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Abstract. We prove that the period doubling operator has an expanding direction
at the fixed point. We use the induced operator, a "Perron-Frobenius type
operator," to study the linearization of the period doubling operator at its fixed
point. We then use a sequence of linear operators with finite ranks to study this
induced operator. The proof is constructive. One can calculate the expanding
direction and the rate of expansion of the period doubling operator at the fixed
point.
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1. Introduction

Perron-Frobenius Operator. Suppose Mn is a compact, connected, oriented and
smooth Riemannian manifold, ί2c=Mw is an open set and σ:ί2->Mπ is an
expanding mapping. Let 0& = {v\v is a complex Lipschitz vector field on Ω) and
let φ be a real Lipschitz function on Ω. The Perron-Frobenius operator J ^ : ^ -• $
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is defined by

(jsV0(χ)= Σ (eφiy)My)
yeσ-Hx)

for ve&. An eigenvalue of S£φ is a complex number λ such that S£φυ = λv for a
nonzero vector field ve@. D. Ruelle [Rl] proved the following theorem:

Theorem A. The operator ££ φ has a positive and single maximal eigenvalue λ with
an eigenvector h, and the remainder of the spectra of <£φ is contained in a disk of
radius strictly less than λ. Moreover, if σ, φ are Ck for k= 1,2,..., ω, then h is a Ck

vector field.

More recently, in [P, T and R2], the function φ was allowed to be a complex
function and the spectral radius and the essential spectral radius of Sέ'φ on the
Cfe+"-setting for fc = 1,2,..., 0 g α ^ 1 were estimated.

Feigenbaum's Universality. Consider a family of unimodal mappings defined on
[-1,1], which is like the family ft(x) = t - (1 + t)x2 for ίe[0,1]. Suppose tn is the
bifurcation value of parameters t such that /„ t < tm does not have any periodic
orbit of period 2" and / „ 1 > tn, has an periodic orbit of period 2". M. Feigenbaum
[F], and independently, P. Coullet and C. Tresser [CT], observed that the ratio

Sn = — — converges to a universal n u m b e r δ = 4.669••• as n goes to infinity.
*n+l ~tn

To explain this universality, Feigenbaum [F] posed the following conjecture.
Suppose / : [ - l , l ] - > [ - l , l ] i s a symmetric analytic folding maping with a

unique non-degenerate critical point 0 and satisfies / ( 0 ) = l and / o 2 ( 0 ) < 0 <
/ o 4 ( 0 ) < - / o 2 ( 0 ) < / o 3 ( 0 ) . Let q = fo2(0) and /, = [<?,-q]. The mapping
f°f\Iq:Iq-+Iq is again a folding mapping with a unique non-degenerate critical
point. Suppose ocf is the linear reseating of Iq to [—1,1] with ocf(q) = — 1. Then
F = α / °/ °/ °α y r 1 is a symmetric analytic folding mapping defined on [—1,1].
Denote F by R(f). Then R is called the period doubling operator.

Conjecture A. The operator R has a hyperbolic fixed point g with (i) codimension
one contracting manifold and (ii) dimension one expanding manifold.

O. Lanford proved this conjecture with computer assistance [LI]. After him some
mathematicians proved the existence of the fixed point of R without computer
assistance, for example, [CE] and [E]. Recently, one of us proved the existence
of the fixed point g and part (i) using quasi-conformal theory [S]. The proof in
[S] not only works for the period doubling operator but also works for its
generalization, the renormalization operator (see Remarks in this introduction).
However, part (ii) still lacks of a conceptual proof (which hopefully, is valid also
for the periodic points of the renormalization operator). O. Lanford [L2] asked
for a completely conceptual proof.

