B,-bimodule structure on V.

comodule {ul—»u@d +1®ec,

structure v—UR®b+0v®d,

xeB

q°

module {ux = p(x)u,

structure  (vx = n(x)u + p~*(x)v,

The corresponding actions of K, E, F and a, b, c,d are as follows:
Ku=qu, Kv=q 'v, Eu=0, Ev=u, Fu=v, Fv=0,
v, ub=0, vb=0,

1/2

ua=q'"%u, va=q '?

uc=0, vc=q"*(1—q du, ud=q Y?u, vd=q'?v.

One verifies the 12 commutation relations hold. Hence V| is a crossed B,-bimodule.
(Note that the choice e = q'/*(1 — g~ 2) is compulsory.)
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All finite dimensional U,-modules are completely reducible, and for each integer
k 20, there are two simple U,-modules of dimension k + 1. One is a comodule
for B, and the other for B,y. Let V, be the simple B,-comodule of dimension k + 1.
It has the highest weight ¢* and the lowest weight ¢ ~*. Every B,-comodule is the
direct sum of a set of V, keIN [T2, Sects. 2, 3].
Let BJP the algebra opposite of B, with the same coalgebra structure. It is
* *
identified with B, -.. The maps <a b)r—»(“ B ), <a b )induce Hopf algebra
¢ d y 0 y*  o*
maps

B,—» A, and Br— A4,
Let @ be the composite

mult

B,®B—->A4,®4,— 4

q°

which is a coalgebra map.

Let V¥ be the simple BjP-comodule of dimension k + 1. Then V, ® V', (k, )eIN?
give a complete set of representatives for the isomorphism classes of all simple
comodules for B, ® BF.

Every comodule for B,® B has an A4,-comodule structure through @, hence
the structure of a crossed B,-bimodule.

5.3 Definition. For integers k,/2>0, let V, , denote the 4,-comodule V,® V. It is
also considered as a crossed B,-bimodule.

An explicit description of the actions of K, E,F and a,b,c,d on V, , will be
given in the next section (6.4). One sees 5.2 Example gives a description of V| ,.

When V is a crossed B,-bimodule, let ¥~ denote the B,-comodule ¥ on which
a,b,c,d act by the operatlons of —a, —b, —c, —d. One verlf ies the 12 commutation
relations for V(7). The corresponding comodule structure for the quantum double
&,=End¢(B,) is obtained through the multiplication of 7.

The following two theorems will be proved in the next two sections.

5.4 Theorem. V, , and V() give a complete set of representatives for the iso-
morphism classes of all szmple finite dimensional crossed B,-bimodules.

5.5 Theorem. All finite dimensional crossed B -bimodules are completely reducible.

We deduce 4.9 Theorem from these results. Let Zq be the *-algebra defined by
generators a, 8,y,0 and the 17 relations of 4.7. It has a *-Hopf algebra structure
given by 4.8, and it corresponds to the quantum Lorentz group SL,(2,C). There
is a canonical surjective *-Hopf algebra map A,— A4,, and the coalgebra map @
factors as

®:B,® B’ > A, A,.

Let E, be the largest subcoalgebra of &, = End¢(B,). 5.5 Theorem means E, is
cosemisimple, and 5.4 Theorem means it is the direct sum of the coefficient spaces
of simple comodules V, , and V), k,IeN. In other words, the map

@+ 07:(B,® BY)®(B,® BF) > A, + A,ic &,

is injective and has image E,. Since 4, + 4,7 is contained in E,, it follows that
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E,=A,+ A;T=A,® A,7 and that @ is an isomorphism. This implies the projection
A,— A, is an isomorphism, and the statements (a), (b), (c) of 4.9 follow.

