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Abstract. It is shown how coupling to gauge fields can be used to explain the basic
facts concerning holomorphic factorization of the WZW model of two dimen-
sional conformal field theory, which previously have been understood primarily by
using conformal field theory Ward identities. We also consider in a similar vein the
holomorphic factorization of G/H coset models. We discuss the G/G model as a
topological field theory and comment on a conjecture by Spiegelglas.

1. Introduction

The WZW model of two dimensional conformal field theory [1] is a quantum field
theory in which the basic field is a map g:Σ-+G, Σ being a two dimensional
Riemann surface and G being a compact Lie group, which for simplicity we will in
this paper take to be simple, connected and simply connected. The basic WZW
functional is

ίd2^Ύ(-%-1d)iΓ() (1.1)

where ρ is a metric on Σ, Tr is an invariant form on the Lie algebra of G whose
normalization will be specified presently, and Γ is the Wess-Zumino term [2]. The
latter has the following description [3] in case Σ is a Riemann surface without
boundary. (For the more general case see [4].) Let B be a three manifold such that
dB = Σ, pick an extension of g over B, which we will also call g, and let

^ 1 5 ί g . g - 1 δ , g . g - 1 δ f c g , (1.2)

where ω is the left and right invariant three form on the G manifold defined by

^ ' ^ ' d g ) . (1.3)
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Γ(g) is well defined (independent of the choice of B and the extension of g over B)
modulo the periods of ω. In these formulas, "Tr" is an invariant quadratic form on
the Lie algebra of G which we take to be the smallest multiple of the trace in the
adjoint representation such that the periods of ω are multiples of 2π. (For
G = SU(N)9 "Tr" is simply the trace in the N dimensional representation.) The
condition on the periods ensures that the WZW functional I(g) is well-defined as a
map to <C/2πiZ, so that e~I{9) is well-defined as a complex valued functional on the
space of maps Σ-+G.

The Lagrangian of the WZW model is L(g) = kl{g% where k is a positive integer
called the "level," and the partition function Z of the WZW model is formally
defined as a Feynman path integral,

Z=\Dge-L=]Dge-kI. (1.4)

Z depends, of course, on the metric ρ of Σ which enters in the definition of /.
Conformal invariance of the WZW model means that apart from a relatively
elementary factor given by the conformal anomaly, Z depends only on the complex
structure determined by ρ.

The WZW model is essentially exactly soluble; the ability to solve it depends on
its holomorphic factorization, first investigated by Knizhnik and Zamolodchikov
[5]. Holomorphic factorization of the WZW model means that locally on the
space of complex structures one can write Z = Σ/Λ where the f( are holomorphic

i

functions on the space of complex structures. Globally, as advocated by Friedan
and Shenker [6], one interprets this formula to mean Z = (//), where / is a
holomorphic section of a certain flat vector bundle Ψ* over moduli space equipped
with a hermitian form (,). (The conformal anomaly means that these statements
require a somewhat more precise formulation.) The flat bundles that arise in this
way have been extensively studied [7, 8] and have been seen to have a natural
origin in gauge theories [9-12]. To date, the existence of a holomorphic
factorization of the WZW model has mostly been understood using conformal
field theory Ward identities, this being the original point of view of Knizhnik and
Zamolodchikov. The purpose of the present paper is to use gauge theories - or
more exactly, coupling of the WZW model to gauge fields - to deduce the existence
of a holomorphic factorization. Many of the key steps have been previously
exploited by Gawedzki and Kupianen [13,14]. See also the work of Bernard [15]
on the heat equation obeyed by characters of affine Lie algebras. The main novelty
which motivated me to write the present paper is the integration over the gauge
field and use of the Polyakov-Wiegmann formula to prove that the partition
function has a holomorphic factorization; see the derivation of Eq. (2.28). Our
treatment will be formal; we will make no claim to analyze the quantum
anomalies.

Gauged WZW models have been extensively studied [16-18,14], mainly with
the aim of giving a Lagrangian description of the GKO coset models [19] (whose
prehistory goes back to the early days of string theory [20]). After developing our
approach to holomorphic factorization of the WZW model in Sect. 2, we will apply
the same methods to holomorphic factorization of coset models in Sect. 3
(recovering observations of Moore and Seiberg [21] and Gawedzki and Kupianen
[13,14]), and then we will consider the special case of the G/G coset model, where
sharper statements can be made, as this theory is actually a topological field
theory. The G/G model has been investigated by Spiegelglas [22].
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2. Gauge Couplings and Holomorphic Factorization

The WZW action functional I(g) is invariant under the usual action of G x G (often
called GL x GR) on the G manifold. An element (α, b) of GL x GR acts on G by
g^agb~1.1 Given a Lagrangian with a (global) symmetry, it is usually possible to
"gauge" the symmetry, introducing gauge fields and constructing a gauge
invariant extension of the original Lagrangian. In particular, gauging the WZW
model means generalizing the theory from the case in which g is a map Γ->G to the
case in which g is a section of a bundle X-*Σ with fiber G and structure group
GL x GR or a subgroup. Letting A be a connection on such a bundle, one aims to find
a gauge invariant functional I(g,Λ) (whose variation with respect to g or A is
required to be given by a local formula) which reduces, for X the trivial bundle and
,4 = 0, to/(g).

In the case of the WZW model, such a gauge invariant extension does not exist.
There is no problem in gauging the first term in (1.1) - one just replaces derivatives
by covariant derivatives. However, the Wess-Zumino term Γ(g) does not have a
gauge invariant extension unless one restricts to an "anomaly-free" subgroup F of
GL x GR (and considers bundles X^Σ with structure group F). The condition for a
subgroup to be anomaly free can be stated as follows. For any subgroup F of
GL x GR, &L and &R (the adjoint representations of GL and GR) are F modules.
If TrL and ΎτR are the traces in &L and ̂ R , then the condition for absence of anoma-
lies is that for any t,t' e3F (the Lie algebra of F)

T r ^ t ' - T r ^ ί ^ O . (2.1)

(As will be clear in the appendix, this statement is equivalent to the statement that
the class in #3(G,1R) represented by ω has an extension in i/|(G,R), where H$ is
the F-equivariant cohomology.) In the appendix, we will review the derivation of
(2.1) for the benefit of readers not already familiar with such matters and to clarify a
few geometrical points. Some readers may want to consult the appendix first, but
this should not be necessary for readers who are familiar with gauged WZW
models or are willing to verify by hand a few easily verified formulas.

