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Abstract. The wave and scattering operators for the equation

with m > 0 and λ > 0 on four-dimensional Minkowski space are analytic on the
space of finite-energy Cauchy data, i.e. L2(R3)®L2(R3).

1. Introduction

This paper answers a question, raised by Baez and Zhou in [2], whether the
scattering and wave operators for

(D + m2)φ + Λφ3 = 0, m>0, λ > 0 , (1)

are analytic or not on the whole space of finite-energy data L 2(R 3)®L 2(R 3). The
answer is affirmative. This implies, which is noted in [2], that the massive <p4

theory is completely integrable. The same holds for the massless φ 4 theory proved
by Baez in [1].

We start by introducing some notation and some basic facts following the
presentation given in [2]. Consider Eq. (1), where φ = φ(t9 x) is a realvalued function
on R x R3. Let L*(R3) denote the Sobolev space of functions on R3 with s derivatives
in Lq and let X denote the Hubert space L2(R3) Φ L2(R3) with norm || || x given by

/ I \ 1 / 2

I l ( " i , u 2 ) | | x = - J ( IVu^ + m ^ + u 2 ) ^ .
\2 R3 /

Given weX there is a unique distributional solution φ of (1) with

(<P,φ)lί = o = w (2)

Let U(t)u = (φ, φ)\t and let U0(t) be the orthogonal linear operator on X corres-
ponding to the case λ = 0, i.e. the linear Klein-Gordon equation. If N(uί9u2) =
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(0, - λu\\ which maps X into X, then U may be defined in terms of Uo:
t

U(t)u = U0(t)u + j U0(t - s)N(U(s)u)ds.
o

For any weX, there exist u+eX such that

\\Uo(t)u±-U(t)u\\x^0 as ί->±oo.

In fact there are homeomorphisms, the wave operators,

W±:X->X

such that W+(u±) = u. The scattering operator

is defined by S(w_) = M+, i.e. S = (W+)~1W-. The existence of S for low energy is
due to Strauss [12] and on the whole space of finite energy to Brenner [4].

To state our results we need some more notation. Let Lp(Ls

q) denote
Lp(R;L*(R3)) and set Z = L^LDnL^L^ with norm

Furthermore by an analytic mapping we mean an infinitely Frechet differentiable
mapping with a locally norm-convergent Taylor series. Our main result is

Theorem 1.1. The operators W+ and S are analytic from X to X.

The proof of Theorem 1.1 rests on the following result.

Theorem 1.2. Let ueX and let φ = φ(u) be the unique distributional solution of (1)
with u = (φ, φ)\t=0' Then φeZ and the mapping uh^φ is analytic from X to Z.

Theorem 1.2 is a generalization of Theorem 1 in [2] and follows from an
application of an implicit function theorem. We use the same approach here, but
where Baez and Zhou argue with the contraction mapping principle we use a
Fredholm theory argument. The crucial fact for our method to work is that a
certain operator is power-compact (the main lemma).

This paper is organized as follows: Sect. 2 contains a proof of Theorem 1.2,
Sect. 3 contains a proof of the main lemma and Sect. 4 contains a proof of
Theorem 1.1.

2. Proof of Theorem 1.2

The existence of the distributional solution φ of (1) and φeZ is proved in [2], so
it only remains to show that the mapping u\—>φ(u) is analytic. For ueX and φeZ
consider the mapping

R(u, φ):= φo(u) — λ J K(t — s)φ3(s)ds — φ(t\
o

where

' " Δ + m2) (3)
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and φo(u) denotes the solution of the linear Klein-Gordon equation

(Π + m2)φ = 0

with data (φ, φ)\t = 0 = u. The following lemma we quote from [2].

Lemma 2.1. Given φί9φ2,φ3eZ, let
t

φ(t) = j K{t - s)φ1(s)φ2(s)φ3(s)ds.
o

Then φeZ and the map (φi,φ2>ψ3)]-^Φ is analytic from Z 3 to Z.

This and Lemma 3.2 below imply that R maps X x Z into Z. Moreover R:Xx
Z -> Z is analytic, since it is linear in u and multilinear in φ (Hartogs theorem).
Finally, R(u, φ{u)) = 0, since R(u, φ) = 0 is the integralequational formulation of (1)
with data (2). The analyticity of u\-+φ(u) is, according to the analytic implicit
function theorem [3], a consequence of the invertibility of

D2R(u9φ(u)):Z->Z

for each weX, where D2 denotes the Frechet derivative in the second argument.
We remark that from now on the analyticity plays no role. This implies that our
method can give Cs-regularity for ui—>φ(u) once we can prove that the mapping
R from X x Z to Z is Cs-regular, provided we can show that D2R(u,φ(u)):Z-*Z
is invertible for each ueX. The technique can also be generalized to higher space
dimensions choosing appropriate function spaces Z. It is also from here that our
argument differs from that of Baez and Zhou, namely they prove the invertibility
of D2R(u,φ(u)) by a contraction argument and are thereby limited to low energy
data.