What we Would Like to Say in This Paper. We give a proof of part (ii). We use
an induced operator <£φ to study the linearization TgR of the period doubling
operator R at the fixed point g. The operator if φ is a "Perron-Frobenius type
operator," but it is not positive operator. The eigenvalues of <£φ agree with the
eigenvalues of the linearization TgR except for the value 1. We use the linear
operator 5£n with the finite rank2"" 1 to approximate $£φ in the Cb-setting (Cb is
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the space of bounded vector fields on g(I)). Under the assumption that g is a concave
function \_L1~\, we prove the following statements:

1. Each S£n has an eigenvalue λn> 1 with a positive eigenvector vn, this means
that each component of vn is positive.

2. There is a subsequence {rc,}?L0 of the integers such that the limit λ = lim λn. > 1

is an eigenvalue of £?φ with an eigenvector v = lim υn. in Cb.
n~* + oo

3. The number λ is an eigenvalue of <£ φ in the Co>^setting ( C 0 1 is the space of
Lipschitz continuous vector fields on g(I)).

4. The limit λ is an eigenvalue of £?φ in the Cω-setting (Cω is the space of analytic
vector fields on g(l)).

These yield a proof of part (ii). The proofs are constructive. One can calculate
the approximating expanding manifolds and the rate of expansion of R by using 5£n.

We also learned that recently, J.-P. Eckmann and H. Epstein [EE] gave a
different proof of part (ii) and R. Artuso, E. Aurell and P. Cvitanovic [AAC] gave
a rigorous mathematical proof of part (ii).

Some Remarks on the Renormalίzation Operator. Suppose / : [ — 1,1] -• [ — 1,1] is
a symmetric analytic unimodal mapping with a unique non-degenerate critical
point 0. Suppose there is an integer n > 1 such that there exists an interval /
containing 0 and the restriction of the rc-fold fon of / maps/ into itself. Let n be
the smallest such integer and Iq = \_q, —q] or [ — q,q\ be the maximal such interval.
The point q is a fixed point of fon. Let <xf be the linear mapping which rescales
Iq to [—1,1] with 0Cf(q)= —1. Then F = (xf°f

on°ocji is a symmetric analytic
unimodal mapping defined on [—1,1]. We say / is once renormalizable and
R:fh->F is the renormalization operator.

Conjecture B. (I) For every periodic kneading sequence p = (w1*w2* *wfc)*00,
where p is decomposed into the star product of primary sequences, (see \_MT~\ for a
definition of a kneading sequence, a definition of star product and a definition of a
primary sequence), there is a hyperbolic periodic point gp (with this kneading sequence)
of period k of R with (i) codimension one contracting manifold and (ii) dimension one
expanding manifold.

Moreover, (II) R is hyperbolic on its maximal invariant set with (i) codimension
one stable manifold and (ii) dimension one unstable manifold.

Topologically, we knew that the maximal invariant set of R is like the Smale
horse shoe. Under the assumption that gp is a concave function and some a prior
estimate of linear rescale mapping ocgp, one may use the methods in this paper to
prove part (ii) of (I). But as H. Epstein pointed out to us if we also consider a
power law critical point and the exponent of g at its power law critical point is
large, then g is not a concave function any more. In this paper, the concave
condition is used only in the proof of statement (1). We are expecting a proof of
statement (1) without the assumption that gp is a concave function. This seems to
be a promising problem. The other option is to prove that gp is a concave function
for every periodic kneading sequence p in the case that the critical point of gp is
non-degenerate. But it seems to be a difficult problem.
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The other observation is that the generalized Feigenbaum's δp only depends
on the data related to the critical orbit.

2. The Period Doubling Operator and the Induced Operator

Suppose / is the interval [—1,1] and U <= C 1 is a connected open subset containing
/. Let J*(7, U) be the space of folding mappings / from / into / with a unique non-
degenerate critical point 0 and an analytic extension F on U which can be extended
to the boundary dU continuously. Suppose &S{I, U) is the subspace of even func-
tions in ̂ (7, U) and ^ s 0(I9 U) is the subspace of mappings which are in J^s(7, U) and
satisfy the conditions' /(0) = 1 and / o 3 (0) > - / o 2 (0) > / o 4 (0) > 0 > / o 2 ( 0 ) . The
period doubling operator R from 08St0{I, U) into J*s(7,17) is defined by

R(f)(x)=-ocffof(-a-ίx\ xel,

for fe£St0(I9 U), where ocf = -

Suppose g is the fixed point of R ([VSK]) and U is an open set contained in

the domain of g. Let α = , J = g(I) and Ω = g{U). Suppose iΓω(J, Ω) is the
0(1)

space of real vector fields v on J with a complex analytic extension V on Ω which
can be extended to the boundary dΩ continuously. This space equipped with the
uniformly convergent norm in a Banach space.

