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Abstract. In this paper we study the BogomoΓnyi equations of the electroweak
theory in the full plane. We will show that, for any distribution of the vortices,
there exists a two parameter family of gauge-distinct solutions. Moreover, we also
establish some sharp decay rate estimates for these solutions.

1. Introduction

In Part I of this paper [7], we have proven the existence of Abrikosov like periodic
vortices in the bosonic sector model proposed by Ambjorn and Olesen [3, 4] of
the Glashow-Salam-Weinberg theory. These solutions were found from a
BogomoΓnyi system of first order equations which take on a more complicated
form than in the classical abelian case due to the anti-screening of the magnetic
field. As a result, this system further reduces to a semilinear elliptic system of
nonstandard type and we showed in Part I that the number of such vortices is
bounded above in terms of the relevant physical parameters, although the locations
may be prescribed arbitrarily.

The goal of the present paper is to study this BogomoΓnyi system for the
self-dual electroweak interactions in the full space R 2 . These solutions are
necessarily of infinite energy and thus the method of Part I cannot be directly
applied. Our main strategy then, is to combine the method of weighted Sobolev
spaces, used by McOwen [6] in his study of conformal deformation equations,
with the crucial change of variables introduced in Part I to reduce our elliptic
system to a lower diagonal form. As a result, we are able to show (Theorem 3.3)
that for any distribution of vortex locations there is a two parameter family of
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gauge-distinct solutions. Furthermore, we are also able to obtain some results
concerning the asymptotic behavior of these solutions which may provide
information about the blow-up rate of the energy. One of the interesting things
is that it can be shown that the Higgs field φ and the W field vanish at infinity
with entirely different speeds: φ decays faster than any exponential function of the
type exp( — σr) (σ > 0) while W obeys a power law of the form r~a (a > 0). These
decay estimates are shown to be sharp.

In order to fix the ideas, we first illustrate this method applied to the simplified
50(3) or SU(2) theory of Ambjorn and Olesen [2] (see also Yang [9]) in which
the W-bosons acquire mass through a Higgs mechanism but the Higgs field are
neglected from the Lagrangian. Here the system of BogomoΓnyi equations can be
reduced to a single semilinear elliptic equation very closely related to the equation
of prescribed Gaussian curvature. Thus in Sect. 2, we apply McOwen's method
to study the existence of these massive 50(3) vortices. We then go on in Sect. 3
to study the full electroweak theory and prove our main existence theorem for
multivortices. In Sect. 4 we present a variant of the existence theorem in a different
parameter regime. The method used is similar to that adopted in Sect. 3 but the
results is of independent interest. In Sect. 5 we obtain the detailed asymptotic
behavior of our solutions.

2. The Massive SO(3) Multivortices

According to the discussion of Ambjorn and Olesen [2], the reduced energy density
for vortex-line solutions of the massive 50(3) gauge field theory is given by

* = \?\i + l D i W + *'£>2WΊ2 + 2m2

w\ W\2 - 2ePί2\ W\2 + 2e2\ W\4, (2.1)

where W is a complex scalar field, Pj(j = 1,2) is a vector field, Pι2

 = diP2 — ̂ 2^1*
and

The model (2.1) can also be viewed as describing the pure gauge photon and
W-boson interactions of the full electroweak theory defined by the expression (2.5)
in Part I in the limit # -• e, φ -• φ 0 , Z 7 -• 0. m2^ > 0 gives rise to massive W'-particles.

By virtue of the relation (DjDk — DkDj)W= —iePjkW, the Euler-Lagrange
equations associated with (2.1) may be written as

τ = 2m2

vW -3ePί2W + 4e2\W\2W9

, = ie{W\DkW) - W{DkWf) + 3eεjk(W\DjW) + W(DsWγ). (2.2)

The linearized version of (2.2) has been studied by Ambjorn, Nielsen, and Olesen
[1] in view of stability.