The rest of this section contains a proof of the invertibility of D2R(u, φ(u)). For
ueX and ψeZ we have

(D2R(u, φ(u))(φ)){t) = - 3A j K(t - s)(φ(u)2φ)(s)ds - φ(t).
o

To prove the injectivity of D2R(u,φ(u)) we argue as follows.
Suppose that D2R(u,φ{u))φ = 0 , so that

φ(t)=-3λ\κ(t-s)(φ(u)2φ)(s)ds.
o

Then by Proposition 3.1 below, we obtain that

o L*

where the conservation of energy, i.e.

\\ψ(u)\\L ( L , < C | | « | | X . (4)

is used. Finally φ = 0 follows from GronwalΓs inequality. By the open mapping
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theorem it remains to prove that D2R(u,φ(u)) is surjective. Set

Tuψ(t)'= 3A J K(t - s)(φ(u)2ψ)(s)ds. (5)
o

Then we obtain D2R(u, φ(u)) = - (/ + Tu). Hence, if Tu were a compact operator
from Z to Z, then the Fredholm alternative theorem, see [7], would yield surjectively,
since / + Tu is injective. However, Tu is (probably) not compact, but it is enough
to show that Tu is power-compact, i.e. Tk

u is compact for some positive integer fc,
e.g. k = 3. The reason is that we can factor out / + TU from / + Γ3, i.e. we have

The Fredholm alternative theorem can still be applied since / -f T3. is injective by
an analogous argument to the one given above for / + Tu using Proposition 3.1.
Hence (6) gives the surjectivity of / + Tu. So it remains to prove

Lemma 2.2 (Main Lemma). Let ueX. Then

T3

U:Z->Z
is compact. u

3. Proof of Power-Compactness of Tu

We immediately conclude from Lemma 2.1 that Tu is a bounded linear operator
on Z. In particular, we have the simple but crucial estimate

|| Tuφ II ι ^ CII φ | | L 3 ( L 6 ) , (7)

which follows from Proposition 3.1 and the first part of Theorem 1.2. Hence it is
enough to show that T2

U is a compact operator from Z to L3(L6). Moreover we
can argue with sequences since a subset of a Banach space is strongly relatively
compact iff it is strongly relatively sequentially compact. (This follows for all
metrizable spaces.) Hence it is (more than) enough to prove that for each bounded
sequence {φj}JL0 in Z, the sequence {Tuψj}JL0 has a convergent subsequence in
L3(L6).

The idea of the proof is simply to extract a converging subsequence of {Tuφj}f=0

in L3([-ΛΓ,iV]; L 6({|x| gΛΓ})) for JV= 1,2,3,... and then show that a Cantor
diagonalization process yields a converging subsequence in L3(L6). The proof is
divided into four steps.

Step 1.
lim sup || 7 L ^ J I I L 3 ( ( - O O , - T ] U [ T , O O ) ; L 6 ) = = 0 .
Γ->oo j= 1,2,3,...

Step 2.

lim sup \\TuΦj\\L3([-τ,τ];L6a\χ\zR})) = ® f o r a l l ^Γ>0.
R->oo .7=1,2,3,...

Step 3.
{Tuφj} has a convergent subsequence in L 3 ([ - Γ, T]; L6({| x | ̂  R})) for all R,T>0.

Step 4.
A Cantor diagonalization process.
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Throughout the paper we let φ and φ0 denote the solutions of (1) with data
(2) and (1), for λ = 0, with the same data (2) respectively. When we wish to indicate
the dependence on data u we write φ(u) and φo(u) respectively. However we use,
inconsistently with the rule above, the notation φ(ή and φo(t) to indicate the time-
dependence. It should be clear from the context what is meant. Thus with these
notations and with K defined by (3), we have

= φo(t)-λ$K(t-s)φ(s)3ds. (8)

We now recall some wellknown estimates that will be used repeatedly.

Proposition 3.1. (Lp — Lp> estimate). Let 1

I g θ S 1. Then if δ(n + 1 + θ) ̂  1 + s - s\

| | K ( ί ) 0 | | L , ^

^2^p\ - + — = 1 and δ:=
P P' 2 P'

where

In particular, we will use this estimate with n = 3,p = 8/7, // = 8, s = 1 and s' = 0.
We refer to Brenner [4] for a proof.

Furthermore we quote a space-time estimate from [2], that is proved along
the lines for similar estimates of Marshall/Strauss/Wainger [10], Marshall [9] and
others.

Lemma 3.2.

For a proof see [2].