We will also be interested in gauged WZW actions in cases in which (2.1) is not
obeyed. In such a case, one cannot construct a gauge invariant I(g, A), but one can
find a "best possible" 7(g, A), such that the violation of gauge in variance is a
multiple of a standard "anomaly" expression that depends on A but not on g. [A
topological explanation of why it is possible to do this will be given in the
appendix, where the detailed formula for /(g, A) is also explained.]

We will adopt the following conventions: z will be a local complex coordinate
on Σ, d2z is the measure \dzdz\, and the components of A are defined by A = Azdz
+ A2dz. We sometimes use the Levi-Civita antisymmetric tensor density εij with

εz2 = — ε2z = I (That is, for one forms a and b, we write J a A b = J d2zεijaibj.) Our
Σ Σ

orientation conventions can be most efficiently and usefully explained by saying
that the variation of the Wess-Zumino term under δg= — gu is

δ Γ = ~ ~L Id2zείJΎl(uS~ldiS• S-'Sjg). (2.2)

1 If G has a non-trivial center Z(G\ then Z{G\ diagonally embedded in GL x GR, acts trivially on g,
so the faithfully acting symmetry group is really (GL x GR)/Z(G). This refinement will not be
important until we come to coset models
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For simplicity, we will in this paper consider only the case that G is connected and
simply connected, so that a G bundle over Σ is trivial.

2.1. The Holomorphic Wave-Function

To begin with, we consider the case that F = GR. In this case, (2.1) is not obeyed, so a
gauge invariant functional /(g, A) does not exist. However, we take

7(g,^) = /(g)+ - ^ J d2zΊτAΛ~
1dΛ- ^ j d2zΎτA,Az, (2.3)

which is as close as there is to a gauge invariant functional, in the following sense.
Under an infinitesimal gauge transformation,

δg = -gii, δA~ -Dtu = -diU-lAbu\, (2.4)

one has

δI(g,A)= 1- Jd22Tm(M.-MJ= ^\ΊrudA, (2.5)

an expression which depends on A but not on g or the complex structure of Σ.
Equation (2.3) is the unique extension of /(g) with this property.

We now formally define a functional of A by

= JDg exp (-fcJ(g)- ^ j d2z T r ^ g - 1 δ z g+ A j d

2z ΎτA-zA^. (2.6)

Note that we do not treat A as a quantum variable; that is, we do not integrate over
A. This would not be sensible as I(g, A) is not gauge invariant.

Now, Ψ obeys two key equations. First,

and second

δ k „ . k
2 π - β l . - (2-8)

Equation (2.7) is proved simply by acting with the left-hand side on the integral
representation of Ψ, and differentiating under the integral sign. Equation (2.8) is a
consequence of the standard anomaly Eq. (2.5). By differentiating under the
integral sign, one finds that the left-hand side of (2.8) equals

ί £g e ~ kI(9'Λ) [Pz(z ~1 Dz%) + Fzz] J (2-9)

where we have introduced covariant derivatives Dg = dg — gA. The quantity in
brackets in (2.9) is the equation of motion of the g field - the variation of I(g, A)
under δg= —gu. Therefore, upon integrating over g, (2.9) vanishes, by integration
by parts in g space.
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To elucidate these equations, it is useful to first introduce the operators

D _ δ k

D o k Λ

DAZ δA-z 4π

Note that for z, w e 27,

In terms of these operators, (2.7) is simply

D

DAZ

and (2.8) becomes
D k

= 0, (2.12)

which in view of (2.12) can be written in a way that does not refer to the complex
structure of Σ:

These equations are closely related to the basic formulas that appear in
canonical quantization of 2 + 1 dimensional Chern-Simons gauge theory, as
explained, for instance, in Sect. 2 of [11] or in [10]. Let si be the space of
connections on (the trivial F bundle over) Σ. <$/ has a symplectic structure that can
be defined purely in differential topology, without choosing a conformal structure
on Σ. It can be defined by the formula

ω(aua2)= — f Ίvaγ AU2, (2.15)
Zn Σ

where aί and a2 are any two adjoint-valued one forms representing tangent vectors
to si. "Prequantization" of si (in the sense of Kostant [23] and Souriau [24])
means constructing a unitary complex line bundle J£? with a connection whose
curvature is — iω. Equation (2.10) can be regarded as a formula defining a
connection on the trivial complex line bundle ^ = i x ( C over si (which we take
with the standard unitary structure). This connection according to (2.11) has
curvature — ίkω. The factor of k means that ^ , with this connection, can be
identified as 5£ ®fc, with JS? the basic prequantum line bundle.

Hence (2.10) and (2.11) actually describe prequantization of J / , with the
symplectic structure kω. The notion of prequantization obviously does not depend
on a choice of polarization or complex structure, and indeed, though (2.10) and
(2.11) are written in terms of a local complex coordinate on 27, they are actually
entirely independent of the conformal structure of 27. Ψ(A) is best regarded not as a
"function" on si but as a section of the prequantum line bundle 5£%k.

The complex structure enters when one wishes to quantize si. A choice of
complex structure on Σ determines a complex structure on si - in which the A2 are
holomorphic and the Az are antiholomorphic. This complex structure is a
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"polarization" which permits quantization: the quantum Hubert space consists of
holomorphic sections of <£m. Equation (2.12) means simply that Ψ(Λ) is such a
holomorphic section.

Now let us discuss the meaning of (2.13). Let F be the group of gauge
transformations, that is, the group of maps of Σ to F. Acting on functions on stf9 F is
generated by the operators

± (2.16)

To find a P action on sections of if ®*, one must "lift" the vector fields in (2.16)
appropriately. This can be done in a standard fashion (for instance, see Sect. 2 of
[11]); the P action on sections of J5f is generated by the operators

(The second term is the contribution of the classical "moment map.") We can thus
see the meaning of (2.13) or (2.14) - Ψ is gauge invariant, as a section of 5£Θfc.

The two conditions we have found - that Ψ is holomorphic and gauge invariant
- mean together that Ψ can be regarded as a physical state of 2 +1 dimensional
Chern-Simons gauge theory (with gauge group F). (See [9-11] for more
background.) This in fact can be regarded as the essential relation between the
WZW model and Chern-Simons theory. We will now recall a few further facts
about the Chern-Simons theory. (The facts summarized in the next three
paragraphs are not all strictly needed for reading the present paper, but they help
put the discussion in context.)