By rewriting the energy density & as

^^(Pii-^X (2-3)

it can be seen that the 't Hooft boundary condition [8] implies that the magnetic
flux through a periodic cell domain Ω is quantized and the energy minima are



Multivortices in Electroweak Theory II 217

saturated by the solutions of the following BogomoΓnyi equations:

D1W+iD2W = 09

0. (2.4)

Of course (2.4) implies (2.2) in Ω. In [9], one of us (Y. Y.) has shown that (2.4)
possesses a periodic ΛΓ-vortex solution if

2π(N - 2) 2 2πN

\Ω\ w \Ω\

Here we are interested in solutions of (2.4) over the full R 2 . It is easily checked
that solutions of (2.4) are also solutions (2.2) on R 2 . What is the energy of such
solutions? Using (2.4) in (2.3) we have

2 e2 2e2

Therefore the total energy J $dx is necessarily infinite.
R2

For convenience, we identify R 2 with the complex plane C and use z to denote
a point in <C. Let zoe<£ be a zero of W. The first equation in (2.4) implies that in
a neighborhood of z = z0,

where n0 is an integer and h0 is a smooth nonvanishing function. Thus the zero
set Z(W) of W is discrete. If Z(W) = {z l5..., zm) and the multiplicity of the zero
z = zt of W is nh then the replacement u = In | W\2 reduces (2.4) to

m

Δu= - 2m2

v - 4e2 exp(u) + 4π £ ntδ(z - zt). (2.5)
z = i

Define

1=1

Then
m

Δu0 = 4π J] n^(z — zz) — 2m2

v

1=1

and
u1=u-u0

satisfies
AUχ = -4e 2[/oexp(w 1),

where

Π l z - z 1 | 2 " ' e x p ( - i m ^ 2 ) , r = \z\ = \x\. (2.6)
1=1

We now introduce the function w2eC°°(R2) so that

u2 = — αlnr, r ^ 1,
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where α > 0 is a constant. Let η = ux - u2. Then (2.5) is reduced to

-Δu2 = f, (2.7)
where

K = 4e2U0exp(u2).

Because of (2.6), the function K satisfies:

K ^ O , X = O(exp[-r]) for large r > 0 . (2.8)

It is easily seen that / is of compact support. Also,

J/Λc= J fdx=- J Δu2dx
R 2 | χ | £ l | x | ^ l

j ds 2πoc. (2.9)

As in McOwen [6] we define the functionals

= J [£|
R2J
R2

J(η)= J
R 2

In order that these functionals be defined properly, we need to consider a suitable
weighted Sobolev space. Let dμ = hodx, where h0 is a positive C°° function with

ho(χ) = r-
κ for r = | x | ^ l .

Here and in the sequel, K > 4.
Use the notation LP(dμ) = Lf(ΈL2,dμ). Let ^ denote the Hubert space of L2

OC

functions for which

Notice that ^f contains the constants and thus

τ/h-» J ηdμ
R2

is a continuous linear functional on Jf so that

: J ηdμ =
R2

is a closed subspace of Jf. Therefore we have for each ηeJf the decomposition:

η = ή + η\ ή = constant, η'e&. (2.10)

The following results may be found in McOwen [6]:

Lemma 2.1. For any 0 < ε < 4π, there is C(ε) > 0 so that

j **Λ4n"|f/|juj*-Ξ ^V^;tΛ F | — 7 II v Γ/II L2(dx)

/or any aeR.
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Lemma 2.2. The Poίncarέ inequality holds on $P\ there is a constant C>0so that

MUdμ}^C\\Vη\\2

LHέx)9 ηe*.

Lemma 2.3. The injection <&^>L2(dμ) is a compact embedding.

Thus we see that both I(η) and J(η) are well defined on Jίf. Consider now the
optimization problem

min{/(ι/)|Jr(ιy) = 2πα,ιyeJf}. (2.11)

Lemma 2.4. The problem (2.11) has a solution provided 0 < α < 4.

Proof. For ηe Jf, let us use the decomposition (2.10). If J(η) = 2πα, then

or

As a consequence,

I(η)= j -\Vηf\2dx + J (/*? + /y)^ χ

R2 2 R2

1 Γ / r M
= zllVl//IIZ2(Λc,+ J fη'dx + lπcά I n 2 π α - l n j Kexp(iί')dx) . (2.13)

2 R2 L \R 2 /J
On the other hand, using Lemma 2.1, we find

J KQxp(η')dx= j Kh^1 Qxp(η')hodx^ Cx J exp(η')dμ
R2 R2 R2

exp(/y) J Kexp(η')dx = 2π<x,
R2

— lnf J Kexp(if')Λίl (2.12)

