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Abstract. If f is a rational map of the Riemann sphere, define the transfer operator
£ by
20@0)= Y ¢(2)02)
Z:fZ=z

Let also # be the Banach space of functions for which the second derivatives are
measures. If ge# and g satisfies a simple integrability condition (implying that g
vanishes at critical points and multiple poles of f) then .# is a bounded linear
operator on 4. The essential spectral radius of ¥ can be estimated and, under
suitable conditions, proved to be strictly less than the spectral radius. Similar
estimates for more general operators % are also obtained.

1. Assumptions and Generalities

Let X be a bounded open subset of €. If the second derivatives in the sense of
distributions of ¢:C—C are bounded measures, we write (using a “functional”
notation for measures):

Var ¢ = [dxdy|d*¢|,
T

where |0%¢| denotes the norm of the 2 x 2 matrix of second derivatives (i.e. the
norm bilinear of forms on €2, where €2 has the usual Hilbert norm). In particular

o o | |00 ]

— |42 _ T
oxdy| |0y?
% ={¢p:Var ¢ < oo and ¢ vanishes on C\X}.

1
Vargp=- | dxdy[
4t

ox?

We define

Then 4 is a Banach space with respect to the norm Var (which has properties
similar to the total variation for functions on R, particularly that it behaves well
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under conformal changes of coordinates, as we shall see). We may write (using

again a functional notation)

2 ) 1°°
n? x+zy)~ j dta P @(x + it) +5£dtl~-~l
1 = 2 )
<
=5 . ,f ‘P(x+lt)
=%u(x),

where p is a positive measure on R, independent of y and with total mass

lpll < | dxdy o <Varoe.
T oxdy|
Similarly,
I% Plx+iy)| = %V(y)
with
vl = Vare.

2

Note that u is nonatomic, otherwise 6—qg would contain ¢’ singularities and could
X

not be a measure. Similarly v is nonatomic. As a consequence, @(x + iy) is
continuous in x, uniformly in y, and continuous in y, uniformly in x. Therefore
@:x + iy @(x + iy) is continuous' or more precisely ¢ is, in the sense of distri-

butions, equal to a continuous function. We have

lello=suple@)| <glul<zVare.

We also have

fdxdy|de|* = [dxdy (

For each w in some countable index set €2, the following are supposed to be

given:
(i) an open set V,c X,

! This is a special case of the theorem of Fuglede-Schwartz [3]. I am indebted to F. Tréves for

this reference
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(i) a map y,:V,— X such that V_ — ¢, V, is a conformal homeomorphism,
(iii) a continuous function ¢, vanishing on C\V,, such that ¢, is the uniform
limit of functions ¢,; with support in V,, satisfying |¢,;| < |¢,|.2

Furthermore, we assume that
K =Y supVar¢,,; < o,
1 l//" 27)1/2
L=)1-|dxd @ < 0.
§[2I 1%, ]
(Y, is locally holomorphic or antiholomorphic, ¥/ and ¥ denote its first and

second derivatives with respect to z or Z; note that replacing ¢, by ¢,°¢ " and
¥, by ¥ ! we do not change L; note also that ¢,€%.)

Po’

We introduce now .# and .4’ by
MOP(2) =} 0, ()PP ,2),

M D(2) =3 ¢, )P 2).

Note that .# and .#' are formally adjoint to each other.
1.1. Proposition. .# is a bounded operator on %.

We can approximate ¢, by ¢,; with compact support in ¥, such that Var ¢,
is bounded uniformly in i, and

lpu 2 (//// 2
fdxdy|e,i~2| —[dxdy|e,~2| .
Vo j Vo
We shall use this to estimate || .#| after we have established some general

inequalities.
Suppose that ¢ is continuous with compact support in €,y a conformal
homeomorphism on a neighborhood of supp ¢, and Var @ < co. We have

[dxdylo||0X(@-y)| < [dxdylo|-[I@*®) Y| [Y'|> +1(@P)y|-1¥"],

where Y',y" are the first and second derivatives of Y with respect to z or Z.
Therefore

[dxdylo|10*(®y)|
|22
2l

< fdxdylooy ™' |0*®| + [Idxdylad’lz]”z[fdxdy%p—,
2>1/2:|

* The interesting case is that in which the compact support of ¢, is contained in V,; the ¢,
are then not needed, or one can take ¢ ; = ¢,

1 "
<Var d’[ll oo+ <51dxdy)<p%
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We shall apply this to the case when Y =y, and ¢ = ¢,;. We have then
Var [¢-(®@y)] < [dxdy|o[|0*(@y)|
+2[dxdy|0¢||0(@ )| + [dxdy|0*¢|-| @Y

lV/ 2)1/2]

