
commun. Math. Phys. 144,17-40 (1992) Communications in

Mathematical
Physics

© Springer-Verlag 1992

Conformal Blocks of Minimal Models
on a Riemann Surface

G. Felder1 and R. Silvotti2*
1 Institut fur theoretische Physik, ETH-Hόnggerberg, CH-8093 Zurich, Switzerland
2 Mathematical Sciences Research Institute, Berkeley, CA 94720, USA

Received March 5, 1991

Abstract. We give explicit integral representations for conformal blocks of minimal
models on arbitrary compact Riemann surfaces.

1. Introduction

Rational conformal field theory on the Riemann sphere S can be formulated in
terms of a pair i f 0 <£ of identical Virasoro algebras i f with assigned rational
central charge c. If L(h, c) denotes the irreducible highest weight if-module of
highest weight h, the Hubert space of the theory decomposes as (J) L(h, c) ® L(h\ c),

h,h'

with h and h' ranging in some finite set of rational values. Correlation functions
of local fields at point Pl9..., Pn on S admit an analogous decomposition into the
so-called left (respectively right) conformal blocks, which depend holomorphically
(respectively antiholomorphically) on the local coordinates z(Pi) defined about the

Pl-
under certain consistency requirements, the theory can be generalized to

Riemann surfaces Σ of positive genus. The main argument for this lies in a formal-
ization of the surgery operations ("sewing") through which Σ can be obtained
from a set of three-punctured spheres. General formulations of conformal field
theory on Riemann surfaces have been outlined by Segal and by Gawedzki. They
can be roughly summarized as follows: The holomorphic part of a conformal field
theory is specified by assignments Σ\->B(Σ) of objects B to Riemann surfaces. If
Σ has m + n punctures at points Ph the B(Σ): (g) L(hhc)^> (X) L(hhc)

are trace class operators depending holomorphically on z(Pt) and having specified
properties under conformal diffeomorphisms. Moreover, the assignment B from
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Riemann surfaces and a set of surgery operations to operators and trace operations
has functorial properties ("sewing axioms"); the "functor" B is therefore specified
by the assignments of trilinear operators B(X) to three-punctured spheres X.

In this paper, we present a calculation of B for the minimal models MPtP> of
Belavin, Polyakov and Zamolodchikov. These are the conformal field theories
constructed upon the irreducible highest weight modules of 3? with central charge
c = 1 — 6(p — p')2/pp' parametrized by two positive and relatively prime integers p
and p'.

In the first step (see Sect. 2), we use the fact that the relevant irreducible modules
L(Λ, c) are isomorphic to the cohomologies of certain complexes 3F of Fock spaces
("BRST cohomology"). This identification allows us to make use of free field
techniques.

In a second step we construct the trilinear operators B(X). These are the dual
objects of a complex trilinear form C (the "three-point vertex") defined on the
product of three irreducible modules and associated with the sphere with three
punctures. C is, in principle, determined up to a normalization constant by the
conformal Ward identities. In Sect. 3, C will be constructed as the trilinear form
induced on BRST cohomology by a trilinear form Ψ~ defined on the product of
Fock complexes. Such Ψ* can be given an explicit representation in terms of
integrals of conformal blocks of free fields along suitable twisted cycles. The
construction of C is then reduced to the calculation of certain twisted homology
groups. Although the calculation is not completely rigorous, owing to technical
difficulties related to support conditions in locally finite homology, it gives a very
consistent picture. In particular, the fusion rules appear, when one considers the
space of homology cycles giving rise to three-point vertices which are well-defined
on BRST cohomology, modulo the space of homology cycles giving rise to three-
point vertices which vanish on BRST cohomology.

In a third step we construct integral representations for general conformal
blocks by the sewing procedure: the Riemann surface is represented as the result
of sewing three-holed spheres, and conformal blocks are labeled by all possible
assignments of triples of highest weight modules to the three-holed spheres, such
that the modules associated to the holes to be sewn together are one the dual of
the other. Conformal blocks are the result of the contraction of the corresponding
trilinear forms. It is believed (although no complete mathematical proof exists to
our knowledge) that this construction of the vector space of conformal blocks is
independent of the choice of the sewing pattern, provided one has two consistency
conditions which can be checked in genus zero and one, and have indeed been
checked for these models.