LR 2 J

and

ί.
R2

f .
R2

(2.15)

Substituting (2.14)—(2.15) into (2.13) and using Lemma 2.2 yield the lower bound

where C is a constant independent of ε, α > 0.
Since 0 < α < 4, we can fix ε > 0 sufficiently small to make

4π —ε
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Let {ηj} be a minimizing sequence of (2.11). Then (2.16) says that

WWj\\2

L2idx)ύM, 7 = 1,2,...,

where M > 0 is a constant.
By virtue of (2.12) and (2.14), it is seen that {ήj} is bounded as well. So we may

assume
weakly,

Hence from Lemma 2.3, we may assume that ηj->η = ή + η'eJtf strongly in L2(dμ).
Therefore,

ί frjjdx- J fηdx
R2 R2

^ ί \f\Kll2\ηj-η\K'2dx

and

j j J
R2 R2

R 2

R 2

1/2

^ C exp^^-ί-^ || Vif̂  | |£ 2 ( Λ c ) JII ffj - if Hx.,^, — 0 as J - o o .

Thus /(^)^liminf/(^) and J(η)= lim J(ηj) = 2πιx. In other words, 7/ solves

(2.11). D

Lemma 2.5. The minimizer η of (2.11) obtained in Lemma 2.4 is a solution to (2.7)

Proof. By the Lagrange multiplier rule, 3Λ,eR so that

ί (VψVχ + fχ)dx = λ j Kexp(η)χdx, Vχe^f. (2.17)
R2 R2

Taking the test function χ = 1 in (2.17), we get

2πα = λJ{η) = 2πod.

Hence λ=l, and η is a weak solution of (2.7). The elliptic regularity theory then
implies that η is a C00 solution of (2.7). •

Under the notation of this section,

u = u0 + Wj = w0 4- u2 + *7
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is a solution of (2.5). From the function u we can construct as in Jaffe and Taubes
[5] a solution pair (W,Pj) of (2.4) so that | W\2 = exp(u). Of course, different values
of α in (2.11) correspond to different solutions of (2.5). Do these solutions give rise
to different (gauge-distinct) solutions of the BogomoΓnyi system (2.4)? To answer
this, we recall that

K = 4e2 Uo exp(w2) = 4e2 exp(w0 + u2).
Hence

2 π α = J Kexp(η)dx = J 4e2exp(w0 + u2 + η)dx
R2 R2

= 4e2 j exp(u)dx = 4e2 J \W\2dx. (2.18)
R2 R2

But (2.18) is invariant under the (residual) gauge symmetry

W^exp(iχ)W, Pj^Pj + UjX.

Therefore different α's give rise to gauge-distinct solutions of the BogomoΓnyi
system (2.4). We have thus shown

Theorem 2.6. Let zί9...,zmeC = R 2 and nl9...,nmeZ+. Then, for any 0 < α < 4 ,
the BogomoΓnyi equations (2.4) have a solution (W^(α),P^α)) satisfying

R2 2ez

Z(W(a)) = {zl9..., zm}, and the multiplicity of the zero z = ztof Wia) is nt (I = 1,..., m).
In other words, for any distribution of zero locations z 1 , . . . ,z m GlR 2 , (2.4) have a
continuous family of gauge-distinct solutions, labelled by the parameter 0 < α < 4,
which realize these zeros.

We now turn to the full electroweak theory.

3. Multivortices in the Full Electroweak Theory

In the unitary gauge and under the vortex ansatz of Ambjorn and Olesen [4], the
energy density of the electroweak theory is [7]:

β = \3χ W+ i®2W\2+\P\2+\Z2

2-2g(P12 sin0 + Z 1 2 cos θ)\ W\2 + 2g2\W\4

^ / V 1 Z ) + 0 V I W\2 + λ(φ2

0 - φ2)2, (3.1)

where W is a complex scalar field, φ is a real scalar field, Pj9 Zj are real-valued
vector fields,

Qj W = djW- ig(Pj sin θ + Zj cos θ) W,

and Pjk = djPk - dkPj, Zjk = djZk - dkZpj, k = 1,2. The Euler-Lagrange equations
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of (3.1) take the form

ij@jW = g2φ2W- 3g(P12 sinθ + Z 1 2 cosΘ)W + 4g2\ W\2W,

•IT*/12 , 9 2\φ + 2λ(φ2-φ2

0)φ,

d.pjk = /0si

+ 3g cos θε

In the critical coupling where

(3.2)