As a corollary of 5.4 and 5.5, it follows that every locally finite crossed
B,-bimodule (or a locally finite representation of SL,(2,C) in the terminology of
[PW]) V is isomorphic to the direct sum ¥, @ V$ for some uniquely determined
(up to isomorphisms) A,-comodules V,, V,. A,-comodules are smooth representa-
tions of SL (2, €) in the terminology of [PW]. Thus our results give an affirmative
answer to the Cenjecture 6.4 of [PW].

q

6. Finite Dimensional Simple Crossed B -Bimodules

We prove 5.4 Theorem. We begin with describing the bimodule structure of V, .

The bimodule structure of V, = Cu@® Cv is described in 5.2. We can identify
V, as the subspace of V,®---®V, (k copies spanned by F'v,. 0<i<k, with
v, =u® ---®u. It is a sub-bimodule, and the following description follows easily
by induction using the 12 commutation relations of 5.1,

(Fiv)a=g¥»=1Fiv,, (Fioh=0,
(Fioe =g~ %91 —q [Tk + 1 —i]F "o, (Fiogd =g “*Fl,,  (6.1)

for 0 <i < k. Here and in the following, we use the notation
L _d—q"
[[(1= —y
q9—q
The expression (F'v,)c should be interpreted to mean 0 when i =0, since [0] =0
(though F ~ v, has no meaning). Such a convention will be used in the following.
The description of V¥(=V,, ;) involves the signature of . Let  be the signature
of g in the rest of the paper. By definition, the 4,-comodule V¥ has a base u*, v*

such that the coaction is given by
V¥ v* @ o* + u* ®9*, urr* ® f* + u* ® o*.

By using the expression below 4.6, one sees the actions of K, E, F and a,b,c,d on
V¥ are described as follows.

Ku* =qu*, Kv*=q 'v* Eu*=0, Ev*= —qu*,

¥, Fu*=0,

Fu*=—q~
u*a=nq Pu*, v*a=nq'?v*, u*b=nq'*(1—q *, v*h=0,
u*c=0, v*¢=0, u*d=nqg"*u*, v*d=nq Y** 6.2)
We can identify V} as the span of E'v_ p0ZiZlin VE®---®@VF (I copies),
wherev_; = v* ® --- ® v*. Similarly as before, one verifies the following expressions:
(E'v_j)a=n'q"? " Ely_,,
(E'v_)b=—n'q" "7 (1 —q )11+ 1 —i]E 0,
(Ev_)c=0, (Ev_)d=n'q ¥I*Ey_, (6.3)
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It follows from (6.1) and (6.3) that the crossed bimodule V,, has a base
vi,;=Fu®E/v_,,0<i<k 0<j<1 and admits the following description of the
actions:

b, =g e ID= iy
b b= — g I g G4 1 =T, .
v e =n'q TP — g [k + 1 ~ilv,_,

v d=n'q” CTIDT(,  —q(1 —q LIk +1 =0+ 1 =0, ),
.Kv k 1+2(j— l)vzp

Ev.. PRl 1] 2 N

LJ

Fo, =v,,+ @@ 0 —j+ 1o,y (6.4)

Here, we use the convention that v; ; means O unless 0< i<k or 0<j </
The description (6.4) tells that the following modified crossed bimodules are
more natural objects to study.

6.5 Definition. For integers k,1= 0, let 17,(‘1 mean V, , if g>0 or | even, and V|7
otherwise.

The crossed blmodule Vk , has an expression which is obtained from (6.4) b
omitting the factor 5.

6.6 Corollary. If we put i=v,, inV, «.1» then we have
5a=q—(k+l)/25’ l~)bl+1=0=l7ck+1
and db'c’, 0 <i<1,0<j <k, form a base for 17,",. We have
K(Ub' ) l k+2(i— l)vblc]
E@bich) = —g? - ki+i=i — g~ [+ 1 —i]ob' " c?

q—(k/2)+(3/2)l—3i+j o
+——1—_2—ﬁblcj+1,
—q
E(ﬁbicj)=q1+((k~l)/2)+i—j(] _q_z)[j][k"' 1 _j]ﬁbicj-l
q—l—(l/2)+(3/2)k—3j+i . .
- e
-4