Our results for general conformal blocks are complete for minimal models
Mpp> with p' = 2 or p = 2, i.e. the models where only one type of screening charge
is present. In the general case the integral expressions for conformal blocks have
an integrable singularity at the points in the integration domain where screening
charges of the two different types coincide. At these points one has in general a
local violation of Ward identities. We conjecture that a suitable regularization
procedure at those points should give conformal blocks obeying the Ward identities.
We have checked that there is such a regularization for three-point vertices in
which only one screening charge of each type appears, but do not have a general
proof.
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Techniques analogous to the ones employed in this paper have recently been
used in [DaJMM, FeiSV, L, Ma, ScV] to compute solutions to the Knizhnik-
Zamolodchikov equation.

2. Representations of the Kac Discrete Series

We consider the Virasoro algebra <£ over C, with generators en(neZ) and
commutation relations

l>m, en2 = (m - n)em+n + — (m3 - m)<5m>_n,

where the central charge c = c(β0) = 1 - \2βl is a onumber parametrized by βoe<£.
Let us recall a few well-known properties of the representations of if. The

Verma module V(h, c) of weight h is the left if-module provided with a highest
weight vector w, with properties: eow(h) = hw(h); ekw(h) = 0, k> 0. It is spanned
by the vectors e_kι • e_krw(/ι)(l ^ kx g •• ̂  kr9r = 0,1,...). In particular, we will
consider the set of weights

hnn, = | ( n 2 - \)β\ - \{nn' - 1) + ±(n'2 - l)/?2_, (2.1)

where n,n'eZ and β±=β0± Jl + β2

0. The module V(hnn.,c) with weight in (2.1)
is irreducible if nή ^ 0 . If nn' > 0 , then ^ ( ^ ' , 0 ) is reducible and the irreducible
highest weight module L(hnn.,c) with weight hnn> is realized as the quotient of
V(hnn>9c) by its maximal proper submodule.

A resolution of the irreducible modules L(hnn,,c) in terms of Verma modules
was given by Feigin and Fuchs [FeiFu]. \ίβ\β = p'/p is a positive rational number,
the central charge c = 1 — 6(p — p')2/pp' is rational and lower than one. The corres-
ponding irreducible modules L(hnn,,c) form the so-called Kac discrete series. The
associated conformal field theory is the one of minimal models [BPZ].

Let «s/ be the Heisenberg algebra over (C, with generators an(neΈ) and relations
[αm, απ] = ra<5m _„. The generators of S£ can be obtained by a deformation of the
Sugawara construction:

Ln = r Σ fl«-Ά ~ βo(n + l)αn, n # 0 ,
i JfceZ

oo 1

u= Σ a-ίA+^o-/w

The Fock space F(β, /?0) of charge /? is the left J^f-module built upon a highest
weight vector v(β) (having properties: aov(β) = βv(β); akv(β) = 0, k > 0) with weight
Hβ) = ^β2~βoβ- We have the canonical homomorphism φp:V{h{β)9c)-+F(β9β0)
between if-modules defined by φβw(h(β)) = v(β) and φβen = Lnφβ for neZ. Note
that φβ is an isomorphism only if V(h(β\ c) is irreducible. The relation between
Verma and Fock modules was analyzed in [Fel 1] in the case V{h(β\ c) is reducible.
The result says, in words, that the irreducible modules L(hm.,c) with weights in
(2.1) are realized as cohomologies of suitably defined complexes of Fock spaces
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HβnnJo) with charges

βnn>=ϊ(l-n)β++±(l-n')β_, n,rieZ, (2.2)

and highest weights h(βnn>) = hnn,. The construction of such complexes (see
Theorem 1) requires some preliminaries.

Let b0 be an extra-element appended to the Heisenberg algebra, with
[&o> a J = *'<W τ h u s eiab° m a P s F(β9β0) to F(β + ot,β0). For every α,j8eC, the
vertex operator Va(z) is an element of Homc(F(/?, βo\ F(β + α, jβ0)) defined as the
formal power series

f £ pf £ (2.3)
We introduce the j^-module F(β, βoy dual to F(β, β0). It is the space of covectors
ω defined by the requirement that <Lπω, ξ} = < ω , L _ n O for all ξeF(β\ with the
normalization convention <t?(/?)v, v(β)} = 1 between highest weight vectors υ(βY
and υ(β). It follows that v(βy has the same weight h(β) as #(/?)• It can be easily
shown that F(β, β)v is also a Fock space and that it is isomorphic to F(2β0 — β, β0).
With this notion of dual Fock modules, the vertex operator Va(z) may also be
viewed as an infinite matrix with elements <ω, Va(z)ξ}9 where the vectors ξ = α_ftl •••
a-krv(β)(l ^ kx ^ ••• ^ /cr; r = 0,1,...) are the elements of a basis for F(β, β0) and
the covectors ωeF(β + α, β 0 ) v are the dual of the elements of an analogously chosen
basis for F(β + α, β0). These matrix elements are multivalued analytic functions of