Step 1.
Let T > 0 be fixed. Holder's inequality yields

ί IK(t-s)(φ2φ(s))ds

$K{t-s)(φ2ψ{s))ds

at

3/9

$K(t-s)(φ2ψ(s))ds
o

T \0
σo / oo

\l/3 ft \8/3

$\\φ2ψ(s)\\L2ds) -[IWK(t-s)(φ2φ(s))\\Lsds) dt

24/9
dt

J J
\l/3 ft

ύC\ f {\\φ{s)\\u)2IIΦ(s)\\uds) '[ik(t-s)\\φ2ψ(s)\\ t ds)
T\-oo / \0 *'Ί J

\8/3

\8/3

ί [μ(t-s)\\φ2φ(s)\\ ds) dt,
τ\o L»'7 J

where we have used Proposition 3.1 with k being a positive Lx-function. To simplify
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notations set g(s):= \\(φ(s))2φ(s)\\ . . Then we obtain with Jensen's inequality
L8/7

oo /t \ 8/3 oo /t \ 8/3

j ( J k(t - s)g(s)ds dt = j ( f k(s)g(t - s)ds dt
Γ \ 0 / Γ \ 0 /

T \ 0

oo t

T 0
oo t

g J ( J k(s)ds J k(s)g(t - s)8 / 3 dsdt
0 / 0

ί

$k{s)g{t-s)8ι:sdsdt
o

= C | jίc(ί-s)gf(s)8/3ί/sdt
T 0

T oo

( T oo oo oo \

J j k(t - s)dtg(s)sl3ds + f J k(t - s)dtg{s)s/3ds
}

= C

0Γ

Γ/2 oo

0 Γ

Γ s

T s

T oo

J j
Γ/2 Γ

Hence we observe that

lim sup J
Γ-oo 7=1,2,3,... T

jK(t-s)(φ2ψj(s))ds

provided that

lim sup $(gj(s))8l3ds = 0,
T+ j l 2 3

(9)

where g} denotes g with ψ replaced by φr

Set Lτ

p{Lq)\= Lp{[T, oo);Lq). Holder's inequality implies that

3/8

)

l U i , | | φ l l z , r α , II Φ\\Lτ(L . + •••),

where the dots indicate two terms obtained from the first by cyclic permutations
of φ, φ, ψ. Moreover, using Sobolev inequalities and interpolation inequalities (see
[2] Lemma 4),

τ ) θ \
L3 (L6>

for some θuθ2> 0. Thus we conclude that J g}{sfβds can be made arbitrary small,
T

uniformly in {ψλ, choosing T large, since | |<p|LT / F , c a n b e arbitrary small. This
proves (9).
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-T

IK(t-s)(φ2ψ{s))ds dt = Olim sup j

Γ-oo j = l , 2 , 3 , . . . -oo

is proven in the same way.

Step 2.
Choose χeC™(R3) such that χ = 1 in ̂ ( 0 ) , supp χ c B2(0) and 0 ^ χ g 1. Here β .

ίΛ
denotes the set {xeR 3 : | x — y\S p} Moreover set χR(x):= χ\ — I, ηR:=

LTJL6):= LJ[- T, T];L6). We claim that, for all T> 0,lim sup
.7=1,2,3,...

= 0.
Lτoo(L6)

For this it is enough to prove

lim sup sup ||φf/Λ||.
K^oo j = l , 2 , 3 , . . . L

since

jK(t-s)(φ2ηRφ(s))ds\\ £C\\φηR\\L

where C only depends on ||<p||z

 a n c ^ ll^llz We recall that φ = φ(u) corresponds
to data u = {u1,u2)eL\® L2, which yields | |^Λw||x-^0 as R^oo. Say ||^κo

wllx < ε

This implies that \\'φηR \\ ι<CεfoτR> 2R0 + T, where C only depends on η9

as a consequence of hyperbolicity (the finite speed of propagation =1) and
uniqueness of solution of (1) (see e.g. [4]), giving

) = φ(ηRou)(t,x)

for ί e [ - Γ, Γ] and |x | > 2R0 + T9 and the energy estimate

for all ύeX.

Step 3.
The purpose of Step 1 and Step 2 was to localize t and x to bounded sets, namely
a bounded interval and a ball respectively. We can now apply the Arzela-Ascoli
theorem.

Lemma 3.3. A sequence {fj}JL0 in C([— T,T~\\ L6(BR(0)) has a convergent sub-
sequence iff {fj}JL0 is equicontinuous on [— T, Γ] and, for each te\_— T, Γ], the
sequence {fj(t)}JL0 has a convergent subsequence in L6(BR(0)).