The P action on sections of if Θfc does not depend on the conformal structure of
Σ, but something new happens once such a conformal structure is picked. A
connection A on (the trivial F bundle over) a complex Riemann surface Σ
determines an operator dA which defines a complex structure on the bundle. Gauge
transformations act by ΰA^>fdAf~

x, ϊorf:Σ-+F, but as this formula make^sense
for / : £->F c (F c is the complexification of F), one actually gets an action of F c (the
group of maps of Σ to Fc) o n r f . A F invariant section of if ®k which is also
holomorphic is automatically F c invariant. Let V be the space of holomorphic, Fe

invariant sections of ifΘk. Fis the space of physical states in Chern-Simons gauge
theory, at level k. From what we have said above, Ψ is a vector in V.

A P invariant section of <£®k is the same as a section of an appropriate push-
down line bundle, which we will also call <£%k, over the quotient space sίjP^ The
quotient sί/P^ with the quotient taken in an appropriate sense, is the moduli
space of stable holomorphic F c bundles over Σ, or (by a theorem of Narasimhan
and Seshadri) the moduli space Jt of flat F connections on Σ, up to gauge
transformation. This is a compact complex manifold, and in particular, the vector
space V, which can be identified as H°(Jί, <£®k\ is finite dimensional.

So far, when we have made statements that depend on the complex structure of
Σ, we have considered Σ with a fixed complex structure. Permitting the complex
structure of Σ to vary, we get not a single vector space V but a family of vector
spaces parametrized by the space ίf of complex structures on Σ, or in short, a
vector bundle i r over Sf. The bundle y^ίf has a natural protectively flat
connection (which is essential for the topological invariance of Chern-Simons
theory); the holomorphic structure is obvious, and the anti-holomorphic struc-
ture, which we will recall at an appropriate point, is less obvious.
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22. The Norm of the Wave Function

By now we have defined, for every complex Riemann surface Σ, a vector space V
consisting of holomorphic, gauge invariant sections of the line bundle 5£®k over
the space si of connections. A natural Hermitian structure on Fis given formally
by i

{ Ψ ψ )

(Formally, DA is the measure on si determined by its symplectic structure, and it is
natural to divide by the volume of P ̂  G because of the gauge invariance of Ψ1Ψ2.)
In genus one, this Hermitian structure can be worked out explicitly (that is,
reduced to an explicit description of an inner product on the finite dimensional
vector space V), by actually computing the integral over the infinite dimensional
F€ orbits [14, 25]. In genus > 1, such an explicit evaluation is not known.

We want to compute the norm of the vector ψ introduced in the last subsection,
with respect to this Hermitian structure. To this aim, we first want an integral
expression for Ψ. This could be obtained by just complex conjugating the
definition (2.6) of Ψ, but instead, we prefer to introduce a conjugate WZW model
describing a map h:Σ->G. This time, we introduce a gauge field B gauging the
subgroup GL of GL x GR. This is again an anomalous subgroup, so a gauge
invariant action I(h, B) extending the WZW action I(h) does not exist. The best that
one can do, analogously to (2.3), is

= I(h)- — f d2z TrB zdjι•h- γ--Γ\d2z ΎτBzBz. (2.19)

2π Σ 4π Σ

Under the infinitesimal transformation

δh = uh, δB^-Dμ, (2.20)
one has

δΓ(h, B)=-^-$d2z Tr u(dzBz - d-zBz). (2.21)

As in (2.6), we now define

χ(B)=$Dhe-kI(h>B)

= (Dhexp(-kl(h) +^-id2zTrBzd-Zh /Γx + -^ fd2zΊτBZBZ). (2.22)
\ 2π Σ 4π i /

Comparing (2.6) and (2.22), it is evident that in fact χ is the complex conjugate of Ψ,
χ(A)=Ψ(A).

We now come to the key step in the present paper. We use these integral
representations to compute l^l2:

ί DgDhDA exp (-kl(g)-kl(h)- A | d

2z TxA-zg~xdzg

d-Zh • h ~1 + %- f d2z Tr A-ZAZ J.
2 π Σ /

(2.23)
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Notice that the integrand is invariant under gauge transformations of the form

δg=-gU, δh = uh, δAi=-Diu. (2.24)

This follows from the cancellation between (2.5) and (2.21).
We can perform the integral over A, using the fact that the exponent in (2.23) is

quadratic in A and the operator appearing in the quadratic term is a multiple of the
identity.2 Gaussian integration over A gives

(2.25)
At this point we may use a formula of Polyakov and Wiegman [26]:

- i - J d2z Ίτg-ιdΛdJi-h-K (2.26)

The proof of this formula follows from the following: (i) the formula is obviously
valid if ft = l; (ii) the left- and right-hand sides are both invariant under h-*wh,
g -^gw"1, for arbitrary w:Σ-+G. To demonstrate (ii), it suffices to check
infinitesimal invariance under δg=—gu, δh = uh. This can easily be verified
directly. Actually, a more conceptual proof of (ii) follows from our above
calculation. We know that (2.23) is invariant under (2.24), and integrating out A, an
operation that will preserve this symmetry, one deduces that the exponent on the
right-hand side of (2.25) has the desired symmetry.

Therefore, replacing the double integral over g and h by a single integral over
f = gh, and canceling the factor of vol((5) in the process, we get

\W\2=IDfe-U(f)

u (2.27)

The right-hand side of (2.27) is by definition the partition function Z(Σ) of the
WZW model (with symmetry group G and level k) so we have learned

Z(Σ) = \Ψ\\ (2.28)

which, though still in need of further elucidation, is the statement of holomorphic
factorization of the WZW model.

2.3. Varying the Complex Structure of Σ

So far, we have considered the surface Σ with a fixed complex structure. At this
level, Z(Σ) is a number; Ψ is a vector in a fixed vector space V. Equation (2.28) is a
relation between them. In this form, the relation is not very remarkable. It gains
interest when one permits the complex structure of Σ to vary.

We will work over the space ίf of all conformal classes of metrics on Σ. Every
conformal metric ρ determines a complex structure. For any given ρ, we can define
a vector space Vρ consisting of holomorphic and gauge invariant sections of the

2 We can assume a regularization in which the determinant of a multiple of the identity is one.
With an arbitrary regularization, such a determinant is a factor of the form ecχ{Σ\ where c is a
universal constant, independent of 2, and χ(Σ) is the Euler characteristic of Σ. Such a factor can be
removed by adding to the WZW action a multiple of j" yρR, where R is the scalar curvature of a

Σ

metric ρ that is compatible with the complex structure of Σ
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prequantum line bundle j£?Θk over si. The VQ vary as fibers of a vector bundle if
over Sf. A section of if is a function *F(y4; ρ) of connections and conformal metrics
which, in its dependence on A for fixed ρ, obeys (2.12) and (2.14).