{}{}
Similarly, the product of vertex operators VΛ.{z^(i= l , . . . , n ) has well defined1 / v

matrix elements between bases of F(β, β0) and FI β + £ α/? jS0 I We compute
V i /

its value around a point PoeZ(ή) = (C — {0})Λ — (J {z, = zy}, where the arguments

are ordered as | z j > ••• > \zn\:

VM- VM = Π (z. - ̂  r J ' « P f <Σ ««O Π z?"10

l Σ «< —^)expf-Σ Σ ^~h
i « = 1 W / V i n = l Π

At every other point PeZ(n) its value is then determined, for each homotopy class
[y] of paths in Z(ή) going from P o to P, by analytic continuation along any path

We define the weight h(oc) of the vertex operator Va(z) by the commutation
relations

( " + 1 £ 4- h(0L)(k

We have Λ(α) = | α 2 — βoa. Vertex operators satisfying the above relations are said
primary. In particular, Vβ+(z) and Vβ_(z) (screening operators) have weight
Hβ±)= 1> a n ( i their commutators with Lk are equal to the derivatives oϊzk+1 Vβ+{z).
More in general, the (matrix elements of the) operators mapping F(β,β0) to
F(β + mβ+9β0)9 defined as

ω m = Vβ + (z1)'"Vβ+(zm)dz1 A ••• Λdzm9
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are multivalued holomorphic m-forms on the quotient space Z(m)/S(m)9 with S(m)
the permutation group of m elements, and satisfy [LΛ, ωOT] = dη, where η is a holo-
morphic (m — l)-form having the same monodromy as ωm. Thus

Qm= J ω m (2.4)
d(m)

commutes with the Virasoro algebra if dim) has no boundary. As we will see in a
more general case in Sect. 3, dim) is an m-cycle for the homology of Z(m)/S(m)
with coefficients in a local system associated with the monodromy of ωm. Since in
this case the homology is one-dimensional, the integral Qm is determined up to a
multiplicative factor.

Henceforth β\/2 = (β2_/2)~ι = p'/p, with p and p' two positive integers chosen
to have no common divisor. In this case note that the charges (2.2) are not all
distinct; we have in fact βnn> = βn+P,n+p' f°Γ aU n',neZ. It is in virtue of these
relations that one can define the sequence at point (i) of the following theorem.

Theorem 1 [Fel 1]. If β\β = p'/p, let (m, m') be a pair in the Kac table D = {(m, m!)
eZ2\l <^m^p- 1,1 ^ m ' ^ p ' - l } . Let &mm, = 0 ^ m , be the ΊL-graded ^-module

defined by J ^ , , = F(βm[j]ftnΊj?, β0) with (m[j], m r[;]) = (m, m' +jp') for j even and
(m[fi, m'\_β) = (p - m, rri +jpf) for j odd. Then:

(i) There exists a sequence of homomorphisms

flϋL

between Virasoro modules defined by Qij)ξ = Qmξ for j even and Qij)ξ = Qp-.mξ for
j odd.

m ei*β\l_\

(ii) Let the cycle defining Qm be d(m)= f ] -rτ2

 dm, where dm={(z1(θ1),...,
z = i e

ι*β+ _ i

zm(θm))eTm\0 tkθι<-'<θmύπ} and T is a circle centered at z = 0 parametrized
by 0e[O,π]. Then QU)QU~1] = 0 for all jeZ and ^mm> is a complex.
(iii) The cohomology groups Hj{^mm>) = K e r β ( j ) / I m Q ° " 1 ) vanish if jΦQ and
H°(tFmm.) is isomorphic to the irreducible highest weight module L(hmm,9c). (The
isomorphism φmm, is the canonical one mapping highest weight vector to highest
weight vector.)