To prove that

K{t - s)(φ2χRφj(s))ds -T,T];L 6 )
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and the equicontinuity on [— T, T] we argue as follows:

t + h t

J K(t + h-s)(φ2χRψ(s))ds-
L6

h - s) - K(t - s))(φ2χRφ(s))ds
L6

t + h

J K(t + h-s)(φ2χRΨ(s))ds

+ h - s) - K(t - s))(φ2χRφ(s))ds

h - s) - K(t - s))(φ2χRφ(s))ds
0

t + h

1/9

8/9

Set X0(ί):= - 1̂ + m2). This implies that

J {K{t + h _ s) _ χ ( ί ^

0 0

t 1

0 0

Here we have applied the trivial estimate

ll^,!..,. ί6[-Γ,T].

2, ίeR.

Furthermore we get

j {K{t + Λ _ s ) _ χ ( ί _ s ) ) ( φ 2 χ R l A ( s ) ) d s

^ J I Kit + h - s)(φ2χRψ(s)) \\Lgds + } || Kit - s)(φ2χRφ(s)) \\Lsds

llt α V te[-τ,r].

Finally

t + h

h-s)(φ2χRφ(s))ds
t + h

^ J h-s)(φ2χRψ(s))\\L6ds,

t + h

is treated, as in Step 1 applying J k(t + h — s)ds-+ 0 as fc|0, uniformly in ίeR, to
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yield

265

lim sup
hiO 1,2,3,....

t + h

J h-s)(φ2χRψj(s))ds = 0
L6

uniformly in ί e [ — T, T]. This proves the equicontinuity.
It remains to show that, for all ί e [ - Γ, Γ],

Jf(ί):= s:7 = 1,2,3,...

has a convergent subsequence in L 6 . So, fix a ί e [ — T, T] and δ > 0 small enough,
to be determined later, and let χ[Ot] denote the characteristic function for the
interval [0, £], if t > 0, (and χ[t0] the characteristic function for the interval [ί, 0], if
t < 0). Moreover, let Fκ, /ceR, denote the operators on real L 2 ( [ - Γ, T])-functions
/i defined by {Fκh)A

n = (iή)κhn9 neZ- {0} and (FKK)Q = h0, whereA denotes the Fourier
operator. For t > 0, we then obtain with ParsevaΓs formula

ίK(t-s)(φ2χRψ(s))ds
0

J
- Γ

Here we note that, for K < 1/2, we have || Fκχ[Ot] | |L 2 ( [_ Γ > Γ ] ) < oo. This is trivial since

\\FκX[ot]\\L2([-τ ri) = ^ l Σ I n>c'~ ) + M ^ e s e c o n d factor is treated by
Wz-{0}\ nj )

the following lemma due to Bernner [6]

Lemma 3.4. For 0 ^ K < 1 am/ s ^ 1,

This yields

Pick δ = K < 1/2 and observe that

where C depends on T and R. The compactness of Jf (ί) follows from the Rellich
Kondrachov theorem. The case t < 0 is treated similarity.

Step 4.
For each JVe {1,2,3,...} choose a T(N) (Step 1) and then a K(N) (Step 2) such that

and
•= f ^ 3 " L 3 ( ( ~
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t

where T{

u

R(N))φ(t):= J K(t - s)(φ2ηR(N)φ(s))ds. Then choose inductively subsequences
o

{ΨJ,N} of {Ψj,N-i}> N = 1,2,..., with ψjt0 = φj9 such that {TUtR(N)ψjtN} converges in
L3([- T(N), Γ(JV)]; L6), where TUfR(N):= Tu - T(

u

R(N)) (Step 3). Then the subsequence
{ΨN,N}N= I converges in L3(L6). This completes the proof of Step 4 and Theorem 1.2.

4. Proof of Theorem 1.1

In [2] Baez and Zhou prove that W± and S are analytic mappings from a neigh-
borhood of X to X. They also claim that if one could show that u\-*φ(u) is analytic
from X to Z then the analyticity of W± and S would follow. It is not clear to us
how their argument should be generalized to give this result. Instead we supply
a new proof based on the following fact, see e.g. [8].

Lemma 4.1. Let Ak:X->X, k= 1,2,... be analytic mappings, uniformly bounded on
all compact sets D c X . Also assume that Aku->Au as /c—• oo for all ueX. Then the
mapping A:X—>X is analytic.

We claim that it is enough to prove the following lemma.

Lemma 4.2. For all compact sets D c X ,

ueD

To see this let U(T2, 7\):X-*X denote the mapping u\->(φ(u),φ(u))\t=T2, where
φ(u) is the solution of (1) with data (φ, φ)\t=Tl = u. Note that U(T2, T^ueX follows
from conservation of energy. Moreover the wave operators and their inverses can
be defined as

W±= lim
Γ-»±α>

l'= lim Uo(-T)U(T,0).
Γ-+ ± oo

and

However all operators (70(T3)(7(T2,T1) and ViT^^Ό^T^TuT2,T3eR, are
analytic since the mapping u\-+φ(u) is analytic, linear mappings are analytic and
analytic mappings are closed under composition. Also, U0(T) being an isometry
on X, Lemma 4.1 implies that W±9 W+ 1 and S are analytic provided

sup sup | | t / ( Γ 2 , T 1 ) u | | x < o o
ueD Ti,Γ2eR

for all compact sets D c= X. £7(72,7^) only depends on T2 — Tί so it is enough to
consider T2 = T and 7\ = 0. Then U(T90) = U(T) and

r
U(T)u = U0(T)u + J U0(T- s)N(U(s)u)ds
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with notation from Sect. 1. This yields

Hence it is enough to prove

sup II φ(u) ||
ueD

ϊ\\U0(T-s)N(U(s)u)\\xds
0

, ΓeR.