éVartD[llprlo < [dxdy|o-

+2(fdxdy|0g|*)!*([dxdy|0@|*)" + Var ¢-|| ® ||

3 l/l" 2\ 1/2
< Var (D<§Var<p+< [dxdy|e l/, > . (1.1)
Taking the limit where ¢ — ¢, and summing over » we get

|l S3K+L
which concludes the proof of Proposition 1.1.
1.2. Proposition. % is a Banach algebra with respect to the norm 3 Var.
This is a corollary of the above proof since
3Var(¢,0,)<3Varg, 3 Var o,
as a special case of (1.1).
1.3. Remark. If we assume that
=Y sup Varg,;°y ' < oo (1.2)

o i

we have complete symmetry between .# and .#’, and in particular .#' is a bounded
operator on #. The assumption (1.2) is not needed, however, for what follows.

2. Main Results

Associated with ./ there is an operator |.# | acting on the Banach space of bounded
continuous functions €C— € with the uniform norm:

(1#)9)(2) = Y| 9(2)| P ,2).

The norm of |.#| is
1A 1llo =sup(|.#]1)(z)

and the spectral radius of |.#| will be denoted by
R= ,31530 (™ [lo)!m = Jig}o(ll [ ]™1 o).

Similarly we have an operator |.#’| such that

(1A' @) (z) = Zl% 2| W, 2)
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and its spectral radius will be denoted by
R = lim (IA4["0)"" = lim (|41 [o)""

We have R, R’ < X ||, o < K/4, so that |.#|,|.#'| are bounded operators even
if (1.2) is not satisfied.

2.1. Theorem.
(a) The spectral radius of M, acting on %, is < max(R,R’).
(b) If R’ <R, the essential spectral radius of # is <(RR')!/2.

2.2. Theorem. If ¢, =0 for all w, then the spectral radius of # is = R. If furthermore
R’ <R, then R is an eigenvalue of ., and there is a corresponding eigenfunction
QR ; Oo

Suppose now that the ¥, are holomorphic. Let F(w,, ..., ®,,) be the set of fixed
points of Y, o---oy,, , and define

Cm = Z Z (pwm(x)' Do 1(¢wmx) o (pwl(‘pwz o Ww,,,x)

w1 0Om XeF(01,..., ©Om)

2.3. Conjecture. The power series

0

(@) =exp— ¥ %n—cm

m=1

converges for |z| <(RR')™ Y2 and its zero are precisely the inverses 1~ of the

eigenvalues A of .M with the same multiplicities.

The above statements are related to the work of Denker, Urbanski [2] and
Przytycki [9]. This previous work was concerned with Holder continuous
functions, and used Ljubich’s ideas on almost periodic operators [5], which only
give information on eigenvalues A with modulus | 1| equal to the spectral radius.
The present approach, using the space %, gives a more detailed description of the
spectrum of the transfer operator. It presents one-dimensional complex analogues
of the results and conjectures in [11] for the one-dimensional real case. The zeta
function for piecewise monotone maps in one dimension is analyzed by Baladi
and Keller [1]. This paper contains references to the earlier work of Hofbauer,
Keller and others on the transfer operator in one dimension. For more general
background on dynamical zeta functions see in particular Haydn [4], Pollicott
[7, 8], Ruelle [10] and references given there.

We prove Theorem 2.1 (a) in Sect. 3, Theorem 2.1 (b) in Sect. 4, and Theorem 2.2
in Sect. 5. Section 6 is dedicated to an important extension to multiple-valued
functions.

3. The Spectral Radius of .#

In the estimates of this section, we write | instead of [dxdy, and from now on the
limit ¢; = ¢,, is understood but not explicitly performed. We have

'/”md)(z) = Z (pwm(z)(pwm_1('/’&)",2)'”(00)1(‘//(»20“‘Ol//a)mz)(p(wano "'°Ww,,.z)-

w1
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Therefore
Var A™"D = j|a241mq>|
<2y A4,+2YB,+Y C,+D, (3.1)
k<? '3 k
where

Ak(= Z Il(pmm"'a((prOV/wnlo"'O'l/wm)"'a((pwkowwk“o"'o'l’wm)

®1° Om

...((pwlo'//mzo “'O'//a)m)(¢ol//(o1° ...o.//mm)l,
B,= Z j|¢wm---6((pw,°|//w,+,°-'-owwm)

(P, Vs Y0, JO(P oY 5,0 0P ),
C= Z j"Pth'”az((pwko'/’wkuo"'o'l’wm)

@1 Om

"'((oauol//mzo"'o'lla)m)(¢°¢w1°"'olllm,,.)l,
D= Z I|¢wm"'(¢w1°¢wzo"'olllwm)‘az(¢°'//an°"'olpw,,.)l'

To estimate the terms in (3.1) we shall use the Schwartz inequality and changes
of variables of integration. (The basic fact is that if we integrate a product of two
derivatives and make a conformal change of variable, the factors in the area element
cancel the factors coming from the derivatives.) With these remarks one can handle
the d and 6% occurring in 4,,B,, C,, D. The reader should not worry too much about
the numerical coefficients in the following estimates since they are unimportant
for our later purposes.