Note that the normalization of the cycle d(m) has been chosen such to give a
coboundary operator, i.e. such that QmQp-m = 0 = Qp-mQm. One usually refers to
Q as to the BRST operator.

Note that, for β2j2 = pf/p, 2βo-βmm, = βv-m,p -m.. Hence, the complex
^mm>= ®^mm> dual to &mm> is specified by the isomorphisms ™ ^ ^

for jeΈ and (m, m')eD.

3. The Three-Point Vertex and Twisted Homology of Braid Spaces

3.1. In this section we give the details of the construction of the three-points vertex
of minimal models introduced in [FelS 2]. This object generalizes the intertwining
operators introduced by Tsuchiya and Kanie [TK].
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A pair of integers e.g. (n, ή\ will be denoted by the corresponding capital letter,
i.e. (n9ή) = N. So also (p9p') = P; and (1,1) will be denoted by 1.

We will always identify the irreducible module L(hM, c) with index M in the
Kac table with the cohomology module H*(^M) of Theorem 1. Three-points
conformal blocks of minimal models on the Riemann sphere S depend on a triple
Ol9 O2, O3 of distinct points on S, and a choice of local coordinates vanishing at
Ot. They are constructed as complex trilinear forms CMιM2M3 on the product
L(hMl9 c) x L(hMl, c) x L(hM3, c) of irreducible modules with indices Mf in the Kac
table D. And are determined, up to a normalization constant, by the conformal
Ward identities [BPZ], which express a covariance property under the Lie algebra
of meromorphic vector fields on S holomorphic on S — {Oί9 O 2 ,0 3 }. If we fix two
of the points, e.g. Ox = oo, O3 = 0, the operators obtained from CMιMlM3 by duality
form the set of minimal models' chiral fields.

In the following paragraph we introduce trilinear forms i^MιMlM3 defined on the
Fock complexes ^M. of Theorem 1 and satisfying the Ward identities of CMιMlMy

By Theorem 2, these induce trilinear forms ΐrMιM2M3

 o n cohomologies H*(^Mi)
which are identified with three-points conformal blocks. Such identification will be
discussed below Theorem 2. Here it is important to note that, because hMi = hP_M.9

there are canonical module isomorphisms ψf:H*(^M.)-+H*(&r

P_M). Thus all

composites (r*-ψ*)MιM2M39 {r*-φ*)MιM2M59 (r*-ψpM[M2M39 (r* ψ* ψ*)Mι¥2M3

are trilinear forms on cohomologies //*(JΓ

M.) satisfying the same Ward identities,
and can be equivalently identified with CMiMlM3.

3.2. Let us suppose that Ot φ oo and that the local coordinates around O{ are
z — z(Oi), where z is the standard coordinate on C = 5— oo. Other choices are
related to this one by conformal transformations.

Define descendant vertex operators V(ξ, P) at Pe(E with local coordinate
z — z(P\ depending linearly on ξeF((xyβ0\ as follows: if ξ = f|α_fcj.ι;(α), then, in
terms of the U( 1 )-current J(z) = Yιanz~n~1

i J

V(ξ, P) = Π §P: (zj ~ z(P))kjJ(zj) VJLP)
Zni

with integration over small circles encircling P. The definition is then extended by
linearity to the whole Fock space. As for vertex operators, vacuum expectation
values of products of descendant vertex operators have well defined meaning as
analytic continuation of absolutely convergent series and integrals, and are many-
valued functions with the same monodromy as the corresponding product of
primary vertex operators Va(P) = V(v((x\ P).

Let Oί9 O2 and O3 be three points on S. In the continuation of this section:
The Mi for ΐ = 1,2,3 are pairs in the Kac table D = { l ^ m ^ p - l , l ^ m ' ^ p ' - l } .
For JιeZ(i= 1,2,3) such that £ ^ = 0, the M ^ J =(m ί[; i],m /

ί[7 i]) are the pairs

(mf, m|. +jiPf) when j t is even and (p - mh m\ +JiPf) when j t is odd.
The three-points vertex ir

MlM2M3(Oι,O2,O3):^Mi x J%,2 x &M3-+<£ is a
trilinear form of degree zero on Fock complexes. Its component on J 5 ^ x <F{£\ x
^]3(ξu ξ2, ξ3) is defined by the integral

](Ol> °2> °^ fl> <̂2> £3)

ί ^Mι[jι]M2[J2]Mήh](Ou O 2 , 0 3 ; ξl9 ξ29 ξ3). (3.1)
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The integrand is the matrix element of an operator mapping the vacuum Fock
space F(0,/?o) to the equivalent (in cohomology) Fock space F(βP_l9β0),

r[j] r'[j]

i=l i' = l

Λ.-., (3.2)

if the numbers

are non-negative integers. If this condition is not satisfied, the three-points vertex
is defined to be zero.