The space if is a complex manifold, whose exterior derivative has the standard
decomposition d = d + d. We will write 5 ( 1 0 ) and <5 (0'υ respectively for the d and d
operators of Sf. One can write these explicitly in the form

(129)

The bundle TΓ has a (projectively) flat structure, which is defined by giving
compatibly a holomorphic structure and an antiholomorphic structure. The
holomorphic structure is the "obvious" one. Ψ(Λ; ρ) is said to be holomorphic, in
its dependence on ρ, if it is annihilated by

p<o,i) = 45<o,i)# (2.30)

For the antiholomorphic structure, we cannot simply use the operator δ(1>0\ since
this does not commute with the operator on the left-hand side of (2.12). Rather, as
explained in [11,10], Ψ(Λ; ρ) is antiholomorphic if it is annihilated by

i lTr^-^-. (131)

It is now just a matter of differentiating under the integral sign to show that
Ψ(A; ρ) as defined in (2.6) is annihilated by F ( 1 0 ). This has essentially been done in
[13]. We have

^zδρ-^ΎTigD^ή, (2.32)

where Dig = dig—gAi. Similarly,

so that

Combining

Ti
1 J

the

D

DA-Z1

pieces,

DA

D

we

T

z

get

2 κ . ^ (2.33)

ιDzg)2. (2.34)

(2.35)

as was claimed.
Now, let ea, α = l, . . . ,dimF be a basis of orthonormal, covariantly constant

sections of if (over some open set in moduli space). Ψ can be expanded in this basis
as

(2.36)
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with some expansion coefficients Ja. Equation (2.35) means simply that the JJρj are
anti-holomorphic functions on 9* in the usual sense. Consequently, (2.28) amounts
to an expression

dimF

Z(Σ;Q)= Σ \ff (2-37)
α = l

for the WZW partition function as a finite sum of norms of holomorphic functions.
The stress tensor of the WZW model is usually defined as

1Dzg)2. (2.38)
Q-zz 4π

The current is

Λ=^7/(g,^)=^g-1ΰzg (2.39)

The fact that

Tzz=-(π/k)-ΎrJ2

z, (2.40)

which obviously was the main point in the derivation of (2.35), is known as the
(classical form of the) Sugawara-Sommerfϊeld construction. It is well known that
when Jz is defined as a quantum operator, Tr Jz must be defined with some point
splitting or other regularization; this has the effect of replacing kbyk + h(h being
the dual Coxeter number of G). See [13, Eq. (49)] for some discussion of this in the
present context.

Obviously, our discussion has been purely formal, and we have made no
attempt to prove that the key statements, such as the statement (2.28) of
holomorphic factorization, survive the quantum anomalies. A proper treatment
would have to address the conformal anomalies that affect both Z and Ψ and show
that the left- and right-hand sides of (2.28) have the same conformal anomaly and
are equal.

Finally, the gauge invariant functional

J d2z
Σ

z (2.41)

that appeared in the exponent in (2.23) deserves some comment. Let G be the
compact, connected, and simply connected group G' = GxG. The pair (g, ft): Σ-»G
x G can be regarded as a map of Σ to G. The G WZW action is just /(g, ft) = I(g)
+ I(h). Let F be the subgroup of GL x GR consisting of elements of the form ((1, a),
(α"1,1)). In other words, F acts by (g,ft)^(gα~1,αft). Then F is an anomaly free
subgroup of GL x GR [in the sense that (2.1) is obeyed]. Therefore a gauge invariant
action I(g,h,A), reducing to /(g,ft) at 4̂ = 0, exists. It is precisely (2.41). Our
computation of holomorphic factorization amounted to demonstrating that if
ZG(Σ) is the partition function of the WZW model with target G, and ZG,/F(Σ) is the
partition function of a gauged WZW model with target G and gauge group F, then

ZG{Σ)=ZGΊI{Σ). (2.42)
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Holomorphic factorization has its origin, from this point of view, in the fact that
when one computes the action (2.41) of the gauged G'/F model, it turns out to be
the sum of a functional of g and a functional of h. Since exponentiating the action
(to get the integrand of the path integral) turns sums into products, this leads to the
ability to factorize ZGΊF(Σ) in the fashion that we have described.

3. Holomorphic Factorization of Coset Models

So far we have considered gauged WZW models only as a technical tool in order to
understand ordinary WZW models. The gauged WZW models are, however,
interesting models of conformal field theory in their own right. For every anomaly-
free subgroup F of GL x GR (that is, every subgroup obeying the condition in (2.1)),
one has a corresponding gauge invariant generalization of the WZW action,
which, upon quantization, leads to a conformal field theory model. The models
that arise this way are equivalent to coset models, as has been shown by several
authors cited in the introduction.

The most standard examples of anomaly-free subgroups of GL x GR are the
following. Let Gadj be the diagonal subgroup of GLx GR (acting by g-^αgα"1,
a G G). Let H be any subgroup of Gadj. Such an H is always anomaly free.

Let B be an H-valued connection. Since H is an anomaly-free group, a gauge-
invariant extension /(g, B) of the WZW action /(g) exists. Explicitly, it is

/(g,B)=I(g)- ±- \ d2z ΊτBjda-g-' + ^-ίd'z TrB,g-*d zg
In Σ 2π Σ

μhτriBΛBΛB g). (3.1)
In Σ

We want to understand the holomorphic factorization of the corresponding coset
model partition function

^ (3.2)

This model (with the diagonal embedding of H in GL x GR) is sometimes called
"the" G/H model, and corresponds to the diagonal modular invariant, as will be
clear. In this paper we will only consider these standard anomaly-free subgroups,
but the generalization of the considerations to other cases should be apparent.