6.7 Proposition. The crossed B,-bimodules V, , and V\ ) are simple and pairwise
non-isomorphic.

Proof. We show V, .1 i1s simple. The base element v, ; has weight k — 1+ 2(j — i)

k+1 . . -
relative to K and weight T+ — i —j relative to a. The pairs of weights are distinct

for distinct (i,j). Hence a subbimodule of V .. 18 spanned by a set of v, ;. In particular,
it contains some v, ; if it is non-zero. Applymg b and c, one sees 1t contains v, ,.
It is easy to see Vk . is generated by v, , over U,. This implies V, , (and VL 7 also)
is simple. To see they are mutually non- 1somorphlc note that Vk , has highest
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. . . . L k=1
weight k + [ relative to K, and the corresponding weight vector has weight =

k—1 .
relative to a. Since the pair (k + l,—2—) determines (k, ]), it follows that V, , and

V“’ for all k, [ are mutually non-isomorphic. []

For a crossed B,-bimodule V and 4,ueC, let V,  be the subspace of veV
such that Kv = Av and va = pv. It follows from the commutatlon relations of b, ¢
with K, a (4.2 and 5.1), that we have

Vl,ub < Vq‘zl‘qu’ V u€ < qul qu’
6.8 Lemma. If V is finite dimensional, V, , = 0.

Proof We may assume 4 # 0. Since Vi 0b cV,20bis mlpotent onV, ,.Similarly,
¢ is nilpotent, too. Since 1 =ad — q Ybe, we have v= —q ‘vbc for ve V.o This
implies v=0, [

6.9 Lemma. Let veV, ,. We have

(1) ve—(1 =g~ A UEVEV 3 -1,

(2) vb+q(1 —q~)AuFveV ;o
Proof. (1) Let w be the element of the left-hand side. Since

(Ev)a=q~ *E(va)+ q~ 'K(vc) = ¢~ *uEv + qAvc,
we have
wa = quvc — (1 —q~ A" u(q™ *uEv + glvc)
=q e —q (1 —q HAT WP Ev=q " uw.

Since vc and Ev have weight g?4 relative to K, so is w. (2) is similar. []

Let V be a finite dimensional simple crossed B,-bimodule. We show V is
isomorphic to V, , or Vﬁ(]’ for some natural numbers k, I.

There are A, ueC — {0} such that V.. # 0, since the actions of K and a commute
with each other. We can choose 4, so that V-, =0 for all veC and integers
s > 0. Take a non-zero element vin V, ,. Since V 2; -1, =0=V 5, 1, it follows
from 6.9 that

b= —q(1 —q HAuFv and vc=(1—q 2" 'uEv. (6.10)

Note that vb'c/isin V o0y i+ 5,
6.11 Lemma. vb'cid = u~'q " J(wbic! + g~ tob* T eIt
Proof. Apply 1=ad —q 'bc to vbic’. [
6.12 Lemma. We have

(1) E@b’)=(p—p~"Ag> D) [iob' ™" + Au~ g7 (1 — g7 %) " tob'e

) Foc)y=—q~ (u—=A" w1 "N [jJoe! = =271 u™ g™ 731 —q7 %)~ Tobc?.
Proof. (1) If i =0, this is (6.10). (We use the convention that [0]Jvb~! means 0).

w

Hence they are linearly independent if non-zero.
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We have by (6) of 5.1,
E(vb’) = q~ Y(E(vb'~))b + vb'~'a — K(vb'~1d),
where vb' " la=g' " luvb' ! and vb' " ld = pu " lq' “{vb ! + g~ 'vbc) by 6.11. Hence
Kb~ 'd)=pu~'q**~9)(wb' "' 4+ q~'vb'c). Using this, the claim follows by
induction. (2) is similar. []
There are only finitely many pairs of integers (i,j) such that vb'c’ # 0, since
they are linearly independent. Take the largest integers k,! =0 such that vc* 0

and vb' #0. It follows from (6.10) and (7) (respectively (10)) of 5.1 that the vector
E’v (respectively F'v) is proportional to vc’ (respectively vb’). Hence,