L3(L6)
< 00. (10)

Proof of Lemma 4.2. To prove that || φ(u) || x is uniformly bounded for u in compact
subsets of X, we follow the method in [4] that goes back to Morawetz and Strauss.
For the convenience of the reader we give a complete proof. Throughout this
section we let C denote constants that only depend on numerical entities, λ, η, p
and others, that are independent of u, while C(D) denotes constants that also
depends boundedly on | | M | | X . The value of the different constants C(D) may vary
from line to line. Only occasionally we index the constants for reference. Moreover,
for simplicity, we write φ and φ0 for φ(u) and φo(u) respectively.

The proof is carried out through a sequence of five lemmas. We start with an
application of Holder's inequality and the Sobolev embeddings.

Lemma 4.3. There exists a constant C, such that for all ηe\_ — \, 1],

Next we show that (10) follows from

sup II φ ||
ueD

L4(L8)
< 00. (11)

Proof of (11) implies (10): Holder's inequality yields

jK(t-s)φ3(s)ds
L6

$K(t-s)φ3(s)ds
L2

1/9
$K{t-s)φ3(s)ds
o

8/9

Hence by (8) and by conservation of energy

jK(t-s)φ3(s)ds
L2

The second factor is estimated by Proposition 3.1

SK(t-s)φ3(s)ds <C . ds

where ). Moreover by Lemma 4.3

\\φ3(s)\\Lt ύC(\\φ(s)\\ .)3>2(\\φ(s)\\L/12,
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so again by conservation of energy

SK(t-s)φ3{s)ds
Ls

jk(t-s)(\\φ(S)\\Lfl2ds
0

Finally Young's inequality, Lemma 3.2 and (8) imply

/ \4/3

sup || φ | |L3(L6) ύ C(D)[ 1 + sup || φ | |L4(Lg) .
ueD \ ueD /

This completes the proof of (11) implies (10).
Next we state a lemma from [4].

Lemma 4.4. For <?e[4, 12],

For a proof of this space-time estimate we refer to [5].

Lemma 4.5. Let k(t) be given by Proposition 3.1. Then

sup
ίeR

and

sup
ίeR

IKt-s)\\φ(s)\\Lιods

Proof of Lemma 4.5. Proposition 3.1, Lemma 4.3 and conservation of energy
applied to (8) give

II φ(t) \\u ^ II Ψoit) ||Lβ + f k(t - s) II φ3(s) || ds
o 8'7

t

^ II<Po(t)Hi. + C(D)\k(t - s)(||φ(s)hf-'ds
0

for some ηe(0,1). Multiply by k(σ — t) and integrate over (0,σ). We obtain

f k(σ - t) || φ(t) \\L8dt ί]k(σ- t) \\ φo(t) \\LJt

C(D) J k(σ - t) J k(t - s)( || φ(s) \\UY ''dsdt.
0 0

Here we use

g J *(σ - t)(\k(t - s) || φ) h.
0 \0

Yj k(s)ds\dt
0 /
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together with the notation
t

g(t):=Sk(t-s)\\φ(s)\\L8ds9

o

t

go(t):=$k(t-s)\\φo(s)\\uds
0

to obtain

But keL,l3nLx so Lemma 4.4 gives

and hence (12) implies

s\xpgo(σ)SC(D)
(76 R

sup g(σ)^C(D).

This proves the first part of the statement. The argument for the other part is similar.
Next lemma gives a weak decay estimate that is crucial.

Lemma 4.6.
t

lim supJ/c(ί-s)||<p(s)||L8<ίs = 0
ί*->oo t^t* t*

and
-t*

lim sup J k(t-s)\\φ(s)\\L8ds = 0
ί*->oo ί^f* -t

uniformly for ueD.

Proof of Lemma 4.6. We start by proving the result for the case with compactly
supported data. Moreover we first prove the following claim:

For ε, T and S positive numbers there exists a Sx> S, independent of the support
of data, and an interval I = [ ? - T,f] c= [ S , ^ ] such that for t ^ f,

t

f k(t-s)\\φ(s)\\Lsds<ε.
i-T

To prove this we apply a famous lemma of Morawetz and Strauss.