3.1. Holomorphic Wave Function

As in holomorphic factorization of the original WZW model, we now consider a
subgroup F of GLx GR which is not anomaly free.3 In fact, we take F = HLx GR,
where HL is the subgroup of GL coming from the embedding of H in G. An F
connection is a pair (B, A), where B and A are H and G connections, respectively. A

3 The argument could also be expressed in terms of a certain anomaly free subgroup of G'L x G'R
where G' = GxG. This formulation would proceed in parallel with the last paragraph of Sect. 2



200 E. Witten

gauge invariant action I(g, A, B) extending the WZW action does not exist, since
the subgroup F of GL x GR is not anomaly free. Analogous to (2.3), there is instead a
best possible action, uniquely determined by requiring that the violation of gauge
in variance is independent of g and of the conformal structure of Σ. This action is

^[ Asg-' -^[i2z Tv(AzA-2 + BZB-Z). (3.3)

Under

δg = vg-gu9 SAt = - Dμ, δBt = - Dtv (3.4)

(here u and v are zero forms valued, respectively, in the Lie algebras of G and if), we
have

δI(g,AB)= -ί- J d2z Ίτu(dzA-z-d-zAz-dzB-z + dzBz)
4π Σ

= ^~\Ίτu{dA-dB). (3.5)
4π Σ

Before proceeding, let us make a few comments on the global structure. If G has
a nontrivial center Z(G\ then Z{G\ diagonally embedded in GL x GR, acts trivially
in the WZW model (since g = aga~1 for aeZ(G)). The symmetry group that acts
faithfully in the WZW model is hence really (GL x GR)/Z(G). Similarly, F = HLxGR

does not act faithfully; the group that acts faithfully is F' = (HLxGR)/Z, where
Z = HnZ(G). To make the most precise statements in what follows, it is best to
think of the pair (A, B) as a gauge field with structure group F'. The group of maps
of Σ to F will be called Pr. The complexification of F will be called F& and the
group of maps of Σ to Ff

c will be called Fi> The groups of maps of Σ to H, G, and
their complexifϊcations H€ and Gc will be called iϊ, ό, i?c, and G€.

Now, as in Sect. 2, we introduce the holomorphic wave function

χ{A,B)=\Dge-k^'Λ'B\ (3.6)

χ obeys certain conditions analogous to those studied in Sect. 2. To exhibit these,
we let si be the space of G-valued connections on Σ, & the space of H-valued
connections, and ̂ = i x i We want to consider ̂  as a symplectic manifold, with
the symplectic structure given by the formula

ω(al9 bt a29 b2) = — f Tra γ A a2 - — f Tr bγ A b2. (3.7)

(Here the αf and bj are respectively one forms with values in the Lie algebras of G or
H. The pairs (aί9 b^) and (α2, b2) define tangent vectors to ̂ . The "Tr" in the second
expression on the right of (3.7) is the quadratic form on the H Lie algebra that is
induced from the embedding of H in G.) The minus sign before the second term in
(3.7) is characteristic of coset models. Prequantization means constructing a line
bundle S£ over ^ with a unitary connection of curvature — iω.
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Rather as in Sect. 2, the line bundle over ^ that is relevant is the trivial line
bundle endowed with a connection described by the following formulas:

D
DA2

D
DA,

D

DBZ

D

DBz

δ
δAz

δ
δAz

δ
δBz

δ

δBs

k i
4πΛί'

i k i+ 4π z )

k
f 4 π *'

k

4π z'

(3.8)

Computing the curvature of this connection, we see that the trivial line bundle
endowed with this connection is isomorphic to JSP®*, which is how we will refer to it
henceforth. The action of the gauge group (that is, the group of maps of Σ to G x H)
on V lifts to an action on jg?®k. The lift is described at the Lie algebra level by the
obvious generalization of (2.17); the G action is generated by the operators

and the H action is generated by

i (310)

Here F(A) and F(B) are the curvatures of A and B, respectively.4

The analogs of (2.12) and (2.14) are easy to find, χ obeys first of all

This has the following interpretation. Pick on ^ a complex structure that comes
from the standard complex structure on si and the opposite complex structure on
J*. (Thus, A2 and Bz are holomorphic, and Az and Bz are antiholomorphic.) The
(0,2) part of the curvature of the connection (3.8) vanishes, so 5£m has a natural
structure of holomorphic line bundle over ^. Equation (3.11) means that χ is a
holomorphic section of this line bundle, χ also obeys the analog of (2.14), namely

As in the discussion of (2.14), this equation means that χ is gauge invariant in the
appropriate sense: it is invariant under the natural lift of the action of the group F'
of gauge transformations to an action on sections of ®fc

4 Ifif (or G) is not connected and simply connected, describing a lift of the gauge group to act on
(£%k r e q U j r e s more than the lift of the Lie algebra described by these formulas. The full story is
naturally described using the gauge theory approach to prequantization of the space of
connections [27-29] and will not be explained here, though the existence of a natural lift is
essential later when we consider the role of the center of G
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3.2. The Space of Conformal Blocks

Let W be the space of holomorphic sections of <£%k which are F' invariant - such
as χ. We will devote this subsection to a detailed characterization of W. Wis a finite
dimensional vector space which can be given the following concrete description. A
holomorphic section of Jέf<g>fe which is F' invariant is automatically also F'^
invariant. Let 0ί = <&/$"& According to the Narasimhan-Seshadri theorem, & is the
moduli space of flat F-valued connections on Σ, up to gauge transformation. 0t
gets a complex structure from its interpretation as the quotient of the complex
manifold ^ by the complex group F'€. The holomorphic line bundle i?®k over #
pushes down to a holomorphic line bundle, which we will call by the same name,
over 01. F'€ invariant sections of ££®k over ̂  are pullbacks of sections oiS£m over
01, so W=H°(0l,g'®k). This is the space identified in [21,14] as the space of
conformal blocks of the coset model.

W is finite dimensional, since ̂ ? is compact. In fact, if Z is trivial, then 01 = Jt
x Jί, where Jί = ̂ /6€ and Jί — Άjfί^ As is apparent from (3.11), the complex
structure on M is the standard one, and the complex structure on «yΓ is the
opposite one. We will refer to Jί with the opposite complex structure as Jί. If JS?(1)

is the standard prequantum line bundle over Jί and JSP(2) is the standard
prequantum line bundle over Jί (and we denote their pullbacks to Jί x Jί by the
same symbols), then 5£®k = JSf(f}

fe® J5f(f}

("fc). The minus sign, of course, comes from
the minus sign in the second term in (3.7). [As JSP(2) has curvature of type (1,1), it is
naturally holomorphic both in the standard complex structure on Jί and the
opposite one.] Consequently, if Z is trivial,

{% $ (3.13)

The space of conformal blocks of the WZW model with target group G, studied
in Sect. 2, was

V H°(JίJ?%k) (3.14)
Likewise, the space of conformal blocks of the WZW model with target group H is

(3.15)

Here we take Jί with its standard complex structure, and a positive tensor power
of JSP(2). Upon reversing the complex structure on Jί and JSP(2), we see that, if VH* is
the dual vector space to VH, then

)). (3.16)

Consequently, if Z is trivial,
4 y ? W=VG®VH*. (3.17)

Now, we want to find the appropriate statement that holds when Z is not trivial.
First of all, the natural projection of F->F' induces a natural map i: F-+P'. i is not
quite an embedding; the kernel consists of constant gauge transformations by
elements of the center of F. i is also not quite surjective; the quotient Z' = F'/i(F)
consists of "twists" by elements of Z in going around closed one-cycles in Σ
(described explicitly at the end of this subsection), so in fact Z' = Hom(iί t(Σ, Έ), Z).
Thus we have an exact sequence

0->ί(F)->F'->Z'->0. (3.18)
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Similarly, after complexification (which does not affect finite groups and so leaves
Z and Z' unmodified), we have a natural projection i'.F^-^F^ and an exact
sequence

H 0-»i(Fc)-»Fi-*Z'-»0 (3.19)
with the same Z'.