λ = -
8cos 2 θ

we have seen in Sect. 3 of Part I that, when a 't Hooft type periodic boundary
condition is imposed, the energy minima are attained by the solutions of the
BogomoΓnyi equations

2sin#

2cos0

9
£jkdk\nφ. (3.3)

Hence (3.3) implies (3.2) on a periodic cell. In fact, it is straightforward to verify
that such an implication does not depend on the domain of the equations and, in
particular, solutions of (3.3) over R 2 are also solutions of (3.2). The purpose of
this section is to obtain multivortex solutions of (3.3) in the full plane. As in the
case of the massive SO(3) vortices discussed in Sect. 2, the solutions of (3.3) are
also of infinite energy because there holds the following energy lower bound
estimate in view of (3.3):

- 2g(Pl2sinθ cosθ)\ W\2

2\4cos 2 0
(ψ2 + 4^2 cos2 θ\ W\* + 2^ 2(φ 2 - φ2

0)\ W\:
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The first equation in (3.3) implies that the zero set Z(W) of W is discrete and
each zero has an integral multiplicity. Let Z(W) = {zl9...9zm} so that the
multiplicity of the zero z = zι of W is nt > 0, / = 1,..., m. Define as before the new
variables

u = ln\W\2

9 w = lnφ 2 .

Then Eqs. (3.3) are transformed as in Part I into the system:

m

Δu = —g2 exp (w) — 4g2 exp (u) + 4π £ nι^(z — zι\
1=1

Δ w = ^ T n ^ P W - ^o) + 292 e x P ( 4 (3.4)

Let

u0

w0

= Σ

f " l =

lnlz-z.l2"',
L

g2

 2

8cos20 °

= u - uθ9

Then MXJWJ satisfy

(Δu1 = -

I Δwx = —-exp(w0 + wx) + 2^f2exp(w0 + MJ. (3.5)
[ 2cos 2 0

The term exp(w0 + ux) is a bad term while exp(w0 + w j is a good term, because
exp(w0) decays exponentially fast.

As in the periodic case, we introduce the change of dependent variables as
follows:

\u2 = u1 +2w 1 ?

>2="l

Then Eqs. (3.5) become

fzlw2 = ^ 2 tan 2 0exp(w

\Δw2 = - g2exp(wo)exp(j[w2 - w2]) - 4g2exp(w0 + w2). (3.6)
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As in Sect. 2, we make the translations

where u3,w3 are smooth functions so that

with α,/?>0. Hence Δu3,Δw3 have compact supports and Eqs. (3.6) become

\Δξ = g2tan2'
(3.7)

C/iς = - g-u exp(f LC - U) - *g~ v exρ(C) + ft,

where

(7 ΞΞ exp(w0 + \[u3 - w3]), V= exp(w0 + w3),

/ = — -4H3 h= — Δw3.

As before (see (2.9)), we have

J /dx = _ 2πα, J ftdx = 2πj».
R2 R2

In view of the above expressions, let us now impose for a solution pair of (3.7)
the constraints

ί (3.8)
R2

and

g2 J Uexp(^[ξ — ζ~\)dx + 4g2 J
R2 R2

or

4g2 f VQxp(ζ)dx = 2π\ β — I. (3.9)
R2 \ tdivrθj

In order to make sense out of (3.9), we require:

(3.10)
tan 2 0

There holds

V = exp (u0 H- w3) = O(r2N " )̂ for large r > 0,

where JV = nι + ••• + nm. Hence, if

jS>2iV + 4, (3.11)

then we can choose a suitable κ> 4 so that

V = O(r~κ) for large r > 0. (3.12)
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This property is important in our discussions to follow.
On the other hand, since

we have

ir = exp(wo + f [w3-w 3 ] ) = 0 ( e x p [ - r ] ) for large r > 0 . (3.13)

We now consider the following optimization problem as in the periodic case:

min{I(ξ,ζ)\ξ9 ζeJf, (ξ9ζ) satisfies the constraints (3.8)-(3.9)}, (3.14)

where

I(ξ,ζ)= J dxlhvξl2 + 1-σ\Vζ\2 + fξ + σhζ).

