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Abstract. If / is a rational map of the Riemann sphere, define the transfer operator

&φ(z) = £ g(Z)Φ(Z).
Z:fZ = z

Let also $ be the Banach space of functions for which the second derivatives are
measures. If ge& and g satisfies a simple integrability condition (implying that g
vanishes at critical points and multiple poles of /) then if is a bounded linear
operator on @. The essential spectral radius of $£ can be estimated and, under
suitable conditions, proved to be strictly less than the spectral radius. Similar
estimates for more general operators 5£ are also obtained.

1. Assumptions and Generalities

Let X be a bounded open subset of C. If the second derivatives in the sense of
distributions of φ:<C\—><E are bounded measures, we write (using a "functional"
notation for measures):

Varφ = §dxdy\d2φ\,
c

where \d2φ\ denotes the norm of the 2 x 2 matrix of second derivatives (i.e. the
norm bilinear of forms on <C2, where <C2 has the usual Hubert norm). In particular

Var φ ̂  -

4

We define

$ = {φ Var φ < oo and φ vanishes on
Then & is a Banach space with respect to the norm Var (which has properties
similar to the total variation for functions on R, particularly that it behaves well

B2φ

δx2

d2φ

dxdy

d2φ

dy2
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under conformal changes of coordinates, as we shall see). We may write (using
again a functional notation)

— φ(χ-
ox
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where μ is a positive measure on R, independent of y and with total mass

^ V a r φ .

Similarly,

with

— φ{x + iy
dy

I v || ^ Var φ.

. d2φ
Note that μ is nonatomic, otherwise — - would contain δ' singularities and could

dx
not be a measure. Similarly v is nonatomic. As a consequence, φ(x + iy) is
continuous in x, uniformly in y, and continuous in y, uniformly in x. Therefore
φ:x + iy\-^φ(x + iy) is continuous1 or more precisely φ is, in the sense of distri-
butions, equal to a continuous function. We have

We also have

\dxdy\dφ\2= \άxdy(
dφ dφ

Ty

d2φ

For each ω in some countable index set Ω, the following are supposed to be
given:

(i) an open set Vω c X,

1 This is a special case of the theorem of Fuglede-Schwartz [3]. I am indebted to F. Treves for
this reference
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(ii) a map φω:Vω\-+X such that Vωϊ-+φωVω is a conformal homeomorphism,
(iii) a continuous function φω vanishing on C\Kω such that φω is the uniform

limit of functions φωi with support in Vω satisfying | φ ω ι | ^ | φ j . 2

Furthermore, we assume that

L = < oo.

(φω is locally holomorphic or antiholomorphic, φ'ω and φ"ω denote its first and
second derivatives with respect to z or z; note that replacing φω by φ^φ'1 and
Φω by φ'1 we do not change L; note also that φωe&.)

We introduce now Jί and */#' by

Note that Ji and ^ ' are formally adjoint to each other.

1.1. Proposition. M is a bounded operator on &.

We can approximate φω by φωi with compact support in Vω such that Var φωi

is bounded uniformly in ί, and

jdxdy Φ"

We shall use this to estimate \\Jf\\ after we have established some general
inequalities.

Suppose that φ is continuous with compact support in <C, φ a conformal
homeomorphism on a neighborhood of supp φ, and Var Φ < oo. We have

where φ'9 φ" are the first and second derivatives of φ with respect to z or z.
Therefore

[ //' 2-11/2

\dxdy ψ—t

-jdxdy
2 \ l / 2

2 The interesting case is that in which the compact support of φω is contained in Vω\ the φωi

are then not needed, or one can take φωi = φ ω
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We shall apply this to the case when ψ = φω and φ = φωi. We have then

2fdxdy\dφ\ \d(Φ°ψ)\

\\φ\\o ΊΊ
Var<p || Φ |

2\l/2
3Λ7 Λfj A V

-Varφ + - dxdy φ—

Taking the limit where φ^>φω and summing over ω we get

which concludes the proof of Proposition 1.1.

1.2. Proposition. ^ is a Banach algebra with respect to the norm § Var.

This is a corollary of the above proof since

§ Var (φ x φ2) ^ f Var φ t f Var φ 2

as a special case of (1.1).