We can take the quotient of ^ by F'^ by first dividing by i{F<^ and then dividing
by Z'. As ŷΐ(F<c) = Jί x Jf> we get a natural action of Z' on ^ x Jf, and

^ = (ΛTXΛ0/Z'. (3.20)

From this it follows that, if Xz denotes the Z' invariant part of a vector space X,
then

W=(VG®VH*f. (3.21)

The Z' action on Jί x Jί that enters here is easy to describe explicitly.
According to the Narasimhan-Seshadri theorem, Jί x JΫ* is the moduli space of
representations of the fundamental group of Σ in G x H. For I" of genus r, such a
representation is given explicitly by holonomies (gi,/ίi),..., {gir^ii) about 2r
generating cycles (modulo conjugation, and subject to a well-known relation). Z'
acts by (gl9Λi),..., (gi^K^^igi^M,..., (z2rg2r, z2rΛ2r), with z1,...,z2r being
arbitrary elements of Z.

3.3. Holomorphic Factorization

The vector space W has a natural Hermitian structure formally given by

<"•*>- vol(6)xvol(i?) ί ^ Ϊ O T ) X 2 ( ^ ) 0.22)

(It is convenient to divide by vo\{ό) vol(//), and not by vol(Fr)> which differs from
this by a factor of # Z', the number of elements in Z7.) We want to show that the
partition function of the G/H coset model is

ZGIH{Σ) = \χ\\ (3.23)

The reasoning required is very similar to that in Sect. 2, so we will be brief. One first
introduces a conjugate WZW model, with gauge group GL x HR. The action, for
h:Σ-+G, and A and B gauge fields of GL and HRi is

Γ(h,A,B) = J(Λ)+ ̂ - J d2z ΊrB-zh-1dzh- - ^ J d2z ΊτAzdsh /Γ1

2π 2 2π i

+ i - J d2z ΊτAJkBJi- ι-^-\d2z Ίt{AzA, + BZB,). (3.24)

We thus get an integral expression for χ(A,B):

χ(ABj= $Dhe-kΓ{h>Λ>BK (3.25)

Combining (3.6) and (3.25), we get
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Writing out the exponent on the right-hand side of (3.26) explicitly, one sees that
it is quadratic in A. The integral over A is Gaussian, therefore. After doing this
integral one finds that, using the Polyakov-Wiegman formula, the integral over g
and h collapses to an integral over f = gh. The remaining functional integral is
precisely the definition (3.2) of the partition function ZG/H(Σ) of the G/H model,
completing the formal proof of (3.23). These steps proceed precisely in parallel with
the corresponding points in the derivation of (2.28), and will not be elaborated
further.

It remains to consider what happens when the complex structure of Σ varies.
Again, the parallel with Sect. 2 is so close that we can be brief. When the complex
structure of Σ varies, W varies, as the fiber of a vector bundle iff over the space £f
of complex structures on Σ. if has a projectively flat connection, given by formulas
analogous to those of Sect. 2. The holomorphic structure oϊi^is defined by saying
that a section χ(A,B; ρ) is holomorphic if it is annihilated by the (0,1) part of the
connection

* J L J L (3.27)2kί"" DB.DB.z
The antiholomorphic structure is defined by the (1,0) part of the connection

ΛiιMΊ'-kΈΛ < 3 2 8 >
[The justification of these formulas is that V commutes with the operators on the
left hand side of (3.11). Alternatively, one can deduce these formulas systematically
by working out the Bogoliubov transformation that compensates for a change in
polarization of (€. The fact that Bz appears in (3.27) and A2 in (3.28) of course
reflects the ubiquitous reversal of sign and change of complex structure of the coset
model.] Precisely as in Sect. 2, by differentiating the definition of χ under the
integral sign, one shows that χ is antiholomorphic,

Γ(1 °>χμ,B;ρ) = 0. (3.29)

(3.23) and (3.29) make up what is usually called holomorphic factorization of the
G/H model.

4. The G/G Model

In this section, we will consider the special case of the G/H coset model for H = G.
This case is particularly simple, being a topological field theory, and as a result
sharper statements can be made. The understanding of these statements also
illuminates the "ordinary" models, even the original WZW model, as we will see.

The action of the G/G model is the familiar G/H action,

- ^ - J d2z Ίτ{BzB-z - BzgB,g " ' ) , (4.1)
In Σ

specialized to the case H = G. Thus, B is now a gauge field valued in the Lie algebra
of G. (B is of course gauging the adjoint subgroup of GL x GR, so the covariant
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derivative of g will be Dtg = dtg + [Bb g].) The main novelty of the case G = His that
this model is a topological field theory, in the sense that (for instance) the partition
function 1

"GIGK"' v o l ( φ
is independent of the metric of Σ. We will first prove this directly, and then
reformulate the argument in the language of holomorphic factorization.

For the direct proof, we note that under an infinitesimal change in the metric of
Σ, the action of the gauged WZW model changes according to the following
formula:

δl{g,*) = ^ J δρ-z-zρ'zz Ίτ{g-ιDzg)2 + i - J d2zδρzzρ
zz Ίv(D-zg g~ιf. (4.3)

The variation of the partition function is hence

(4.4)

and we must show that this vanishes. To do this, we will show that the integrand in
(4.4) is a total derivative in function space. In fact, since the variation of the action
in a change of the connection B is

^ ^ - z g ' g ~ 1 , (4.5)
In In Σ

we get
\DBDg j ά2zδρz^ JL. ((g-iD.gr e""*"*)

= \DBDg e-»<*.« ( - ^ ) ί d2zδρ-zzρ" Tr(g" γΌzg)2. (4.6)

Assuming that one can integrate by part in function space, the left-hand side of (4.6)
vanishes, and this means that the first term on the right-hand side of (4.4) can be
discarded. The second term on the right-hand side of (4.4) similarly vanishes since

\DBDg j d2zδρzzρ
z-z ^ ((D-Zg g~ ^ e~kI^)

'g-1)2. (4.7)