From (3.12)—(3.13) and Lemma 2.1, it is easily seen that (3.8), (3.9) are well-defined
over Jf.

Lemma 3.1. If σ = tan 2 0, then a solution (ξ, ζ) of (3.14) is a solution of (3.7).

Proof. For σ > 0, let (ξ, ζ) be a solution of (3.14). Since the Frechet derivatives of
the constraint functional are linearly independent, the Lagrange multiplier rule
implies there are constants Λ,σ,μσeR so that

J (Vξ Vχi+fXi)dx=l-λσg
2tan2θ J Uexpίkξ-ζ^dx, XleJf9 (3.15)

R2 2 R2 \2 /

ί (σVζ'Vχ2 + σhχ2)dx= -{-λσg
2tan2θ f U ̂ xJUξ - ζϋ)χ2dx

R2 2 R2 \2 /

+ 4μσg
2 f Vexp{ζ)χ2dx9 χ2eJίT. (3.16)

R2

In (3.15), put Xi = 1. We obtain —2πα = jλσ2πa. Hence λσ = —2 and the first
equation in (3.7) is recoverded. Let χ2 = 1 in (3.16). We get

2πβσ = 2πα + μσ'2π( β -
t a n 2 0 ,

To obtain the second equation in (3.7), we choose σ = tan 2 θ. Hence

0 t a n 0 α 2 n
μσ = — = tan 2 θ.

β-a/tan2 θ

Therefore the second equation in (3.7) is recovered as well. •

From now on we fix σ = tan 2 θ. Thus we see that it is sufficient to solve the
constrained optimization problem (3.14). As in Sect. 2, we make the decomposition
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where £ζeR, f'.ί'eif. Equation (3.9) says that

exp(f) f Vexp(ζ')dx =—-
R2 2g2

or

C = In — - | β — I I — In I J V Qxp(ζ')dx . (3.17)

From (3.8), we get

or

cΓ=C + 21n( ~'"~ ) — 2 In I f l/exp( -[£' - ζ ' ] )dx I. (3.18)
\fif2tan20/ L R 2 \2 /

As a consequence, the objective functional /(£,() takes the form

R2 \2 2

' + tan2 θhζ')dx - 2πotξ + 2πj? tan2 0ζ. (3.19)

We first estimate in (3.19) the term

Λ= -

We have from (3.17)-(3.18), that

Λ = - 2 π α Γ-21n( J l/exp( -\_ξf-Π )dx )
L \R2 \2 / /J

Let us find a lower bound for J Uexpl -[ξf — ('] Irfx. We have
R 2 \2 /

J Uap(Uξ'-n)dx= f Λô l/ex
R2 \2 / R2

R 2

(3.20)

(i[^-Ni,4
Here we have used h0

 1 ^ ε0, h0 = O(r κ) (/c > 4) for large r > 0, w0 = O(r2), w3 and
vv3 = O(lnr), so that w0 + |(w3 — w3)eL(ψ); then the final inequality above follows
from Jensen's inequality.
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Thus (3.19) implies:

Λ^2πtan2θ(β %-)ζ- C3. (3.21)
\ t a n 2 0 /

We next analyze (3.17). From (3.12) we see that Vh~ι = 0(1). Hence,

J Vexp(ζ')dx= J VHQ 1 exp {ζ')dμ ^ C 4 J exp(ζ')dμ
R2 R2 R2

^ C5(ε)exp \\VC\\2L2(dx) (using Lemma 2.1). (3.22)
|_4(4π — ε) J

Therefore (3.17), (3.22) yield the lower bound

ζ>C 1

= 6 4(4π - ε)

Thus, from (3.21), there holds

2 — Γ-, Π 23^

Also, since /, h have compact supports, we easily obtain using Lemma 2.2, the
inequalities:

f I f F\ΛΎ < p~ ^C 4-p f \FfiAn < p~^C A- PC II \IF II2

R2 R2

J IΛCΊ dx ^ ε " 1 C 9 + εC || Vζ' || 2

2 ( d x ) . (3.24)
R2

Substituting (3.22)-(3.24) into (3.19) we get

+ h II vr II2,« - c, 0. (3.25)i « d β + h II vr II2,« - c,0

Impose now the condition

/?--4-<4. (3.26)
tan 2 θ

Then, if ε > 0 is sufficiently small, we get δl9δ2>0. In particular, / is bounded
from below on the admissible set

Sf = {ξ,ζe3>T\ξ,ζ satisfy (3.8)-(3.9)}.