Efv#0, E*'v=0; Fv#£0, F''lp=0.
It follows from [APW, 1.11 Lemma] that
A=q""%
Letting i =1+ 1 in (1) of 6.12, we conclude that

k-1

H=q7*" so u=+gq

“2=2‘q_ —(k+l)/2'

Assume we have u=q~**92,

6.13 Proposition. The correspondence pbich—vb'c! gives an isomorphism of
B,-bimodules V= V.

Proof. Call the above correspondence ¢:V, ,— V. This map commutes with the
actions of K and a, since ¥ and v have the same welghts relative to K and a.
Obviously, it commutes with the actions of b,c. By using 6.12 Lemma and the
fact that
E(vbic’) = g)(E(vb)))c, F(vbicd) = g'(F(vch))b',

one sees easily that the last two identities of 6.6 Corollary hold with ¥ replaced
by v. Thus, ¢ commutes with a,b,c and K, E, F. It commutes with d, too, since
6.11 Lemma (with =g~ %*"2) holds for &. It follows that ¢ is a homomorphism
of B,-bimodules. Since both Vk ,and V are simple crossed bimodules, one concludes
that ¢ is an isomorphism. []

In case u= —q~**Y one gets an isomorphism V{7 = V. This concludes the
proof of 5.4 Theorem.

7. Complete Reducibility

We prove 5.5 Theorem.

A Hopf algebra H over a general field k is called co-semisimple if all (right or
left) H-comodules are completely reducible [S, XIV]. The following criterion seems
fairly well-known among specialists, but it is difficult to find an explicit literature.

7.1 Proposition. The following are equivalent.
(1) The Hopf algebra H is cosemisimple.
(2) All exact sequences of H-comodules of the form

0-W-oV-ok-0
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split, where k denotes the trivial 1-dimensional comodule.
(3) (2) is true for all simple comodules W.

Proof. (3)=(2) is an easy exercise. To prove (2) = (1), let V be a comodule for H
and W a subcomodule of V. We show W is a direct summand of V. We may
assume V is finite dimensional. Then Hom,(V, W) has a comodule structure
isomorphic to W ® V'. The restriction induces a surjective comodule map

Hom,(V, W)—- Hom, (W, W)—-0.

Let Vbe the inverse image of kI which is a subcomodule of Hom,(W, W). We have
a surjectlve comodule map V — k —0 which splits by 2). If 1>y, k> V is a section,
Y is a comodule map V —» W such that y|W =1. [

We show every exact sequence of crossed B,-bimodules
0- I~/k —V-C-0

splits. The same method applies to Vk ., too. It will follow from 7.1 that the largest
subcoalgebra E, of the quantum double &,=End¢(B,) is cosemisimple, yielding

5.5 Theorem.
The above exact sequence splits as B,-comodules, since B, is cosemisimple. Let
Vk ,® €{ be the decomposition as B -comodules We have K{=( E{=0=F(

and there are elements w,, w,, w., w, in V,", such that
Ca={+w, (b=w, lc=w, {d={+w,
7.2 Lemma. We have

(1) Kw,=w,, (2) Kwy=q"2w,, (3) Kw,=q*w,, (4) Kw,=w,,
(5) Ew,= —q*w,, (6) Ew,=w,—wy, (7) Ew,=0, (8) Ew,=w,,
(9 Fw,=qw,, (10) Fw,=0, (11) Fw.=q '(wy—w,), (12) Fw,=—q " 'w,
(13) wya = q(w, +w,b), (14) wa=q(w,+ w,),
(15) wyd =q~*(wy, + wgb), (16) wd=q *(w.+ wy),
(17) wyc =w.b,
(18) w, +waa=qwye, (19) wy+wd=q 'wyc.
Proof. The first 12 relations are consequences of 5.1 applied to v = {. The remaining
7 relations follow from the commutation relations of 4.2. [
7.3 Corollary. w, =0 if and only if w,=0.
Proof. If w,=0, w,=w, by (6), and w, = —q*w, by (5), (8). Hence w, =0, since gq
is real. Similarly, w,=0if w,=0. [