4.ί. Factorization

The attentive reader will note that the key fact in the last paragraph was the
Sugawara-Sommerfield construction (2.40), which also played a key role in the
analysis of holomorphic factorization of general WZW and coset models. In fact, it
is illuminating to recast the above argument in the language of holomorphic
factorization.
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Precisely as in the general discussion of coset models, we consider the gauging
of HL x GR (which now is GL x GR). The closest to a gauge invariant action is (3.17),
which we repeat for convenience:

I(g,A,B)=I(g) + ^ I d2z ΎιA-zg~γdzg- i - J d2z ΎrBAg'g'1

+ ~ld2zΊτBzgA-zg-'- -^ Jd2zΎτ(AzA-z + BzB,). (4.8)

The novelty, compared to the case of arbitrary H, is that now there is a kind of
symmetry between the GL and GR gauge fields B and A: (4.8) is invariant under
reversing the complex structure (or equivalently, the orientation) of Σ, exchanging
g with g"1, and exchanging A and B. [Alternatively, if one exchanges g with g~ι

and exchanges A and B, while leaving the orientation of Σ fixed, then (4.8) is
complex conjugated.] We want to see the consequences of this.

Just as in the general case of arbitrary H, one introduces the holomorphic wave
function

kI^A>BK (4.9)

The general arguments specialized to this case show that the norm of χ is

\χ\2 = ZG/G(Σ) (4.10)

and that χ is anti-holomorphic,

F(1'O)χ = 0. (4.11)

The novelty is the symmetry between A and B, which reverses the complex
structures, and so makes it apparent that χ must also be holomorphic,

P(O'1)χ = 0. (4.12)

Equations (4.11) and (4.12) can both be proved by using the general definition
(3.27) and (3.28) of the connection and differentiating under the integral sign, as in
the proof of (2.35).

Equations (4.11) and (4.12) together mean that χ is covariantly constant, and
hence \χ\2 is a constant. From the factorization law (4.10) we thus deduce again that
ZG/G(Σ) is independent of the metric.

To probe more deeply, we now recall the general description in Sect. 3 of the
vector bundle if in which holomorphic factorization of the coset model takes
place. We had

χe(VGΘVH*)z\ (4.13)
with

V — H°( M φ®k\vG-ti (M,^ j ,

Setting H = G and interpreting FG® FG* as Hom(FG, VG\ we have

χe(Hom(FG,FG))z'. (4.15)

Now, Hom(FG, VG) contains a canonical (and Z'-invariant) element, the identity
map 1; it is natural to ask whether χ = 1.
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The "symmetry" between A and B makes it obvious that χ is hermitian (in the
natural norm on VG). Indeed χ(A, B) = χ(B, A) because (4.8) is complex conjugated if
one exchanges A and B while mapping g^g'1. With our methods it is also easy to
prove that 2

1=1- (4.16)
This amounts to the statement that

X(Λ, C) = ^-^ j DB χ(A, B)χ(B, C). (4.17)

This is proved by replacing each of the three copies of χ that appear in (4.17) with
the integral representation (4.9), performing the Gaussian integral over B, and
using the Polyakov-Wiegmann formula (just as in the original proof of holo-
morphic factorization in Sect. 2.2).

Equation (4.16) means that χ is the orthogonal projection operator onto a
subbundle V of Y (whose inclusion in ΊΓ is compatible with the projectively flat
connection on tV9 since χ is covariantly constant). It will be evident presently that
holomorphic factorization can be carried out in TΓ'. One expects that χ = l and
ψ*' = y , but the methods of this paper do not seem to suffice for proving this.

The fact that χ is covariantly constant means that if e£A; ρ) is an orthonormal
basis of covariantly constant sections of ΊΓ', then χ(A, B; ρ)= £ QtjelA\ ρ)e3{B\ ρ),

with some constants QUj. The fact that χ2 = χ (and χ = 1 when restricted to y'9 by
definition of 'V') means that Qi,j = δij. So

χ(A,B;ρ)= ' | ei(A;ρ)φΓθ). (4.18)

We can thus compute the norm of χ to get

ZG/G(Σ) = |χ|2 = dim (TT'). (4.19)

One expects that i^ = Ψ*\ but in any case, if this is not true, it is i^' that should be
called the space of conformal blocks in the WZW model. (This will be even more
apparent in the next subsection.) So we have established that the partition function
of the G/G model is the number of conformal blocks of the WZW model, a result
that has been conjectured by Spiegelglas [22], with considerable evidence.

4.2. Relation to the WZW Model and "Ordinary" Coset Models

Now we will see what we can learn about the original WZW model, and general
coset models, by applying our knowledge of the G/G model. The reason that one
can learn something interesting is that, upon returning to the definition (4.9) of χ,
and noting that /(g, 0,0) is the original action of the WZW model, we see that the
partition function of the WZW model is

) = χ(0,0;ρ). (4.20)

In view of (4.18), we get therefore

ZG(Σ)= Σ ei{0;ρ)ei(0;ρ). (4.21)
i l



208 E. Witten

This formula expresses the partition function of the WZW model in terms of
quantities that naturally arise in quantizing the moduli space si of G-valued
connections, namely the orthonormal parallel sections e^A; ρ).

As a check, let us verify that (4.21) is compatible with the earlier description of
ZG(Σ) as the norm squared of a holomorphic section of iί\

ZG(Σ) = \Ψ\2. (4.22)

Recalling the definition (2.6) of Ψ, we see that Ψ(A ρ) = χ(A, 0 ρ), so from (4.18) we
get άimir>

)= Σ ei(A;ρ)ei(0;ρ). (4.23)

As the et are orthonormal, insertion of this in (4.22) gives back (4.21).
In a similar fashion, one can also obtain a formula for the partition function of

the G/H model. Recalling the definitions (4.14) of VG and VH, we see that there is a
natural map rG/H :VG-+VH, which takes a section of Jέf<8>fe over Jί and restricts it to
Jί. (As Jί and Jί are the moduli spaces of holomorphic G c and Hc bundles,
respectively, there is a natural inclusion of Jί in Jί) Taking complex conjugates,
there is also a natural map r%/H: Vg-*11. These maps do not respect the unitary
structures.

For every H, we have holomorphic factorization

ZG/H(Σ) = \χG/H(A,B;ρ)\\ (4.24)

where χG/H is the functional defined in (3.6). Inspecting the definition, we see that

χG/H(A, B;ρ) = (l ®rGIH)χGIG(A9 B ρ). (4.25)

Using (4.18) we can now rewrite (4.24) in the form

ZGIH(Σ)= Σ \rGIH(ei)\2 (4.26)
i = 1

Alternatively,

ZGIH(Σ)= Σ Σ Uj,roIBed\2, (4-27)
i = l 7 = 1

with fj an orthonormal basis of parallel sections of 1^H. Formulas of this type were
suggested in [13,14]. If one takes H to be the trivial group (with only the identity
element), then (4.26) reduces, as it should, to (4.21).