We have

A S1®llo Y [190nVan o oVa 1 10@0, Y5

W1 Om

.I(pwg_1'”'Ia((pwkod’(okwlo”'o‘//w(_l)l"'I(pwloll/(ozo'“ol/,w/-ll
S No A ol @ llo AR,
where

A:{=ZZI|8(¢(D/°'//(;,1)| z |(pw/_1|'"Ia((pwkolllmkq.;o“'o'llw/—l)'

Wk ¢ Dk +1°""@W/ -1

27]1/2
éZ[§I3(¢m,°l//;,‘)l2]”2Z[I[ ) I%,_,I'--Ia(%w-"”//m,_l)l]]

K
=TI,

where

1°0 @/ -1 ., e’
k+1
‘-1

-%[,a(¢wkowmk+‘o .”o'llw/-1)|2 + Ia(q’mk”p .

P+

,o.“oww}_l)lz]
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SHAT* ol X 9ol 1 Pans s Var s Vil

Dp 41" Dy q

'!a(¢mk°¢wk+10"'°¢w/—1)|2
=MA T of X 1P, o¥ot o o¥ st

Oy ey,
| Pares s Wy 109 |
S 1A o 1A 5 o f1000, I
so that

K? gk il —km
AZ‘,§7(I|IJ!I’ ol PR o)

and

K2 ) e e i}
Ak,——lllvll'l"' Dol 1“5 oIl AN ~* ) 21 A ol @ llo-

We have similarly
B < |||4'1™“|loB},
where

B =Y (1000 ¥a)l Y 190l 100, Vayo W, 1P oYy 0 oW, )]

W1 Wr- 1

1/2
gzmam,ow;,l)|21m[j[ » m,_,n~-|a(«pow.o,o---oww,_,nH

é\T LA ol 41~ o f10@ 2]

s (III-/lI’ Yol 1= 1lo)!/* Var @,

and therefore

K - -
é;lllu’l’l"‘"llo(llﬂ’l’ Holl#1°~* ll0)*/? Var @.

We have
CeS Aol @ 1loCE,
where
Ct=] Y [10on 0 @0 Var..° Va,)l
o
<IMZ (Wamo¥ato¥al ) (P, ,® ,,,,”,)IZIazfp.,,,‘

+,‘ Z |¢wm"'(¢mk+1°'llmk+z°"'O'I/wm)l'l(a¢mk)°'/’wk+1°"'°¢m,,.|

Ok Om
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MWW ors s Vonez® V) ¥, ) |
SN oK + C*

where

C;ck*= Z I Z I(pwm”'((pwk+1°‘//wk+zo'“mem)l

£=k+1 k' Om

'l(a(pwk)owmkzﬂo "'owwml'l(l//wk+1° '“oll,w:- l)"’('l’m," "'°'/’w...)|
W Vor > Vol 1Wap 0 Yo, 1
Since

|‘/[" O‘/[ . ¢

w/ (D{+1 ‘Dm

I¢/ ¢w+ ¢m |
w/ /+ 1 m

Ve, Vi Vol 1 War o oWa,) | = 1o V) I

we have

C**< Z Il'v/”,r" {”Oj Z I(sz a)[l'l(pw(-l"'((Pwk.,,lo‘//wk.;zo'“o‘//w/-x)’

{=k+1 WKW/
-1
Ve, Vo, |

‘1@ o) Vo 1° Voo 1MWy °0° wl’—l” ’ =
(0w ¥ Yo, "I Vor )l TG

) M'V“’HoZ[II«pw,oww, ' b ¢w,‘!2]1’2

£=k+1 |¢m/ !/,w/l“"

ZI:I[ Z I(pwz—x'.'(qowk+|°‘/lwk+zo"'°'//w,_1)'