We will find all non-trivial pairs of elements w,, w, in 17,(,, satisfying conditions
(2), 3), (7), (10), and (17).
The Clebsch—Gordan rule [T2, Proposition 2.4] tells that

r/k,l =V, .® Vit1-2@ @ Vlk—l]

as B,-comodules or U,modules. This means the U,-module ¥, has a highest
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weight vector of weight 2 (or a lowest weight vector of weight —2) if and only if
k=Ilmod2 and |k—I|Z2=Zk+1.

This condition is satisfied if and only if (k, l) is of the form (r + 1,r + 1), (r,r + 2), or
(r + 2,r) for some r = 0. In any case, we have
r= w -1

2

of weight 2 (respectively a lowest

r—il—i

r
We have a highest weight vector Y x;v
i=0

weight vector zr: YiVy_;,—; of weight —2), where
i=0
xi=(=q)(—q'"?)(—q
[rllr—1]--r—G-D]k—r+1k—r+2]---[k—r+i],
yi=(=q9(=¢""% (=g ")
Irlr—11--[r—G-=DI0—r+ 100 —r+2]---[I—r+1i].

I-Z(i—l))

Let

r

r
W =4 Z Xilp _j1—pp Wp=U Z YiVk—ir—ir
i=0 i=0

We have by (6.4),
wb=—qMg—q™ )Y x[i+1][I— iJo, i
WbC=l¢(q_q_1)Z,Vi[i+ 1][k_i]vk—i—1,r—i'

Case (k,)=(r + 1,r + 1). Condition w,c =w.b implies —gix;=py;, 0<i<r.
Since x; = y; in this case, this is equivalent to y = —qgA.

Case(k,l) = (r,r + 2) or (r + 2,r). In this case, one of w,c and w_b has length r, and
the other r + 1. Hence the condition w,c = w.b will imply both are zero. If r > 0,
it follows that w, =w,=0. If r =0, we have

A=0 if k<l
u=0 if I<k.
Summarizing the above, we get the following.
7.4 Proposition. The following list gives all non-trivial pairs of elements wy,w, in
V.. satisfying conditions (2), (3), (7), (10), and (17) of 7.2.
(@ k=l=r+1 withr=0 and
Wy = —qAi Z Zlp iy We=4 Z Zil i+ 1-io
i=0 i=0

where

zi=(=q" (=g (=" 2N =11 [r — (= DINI2] - [ + 1],



578 M. Takeuchi

(b) k=0, =2, w,=
€ k=2,1=0,w,

where LeC.

To show that the extension V = K,G—)(EC is trivial, first we reduce to the case
w, =w,=0.By 7.3and 7.4, it is enough to consider the case (a) of 7.4. In this case, let
r+1

o= Z Sihyt1—ip+1-io
i=0

Avg o, W, =0,
0 j‘009

where
si=(—q"" =g (=g )+ 100r] - [r + 1 = (= DI[1I[2] - [1].
Then Kw = w, Ew =0 = Fw. Since we have
zi=[r+ 117 's,[r+ 1 —i][i + 1],
it follows from (6.4) that

C()b= _q(l _q—z)[,.+ 1] Z Zivr+1—i.r—i’

i=0
wc=(1—-q"?)[r+1] Z 20 —ips1-i
i=0
Hence, if we use
U={-M—-¢g ) '[r+1]1"'0
instead of {, then we have {'b=0="{c.