Lemma 4.7. Assume that data ueX has support contained in | x | ^ Λ o < o o . Let
ε0, T, S be positive numbers. Then there exists an S1 depending boundedly on S, T, ε0

and || w || x but not Ro, and there exists an interval I = [t — IT, f] g [5, S J such that

tf\φ(x,t)\4dxdt<ε0.
I

For a proof we refer to [11].
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Multiply

by k(s - τ) and integrate over (5 - 7 » , s>T. Holder's inequality and Lemma 4.5
yield

s / s \l/24

J k(s-τ)\\φ(τ)\\L8dτ^C(D)( J \\φ{x,τ)\Uxdτ) .
s-T \s-T /

Moreover, Proposition 3.1 and (8) give

J + ] k{t-
0 ί - Γ

for some ηe(0,1) and so
t t

j fc(t-s)IIφ(s)||i.dsg J k(t-s)\\φo(s)\\Lsds
t-T t-T

S+ C(D)( \ k(t-
\f-r

+ j fc(ί-s) } k(s-τ)(\\φ(τ)\\Ls)
1-''dτds\

i

Here by Lemma 4.5

f k(t-s) J k(s-τ)(\\φ(τ)\\L8y-»dτds
t-τ 0

^ J k(t-s)(]k(τ)dτ)η( J fc(s-
ί-Γ \Γ / \ 0

SC{D) J fe(ί-s) ίfc(τ)dτ ) ds
i-τ \τ /

as T -• 00, for (2 + 0)3/8 > 1 (e.g. θ = 1), and

( ί Kt-s) } I
\t-T s-T

^ } /c(ί-s)fί/c(τ)rfτYf } /cίs-τJllφWH^dτ)1 "ds
t-T \0 ) \s-T J

t / s \(l-fί)/24

f /c(ί-5) f
ί-Γ \s-Γ

f k(t~s)
ί-Γ \ί-2Γ

/ ι

J f|φ(
\ί-2Γ
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Now let T be sufficiently large and let t ̂  IT + S in Lemma 4.7. Then for t ̂  i we get

J k(t - s) || φ(s) \\L8ds S C(D)(ε0 + ε ^ 2*) < ε
i-T

for ε0 sufficiently small. The claim is proved.
To prove the statement of Lemma 4.6, still with the additional assumption on

the support of data, we have to show that given an ε > 0, that can be assumed to
be sufficiently small, there exists a t* such that

sup sup
ueD t^t*

$k(t-s)\\φ(s)\\L8ds

This will technically be done by first choosing η>0 sufficiently small (and ε
sufficiently small with reference to this choice of η) and then T sufficiently large
and finally t* sufficiently large and through this procedure show that

t

I k(t-s)\\φ(s)\\Lsdsίε
t*-T

for all ueD and t^t*-T.
With reference to Proposition 3.1, let η > 0 be so small such that keL1 n L4/(3 _η)

for some choice of 0e(0,1], where p' = 8.
Let t* — T be so large such that

J k(t-s)\\φo(s)\\L8ds<\ε, ί* ̂  ί, (13)
t*-τ 3

and

J 1 J ε 1 ^ , ί* ̂  ί. (14)
t*-τ

This can be done since φ0eL4(L8):

(t-s)\\φo(s)\\Ledsϊ( ) J f)
f-T

and

ί /t+T-t* \ 3 / 4 / * \

J k(t-s)\\φo(s)\\Ledsϊ( j k(sr'3ds) J (\\φo(s)hsfds)
-T \ 0 / \< -Γ /

k(t-s)(||φo(s)\\Ls)
1+"ds

f-T

( t+T-t* \(3-D)/4/

Set

v3/4 /°o \(3-n)/4(
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and choose t* — T such that

/ °° \3/4
ί (\\<Po(s)\\Ls)*ds) g β /3C l β

\ί*-Γ /

Next we show that for ε small enough, only depending on D, viz.

ε:gmm((2C2Γ2 /M6C6Γ2),

where C2 and C6 are defined in (17) and (20) below, and T large enough, also
depending only on D9 viz.

i) / 6 C y/((2+β)3/8-i) /6CΛ 1 / ε 2

/6CΛ1/ε2\

where C3, C4 and C5 are defined in (17), (18) and (19) below,

} fc(t-s)( || φ(s) H O 1 + ' * ^ β 1 + " 2 , t^t*, (15)
t*-T

provided

(16)

sup j k(s - σ){ || φ(σ) HJ 1 + ^ σ ^
seR 0

t*-T

for all τe[ί* - T,ί]. To prove this we apply Lemma 4.3 to (8) to obtain

and so

and

t*-τ

S2- \ k(t-s)(\\φo(s)U1+ >ds
t*-τ

t /s-T/2 s \l+η

+ Ύ>Cψ) j k(t-s)( ί + ί k(s-σ)\\φ(σ)\\Lsdσ) ds
t*-T \ 0 s-T/2 /

Γ/2 / V seR 0

t*-T/2 \s-T/2

+ J k(t-s)( J fe(5-σ)||φ(σ)||L8dσ ds V
ί*-Γ/2 \ 0 / J
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se(r