Appendix

The purpose of this appendix is to clarify the geometric meaning of the classical
gauged WZW actions on which this paper is based. Some readers may wish to
consult this appendix before reading the body of the paper (see also [4, 29, 30]).

The problem can be clarified by formulating it in more generality than we
actually need. We consider an arbitrary connected manifold M with a closed three-
form ω whose periods are multiples of 2π, so that ω is related to a class in H3(M, Έ).
We let Σ be an oriented two dimensional surface without boundary. To simplify
the considerations that follow, we assume that π1(M) = π2(M) = 0, so that a
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continuous map X:Σ^>M is automatically nullhomotopic. (The main novelty
that arises if one relaxes this condition is that one must use integral co-
homology instead of just working with differential forms.) We suppose given the
action of a compact Lie group F on M and we suppose that ω is F invariant. To
simplify the story, we suppose that F is simple and simply-connected. (Again, if
these conditions are relaxed, the main novelty that arises is that one must use
integral F-equivariant cohomology, rather than the de Rham model that will
appear presently.) We describe the Lie algebra of F with generators Ta and
relations

Let

Γ(X)=$X*ω, (A.2)
B

where B is any three manifold with dB = Σ9 and an arbitrary extension of X over B
has been chosen. Γ has values in R/2πZ. We wish to construct a gauge invariant
generalization of Γ.

The action of F on M is generated by vector fields Va. Introducing a gauge field
A=ΣAaTa, with structure group F, we want to find a generalization Γ(X, A) of Γ

a

that is invariant under

δAa=-Dε\ (A.3)

for εa an infinitesimal gauge transformation. The variation of Γ is

*Fα(ω)). (A.4)

(iv is the operation of contracting with a vector field V.) Additional terms that can
be added to (A.2) to cancel this exist only if there are one-forms λa on M such that

iVa(ω) = dλa, (A.5)

and moreover such that

b{λa)=0. (A.6)

If such λa exist, then, by averaging suitably over the compact group F, one can
suppose that they transform in the adjoint representation of F. In this case, the
desired gauge invariant generalization of Γ is

Γ{X, A) = Γ(X) -JΣA
aΛ X*{λa) - X- $ΣA

a A Ab X*(iVbλa). (A.7)

Equations (A.5) and (A.6) have a geometrical meaning, in terms of the so-called
F-equivariant cohomology of M, denoted H$(M). A de Rham model for this
equivariant cohomology, explained in [31, 32], can be described as follows. Let
Ω*(M) be the de Rham complex of M, and let S*^) be a symmetric algebra on the
Lie algebra <F of F, with generators φa considered to be of degree two. Let
W* = (Ω*(M)®S*(#'))F (with F denoting the F invariant part). In W*, introduce
the differential

a. (A.8)
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If ω is a closed form on M, an element ώ e W* is called an equivariant extension of
ω if Dώ = 0 and ώ\φ=o = ω. The meaning of (A.5) and (A.6) is simply that they are
the conditions for ω to have an equivariant extension. In fact,

ώ = ω-Σ Φaλa (A.9)
a

is an equivariant extension of ω if and only if the λa obey (A.5) and (A.6) and
transform in the adjoint representation of F.

Now let us specialize to the case of actual interest in this paper in which M is the
group manifold of a simple, compact, connected, and simply-connected Lie group
G, and

Moreover, F is a connected subgroup of GL x GR. The embedding of F in GL and
GR is determined by an embedding of Lie algebras which we can write as

The vector fields Va are described by the formula

One has

iVaω = dλa

with

λa = l Tr(Γfl,t(dg g" >) + Ta,R(g- * dg)). (A.14)

These Λ,β transform in the adjoint representation of F. The non-uniqueness in the
choice of the λa is λa-+λa + dwa, where the wα are zero forms in the adjoint
representation of F. Equation (A. 14) is the unique universal formula that works for
any F. One now computes that

iya{λb) + iYb{λa)= ± Tr(Γ β j L Γ 6 , L - Ta<RTbJ. (A.15)

[Note that the possible wa do not contribute since iVa{dwb)=fabwc is antisymmetric
in a and ft.] Thus the equivariant extension ώ of ω and the corresponding gauge
invariant extension Γ(g, A) of Γ exist precisely if F is such that the right-hand side
of (A. 15) vanishes.

This is the criterion that was stated in (2.1). The gauge invariant extension of Γ,
when F is such that (A. 15) vanishes, is explicitly

Even when (A. 15) does not vanish, (A. 16) is the closest that there is to a gauge
invariant extension of Γ(g, A), in the sense that the variation of (A.I 6) under a gauge
transformation depends only on A and is independent of g. This fact, which played
an important role in the body of the paper, reflects the fact that the λa obeying (A.5)
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exist for any F; only the validity of (A.6) depends on F. This means that although
an extension ώ of ω obeying Dώ = 0 may not exist, ω always has an extension such
t h a t

(And such an ώ is unique if one wishes a formula that works universally for any F.)
This relation precisely ensures that the violation of gauge invariance depends on A
and not g.

Geometrically, the reason that (A. 17) has a solution is as follows. The
equivariant cohomology of G is the cohomology of the homotopy quotient G//F
= G x FEF. If one computes the cohomology of G//F from the spectral sequence of
the fϊbration G//F->BF, one sees (since ω is a three dimensional class, and the non-
trivial cohomology of BF begins in dimension four) that the only obstruction to
existence of an equivariant extension ώ of ω comes from H\BF). In fact, the
invariant quadratic form on the F Lie algebra that appears on the right-hand side
of (A. 15) represents the obstruction class in H4(BF), via the Chern-Weil
homomorphism. The cohomology of BF is isomorphic to S*(J^), so the ob-
struction is an element of S*(J^).

The gauge invariant generalization of the WZW Lagrangian is

*g-'dAg-iΓ(g,A),

with * the Hodge star operator, dA the gauge-covariant extension of the exterior
derivative, and Γ(g,A) given in (A. 16). The first term depends on the conformal
structure of Σ, and the second has a topological origin that we have attempted to
elucidate in this appendix. The properties of the WZW model depend on a peculiar
interplay between the two terms, some aspects of which we have seen in this paper.
All the particular formulas for gauged WZW Lagrangians given in this paper are
various specializations of (A. 18).
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