Wi

27]1/2
'|(a(/)wk)°|//wk+x°”'oll/w(-xl'l(lllwkﬂo"'olllw(_l)ll] :I

m

= 3 Ao S2LY [ [ 1712,

(=k+1
where

I["']2§"|/”|[_k_l||o_‘. Z l(Pm(_1"'((pwk+1°.//mk+2°"'O'//a)(_l)‘

Wk +1°"""We-1

'I(a(pmk)owmka”o'”Ol//w(_,lz'l(lllwk+1o"'odlwf_1)l|2
SHA ol X W Pap oWt ool )

(Punsr W, N 1000, |2
S AV N MMV o[ 100 0, |2
so that
CH*<K-L Y 141" Yol M7 o ||| 7E 1 o) M2
1

{=k+
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and

Ci éK[IIIJf’I'"_"IIo +L Y o

¢=k+1
NV g )51 II(>)1’2]|IIJ1‘&’I"’1 o1 @ llo-
We have similarly
Dé[IHJI’l’I"'Ilo+L{§1 ot 1"~ No- (11~ o 1| a1 ||0)”2]Var Q.
Finally, the above bounds for 4,,, B,, C,, D show that
lim (Var #™®/Var @)''™ < max (R, R’)

m-— oo

and the spectral radius of .# is thus < max(R,R’).

4. The Essential Spectral Radius of .#

Without loss of generality, we take X = {x +iy:0<x <1, 0<y < 1}. Choosing
an integer N > 0, we write

IIA

k—1 Kk A—1 A
A)={x+iy——=<x<—, " <y =
Qe 4) {x v N =X N _y—'N}

N’
for x,A€{1,...,N}. A linear operator Ty:#— 2 is then defined by the condition
that, for all x, 4,

Tn®@(x+iy)=a., +bax+cy+dgxy

on Q(k, A) where the coefficients a,;,...,d,, are such that Ty®@(x + iy) = @(x + iy)
on the 4 corners of Q(x, A).

4.1. Lemma
(a) Var Ty® <8 Var @,
(b) Y. max |@(z) — Ty®P(z)| < 64 Var @.

KA zeQ(x,4)

=|¢(£+ii>—d)<£+il_l>
N N N N
—<D<K_1+ii>+d><x_l+i’1*1>‘
N N N N

0’ )]
0(x,2) 0x0y 0x0y

First, note that

0*Ty®
0x0y

Q(x,4)

<
Q(x,2)
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546
so that
’Ty® P
fl=—=] : @.1)
0x0y 0x0y
We may write
2
(P sy s 3 T D2 (i
A=1 N
<K+1+ii>—2cp<5+ii)+¢<"_l "1)
N N N N N
“ ()
N
where we have defined
Kk+1 K k—1
Y(y)=9o +iy | —20| —+iy |+ o —+i
v ( N 'y> <N ’y> < N +’y)
(x+1)/N (x—1)/N
= | 0,®0(x+ipdx+ [ 0,®(x+iy)dx
x/N x/N
x+1)N  x ®k-1)/N  x
= _[ dxj'a D(E+iy)dE + j dxj'& D(& +iy)déE.
x/N x/N x/N x/N
Therefore
(x+1)/N
P OS= [ [020(x+iy)ldx,
N -1yn
A—1 4
and we may choose ye| ——,— | such that
N'’N
A/N (x+1)/N
[P [ dn [ dx|02 ®(x+in)l.
(A-1/N  (x—1)N
We also have
1 l 1 A/N (x+1)/N
~ 'Px v x x ) ~ dr’ dxlaz (p(x"'"’)l
2 ( N ) ()l ( ) Py “2a j.1)/1v x}.N

| AN XIN
+= § dn | dx|@Z,d(x+in).
241N  «-1N

()

Hence

)gzﬁa:xm +(loZ, @ 42

A\ 1
w (< )+
Ok

[l62,Ty@| < Z(l

x).2
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Finally, (a) results from (4.1) and (4.2):
f10°Ty@| < [[102, Ty ®| + 2|02, Ty® | + 0}, Ty®|]
<2f[]0% @] +2|02,@|+10},®@|]<8Var &.

The proof of (b) will be in several steps, and it will simplify our notation to
assume that the function @ has its support in

1 1 1 1

Suppose that 0 < ¢ < 1/N,0<#n < 1/N, and write Q'(x, A) = & + in + Q(k, 4). Let
T', be defined like Ty, but with Q(x, 1) replaced by Q'(x, ). We shall first show
that, for suitable choice of &,7,

Y. max |@(z) — Ty®(z)| <4 Var &. 4.3)

kA zeQ'(x,A)