2.1. From the Period Doubling Operator to the Induced Operator. Suppose Jo and
Jι are the intervals [#(1), # o 3 ( l ) ] and [# o 2 ( l) , 1]. We define σ from JouJ1 into J by

{-ax, xeJ0,σ(x) = <

The mapping σ is expanding with expansion constant α for \g'(x)\ > 1, xeJl9 and
it has an analytic extension, which we still denote as σ, on ΩouΩx ID JOUJX with
also expansion constant α. Here Ωo and Ωx are disjoint subdomains of Ω and
contain Jo and Ju respectively. Moreover, the restrictions σ\Ω0 and σ\Ωx of σ to
Ωo and Ωx are bijective from Ωo and ί2 t to 12 and can be extended continuously
to the boundaries dΩ0 and dΩl9 respectively (see Fig. 1).

Suppose C is the attractor of g and A is the maximal invariant set of σ.

Lemma 1. The set A and the set C are the same.

Proof. The reader may check it by the equation g(x) = -oιg°g(-oι~1x).

Suppose φ(z) is the derivative σ'(z) of σ on ΩouΩί. We define S£φ from

and call it the induced operator. It is a "Perron-Frobenius type operator" but is
not positive. It is clearly bounded and compact (by MonteΓs theorem).

Suppose Tβs#(l, U) is the tangent space of Λs 0(7, U) at g and TgR from
7y»Sf0(/, U) into TgaSt0(I, U) {=Tβs{l Ό)) is the tangent map of R at g.
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Fig.1

Remark. Suppose V2m.1(x) = g'(x)x2m-1 -{g(x))

Lemma 2. The mapping g* from ^ω(J,Ω) into TgΛSt0(I,U) defined by
g*(v)(x) = v(g(x)) for xeΩ and vei^ω(J,Ω) is an isomorphism.

Proof. The proof is easy.

Lemma 3. The operators ϊ£φ and TgR have the same eigenvalues (counted with
multiplicity) except for the value 1.

Proof. By some calculations, we can show that

(f = /7~ 1 θT/?O/7 J- £Λ

where e1 is the projection from i^ω(J,Ω) to the eigenspace of eigenvalue one.

eTfr9θ{I9U) and v2m-1 =
* J The vector v2m-ι is an eigenvector of £fφ with eigenvalue

λim-i =oc~i2m~2) for m= 1 , 2 , . . . .

Lemma 3 tells us that we can use S£φ which has an explicit form to study the
eigenvectors and eigenvalues of TgR except the value 1. We will use it to find the
expanding direction and the rate of R at the fixed point g.

2.2. The Induced Operator <£φ. Suppose v is a real vector field on A. We say it
is a Lipschitz continuous if there is a constant M > 0 such that \v(x) — v(y)\
^M\x — y\ for any x and y in A. We say it is bounded if there is a constant
M > 0 such that \v(x)\^M for any x in A. Let i^0Λ(A) be the space of real
Lipschitz continuous vector fields on A and ^(A) be the same of bounded vector
fields on A. Suppose φ(x) is the derivative σ\x) on A. We define two linear operator
by the same formula. One is jSfφ§L from Ψ"0Λ(A) into i^0Λ(A) defined by

(&φ,Lv)(χ)= Σ φ(y)*y)
yeσ-Hx)

and the other is &φtB from Ψ*\A) into V\A) defined by

)= Σ

They are bounded but not compact.
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Lemma 4. Suppose λ is an eigenvalue of 5£ φ B and λ > α + 1. Then it is an eigenvalue

0fX9.L

Proof. There is a nonzero vector field v in Yh(Λ) such that

^φ%Bυ = λV.