Let {(ξp ζj)} be a minimizing sequence of (3.14). Using (3.25) we see that {(ξ'p φ }
is bounded in 3fc (see also Lemma 2.2). From (3.17), (3.22), we see that { Q is a
bounded sequence in 1R as well. Using (3.18), we can show that {ξj} is also a



228 J. Spruck and Y. Yang

bounded sequence in 1R. For simplicity, we assume there are £,(eJ f so that

In other words, ξj -> ξ, ζj -* ζ weakly in 3/f.
An obvious extension of Lemma 2.3 is:

Lemma 3.2. The injection Jff ->L2(dμ) is a compact embedding.

Hence (3.22) says that

j Vexp(ζj)dx- f
R2 R2

R2J
R2

/

\R2

l /2

2(dμ)

as

Similarly, we can show that

f
R2

R 2

Therefore (ξ,ζ) satisfies the constraints (3.8)—(3.9). Finally the comparison
I(ξ9ζ)^l\m'mfl(ξj9ζj) is easily examined. Hence (ξ,ζ) solves (3.14).

For convenience, let us summarize the conditions imposed on α, β > 0 as follows:

Λ ~ < i ? < — ° τ ~ + 4 (see (3.10) and (3.26)),
tan2 θ tan2 θ

β>2N + 4 (see (3.11)). (3.27)

So we have obtained a two parameter family of solutions to Eqs. (3.4). We can
observe that these solutions give rise to gauge-distinct solutions of the BogomoΓnyi
system (3.3).

In fact, in the notation of this section, we have

u = u0 + ux = u0 + w2 = u0 + w3 + ζ,

w = w0 + w1 = w0 + \(u2 - w2) = w0 - w3) + \(ξ - ζ). (3.28)

As in Sect. 4 of Part I, a solution quartet (φ, W,PpZj) of (3.3) can be constructed
in such a way that φ2 = exp(w) and | W\2 = exp(u). Hence (3.28), (3.8)-(3.9) imply
the relations

R 2 g2

(3.30)
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Since the left-hand-sides of (3.29)-(3.30) are gauge-invariant under the residual
gauge symmetry

e

different values of α, β give rise to gauge-distinct solutions of (3.3)! We can thus
summarize our results as follows.

Theorem 3.3. Let {z 1 ?...,zm} c R 2 = (C, n l ί . . . ,n m eZ+, N = nx + — h nm. For any
α, β>0 satisfying (3.27), the Bogomoΐnyi system (3.3) arising from the classical electro-
weak theory has a solution (φia-β\ Wia>β\Pfβ\Zfβ)) so that Z(Wia-β)) = {zl9...9zm},
the multiplicity of the zero z = zι of W(a'β) is nh the integral averages of the squares
of φi<x'β) and | W{*tβ)\ satisfy (3.29)-(3.30). These solutions are a two parameter family
of gauge-distinct solutions of infinite energy.

In particular, we have nonuniqueness of solutions for each distribution of
vortex locations. There is again no restriction to the number of vortices in R 2 .

These infinite energy vortex solutions are "natural" in the sense that (2.4) or
(3.3) does not allow any finite energy solutions.

4. A Variant of the Existence Theorem

In this section we shall modify the method used in the last section to establish
another existence result for the electroweak multivortices in a different parameter
region. Since the main ingredients of our approach have been illustrated above,
here we will be brief. To proceed, we consider the governing equations (3.5).
Introduce a change of variables

Then we have

Δu2 = — 2g2tan20exp(Mo)exp(2cos20[M2 — w2]),

2#2 exp(w0)exp(2cos2 θ[u2 - w2]). (4.1)exp(w)exp(w) + 2#2 exp(w)exp(2cos2

3,w 3 GC 0 C (R 2 )sothatw3=-αlnr,W3 = j91nr,r = | x | ^ l . S e t / = - 4 w 3 ,
h = Δw3. Then we have as before the results

J fdx = 2π<x, f hdx = 2πβ. (4.2)
R2 R 2

With the translations u2 = u3 + ξ, w2 = vv3 + £, we obtain from (4.1) the modified
equations

Γ

Δζ = ~^γ- V exp(ζ) + 2# 2Uexp(2cos 2 θ[ξ -ζ])-h, (4.3)
I 2cos 2 0
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where

U = exp(u0 + 2 cos2 0[w3 - w3]), V = exp(w0 + w3).