7.3. Remark. If we assume that

CO i

(1.1)

(1.2)

we have complete symmetry between M and «y#r, and in particular Jί' is a bounded
operator on J*. The assumption (1.2) is not needed, however, for what follows.

2. Main Results

Associated with Jί there is an operator \M\ acting on the Banach space of bounded
continuous functions Ch->(C with the uniform norm:

The norm of \M\ is

and the spectral radius oi\Ji\ will be denoted by

R= lim
m~* oo

Similarly we have an operator | Λ Γ | such that
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and its spectral radius will be denoted by

R'= lim ( | i m m U o ) 1 / m = lim (\\\Jί'\ml llo)1/m

We have R, Rf g Σ | |<pω | |0 ύK/4, so that \J/\,\J^'\ are bounded operators even
if (1.2) is not satisfied.

2.1. Theorem.
(a) The spectral radius of'Jί, acting on ^ , is ?g max (#,#')•

(b) IfR' < R, the essential spectral radius of Jί is ^ (RR')1/2.

2.2. Theorem. Ifφω ^ 0 for all ω, then the spectral radius of Jί is ^ R. If furthermore

K < R, then R is an eigenvalue of Jί, and there is a corresponding eigenfunction

Suppose now that the φω are holomorphic. Let F(ωu..., ωm) be the set of fixed
points of ι/'ωi

o ot/'ωm, and define

Cm= Σ Σ φβJχ) φ«m-ι(φamχ)-φa,ι(Φωi-'Φ<om

χ)
ωi •• ωm xeF(ωι,...,ωm)

2.3. Conjecture. The power series

C ί z Γ ^ e x p - Σ -Cm
m = i m

converges for \z\ <(RR')~112 and its zero are precisely the inverses λ~ι of the
eigenvalues λ of Jί with the same multiplicities.

The above statements are related to the work of Denker, Urbaήski [2] and
Przytycki [9]. This previous work was concerned with Holder continuous
functions, and used Ljubich's ideas on almost periodic operators [5], which only
give information on eigenvalues λ with modulus \λ\ equal to the spectral radius.
The present approach, using the space J*, gives a more detailed description of the
spectrum of the transfer operator. It presents one-dimensional complex analogues
of the results and conjectures in [11] for the one-dimensional real case. The zeta
function for piecewise monotone maps in one dimension is analyzed by Baladi
and Keller [1]. This paper contains references to the earlier work of Hofbauer,
Keller and others on the transfer operator in one dimension. For more general
background on dynamical zeta functions see in particular Haydn [4], Pollicott
[7, 8], Ruelle [10] and references given there.

We prove Theorem 2.1 (a) in Sect. 3, Theorem 2.1 (b) in Sect. 4, and Theorem 2.2
in Sect. 5, Section 6 is dedicated to an important extension to multiple-valued
functions.

3. The Spectral Radius of . //

In the estimates of this section, we write J instead of \dxdy, and from now on the
limit φωi -• φω is understood but not explicitly performed. We have

JίmΦ{z)= £ φ
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Therefore

D, (3.1)
k<{ t k

where

= Σ S\Φω

ωi" ωm

~'(<Pωι

OΨω2

o'~OΨωm)d(Φoψωι

o'~oψω)\,

= Σ

D= Σ flφω^ ί φ ω i 0 ^ 0 - - - 0 ^ ) - ^ * 0 ^ 0 - - - 0 ^ ) ! .

To estimate the terms in (3.1) we shall use the Schwartz inequality and changes
of variables of integration. (The basic fact is that if we integrate a product of two
derivatives and make a conformal change of variable, the factors in the area element
cancel the factors coming from the derivatives.) With these remarks one can handle
the d and d2 occurring in AkίβΛ Ck, D. The reader should not worry too much about
the numerical coefficients in the following estimates since they are unimportant
for our later purposes.