This is

for any x in A. From this we can have an inequality

\x — y\ ) λ — α— 1

where M is a positive constant. In the other words, v is Lipschitz continuous on
A and is an eigenvector of S£φ%L with the eigenvalue λ.

Lemma 5. Suppose λ is an eigenvalue of <£φ L and λ > α + 1. Then λ is an eigenvalue

ofseφ.
Proof. The basic idea to proof this lemma is to use the fact that the grand preimage

00

(J g~"(A) is a dense subset on / and to use the equality (*) countably many times.
w = 0

We will not write down our proof in detail because recently there is a more general
theorem proved by D. Ruelle [R2]. One of us learned this theorem when he visited
IHES. We outline some of Ruelle's result here.

2.3. A General Theorem for Operators Like the Induced Operator. In this subsection,
the notations JO,JUΩ,ΩO and Ωί are the same as that in Sect. 2.1.

Suppose e from J o

u ^ i i n t o a n ^ i n t o J ιs a n expanding mapping such that
the restrictions e\J0 and e\Jt of e to Jo and Jλ have bijective, expanding, analytic
extensions Fo and Fx from Ωo and Ωt to Ω, respectively. Moreover, Fo and Fx

can be extended to the boundaries dΩ0 and dΩ1 continuously. We use E to denote
the expanding map

zeΩ
09

from ΩOKJΩ1 to Ω.

Suppose φ from JouJi into the real line is a real analytic function with a
complex analytic extension Φ from ΩoκjΩγ into the complex plane which can be
also extended continuously to the boundaries dΩoudΩ^^. Let θ be the expanding
constant of E and ΛE be its maximal invariant set. A linear operator ϊ£φ from
rω{J,Ω) into rω{J,Ω) is defined by

(JS?,)(ι>)(z)= X φ(z)v(z).
wsE-ι(z)

Suppose ir0Λ(AE) is the space of real Lipschitz continuous vector fields on AE.
Let \φ\ be the function which takes values \φ(z)\ at all zsΩouΩ1. We assume \φ\
is a positive function. Then the operator i f | φ | from ir0Λ(AE) into i^0Λ(AE) defined
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by

(j?w)(t>)(χ)= Σ \Φ\(yHy)
yeE~Hx)

is an Perron-Frobenius operator. For the positive function \φ\9 we can define its
pressure as

(\og\φ\)dμ),
ΛE

where μ is an invariant measure of E and hμ is the measure-theoretic entropy of
E with respect to μ. By the variation principle (see, for example [B]). we have that

(P(log|φ|)=lim-log( £ Π \Φ(Eoi(x))\

Let A = exp(P(log\φ\)). It is a simple eigenvalue of ί ? ^ and all other eigenvalues
of J5f|ψ| are in the open disk DA = {z\eCx,\z\< A] (see the theorem in the
introduction). Suppose <£φL from V0Λ{AE) into ^ ° ' 1 ( ^ E ) is defined by

(XΦJ)(Ό)(X) =

and Aγ =

L e m m a 6 (see [ R 2 ] ) . All the eigenvalues of 5έ}

φL are in the open disk DA and if λ
is an eigenvalue of ££φ L and \λ\> A ί 9 then λ is an eigenvalue of S£'φ.

Suppose σ is the expanding mapping induced from the period doubling operator
and φ is the derivative σ'. The expanding constant of σ is α. By some combinatorial
arguments, we have that

xefix(σ°n) i = 0

Moreover, by using the variation principle,

and thus A1=oc~1A^a+ I. From this, Lemma 6 gives a proof of Lemma 5.
Moreover, if λ is an eigenvalue of <£φ B and λ > α + 1, then it is an eigenvalue of
TgR.

3. The Construction of the Expanding Direction

We prove that the induced operator 5£φ has an expanding direction and construct
this direction in this section. The transformation of this direction under g^ is the
expanding direction of the period doubling operator.