From the definition of wo,w3,wo,w3 it is seen that

(/ = 0 ( r 2 i V - 2 c o s 2 θ [ α + ^ ) ,

r = \x\. (4.4)

8cos 20

In this section, we assume the condition

N + 2

COS20

Thus there is a KΆ < K <, 2cos2 0[α + yS] — 2iV so that U = O(r~κ). Note that (4.5)
is a new condition for the parameters.

In view of (4.2) we formally put the following constraints for the solution pair
of (4.3):

2g2tan2θ f Uexp(2cos2θ[_ξ - ζ])dx = 2πα, (4.6)
R2

and

2

2COS20R2 R2

namely (as a consequence of (4.6)),

9 , f Kexp(C)rfx = 2π( )8 V ). (4.7)
2COS 2 ΘR2 V t a n 2 θ /

From (4.6)-(4.7), it is seen that we need to assume the additional condition

α > 0, β > —^—, (4.8)
tan 2 0

which looks the same as that in Sect. 3 (see (3.10)).
Define

R 2

Consider the minimization problem

min {/(£,01 &CeJf, ({,0 satisfies the constraints (4.6)-(4.7)}. (4.9)

Lemma 4.1. With the choice σ = tan2 0, a minimizer of (4.9) is a solution of (4.3).

The proof of this simple result is similar to that for Lemma 3.1 and, hence,
omitted. In the rest of this section, we always assume σ = tan2 θ.

Next, we shall find conditions under which (4.9) has a solution._We make the
decomposition for ξ.ζeJίf as before: ξ = ξ + ξ\ζ = ζ+ζ' with ~~
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Then, by virtue of (4.6)-(4.7), we have

Uexp(2cos2θ[ξ'-Ώ)dx] + Cl9 (4.10)

J
^ l n Γ j

2cos 20 |_R2

ζ = - l n J Vexp(ζ')dx\ + C2. (4.11)

By (4.2) and (4.10)—(4.11), the functional / takes the convenient form

ί,0= J ΛJJ|V<Π 2 + ^ | V Π 2 } + J dx{fξ'-σhζ'}
R2 (2 2 J R2

- - j l n | JJ

lnΓ f I/exp(2cos 2 ΘK / -Π)^l + C3. (4.12)
|R 2 Jcos^tf |_R2

The fact that V = exp(w0 + w3), w0 = 0(r2),w3 = O(lnr), ft0 = O(r"κ) (TC > 4) and
Jensen's inequality again imply the lower bound

i 2 F e x p ( C ' ) ^ C 4 , (4.13)

where C 4 > 0 is a constant. Besides, using (4.5), U = 0{r2N-2c0s2θ[a+β]) = O(r~κ)
(see (4.4)), and Lemma 2.1, we have

R2

< C « [ ι
R2

1/P

^ [ p | | Vξ' | | 2

2 ( d x ) + q|| Vζ' I l i 2 ( d x ) ] \ (4.14)
—ε /

where p,̂ f > 1,1/p + 1/̂f = 1. Therefore, using (4.8), (4.13)-(4.14), and Lemma 2.2
in (4.12), we get

I(ξ,0 ^ δί || Vξ \\2

LHdx) + ^ 2 1 | VC | | 2

2 ( d x ) - C(ε,p,<z), (4.15)

where

. 1 παcos 2 0 t a n 2 ^ παcos 2 θ
δι=--— p-ε, S2 = ̂ Ί q-ε.

2 4π — ε 2 4π —ε

We now require the condition
α Ί1 >-pcos θ,

tan2θ>(Xqcos2θ. (4.16)
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Lemma 4.2. There are p,q > 1, l/p+ l/q = 1 so that (4.16) holds if and only if

α < 2 t a n 2 0 . (4.17)

Proof Suppose (4.16) is verified. Adding the two inequalities in (4.16) gives (4.17).
On the other hand, assume (4.17) is true. Set p = 1/sin2 0, q = 1/cos2 0. Then it is
seen that (4.16) holds. Π

Let (4.17) hold. Then it follows from (4.16) that an ε > 0 can be chosen suitably
to make δί9 δ2 > 0 in (4.15). As in Sect. 3, then we may prove that the optimization
problem (4.9) has a solution.