We have

where

wΌl Σ
β>k + l civ - l

ωe

where
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so that

A*< —

and

We have similarly

where

Σ
ωr ω/-i

and therefore

We have

where

Q=J Σ ί
ωk com

£J Σ
fi>k + l * * ω

+i Σ
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where
m

c * * = Σ ί Σ \φωm-(φ<ok.ί°ψωk+2°---°Ψω

.\φ" oώ 0...01Λ \ \(ώ o...oφ VI2

Since

\ώ" oώ o...oφ \Λ(φ o...oφ V | 2 = i rω/ Ψω,+ ι Ψωm\ ./ . Om9a0φ V|2
IT'CO/ Ψω/+ι Yωm\ Ivrαv+i ΨωmJ \ . ,, . 1 n iVrctv rωm/ I >

l lV l/'αv+ 1

O OV'ωJ
we have

t = k + 1 ωk -ω/

\Φ"ω,°Φωϊ\
\\Uψωk) Ψ<ok+i '** Ψω/-ι\ \\Ψωk+ι '** r ω / - i ) I , , , , _ i ,7

I</Ί>,°^w I

vΓfΓ V , , 1 M
' I 2 . <Pω.-Γ ('i')<«k*iOV'ωl< + 2 O ' 'O |/'ω ?- 1)

77;

, T T / 2

9>ωk «*+, «,-, ωk+1 «,-, J J

= Σ nî 'Γ-'iio ^Σcίc-] 2 ] 1 ' 2 ,
/ = fc + 1 ωk

where

"*~ ^ lloj Σ \(Pωe-i'"((Pωk+i°Φωk + 2°""
(ok+ i ωe- 1

n...ni/# 12.1/,/, 0 . . . 0 . / / V|2
ωk+ι

Σ
ic+ 1 " ωe- 1

ι.ι;^Λ 12

so that
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and

[ ftn-k V

L f=k+l

I jy\S-k-l II \l/2

\***\ Ho;

545

>/nί-k-l

We have similarly

o) 1 / 2Ίvar Φ.

Finally, the above bounds for Au, £ Λ Ck9 D show that

lim (Var ΛTΦ/Var Φ) 1 / m g max (K, Λ')
m-^oo

and the spectral radius of Jί is thus ^ max(/*,/?').

4. The Essential Spectral Radius of Jί

Without loss of generality, we take X = {x + ίy:0 < x < 1, 0 < y < 1}. Choosing
an integer N > 0, we write

N N N N

for κ,λe{l,...9N}. A linear operator TN:&\-+& is then defined by the condition
that, for all /c, λ,

TNΦ(x + iy) = ακλ + bκλx + cκλy + dκλxy

on Q(/c, λ) where the coefficients α κ Λ , . . . , dκλ are such that TNΦ(x + ι» = Φ(x + i»
on the 4 corners of Q(/c, A).

4.1.

(a)

(b)

Lemma

First, note

ί

that

A)

d2τNύ

dxdy

Var TNΦ

^ max
Kλ zeQ(κ,λ)

Λ
Φ

i

gδVarΦ,

\Φ(z)-

K J

N + ll

Λ c - 1

{ N
d2Φ

)dxdy

-4

Γ J VΦ(z)|^64VarΦ.

)-Φ(

i ί
Q(κ,Λ)

,ΛΓ ' ' JV J

" (
3 2 Φ

δxδy

i c — 1 A - l

iV N
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so that

We may write

d2TNΦ

δ2TNΦ

dxdy

IIΛ

d2Φ

dxdy

D. Ruelle

(4.1)

ί dx2

"-1 d2τNΦ

λ = l dx2 :±U,

- Σ
Kλ

=Σ

Φ + i— - 2Φ — + i— + Φ + i—
N N \N NJ V N N

where we have defined

(K-D/ΛΓ

= J dxΦ(x + iy)dx + J dxΦ(x
KJN K/N

(K+D/ΛT x (κ-l)/N x

= \ dx \ d2

ξΦ(ξ + iy)dξ+ J dx j
K/N K/N κ/N K/1

Therefore

| g - J \d2

xxΦ(x + iy)\dx,
iV (K-D/ΛΓ

and we may choose yeΓAzlA such that

λ/ΛΓ ( K + D / Λ T

\£ J ^ ί
(A-D/ΛΓ (K-D/ΛT

We also have

1

2

Hence

1 λ/N (K+D/N
^ A f J f
^ " j ^ J

2(λ-D/ΛΓ κ/ΛΓ

1
λ/N K/ΛΓ

- f dη J
2Λ

(4.2)
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Finally, (a) results from (4.1) and (4.2):

547

The proof of (b) will be in several steps, and it will simplify our notation to
assume that the function Φ has its support in

1 1 1 1)
x + iy:— < x < l , — < y < l >.