3.1. An Easy Observation. Suppose / = [— 1,1] is a closed interval of the real line
R1 and D =5/ is an open disk in the complex plan C 1. Suppose J o and Ix are
disjoint closed subintervals of / and e is a piecewise linear expanding map from
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/QU/J onto and into / with the derivative

b,

where b > a > 2 are two constants. Let E be the extension of e from Do and Dί

onto and into D with also the derivative, we still denote it by φ,

φ(z) = E\z) = \
(A

Let i^ω(l, D) be the space of real vector fields v on / with a complex analytic
extension V on D which can be extended to the boundary dD continuously. For
ίe[0,1], we define

{ae2πi\ XGJo,

[b9

and &φt from Ϋ"ω(I,D) into ^ ω ( / , D ) by

where E o and £ i are the inverse branches of E.

f 1 1 I 0 0

Propos i t ion A. The set < λ Λ t t = -—^ + 2 π. f ( w_X ) w _ 1 > is the spectrum of &φv
I b e a Jn=o

Proof. Suppose the center of D is 0. Then every vGi^ω(I,D) has the Taylor
expansion

00

v(z)= £ akz\
k = 0

where ak are all real numbers. To find λnt for n = 0,. . . , + oo, we may solve the

equation

fori;n(z)= X α ^
Λ = 0

Under the condition b>a>2, | | λ n t | | < 1 for n > 1. The other two eigenvalues
λut( = 2 for all ίe[0,1]) and λOtt = b + e2πita are special. Here 2 = exp(/z(£)) is a
topological invariant where /*(£) is the topological entropy of E.

From this proposition, we can observe that λOt is the maximal eigenvalue of
jSfφt for all ίe[0,1] if and only if b — a > 2. In the other words, it is the maximal
eigenvalue of ££φt for all ίe[0,1] if and only if b — a > 2: an unbalanced condition,
the orientation preserving part is much stronger than the orientation reversing
part or vice versa.

3.2. The Construction. We use the same notations as that in the previous section.
We note that the derivative of σ on Jx is strictly greater than one and the derivative
of σ at the right end point of J is α2.
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Suppose φί is the function defined by

— α, xeJonA,

α2, xeJ1r\A

and £^1\irb{A)-^irb{A) is the corresponding operator defined by

(<?1v)(x)= Σ

The number λx = α(α - 1) is an eigenvalue of i f x with an eigenvector i^ = 1 on A.
Suppose σ~2(J) = J21uJ22uJ23uJ24r and J 2 3 = |>21,fc2i]> ^24 = ^22^22]

(see Fig. 2). Let β21 = \g'(b21)\ and jS22 = \g\b22)\ = |^(1)| = α. Because 0 is a
concave function [LI], we have that βiitkβn- Suppose φ2 is the function defined
by

{ — α ,

α j ? 2 1 ,

aβ22,

and if2:i^b(/l)->irb(/l) is the corresponding operator defined by

(JS?2f)(x)= Σ

Let k21 be the vector field on A defined by

0,

and fc22 = 1 — k21. The space R2 = span {/c21, k22] is a subspace of i^h{λ). For any
v =

- α , ccβ21\fx21v 2v)\x) = yκ2Uκ22n

Let A2 be the matrix

Proposition B. The maximal eigenvalue of A2 is

~ I) 2

2

with an eigenvector v2 = (ί2 1,1), ί21 < 1.

Prao/. The proof uses linear algebra.

Furthermore, suppose σ~n(J) = JnluJn2u uJn 2«-i^Λ(2»-* + D k

and J Λ ( 2 n-i + / ) = [flΛi,fcw ] (see Fig. 2).

Fig. 2



518 Y. Jiang, T. Morita and D. Sullivan

Let βni = \g'(bni)\ for i = 1,2,..., 2n~1. Because g is a concave function, we have

that

Suppose φn is the function defined by

f-α, xeJonA,

and 1£n from Ψ~b(A) into Y\Λ) is the corresponding operator defined by

( J 2 » ( X ) = Σ <Pn

Let fcMi be the vector field on A defined by

tθ, xeAMiJ^i-^uJ^nA)

for i = 1,2,..., 2W~ *. The space R 2"~ ι = span {fcnl,..., kn2n-1} is a subspace of iΓbι

For any f = xM l/cπ l + '-xn2n-ikn2n-^ we have that

where Kn = (knί9...,kn2*-ι) and X n = (x M l , . . . ,x n 2 ") a n d 4̂M stands for the
2»-i x 2 " " ^ m a t r i x

0 0

0 0

0 0

0 0

0

0

0

0

0

0

— α

— α

0 ..