A—1 A
Ifn+-7v—§y§n+ﬁ,wehave
K—1 A K—1 i1
o+ tiy)=N{n+Z—ylole+"—4i[n+Z—"
(6 N +’y> <"+N y) (“ N ’(” N))
A—1 K—1 A
~N{y—{(n+=))ol e+—+iln+=
<y (” N )) (é N '(" N))

y —
=N<11+%—y> | dvavd><é+KTl+iv)

n+(A—1)/N

_ n+a/N _
—N(y—<n+i—N1>> { dv@v@<f+KTl+iv>

—N( LA [ dofdwd? ¢<£+K—_1+iw>
- r’ N y ww N

nt(A-1)/N y

_ n+A/N v _
—N(y—(ﬂ +1—N1>> | dvjdwaﬁwd><é +KTI+ iw).

y y

Taking absolute values, and writing

n+ AN
< [ dwle}, ol

n+(A-1)/N

[dwd? @
y
we obtain

k—1
max (D(f +—+iy>
yeln+(A—1)/N.n+ /N N

A k—1 . A—1
—N<n+ﬁ—y>@<é+T+l<n+T>>
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Ao ol )

n+ /N _

<l [ dv afv(D<C+K———1~+iv).
N

k—1
Ol E+—-+i
(é N )’
and the average over £€[0,1/N] gives
1 1

TN+ yN
-+ < [dx [ dy| 0} @(x + iy)|.
0o 0

If we sum over k and A, this is

1 1
SN2 Y|

We may therefore choose £€[0, 1/N] such that

-1 -1
Y max |<D<c+£——+iy>—T;Vq)<£+K——+iy>|
W& yeln+ (A= 1)/N,n + 4N N N
< [dxdy| 65, @(x + iy)l. (4.4)

Similarly, we may choose n€[0, 1/N] such that
max

A-1 A—1
(D(x + i(n + —)) - T;vd)(x + i<11 + -——))l
KA xe[£+(k— 1)/N,E+k/N] N N

< [dxdy|0% ®(x + iy)|. (4.5)

In general if x + iyeQ'(x, 1), we have

D(x +iy)— <x+l<11+—N—1>> ( +—1+W>

— x y
+<1><@+"Tl+z(n+l—l>> [ du | 2o

&+ (xk—1)/N n+(A-1)/N

. A—1 , . A—1
<D<x+z(11 +——N )) — TN(b<x+z<n+—N ))‘
-1 -1
+ |¢<€+K—1V—+ iy)— T;v(p(f +KT+iy),

+2 [ dudv|d?®|. (4.6)
Q'(x,4)
Finally, (4.3) results from (4.4), (4.5), (4.6).
1In the above proof, we have chosen ¢ such that the expression
Y. [dy
k O

independent of &, the choice & =0 is therefore allowed. In fact, it is easily seen

and therefore, using (4.1),

|D(x+iy)—Ty@(x+iy)| =

-1 . . . L
6§y¢<é + KT + iy) is less than its average over &. If this expression is
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that this situation prevails when @ is replaced by Ty®. We may then similarly
take n =0, and (4.3) becomes

Z max [(Ty®@)(2) —(TyTy®P)(z)| <4 Var(TyP)<32Var @. 4.7
KA zeQ(x, 1)

Using (4.3) and (4.7) we have
Y. max |@(z) — Ty®@(z)|

kA zeQ(x,A)
<4Y max |@@)— Tyo()
KA zeQ'(x,4)
+ Z max (|Ty@(z) — TyTy@(2)| + | TyTyP(z) — TyP(2)])
kA zeQ(k,A)
<48Var @ + ) max |Ty®(z) — TyTy®(2)l,
kA zeQ(x,4)
where
Z max |Ty®(z) — TyTyP(2)] §Z max |@(z) — T P(z)|
kA zeQ(x,A) kA zeQ(k,4)
<4) max |®(z)— Ty®(z)| <16 Var @.

x4 zeQ'(x,A)

From this, (b) follows immediately.
For finite A = 2 we define .# , by

MNP =Y, ¢,@)PW,2)

weA

Theorem 2.1(b) then results from Nussbaum’s essential spectral radius formula
[6]* and the following estimate.

4.2. Proposition. If R’ < R, we may choose A= A(m) and N = N(m) such that
lim || 4™ — M3 Ty|'™ < (RR)'2.

m— o

We take A(m) such that
™ — | < (AT o I A 1) 2,
and it will then suffice to prove that
lim |47 — 47Ty | '™ < (RR)Y2.