N~ ~ N N~ N)

Suppose that 0 ^ ξ£ 1/JV, 0 g η ^ 1/JV, and write Q'(κ, λ) = ξ + iη + Q(κ, λ). Let
T'N be defined like 7^, but with Q{κ,λ) replaced by Q{κ,λ\ We shall first show
that, for suitable choice of ξ, η9

max I Φ(z) -T'NΦ{z)\S 4VarΦ.
zeQ'(κ,λ)

If η H Sy^η H—,we have
N N

Φ\ ξ
N

N\ η + y)φ

V N J

) ) V ΛΓ

ί
η+iλ-1)/N

+ if η +
N V N

N

±—y) f

+ ίW .

Taking absolute values, and writing

η + λ/N

^ ί dw\d2

wwΦ\,

we obtain

max Φ[ ξ
1 N

iy

N
y Φ

Λf

λ-\

(4.3)
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, η + λ/N

*Tr ί dv

If we sum over K and λ, this is

'"~N κ 0

and the average over £e[0,1/ΛΓ] gives

1 1

~0 0

We may therefore choose £e[0,1/JV] such that

max

Similarly, we may choose >7e[0,1/ΛΓ] such that

max
N

In general if x + iyeQ'(κ9λ)9 we have

λ-l

λ-l

Φ(χ + iy) - Φlx + i[ η + - Φ ( ξ +

Φ
N

η
N

N

du

+ iy

and therefore, using (4.1),

Φ\x + i[
λ-l

\

l - l

(4.4)

(4.5)

κ-l
- + iy

+ 2 J dudv\d2

uvΦ\.
Q'(κ,λ)

(4.6)

Finally, (4.3) results from (4.4), (4.5), (4.6).
In the above proof, we have chosen ξ such that the expression

J

K 0

H \-iy is less than its average over ξ. If this expression is

N J\
independent of ξ, the choice ξ = 0 is therefore allowed. In fact, it is easily seen
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that this situation prevails when Φ is replaced by T'NΦ. We may then similarly
take η = 0, and (4.3) becomes

£ max \(ΓNΦ)(z)-(TNΓNΦ)(z)\£ΛVax(ΓNΦ)£32VzτΦ. (4.7)
Kλ zeQ(κ,λ)

Using (4.3) and (4.7) we have

Σ max \Φ(z)-TNΦ(z)\
Kλ zeQ(κ,λ)

£ max \Φ(z)-ΓHΦ{z)\
Kλ zeQ'(κ,λ)

Σ max (I T'NΦ(z) - TNΓNΦ(z)\ + | TNΓNΦ(z) - TNΦ(z)\)
Kλ zeQ(κ,λ)

^ 48 Var Φ + X max | TNΦ(z) - TNTNΦ(z)\,
Kλ zeQ(κ,λ)

where

Σ max \TNΦ(z)-TNTNΦ(z)\^Σ max \Φ(z)- ΓNΦ(z)\
Kλ zeQ(κ,λ) Kλ zeQ(κ,λ)

max | Φ(z) - T'NΦ(z)\ ^ 16 VarΦ
Kλ zeQ'(κ,λ)

From this, (b) follows immediately.
For finite / lc f lwe define JίΛ by

ωeΛ

Theorem 2.1 (b) then results from Nussbaum's essential spectral radius formula
[6] 3 and the following estimate.

4.2. Proposition. // R' ^ R, we may choose A = A (m) and N = N(m) such that

lim \\Jίm - Jίm

ΛTN\\ιlm ^
m-* oo

We take A (m) such that

and it will then suffice to prove that

l im || Jίm

A — Λ
m-* oo

We thus have to analyze

k

where the above terms are analogous to those in (3.1): Φ simply has to be replaced

3 Actually, as pointed out by the referee, we do not use the full strength of the Nussbaum
formula; we only need an (easy) upper bound on the essential spectral radius
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by Φ - TNΦ. Using the estimates of Sect. 3 we find immediately

Σ \\\^Ίm~'\\oi\\\^ff~1\\o\\\^\'~ί\\o)1/2 | 9VarΦ.