0 ••

0 ..

0 ..

— α ••

— α ••

0

0

• 0

. 0

• —α

• —α

• 0

• 0

• 0

• 0

— α

— α

0

0

0

0

0

0

α f t ι i

αft.2

0

0

0

0

0

0

0

0

aft
aft

0

0

0

- «Λ(2—-3) 0

O ί β n - l 0

0 Oί/J

0 aft,2n-

Proposition C. The matrix An has an eigenvalue λn which is greater than a(a — 1).

Proof. Suppose CNn is the set { (x Λ l , . . . , x n 2 n- i ) | eR 2 f l ~\x, , i^0 for ί = 1,..., ί = 2 Λ " 1

and x n l ^ x n 2 ^ xn2n -1}. It is easy to check that CNn is a convex cone and An maps

this cone into the interior of this cone and zero vector. By the Brouwer fixed point

theorem, we conclude that there is a unique direction R+vn in this cone which is

preserved by An. Suppose vn = (tnί,..., tn2n-1) with tn2n-1 = 1 is an eigenvector with

the eigenvalue λn. By the equation Anvn = λnvn, we have that — α ί n l + α 2 = λn.

Because tnl < 1, we get λn > α(α — 1).

Remark. Because the cone CNn is a subset of the cone CNn + 1 for any n ^ 1, we

can prove more that {λn}™= t is an increasing sequence. But we will not use this
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fact because we would like the following arguments to be true even in the case
that g is not a concave function.

Proposition D. There is a subsequence {nj of the integers such that the continuous
extension of the limit υ=limι; Π i on the critical orbit Ov(g) = {gon(0)}™=ί is an

eigenvector of ^£ φB with the eigenvalue λ = lim λn..

Proof Because Or(g) is a countable set, we can find a subsequence {WJ^Q such
that for every aeθr(g\ the limit vn.(a) exists as i goes to infinity. We denote this
limit as v(a). For the sequence {λni}?L0, we can find convergent subsequence. Let
λ be the limit of this subsequence. Then we have that {^φ,Bv){a) = λv(a) for any
aeθv(g). Now by using the Eq. (*) and the fact α(α — 1) > α -I- 1 which can be
implied by α > 1 + y/ϊ9 we can show that v has a continuous extension on A which
is the closure of Or(g).

3.3. A Program. In Sect. 3.2, we use a subsequence of {vn}™=0 to prove that there
is an expanding direction of JS?φ. Under the assumption that g is a concave function,
we can say more on the sequence {vn}™=0 and the corresponding eigenvalues
{λn}™=0. For example, {λn} is an increasing sequence and for every aeΛ, {vn(a}}
is a monotone sequence. In practice, we can use these good properties to give an
effective program to find the expanding direction and the rate of the period
doubling operator as follows:

Suppose v is a vector in Rk. We use (v)i to denote its /th-coordinate.
(1) Start from the constant function v1 = l. Consider it as a vector in R2 and

compute the limiting vector

υ2 = lim

and the corresponding eigenvalue λ2 = α(α — C42ι?2)i)
(n) Let u ^ i G R 2 " " 2 be the eigenvector of ^ n _ 1 with the eigenvalue λn-x.

Consider vn-1 as a vector in R 2 " ' 1 and compute the limiting vector

vn = lim , , " w " 1 —

and the corresponding eigenvalue λn = α(α — (A î J J .
(00) The limiting vector

V = lim g+(vn)

n\—>oo

is the expanding direction and the limiting value

δ = lim λn

n\—> oo

is the rate of expansion of the period doubling operator at the fixed point g.
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