We thus have to analyze
Var M7 (@ — Ty®) = [|* M7 (D— Ty®)| <2 Y A, +2Y B,+) C,+D,
k<t £ k

where the above terms are analogous to those in (3.1): @ simply has to be replaced

? Actually, as pointed out by the referee, we do not use the full strength of the Nussbaum
formula; we only need an (easy) upper bound on the essential spectral radius
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by @ — Ty®. Using the estimates of Sect. 3 we find immediately

K _ o _
B}é;lllu”’l”‘ “No(HA 1 oI AN~ o) 2+9 Var @

D= [IIIJl'I"'Ho +L Y WA Ao (A1 o |1 "0)1/2].9 Var @.
=1

The terms A4,,C, require some more effort. We choose ¢ such that
e< ||| [F~ | o/(cardA )~ ! for k = 1,...,m. Having chosen ¢ we may, by uniform
continuity, take N(m) such that*

|(Pwk_ 1(2)“'(/’0)1('!/0)2 ""/’wk-lz)l

_ _ K+il _K+il
(Pwk'l<¢wkl—1“. mll N )...(pwl<|//m11 N )+

for all Z such that ¥, ---¥,, _,Z€Q(k, 1), whenever w,,...,w,_ €A, k=1,...,m,
and for any k, A. Returning to 4,,, C,, we write

Y 10w D 00y Vi DR = Ty @)W, Y, )]

W1 Ok -1

=Z Z' [+,

KA @y k-1

<

€

where 3 extends over those wy,...,w;_ €A such that y, ¥, ,Z€Q(k,1). We
have then

Y 0u (D) 00 Wy Y D)= Ty @)W, Ve, )]

01 Ok-1

smax Y (19a Wol, Y0, 2) 00,5 2)] +6)

z' w1 0Ok-1€EA

-y, max [(@ — Ty®)(z(x, 4))|
kA z(x,A)eQ(x,4)

S| + e(card A)e~1)-64 Var @
<128) |4 F 1| o Var @.

Inserting this in the estimates of Sect. 3 yields
K? - —k— k=
A2z§7lllﬂ’l"'_‘llo(lllu/l’l’ oA o) 2128 |7 | Var @,
C;éK[NIﬂ’I"'"‘Ho+L Y o
k=/+1
-(\Mt'\’“"‘l|\0-||\Jll""“\10)1/2]-128 < o Var @,

and Proposition 4.2 follows.

* Remember that the ¢, have to be replaced by ¢,;, and that one should take at the end
@i~ @, This creates no difficulty since the assumed inequality can be taken to hold uniformly
in i when ¢, is close to ¢,
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5 Proof of Theorem 2.2

We follow [11] Sect. 2.5. Define @ =) ¢,€%; since ¢, =0, we have

™= Do =l|A1"lo.

Therefore

lim [|.#™|Y™ > lim (Var .#4™ @)™

m— oo

2 lim (™" @lo)'™ = Lim (|||.#]"]lp)'™ =R,  (5.1)

so that the spectral radius of .# is = R. In particular, if R < R, Theorem 2.1(a)
shows that the spectral radius of .# is equal to R.
If R” < R, we may write

=Y+ Y (5.2)
j
where, for each j, 4;is an eigenvalue of .4 with |4;| = R, and ¥;is in the correspond-
ing generalized eigenspace; ¥ is such that

. Var/™¥
lim ———=

m— A

0 (5.3)

with 0 <7 < R. In view of (5.1),

1
lim —log Var #/™® =1ogR,
m—-o m
and therefore the ¥; do not all vanish. Write the restriction of ./ to the generalized
eigenspaces corresponding to the 4; in Jordan normal form. It is then readily seen
that there is an integer k = 0 such that

lim —— M"Y = @, (5.4)

m—=o A
Jm

and A/ @;= 4;®; for all j, with @; #0 for some j. From (5.2) we get

OéJ/{"‘(D://{'"‘P_*_z(&)'"jl’"'i’j.
R R" F\R) am

J

Using (5.3) and (5.4) this gives

Z(%)m ¢j 2 —&(m),

j
where &(m) — 0 when m — 0. Note that the sum is finite, and that |4;/R| =1 for all j.
Therefore R must be an eigenvalue, say R = 4, and @, = 0, @, not identically 0.
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6. Extension to Multiple-Valued Functions

In Sect. 1 we introduced data V,, ¢, ¢, satisfying conditions (i), (ii), and (iii). We
shall now also accept finitely many triples (V,, ¥, ¢,,) satisfying the conditions
(i), (ii) and (iii) below. (This will allow us to consider multiple-valued analytic
functions; for simplicity we omit the discussion of antiholomorphic functions.)
Here are the new conditions.

(i) V, is an open disk in the n,-sheeted Riemann surface over €, branched at
a, (if n, > 1); we assume n,, finite, a,eV,, and let the projection 7 of the Riemann
surface map V,, into X.