The terms A'k^Ck require some more effort. We choose ε such that
ε ^ || I J('\k " 1 1 | 0/(card/l )*"1 for k = 1,..., m. Having chosen ε we may, by uniform
continuity, take N(m) such that4

+ ε

for all z such that ιAωi ίAω k-i^β(κ:,A), whenever c o ^ . - . ^ ^ - i G ^ , fc= l,. . .,m,
and for any K, λ. Returning to A'M, Ck, we write

Σ \ψcok-λ^'''ΨcoSΦa>2' Φωk
ωr ωjt-1

-Σ Σ l-l,
κλωι -ωk-i

where Σ' extends over those ω l J...,ω f c_1e/i such that φan'"Φωk-^eQ{κΛ)' We
have then

ωi ωjc- l

z' ωi' -ωk-ιeΛ

•Σ max | ( Φ -
xλ z(κ,λ)eβ(κ,λ)

^ (II |ΛΠ*~Ίlo + ε(card/l) fc-1) 64 Var Φ

Inserting this in the estimates of Sect. 3 yields

. K2

'Γ"'llo(lll^'K"'I~1llolll^l'"*"Ίlo)1/2 128|||^'rilloVarΦ,

m

llo + 1^ h

l l o- l l l^K- f c-1 |lo)1 / 2l 128|||^'|fc"ΊloVarΦ,

and Proposition 4.2 follows.

4 Remember that the φω have to be replaced by φωh and that one should take at the end
Ψωi-^Ψω This creates no difficulty since the assumed inequality can be taken to hold uniformly
in i when φωi is close to φω
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5 Proof of Theorem 2.2

We follow [11] Sect. 2.5. Define Φ = Σ<pωe@\ since φ ω ^ 0 , we have
ω

\\Jίm-ιΦ\\o=\\\Jί\m\\o.

Therefore

lim || J(m

m ~* oo
| | 1 / m ^ l im

m-*oo

^ lim ( | | ^ m - 1 Φ | | 0 ) 1 " " = lim (|| | ^ Γ I | 0 ) 1 / " = Λ, (5.1)
m-> oo m->co

so that the spectral radius of M is ^ R. In particular, if Rr ^ K, Theorem 2.1 (a)
shows that the spectral radius of Jί is equal to R.

If R' < R, we may write

φ = ψ + £ «p. (5.2)

where, for each , ̂  is an eigenvalue of Jt with 1̂ 1 = R, and ^ is in the correspond-
ing generalized eigenspace; Ψ is such that

,. V2LϊJίΨ
lim ^ = 0 (5.3)

λm

with 0 < λ < R. In view of (5.1),

lim
m^oo

and therefore the Ψ} do not all vanish. Write the restriction of M to the generalized
eigenspaces corresponding to the λj in Jordan normal form. It is then readily seen
that there is an integer k ^ 0 such that

and JPΦj = λjΦj for all j9 with Φ} Φ 0 for some j . From (5.2) we get

Mmφ Jίmψ y

= Rm " Rm + '

Using (5.3) and (5.4) this gives

where ε(m) -* 0 when m-+co. Note that the sum is finite, and that | λj/R | = 1 for all j .
Therefore R must be an eigenvalue, say R = λ0, and Φ o ^ 0, Φo not identically 0.
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6. Extension to Multiple-Valued Functions

In Sect. 1 we introduced data Vω9 φω9 φω satisfying conditions (i), (ii), and (iii). We
shall now also accept finitely many triples (Vω,φω,φω) satisfying the conditions
(i)', (ii)' and (iii)' below. (This will allow us to consider multiple-valued analytic
functions; for simplicity we omit the discussion of antiholomorphic functions.)
Here are the new conditions.

(i)' Vω is an open disk in the nω-sheeted Riemann surface over C, branched at
aω (if nω > 1); w e assume nω finite, aωe Vω, and let the projection π of the Riemann
surface map Vω into X.

(ii)' φω: Vω\-+φωVω is holomorphic and invertible, where φωVω is a Riemann
surface with projection π* to a subset of X; φω Vω is unbranched except possibly
at φωaω; the multiplicity n* of φωaω is finite.

(iii)' φω: Vω\-+ώ is continuous with compact support, and

Var<pω= J dxdy\d2φω\< co.
Vω\{aω}

The integration is over the nω sheets of Vω\ the second derivatives do not make
sense at aω9 but are assumed to be measures outside of this point.

We also assume that

dxdy
211/2

< 00.