The three-points vertex obeys the Ward identities if the domain of integration
CMιijι]M2ij2]M3ij3] *s a c y c ' e dual to the cohomology of the multivalued forms (3.2).
The problem of determining this cycle is considered in the following paragraphs.

3.3. Here p' and p are positive, relatively prime integers. The numbers nf for
i = 1,2,3 will always denote integers subject to the condition that

is a positive integer.
Let X = S — {0,1, 00} be the Riemann sphere minus three points. Consider the

forms

ωπ l Π 2 n 3 = Z(zχ, , zt) Π zί1 - " ^ ' ( l - z f)
(1 'n2)pΊp Π (*« - Zj)2pΊ"dzι Λ Λ dzn

with functions f{zί9..., zr) which are holomorphic on X\ meromorphic on Sr and
symmetric under permutations of the zf's. Let Δ(Xr) be the diagonal subspace
Q [z. = zj} of X\ and X(r) = Xr - Δ(Xr). The symmetric group S(r) acts freely by

permutations on X(r\ and the fundamental group π^X^/S^)) of the braid space
X(r)/S(r) is a generalized braid group on r strands.

ωΠlΠ2M3 is a complex, multivalued, C°° holomorphic r-form on X(r)/S(r\ i.e. an
element of the de Rham cohomology of C00 differential forms on X(r)/S(r) with
values in a rank one local system ^ Π l Π 2 W 3 defined by its monodromy. Explicitly,
let p-.π^Xiή/Sir^XQ)-*<£*, γ\-^p(γ\ be the representation of π1(Λ'(r)/S(r),x0)
defined by the monodromy action y*ωnin2n3(x0) = p(γyωnίn2njxo) for any
xoeX(r)/S(r). Then we have, up to isomorphisms, a unique flat complex line bundle
^?

rnn2n3 on X(r)/S(r) with characteristic homomorphism χ = p. The elements y of
πx(Jί(r)/5(r), x0) act on a point/ 0 of the fiber over x 0 moving it horizontally along
y back to the point p(y)-f0 over x0. Thus, if e(x0) is a local section defined in a
neighborhood of x0, y acts as ye(x0) = p(y)-e(x0).
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The differential form ω has in general non-integrable singularities at the
insertion points 0,1, oo and vanishes on Δ(Xr). The natural support condition on
the integration cycles c is that the support of c, viewed as an 5(r)-invariant subset
of X{r), be mapped by the inclusion X(r)-+Xr to a set with compact closure.
Denote by Hl(X(r)/S(r\ ^Π l W 2 Λ 3) the homology with coefficients in &Hιn2n3 with
this support condition.

Let Y be the compact space obtained from the sphere S by deleting three small
open disks around the points 0,1 and oo, and denote by Y(r) the space Yr — Δ(Yr).
Then, by a standard homotopy argument, we have the natural isomorphism

H«(Y(r)/S(r\ J^ l Π 2 J ^/ί*(X(r)/S(r), XnιW3\

where Hι{(Y(r)/S(r), J?nιtl2J is the homology of the complex CιJ(Y(r)/S(r)9 &nχnm)
of locally finite chains on Y(r)/S(r) with coefficients in ϊfΠlΠ2Π3. This complex can
be described as follows. Let Ϋ(r)/S(r) be the universal covering of Y(r)/S(r% and
Cjjf(y(r))®C the complex of locally finite chains (i.e. possibly infinite linear
combinations of simplexes, such that only finitely many intersect any given compact
set) on ?(r)jvith complex coefficients. Then Cι£(Y(r)/S(r)9 J^WlΠ2W3) = Cι;{Ϋ(r))®p<E,
where Cι£(Ϋ(r)) ® p C is the complex Cι^(Ϋ(r)) <g) C modulo the equivalence relation

for any ceCjjf(y(r)),αeC and yeπ^Yiή/SirXyo) (acting on c from the right).
We now compute the r th homology group relevant to the integration of ωπ l f l 2 W 3.