(i) ¢,:V,—¥,V, is holomorphic and invertible, where ¥V, is a Riemann
surface with projection n* to a subset of X; i, V,, is unbranched except possibly
at y,a,,; the multiplicity n% of ¥ ,a,, is finite.

(iii) ¢,: V,—C is continuous with compact support, and

Vargp,= [ dxdy|d*e,|< .
Vo\{aw}

The integration is over the n, sheets of V,; the second derivatives do not make
sense at a,,, but are assumed to be measures outside of this point.

We also assume that
1 * n|27)1/2
[— [ dxdy (p“,(n w‘")l :I < .
2v,\a) (n*¢,,)

Note that this implies that ¢,(a,,) = 0 unless n, = n* = 1. The new terms in .# &(z)
and /' ®(z) have respectively the form

Y 0.(2)P(n*y,2)

Zen~ !z
and
Y 0oy 2)P(ny ) 2),
Zen*~ 1z

where 7, ' and n*~ 'y ,a, are counted with multiplicity n, and n* respectively.
The operator || is defined as before by the replacement ¢, —|@,,|, and R, R’ are
again the spectral radii of |.#| and |.#'| with respect to the uniform norm || |,.

6.1. Proposition. Proposition 1.1 and Theorems 2.1 and 2.2 remain true with the
extended definitions of M,R,R’.

To see this it suffices to go through the original proofs of these results, making
some simple changes, and using the following lemma.

6.2. Lemma. If @ is a continuous function with support in X, and if the second
derivatives of @ in the sense of distributions are measures on €\{a} such that

[ dxdy|o*@|=V < oo,
C\{a}
then @ and Var® = V.

We may take a=0. For ¢ >0 we have
62(17
fdy < j'dx f dy|— e

—(s+zy)
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and similarly with ¢ replaced by —e. Therefore

op|* |oo|? (82(1) 62d5>
dxdy| |—| +|=—| )= dxdy|®| —+—
lxljés * y( 0x dy )—|x|jgs Y ox? = 0y?
oD 0P
+ dy|® —| + dyl® —| <3| D, V.
A y‘ PRl y{ ax’_ 1@l
Similarly
oD |o®|?
dxdy{ |—| +|—1| |S31@l.V,
MLE x y( P o )_ I@lo
and we conclude that
P2 |od|?
j dxdy(— +|— )§3[|(D||0V. 6.1
x+iy#0 ox

Let now x be a smooth function on € with values in [0, 1], equal to 1 in a
neighborhood of 0, and to O for |z| > 1. The function @, such that

?,(2) = D(2)(1 — x(z/e)) + P(O)x(z/e)

tends to @ in the sense of distributions when ¢ — 0. Clearly @,e# and, using (6.1)
we see that, for any 6 >0, Var @, < V + 6 when ¢ is small enough. From this the
lemma follows.

6.3. Corollary. Let S=Cu{owo} be the Riemann sphere, and ¥~ the Banach space
of functions S+ for which the second derivatives, in local coordinates, are measures.
(We shall specify a norm on ¥ later.)

Let now f:S—S8S be a rational function, and degf =2. We assume that the
continuous function g: S~ C is such that |0*(go f ~')| is integrable on the Riemann
surface associated with f ~*, that z+|g(2)/(z — a)|? is integrable if a # o is a critical
point or multiple pole of f, and that |g(1/2)/z|? is integrable near 0 if f has a critical
point or multiple pole at co. In particular, g vanishes at the critical points and multiple

poles of f.
Define & =¥ -7 by

Lo()= ) g(2)P(2)
Z:fZ=z
and let

1/m
R= lim maX< ) Ig(f""lz)mg(fZ)Q(Z)I)

m—-o zeS Z:fmZ=z

R'= lim max lg(f™ " 2)---g(f2)g(2)|"™.
m— o Z€
Then, the spectral radius of & is < R, and the essential spectral radius is < (RR')*/2.
If g 2 0and R > R', then R is an eigenvalue of £, and it has an eigenfunction @g = 0.

Choose a finite open cover (O )k of S, holomorphic coordinates p, = O,—C,
and a smooth partition of unity (y,) associated with (0,). Let ¥~ be the space of
functions @:S—C for which the second derivatives are measures. Then ¥ is a
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Banach space with respect to the norm || @ || =) Var[(x,®)°p, '], and different

choices of (0,), (p«), (xx) yield equivalent norms. .

We may assume that the sets p, 0, are disjoint, and let X = U, p,{z:y(z) > 0}.
The space 4 is defined as earlier, and there are continuous maps P: Z+— ¥, J: V" +— A,
defined by PO =) @op,, J¥ =) (. ¥)op, *. Since J is isometric and PJ is the

k k

identity, we may consider ¥~ as a subspace of 4.