We may assume w, =w,=0. We have w, =w, by (6) or (11) of 7.2. Call this
w. Then Kw=w by (1), Ew=Fw=0 by (5), (9), wb=wc =0 by (13), (14), and
wa =wd = —w by (18), (19). (We refer to conditions of 7.2). If we put

[=C+3w,

it follows that we have V = I7k ,®CE, where € is a subbimodule isomorphic to
the trivial bimodule €. This shows that every extension of € by ¥, , is trivial. The
same argument applies to Vk ., too. This will finish the proof of 5.5 Theorem.

8. Appendix. The Braiding Structure

In this appendix, we discuss the braiding structure on 4,. Mostly, we work over

a general field k.
The category of (right) crossed bimodules for a bialgebra H is pre-braided
[Y, Theorem 5.2]. This means if X, Y are crossed bimodules, then the map

Sy X®Y->YRX,x®y—Y ¥, ®xXy,,, 8.1)
is a bimodule map satisfying the coherence condition
Sxor.z=(Sxy®Iy)(Ix®syz),
Sxyez=Uy®sx z)(Sxy®Iz).
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The map sy , is an isomorphism for all crossed bimodules X, Y if H has a twisted
antipode, i.c., if H°® or H*? is a Hopf algebra [Y, Theorem 7.2]. Then the category
of crossed bimodules is a braided category. This is the case if H has a bijective anti-
pode.

On the other hand, the concept of a braided bialgebra was introduced by Larson—
Towber [LT] and independently by Hayashi [H]. Let 4 be a bialgebra. By a
braiding on A, we mean a unit in the algebra (4 ® A) which we identify with a
bilinear map

GOARA—K
satisfying the following conditions:

2Ly Yay XY@ = L X2 Yy YayXay
{xy,z) =Z<x,z(1)><y,z(2)>,
(X%, y2) = Y X0 YO X1 2
(1) =<1,x)=¢(x) (8.2)
for all x,y,z in A.

If A is a braided bialgebra, then Com ™4, the category of (right) A-comodules,
is braided. If V, W are A-comodules, then the braiding is given by

Sy wVOWSWRV,0@w—Y (), W, >We @V, (8.3)

Conversely, if the category Com™“ is braided, there is a unique braiding on A
such that the braiding of Com~“ is given by (8.3) [LT, Proposition 2.13]. In other
words, there is a 1-1 correspondence between braidings on A and braidings on
Com~™4,

Let H be a Hopf algebra with bijective antipode, and let 4 be a subbialgebra
of & = End,(H), the quantum double. The bialgebra A has the following braiding

(%, y) =L{my(x), m(¥)), X, y€A, (84)

where we use the topological Hopf algebra maps of (2.5) and the canonical pairing
between H' and H. Note that Com ™ is identified with a sub-monodial category
of the category of crossed H-bimodules.

8.5 Proposition. The braiding on Com™4 given by (8.4) and (8.3) coincides with the
one induced from the braiding structure of the category of crossed H-bimodules.

Proof. Let V, W be A-comodules. Note that

VY 060, ®75(v,), vEV,
(respectively
W) Wi, ® (W), we W)

gives the H-module structure on V (respectively the H-comodule structure on W).
Hence we have

DA (0g)) T (W1) > W) ® 10y = 2 W0y ® VT (W),

veV, weW. This means the braiding s, , (8.3) coincides with the braiding s, ,
(8.1) if X, Y denote the crossed bimodules identified with V, W. [J
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We are in this situation if we take H = B, and A = A,. In this case, the braiding
(8.4) is defined by using the Hopf algebra maps
nI:Aq'—’Bq, nzqu—"Cq

and the canonical pairing between C, and B,. Since 7, and 7, are *-algebra maps,
too, it follows from the definition of * on B; (above 4.1) that we have

<x*,J’> = <x’ S(y)* >, X, yeAq.

Since {x,y) = {S8(x), S(y)> [LT, Proposition 2.9] and S(y)* = S~ !(y*), it follows
that

(X% %) =(S0x),y) =<x,87'(y)), x,yed,.
In a word, 4, is a braided *-Hopf algebra.
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