C(D)Tl -

C(D)f f tfs)ds Y sup }*(s-σ
\T/2 / seR 0

sup \ J k(s-σ)\\φ(σ)\\Lsdσ\
- Γ / 2 , t ) ( . 0 J

(17)

where 0e(f , l ] , e.g. 0 = 1 .
Moreover, use the claim above to determine a ί* = i such that for T chosen

sufficiently large and ε sufficiently small and t* - T sufficiently large
t

J k(t — s) || φ(s) || L g ds < ε, t ̂  t*.
t*-τ

Define ί** by

ί τ 1
ί I -Γ J

By definition we have t** ̂  ί*. If t** = oo our lemma is proved. Assume that
ί** < oo. Choose t with ί * * < ί ^ ί * * + ε 1 , ε 1 > 0 small, to be chosen later. We have

t

j k(t-s)\\φ(s)\\Lsds
t*-T

t t s

^ J k(t-s)\\φo(s)\\L8ds + C J k(t-
t*-T t*-T 0

t t* - T/2

S j k(t-s)\\φo(s)\\Lsds + C(D) f fc(ί-
ί*-T ί*-Γ

ί** s-T/2

+ C(D) f k(t-s) j fe(s
ί -T/2 0

t** s
4_ Γ(Γ)\ f Hf ĉ  f We

ί*-Γ/2 s-Γ/2

+ \k(t-s)}k(s-σ)\\φ(σ)\\LBdσds
f** 0

Here

/i S l/3ε,

/ 2 g C4(D)TX -<2+»>3/8 g l/6ε, (18)

( oo \η/(l+η) /' \

I k{s)ds sup J k(s - σ)( || φ(σ) \\Laγ
 +«dσ

Γ/2 / se(ί*-Γ,ί**) \0 /

^ C 5 ( D ) T - ε 2 ^ l / 6 ε (19)

for some ε2 > 0.
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/ 4 gC 6 (Z))ε 1 + " / 2 ^l/6ε, (20)
ί

/5 ^ C(D) J k(t - s)ds ^ ί/6ε,
t**

provided ε1 small enough. This implies that

J k(t-s)\\φ(s)\\L8ds<ε
t*-τ

and hence yields a contradiction. The first part of Lemma 4.6 is proven for the
case with compactly supported data. The second part has the same proof reversing
time direction.

It remains to prove the lemma without the assumption on the support of data.
Let φv be the solution of (1) with compactly supported data MV = ( U V 1 , M V 2 )
approximating u = (uuu2) such that Mv>ί(x) = wί(x), i = l,2 for | x | ^ Λ v , where
Rv -> oo as v -+ oo and such that uv is uniformly bounded in X for v ̂  0. Then
<Po.v(*>0 = <Po(x>ήϊor\x\<*Rv-\tl and

as v->oo. We can also assume that ||<PO,VIIL8 ^S uniformly bounded in L4(R).
However from now we will only consider t > 0. The case t < 0 is analogous. Thus
we have

l /4

l / 4

as v->oo.
Choose ί*, independent of v, such that

t

$k(t-s)\\φv(s)\\uds<ε, t*t*,
t*

which can be done in the proof above since S1 in Lemma 4.7 is independent of
the support of data. We obtain

J k(t - s) || φ(s) \\Lsds ^ ε + J k(t - s) \\ φv(s) - φ(s) \\uds.
t* t*

Lemma 4.6 will be proved if we can show that for each t > t*9

t

Sk(t-s)\\φv(s)-φ(s)\\uds<ε, (21)
ί*

for v ̂  v*. We first prove that, for fixed t ^ t*9

sup| |φ v (s)-φ(s) | | .-^0 (22)
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as v-»oo, and

μ(t-s)\\φv(s)-φ(s)\\L8ds
t*

ft \l/4
^ C sup II φv(s) - φ(s) || , + C J (|| φOιV(s) - φo(s) \\Lfds (23)

s^t 2 \t* /

The estimates (22) and (23) imply (21).
By hyperbolicity and uniqueness of distributional solutions of (1), we have

φv(s) = φ(s) for | x | ^ Rv — s. Hence (22) follows from the conservation of energy and

II φM - φ(s)llt, ^ C( II φM\\L1^_S) + II φ(s)llt.(N,R,_s)).