Note that this implies that φω(aω) = 0 unless nω = n* = 1. The new terms in MΦ(z)
and Ji'Φ(z) have respectively the form

and
Zeπ~ιz

Σ Φ.

φω(Z)Φ(π*φωZ)

where πaω

1 and π* iφωaω are counted with multiplicity nω and n* respectively.
The operator \Jί\ is defined as before by the replacement <pω->|φω |, and R,R' are
again the spectral radii of \Jί\ and \Jf'\ with respect to the uniform norm || | | 0.

6.1. Proposition. Proposition 1.1 and Theorems 2.1 and 2.2 remain true with the
extended definitions of M, R9 R'.

To see this it suffices to go through the original proofs of these results, making
some simple changes, and using the following lemma.

6.2. Lemma. // Φ is a continuous function with support in X, and if the second
derivatives of Φ in the sense of distributions are measures on C\{α} such that

J dxdy\d2Φ\= K<oo,

then Φe0β and Var Φ = V.

We may take a = 0. For ε > 0 we have

dx
dy

d2Φ
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and similarly with ε replaced by - ε. Therefore

f J Λ ( dΦ2 dΦ2\^ f _ Λ ίd2Φ d2Φ\
f dxdyl — + — < f dxdyΦ[—τ + —τ)

]x>ε

 y \ dx dy ~ J>ε V Sx2 dy2 J

+ ί dy
dΦ

Φ —
dx

dx2 ' dy

+ f dy
dΦ

dx

Similarly

and we conclude that

J dxdy(\
5Φ

~dx~

dΦ

~dy~

+ iyΦO

dxdy
dx

dΦ

~dy~
(6.1)

Let now χ be a smooth function on C with values in [0,1], equal to 1 in a
neighborhood of 0, and to 0 for \z\ > 1. The function Φε such that

Φε(z) = Φ(z)(l - χ(z/ε)) + Φ{0)χ(z/ε)

tends to Φ in the sense of distributions when ε->0. Clearly Φεe0& and, using (6.1)
we see that, for any δ > 0, Var Φε < V + δ when ε is small enough. From this the
lemma follows.

6.3. Corollary. Let S = <Cu{oo} be the Riemann sphere, and Ψ~ the Banach space
of functions 5ι->(C/or which the second derivatives, in local coordinates, are measures.
[We shall specify a norm on 1^ later)

Let now f:S\-+S be a rational function, and d e g / ^ 2 . We assume that the
continuous function g:S\-^><£ is such that \S2(g°f~ί)\ is integrable on the Riemann
surface associated withf'1, that z\—*\g(z)/(z — a)\2 is integrable if aΦ oo is a critical
point or multiple pole off, and that \g(\/z)/z\2 is integrable near 0 iff has a critical
point or multiple pole at oo. In particular, g vanishes at the critical points and multiple
poles off

Define <£ = r ^ r by

Z:fZ
g(Z)Φ(Z)

and let

R = lim max
m -*• co zeS

\g(r-1Z)-g(fZ)g(Z)\
: /

,1/m

R'= lim max\g(fm-ιz)-g(fz)g(z)\ιim.
m-»oo zeS

Then, the spectral radius of 5£ is ^ R, and the essential spectral radius is ^ (RR')112.
Ifg ^ 0 and R > R', then R is an eigenvalue of <£, and it has an eigenfunction ΦR ^ 0.

Choose a finite open cover (Θk)keK of S, holomorphic coordinates pk = 0fcι->C
and a smooth partition of unity (χk) associated with (Θk). Let Y be the space of
functions Φ:Sι-»C for which the second derivatives are measures. Then Ψ' is a
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Banach space with respect to the norm || <2>|| = ΣVaτ[(χkΦ)°pk

1], and different

choices of (Θk\ (pk\ (χk) yield equivalent norms.
We may assume that the sets pkΘk are disjoint, and let X = <ukpk{z:χk(z) > 0}.

The space & is defined as earlier, and there are continuous maps P: JΊ—>^, J: i^h-^ώ,
defined by PΦ = ΣΦ°pk, JΨ = Σ{χkΨ)°Pk

1 Since J is isometric and PJ is the
k k

identity, we may consider Ψ* as a subspace of 0&.
For each pair (A;,/) let now K(Λt<r) = pA®fnf®kϊ > ^ i s is a Riemann surface with

projection π(fc ^, and we may assume that it has at most one branch point. We
take Ω = K x K and, if ω = (k, ί\ we let φω be the inverse of pkΘk\-^ Vω.