The fundamental group π^YfyySir)) is a slight generalization of the braid group
Br on r strands, obtained by adding to the generators of Br the two elements
representing loops around 0 and 1. In other words: it is the subgroup of Br+2

generated by the set {σ2

v σh i = 2,..., r + 1, σ^+2}, where the standard generators
σt describe the positive simple braiding of the ith and (i + l) t h strand. We have
p{σ\) = ,2(1 --3); p{Gi) = -q\ i = 1,...,r + 1; p(σr

2

+ 2) = q*1 "M2>, where q = eiπpΊp.
Consider any subspace A of Y homotopic to the bouquet Ao of two circles of

radius 1/2 centered at the points 0 and 1. Ao is the subspace of the complex plane
parametrized as the union

Ao = {z(θ) = y2iθ\0 ^θ^π}u {z(θ) = \ - \e™\π^ θ ̂  2π} (3.3)

of the two circles in their common point \. Let Air) = Ar - Λ{Ar). Define

π g β J + 1 , . . . , β r ^ 2 π ; β 1 < . <flr} (3.4)

for) = 0,..., r. Also define b{ to be the subset of cι defined by θι+1 = 0, / = 0,..., r — 1.
The cells Cj — bj and bt give a cell decomposition of A(r)/S(r). Our calculation is
based on the assumption that the homomorphism induced by the inclusion i:A -• Y

is an isomorphism. This is clear for r = 1, since A is a proper deformation retract
of Y, but appears technically difficult to prove in the general case. Thus what we
actually compute is Hι^(A(r)/S(r),ί*^), and leave the above isomorphism as a
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conjecture. The boundary of c} is given by

r - l

dcj= Σ dUbh
1 = 0

where du is the rx( r+l) matrix

dιj = (q2ir-j~n2) _ m j _ (g20.3-Λ _ 1 ) i | +

Since there are no cells of dimension r + 1, we have

Hι/(Y(r)/S(r\<?nιn2J = Kεrd.

The dimensions of the r th homology groups, considered as functions of the local
system, are given by

Proposition. Assume that qp = 1 for some integer p > 1 and qj Φ 1 for j = 1,..., p — 1.
Given any integer n, let n be the unique integer in {O9...,p— 1} such that n = ή
(mod p). There are three cases

(1) r^n2 — 1 and r ^ n 3 — l:dimKerd =
(2) r^n2 and (r-n2)^ϋ3 — l:dimKerδ = 2+ (r-n 3)divp,
(3) r^n3 and (r-n2)>n3 — l:dimKerd = 1 + (r-n 3)divp,

w/iere a div fr denotes the integer part of a/b (i.e. the largest integer less than a/b).

To prove the proposition we notice that the elements of d which are not identi-
cally zero lie on two diagonals. In case (1) none of the elements on the diagonals
vanish. Thus Ker 5 = 1 because d is a r x ( r + 1) matrix. In case (2) and (3) the
diagonals have vanishing elements and d decomposes into blocks of i x j matrices
with \i—j\^l. The kernel of each block component is one-dimensional if; = i + 1
and is empty otherwise. A simple analysis of the block decomposition of d gives
the result.

Note that case (1) of the above proposition could also be deduced as a corollary
of a general result of Kohno [K], except that the support conditions are slightly
different. If the hypothesis of case (1) is satisfied, Kohno's Theorem 1 implies that,
in particular, H«(Y(r)/S(r), <?nίn2J = Hι/(Y(r)/S(r\ <?niH2n3). The dimension of the
only non-vanishing homology group is then equal to the absolute value of the
Euler characteristic of Y(r) divided by r!.

3.4. Let us now consider the r-forms

ωm = f(zu...9zr) Π ^~m)pΊp Π (zi-

with functions f{zl9...,zr) holomorphic on (S — {0, oo})r, meromorphic on Sr and
symmetric in all arguments. This is a subcase of the one considered in Sect. 3.3.
If Z is the sphere minus two small open disks centered at 0 and oo, the homology
dual to the cohomology of the forms ωm is Hι/(Z(r)/S(r\ j£?m), where
Z(r) = Zr — Δ(Zr) and the local system 3?m is the extension of ^ n i , Π 2 = i,W3, with
n3 = m and nx=p — n to Z(r)/S(r). The calculation proceeds as in the previous
paragraph. The cells c3 are replaced by

<-<θrSπ}9 (3.5)
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where T is a circle homotopic to To = (z(0) = je2iθ\0 ^ θ ^ π} in C The boundary
is ddr = (1 - ^ 2 ( r"m ))fe r_ l 5 with 6 r_x the face of rfr defined by θr = π. Thus the r th

homology group is one-dimensional and generated by dr if r = m (mod p), and
vanishes otherwise.