We summarize the restrictions (4.5), (4.8), and (4.17) on the parameters as
follows:

2 t a n 2 0 > α > O ,

β> tan 2 0 '

COS20
(4.18)

Let (φ, W, Pp Zj) be the solution of (3.3) constructed from the solution pair
(ξ,ζ) of the system (4.3). We easily see that

J \W\2dx= J [/ e xp(2cos 20K-C])<ίx = ^ — , (4.19)
R2 I** 9 t a n 2 θ

(4.20)
g2

So again different values of α, β give rise to gauge-distinct multivortex solutions
of (3.3). Hence we can state

Theorem 4.3. Under the condition (4.18), the BogomoΓnyi system (3.3) has a smooth
solution quartet which verifies all the properties stated in Theorem 3.3 except that
(3.29)-(3.30) are now replaced by (4.19)-(4.20).

Finally we turn to an investigation of the asymptotic behavior of the solutions.

5. Asymptotic Decay Estimates

Using some suitable weighted Sobolev spaces, McOwen [6] has studied the decay
rate of the solutions of the conformal deformation equations in ]R2. Our approach
here to (3.7) and (4.3) follows the main line in his work.

For (5GR and seN (the set of nonnegative integers), define W2

δ to be the
closure of the set of C00 functions over R 2 with compact supports in the norm

Nil 2 2 — Σ 11(1 + |χ|) a + ' r '£ vfHI 22

Let C 0(R 2) be the set of continuous functions on R 2 vanishing at infinity. The
following lemmas are cited from [6].
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Lemma 5.1. // s > 1 and δ > - 1, then W2

δ c= CO(1R2).

Lemma 5.2. For - 1 <δ<0, the Laplace operator Δ:W2

2δ^W
the range of A has the following characterization: 2δ^Wlδ+2

is 1~1

R2

Lemma 5.3. // ξeJtf and Δζ = 0, then ξ = const.

Lemma 5.4. Let (ξ,ζ) be a solution pair of (3.7) which is obtained in Sect. 3 as a
minimizer of the problem (3.14). Then ξ,ζ approach some constants at infinity.

Proof. Let the right-hand-sides of the two equations in (3.7) be denoted by f1 and
h1 respectively. Then fί,h1eL(dx) and

J f1dχ= f M * = o
R2 R2

in view of (3.8)-(3.9). Besides, using Lemma 2.1 and (3.11), it is straightforward to
examine that f1,h1e W\ δ+2 for — 1 < δ < 0. Hence, by Lemma 5.2, there are unique
ξl9ζιeWl ^sothatzlξi = fί,Δζι =hί. From Lemma 5.1 we see that both ξί and£ x

vanish at infinity. In particular, ξί9ζι eL2(dμ). Furthermore, since Vξu V£i e W^δ+ x

and δ>—l, so Vξ1,Vζ1eL2(dx). As a consequence, we have obtained that
ξl9deJT. Finally, by Lemma 5.3 and 4(<f -ξ1) = Δ(ζ-ζί) = 09 we see that {-ξ,
and C - Ci are constants. •

Thus the discussion of Sect. 3 and Lemma 5.4 lead to

Theorem 5.5. The solution (φiaβ\ W{a>β\ Pfβ\ Zfβ)) obtained in Theorem 3.3 enjoys
the following sharp decay estimates:

A similar investigation on the system (4.3) can be carried out which enables
us to conclude with

Theorem 5.6. The solution (φ^β\WM\Pfβ\Zfβ)) obtained in Theorem 4.3
vanishes at infinity according the rate

I yy(a,β)\2 _ Qίr-2([a + β]cos2θ-N)\

Remark 5.1. Using (5.1)—(5.2) and the BogomoPnyi equations (3.3), the asymptotic
behavior of the magnetic and weak field strengths, Pl2 and Z 1 2 , can easily be
described.
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Remark 5.2. Let {W{"\ P(α)) be the solution pair of the 50(3) Bogomol'nyi equations

(2.4) obtained in Sect. 2. It can be proved that there holds the decay estimate

| m ^ r 2 ] ) , r = \x\.
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