For each pair (k,7) let now V,; » = p,0,n f©,); this is a Riemann surface with
projection 7 »), and we may assume that it has at most one branch point. We
take 2 = K x K and, if w = (k,?), we let y, be the inverse of p,O,—V,,.

Let also

Py = (X!Onw). [(ng)o 'pw]

Defining .# as before we see that the conditions of Proposition 6.1 are satisfied.
Furthermore, # =J%P and, since PJ =identity, the spectral properties of ¥
follow from those of .#. (Note that here we always have R=R’.)

6.4. Remarks.
(a) The properties required from g are satisfied for instance if

B |f’(z)|(1+|z|2)>“
g(z)‘< Lo ) @

with & >0 and Ge7".

(b) We may extend the definition of R,R’ to arbitrary continuous or upper
semicontinuous (u.s.c.) g = 0. If I is the set of f-invariant probability measures on
S, we have

R’ = exp max p(log g).
pel

{The ergodic theorem gives
max p(logg) <logR'.
pel

To obtain the reverse inequality, choose m+—z,, such that
m—1

lim 1 Y. logg(f*z,)=logR’

m=>® M k=0
m—1

1
and take p to be a weak limit of — ) d,. Then pel and
m k=9

m—1

1
pllogg) 2 lim - . logp(f*z) =logR)).
m>o M k=0
Define also the pressure
P(logg) = max (h(p) + p(logg)), (6.2)

where h is the entropy. We shall see that
R= lim (|| #™1|o)"™=exp P(logg). (6.3)
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According to Przytycki [9], Lemma 2 and Lemma 4, this property holds for
continuous g > 0. To handle the general case, let (A4,) be a decreasing sequence of
continuous functions tending to logg. [Note that the function p+—h(p) + p(log g)
is affine u.s.c. > IRu{— oo} because h is u.s.c. [5] and p—p(logg) is the limit of
the decreasing sequence of continuous functions prp(4,). This justifies writing
max in (6.2).] If p, is an equilibrium state for 4, we have

P(A,) = h(p,) + pa(Ay)-
Taking a subsequence we may assume that p,— p vaguely, and obtain
P(logg) = lim P(d,) < h(p) + p(4,) > h(p) + p(log g) = P(logg).

This implies
lim P(A4,) = P(logg). (6.4)

Let %, be the transfer operator obtained if we replace g by exp A4, in the definition
of g. By Przytycki’s result we have

lim (|| Z7'1]lo)"™ = exp P(A,).

Replacing m by 2™, we see (by submultiplicativity) that the left-hand side is a decreas-
ing function of m; it is also a decreasing function of n, and the limits m — oo, n — o0
may thus be exchanged. Since

lim | Z7 o = | £™1llo,

we obtain
lim P(4,) = lim (| £™1|,)!™=R. (6.5)

From (6.4) and (6.5) we obtain (6.3) as announced.

(c) It is known that f restricted to the Julia set J is topologically mixing ([5],
Proposition 1), ie., if ¢ is an open set and O nJ # &, then f™0 > J for some m.
This implies for instance that if g >0 and g vanishes only at a finite number of
points, and if & @x = RPy with @, =0, then Py, can vanish only at a finite number
of points on a compact neighborhood of J. In many cases the position of the zeros
of g is such that necessarily @ > 0 on J. It then follows that R is a simple eigenvalue
of Z.

Let g =goexpy, with ye4. If R is a simple eigenvalue of &, then y—R is
analytic, and the functional derivative of log R with respect to y is @gpug, Where
Ug is the positive measure on J such that #*pup = Rug, normalized so that
ur(®@g) = 1. [This is a standard argument; let g =gqye'?, and write A’ =dA/dt at
t =0.] We have then

R' = [pp(ZL Pg)] = pp(Z Pg) + pr(ZL Pg) + ur(L %)
= Ug(Z @) + R[ug(Pr)] = RLur(yPr)]1-

(d) A result similar to Corollary 6.3 holds if the map f is replaced by an (m, n)-
correspondence defined by an algebraic curve (and S may be replaced by any
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closed Riemann surface, i.e., we may consider an (m, n)-correspondence on an
algebraic curve).

(e) The form of Conjecture 2.3 appropriate to the situation of Corollary 6.3 is
the following.

Conjecture. The power series

(@) '=exp— T 5 Y T] o(f*w

m=1 M weFixf™ k=0

converges for |z] < (RR’)™'/? and its zeros are precisely the inverses A~ ! of the eigen-
values A of &, with the same multiplicities.
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