Note that for r = m this is the cycle which defines the operator Qm in (2.4).
Choosing the normalization as in Theorem 1, we have

3.5. The JV| = (ni5 n'f) for i = 1,2,3 will denote pairs in Έ2 subject to the conditions
that

are positive integers. Let us fix the points Oi = oo, O2 = 1 and O3 = 0 o n S = Cu{oo}
in (3.1), (3.2). The coordinate is z on C and l/z around the point at infinity. Other
choices of coordinates are related to this one by conformal transformations. The
forms coNiN2Ni(co91,0; ξι9ξ2,ζ3) introduced in (3.2) can be computed explicitly as

ωNιN2N3 = f(zu...,znz\y...,z'r,) Π Π (*i-4Γ 2

• Π z?~n*)p/p\l -4)(1 ~n'2P/p>) Π (zr -* r )
2 p f p r dz i Λ Λdz',,,

with functions / which are holomorphic on Xr x Xr\ meromorphic on Sr and Sr\
and symmetric in all their arguments. They are elements of the de Rham cohomology
of C00 differential forms on X(r + r')/S(r) x S(rf) = [X(r) x X(r') - Δ(X(r) x X(r'))]/
S(r) x S(r') with values in the local system ^NιNlN3 on X(r + r')/S(r) x S(r') defined
by the homomorphism τ .π^Xir + r'ySir) x S(r),xo)-+<E* associated with the
monodromy of ωNiNlN3.

Note that the exponent of the factors (z, — z\) in ωNιNlN3 is an even integer for
all 0 ^ i ^ r, 0 ^ i' ^ r'. The subgroup of the braid group π^Xfr + r')) generated
by the elements that represent the simple braiding of zi and z'v for all i and ί' is
in the kernel of τ. Therefore, any local section of &NίN2N3 defined in a neighborhood
of a point close to the diagonal Δ(X(r) x X{r')) can be continuously extended to
a neighborhood of the diagonal in X(r) x X{r'). We use the same notation <&NίN2N3

for the local system so obtained on X(r)/S(r) x X{rf)IS{r'). The restrictions of
&NιN2N3 to X(r)/S(r) and to X{r')IS{r') are, respectively, &nχn2n3 and i T , ^ , .
Therefore there is a monomorphism

H'/(X(r)/S{r), 2>nιn2

(X(r + r')/S(r) x S(r'\

Thus the product of any r-cycle on X(r) and any r'-cycle on X(r') gives an (r + re-
cycle on X(r + r').

3.6. In this paragraph the data M i 5 M ^ J , r [ j ] and r'[ ] are as in Sect. 3.2, with
the condition that r [ ; ] and r'[y] be positive integers.
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Definition. We say that a triple (L, M, N) of pairs in the Kac table D obeys the
fusion rules if l = m + n-l (mod 2), /' = m! + n' - 1 (mod 2) and

\m — n\ + 1 ̂  / ̂  min(m + n — 1,2p — m — n — 1),

|m' - n'| + 1 g /' ̂  minim' + ri - 1,2p' -nί -nf - 1).

We sαj; ί/iαί ί/ie three-points vertex ir

MlM2M3 obeys the fusion rules if the triple
(P-MuM2M3)does.

The three-point vertex, as it is defined in the following theorem, is given in
general by an integral which is convergent but not absolutely convergent at the
points in the integration domain where zi = z' for some ij. At these points, there
is a violation of Ward identities. This problem does not arise if p = 2 or p' = 2,
since only z variables or only z' variables are present in that case. We conjecture
that there is a regularization prescription of the cycle of integration that solves
the problem in the general case. More precisely, one should show that for each
pair of cycles c®c' in //^W/S(r),if π l Π 2 Π 3 )(χ)/ί^(rO/%0,^; ; ^0, there is a
cycle representing an element of Hι/+r.(X{r + r')/S(r) x S(r'), <&NίN2N3% homologous
to the image of c(χ)c', but with support in the complement of a tubular neighbor-
hood of (J {zf = z'j}. We have checked that such a cycle indeed exists in the case

ij

r = r' = 1, but a general proof is lacking.