Furthermore

|| φv(s) - φ(s)\\u g C || <po,v(s) - <Po(s) IIL8

+ C } k(s - σ)(( || <pv(σ) | | L , ) 2 + (|| φ) | | t ,) 2 ) II <Pv(σ) - φ{σ) hjσ

c]k(8-σ)(||φ»||t8 + ||φ(σ)||J(||φv(σ)-φ(σ)|| ,
0 2

Lemma 4.5 gives
s

II φv(s) - φ(s)\\u g C || φOιV(s) - φo(s) \\Ls + C(u) Jfe(s - σ
o

+ C(M)sup(| |φ v(σ)-φ(σ)|l 02,

C{u) independent of v, and so, by Gronwall's inequality, there exists some function
h(s)eLι™ such that

|| φv(s) - φ(s) | | L β ^ h(s)( || ΦθtV(s) - φo(s) \\Ls + sup || φv(σ) - φ((j) | | L 1 ) .

Multiply by k(t — s) and integrate over (ί*, t). Equation (23) follows, since keL^β.
This completes the proof of Lemma 4.6.

We can now prove

sup| |φ(tt) | | L 4 ( L β ) <oo
ueD

with a Gronwall technique applying the uniform weak decay estimate that is
obtained in Lemma 4.6.

Set

I/OW=IIΦOWIIL.
and

U{t)=\\φ(t)\\Lg.

In view of Proposition 3.1 there exists an α > 0 such that

From Lemma 4.3 there exists a constant C(D\ independent of t and η such that
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Hence we conclude that

U(ή g U0(t) + C(D) \ k(t - s) U(sγ+"ds (24)
0

for 0 ^ \η\ ̂ \ . Lemma 4.5 yields

U{s) g U0{s) + C(D) (25)

for SGR. In particular, by Lemma 4.4, £ / G L 4 ( [ 0 , £]), uniformly for WGD, for t < oo.
It remains to show that C/GL4([ί, oo)), uniformly in MGD, for some suitable chosen t.

So let t* be large (to be determined later) and let us inductively define Uj9

j = 1,2,..., N, where iV is the smallest integer such that NOL ^ 1 + α satisfying

U{s) S Uj-M + C(ί*)((l + s)- α ( j - l ) + (1 + s)~ x"α), 2J'ί* ^ s. (26)

Insert (25) and (26) in (24). For t ^ 2 J '+ 1ί* we obtain

2>ί*

f k(t—ϊ\T)

2Jί* ί/2

+ J k(t-s)ds+ J fe(ί-
0 2Jί*

1/2 ί

+ F Ĵ  ̂ / Q\((1 -L. c^ ^ ^ ' —I- (1 -i- c^ ^^/7c —L I t ^ f
I /vlί' o i l IX ι" ύy î  I J. "T" ι3l JUΛ ~\ I Ivlt.

2J>* ί/2

Now introduce the operators Kjl9Kj2,Kj3 depending on t*,*j by
ί/2

Knβ(t)= j k(t-s)U(s)ηg(s)ds,
2h*

2Jt*

Kj2g(ή= J k(t-s)U(sYg(s)ds
o

and

Kj3g(t) = ί J fc(ί~:
\2>ί*

Lemma 4.5 implies that

j k(t-s)U{s)ds}

(ί. i,« , v~η

• J fcίί-s)^)1^-'^ £C(D)Kj3g(ή.
\2Jt* J
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This yields

J k(s)dsj " || g \\L4i[2Jt.iOO)) tί C(D) || g I I L 4 ( [ 2 ^ ) } ,

for ω^2J+1t*9 with C{D) independent of ;,£*,ω. In particular, the operators
Kjί,Kj2, Kj3 are bounded on L 4([ω, oo)), ω ^ 2j+ ιt* with operator norms bounded
independently of;, ω and t* and boundedly dependent on || u || x . Moreover we have

2h*

ί/2

ί lrίt o\((λ _L c\~α0*~ 1) I (Λ

2h*

and

ί/2 \ί/2

•( J k{t-s)U(s)ds) ^ε(t*)Kj3U(t\
\ί/2 /

where ε(ί*) -+0 as t* -• oo, uniformly for MGZ) by Lemma 4.6. Hence for t ^ 2J+1t*
we have

C(D){Kj2U0(t) + ^ x l / ^ . ( ί )

+ C(ί )((l + ί)"α J ' + (1 + t)'' " α ) + ε(t*)Kj3 U(t)}.

For ;=l,2, . . . , iV, set

Uj(t):= U0(t) +

Hence

1 = 0

J-2

C(D)Kj2Uo(t)+ Σ
1 = 0

1

for j = 2,3,...,N. Then choose t* sufficiently large such that for L4: = L4( [2N + ' t*, oo)),

z = o

Since Kn,Kj2, = 1,2,..., ΛΓ are bounded operators and (1 +1)~ 1 ~ α eL 4 we obtain
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Finally choosing t = 2N + ίt* completes the proof of

ueD

By reversing time we prove

ueD

which ends the proof of Lemma 4.2.
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