Let also

Defining M as before we see that the conditions of Proposition 6.1 are satisfied.
Furthermore, Jί = J££P and, since PJ = identity, the spectral properties of <£
follow from those of Jί. (Note that here we always have R ^ R'~)

6.4. Remarks.
(a) The properties required from g are satisfied for instance if

with α > 0 and
(b) We may extend the definition of R9R' to arbitrary continuous or upper
semicontinuous (u.s.c.) g ^ 0. If / is the set of/-invariant probability measures on
5, we have

R' = exp max p(log g).
pel

(The ergodic theorem gives

pel

To obtain the reverse inequality, choose mt—>zm such that

Λ m— 1

lim - ]£ log g(fkzm) = log R'
tn~* oo YYX k = Q

4 m — 1

and take p to be a weak limit of — ^ δfkz. Then pe/ and

< m— 1

lim —

Define also the pressure

F(log 0) = max (h(p) + p(log g)\ (6.2)

where Λ is the entropy. We shall see that

R= lim ( | | ^ m l | | 0 ) 1 / m = expP(log^). (6.3)
m-*oo
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According to Przytycki [9], Lemma 2 and Lemma 4, this property holds for
continuous g > 0. To handle the general case, let (Λn) be a decreasing sequence of
continuous functions tending to logg. [Note that the function p\-^h(p)-\- p(logg)
is affine u.s.c. /->IRu {— oo} because h is u.s.c. [5] and pi—•p(logg) is the limit of
the decreasing sequence of continuous functions p\-*p(An). This justifies writing
max in (6.2).] If pn is an equilibrium state for An we have

Taking a subsequence we may assume that pn -* p vaguely, and obtain

P(log g) ^ lim P(An) ^ h(p) + p(An) -> h(p) + p(log g) ί

This implies

\imP(An) = P(\ogg). (6.4)
n-*oo

Let 5£n be the transfer operator obtained if we replace g by exp An in the definition
of g. By Przytycki's result we have

Replacing m by 2m, we see (by submultiplicativity) that the left-hand side is a decreas-
ing function of m; it is also a decreasing function of n, and the limits m -> oo, n -» oo
may thus be exchanged. Since

l i m II cPm\ II — II cPm\ II
u r n ii ΪZn i i i 0 — \\^er 1 1 | 0 ,

π-*oo

we obtain

lim P(An) = lim (\\&**l | | 0 ) 1 / m = K (6.5)
n->ao m-^oo

From (6.4) and (6.5) we obtain (6.3) as announced.
(c) It is known that / restricted to the Julia set J is topologίcally mixing ([5],
Proposition 1), i.e., if G is an open set and ΘnJ Φ0, then fmΘ => J for some m.
This implies for instance that if g ^ 0 and g vanishes only at a finite number of
points, and 'ύ£?ΦR = RΦR with ΦR ^ 0, then ΦR can vanish only at a finite number
of points on a compact neighborhood of J. In many cases the position of the zeros
of g is such that necessarily ΦR > 0 on J. It then follows that R is a simple eigenvalue
of if.

Let </ = 0oexpy, with γe&. If K is a simple eigenvalue of if, then γ\-^R is
analytic, and the functional derivative of log R with respect to γ is ΦRμR, where
μΛ is the positive measure on J such that J£*μR = RμR, normalized so that
^R(^R)— l [This is a standard argument; let g = goe

ty, and write A' = dA/dt at
t = 0.] We have then

R' = \βR(£e ΦR)J = μ'

(d) A result similar to Corollary 6.3 holds if the map / is replaced by an (m, n)-
correspondence defined by an algebraic curve (and S may be replaced by any



556 D. Ruelle

closed Riemann surface, i.e., we may consider an (m, ̂ -correspondence on an
algebraic curve).

(e) The form of Conjecture 2.3 appropriate to the situation of Corollary 6.3 is
the following.

Conjecture. The power series

CίzΓ^exp- £ - Σ "Π 9(fw)
m=l m weFixf>» k = 0

converges for \z\ < (RR')~1/2 and its zeros are precisely the inverses λ~1 of the eigen-
values λ of if, with the same multiplicities.
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