Theorem 2. Suppose p = 2 or p' = 2. Let rMχMlM^Mχ x # " M 2 x 3?M3-+<C be the
degree zero trilinear form on Fock complexes 3FM. = ]Γ 3F^χ defined in (3.1), with

c ( M 1 [ ; 1 ] , M 2 [ j 2 ] , M 3 [ ; 3 ] ) a cycle of

Then there exists a unique

induced on cohomologies. irtίiM2M3 is nonvanishing if and only if it obeys the fusion
rules.

Conjecture. Theorem 2 holds for any relatively prime positive integers p,p'.

The conjecture is proven if there exists a regularization prescription for cycles
containing both kinds of variables (see remark above). Note that the fusion rules
for minimal models were obtained by Belavin, Polyakov and Zamolodchikov
[BPZ] upon requiring that the "operator algebra" be closed. Theorem 2 gives, in
particular, a topological derivation of the fusion rules.

Proof. It is organized in three steps.

(1) Assume that fMiΛf2M3 obeys the fusion rules. These can be equivalently written
as the inequalities 0 ^ r[0] ^ m i n ^ - 1, m2 - 1, m3 - 1), 0 ^ r'[0] ^ minίm^ - 1,
m 2 - l,m' 3- 1). Thus we have 0 ^ r [ ; ] ^mm(m1[j1'] — I ,m 2 | j 2 ] - I , m 3 | j 3 ] - 1),
0 S r'[β ^ τain{m\ — 1, m2 — 1, m3 - 1). From the Proposition in 3.3, the homo-
logy groups H ^ y ί r C Λ V S ί r C Λ λ J S ^ ^ ^ y ^ ^ ) and Hι

r{n(Y(r'lβ)/S(r'Ul
^m\[h]m'[j2]m'[h}) a r e b o t h one-dimensional.
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Fig. 1

Fig. 2

The generating cycles are, respectively

rU] /k-1 n2(r[j]-m2[J2]~0 _ 1 rW

= Σ(Uq , , Π

= Σ Π
fc'-l

q'2-l
π

) _ 1

K (3.7)

(3.8)

where the chains ck are parametrized as in (3.5). In (3.8) q' = eιπplp' and the chains
c'k. are

for k' = l,...,r r— 1, where the bouquet A' is homotopic to the bouquet A and
chosen such that the intersection is as in Fig. 2. The cycle defining the three-points
vertex is the product

Cm\[jι]m'2[j2]m'3[J3Ϋ ^ ' ^

where Jί is an arbitrary normalization factor. Jί will be conveniently chosen (see
Lemma 1).

The integral (3.1) can be explicitly computed [Fel 1; DoF] using techniques
of contours deformation similar to those usually employed in integrals of the
Pochammer-Selberg type (see e.g. [WW], [HK] and [TK]). One then verifies that
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it is not identically zero. We conclude that the three-point vertex fMlM2M3 is
uniquely defined and nonvanishing if it obeys the fusion rules.

(2) Let <2(o for i = 1,2,3 be the coboundary operators acting on the tensor product

of three complexes <FMi as Q(ί) = Q ® 1 ® 1, Q{2) = 1 ® β ® 1 and 6(3) = 1 ® 1 ® β

The composites ^M^MiM^'Qay^M, x &M* x <^M3 "*<E a r e trilinear forms of degree

one. Their components on J ^ > x ̂ J g x ^<£) are ^ l ϋ l + 1μfatΛiM3ι/3i(βϋl)δi. £2, δaλ

i ' δ 0 ' 2 ^ . ^ ) and rMdjι]M2[J2]M3[J3 + 1](ξuξ29Q^ζ,) with

i

Using (3.1), (3.2) and the definition of the operator β given in Theorem 1, we

can express them as the integrals j ωp+MdjύM2[j2\MΛh\ °f ^ e s a m e ( r + r')-fo r m

r=έί Σm iCΛ ] - 1 )> ̂ = - ( Σ m ί - P' -1)»see 3 5 ) o v e r t h e t h r e e c y c l e s Γd)
\ i / 2 \ , / /

schematically represented in Fig. 3.
The Γ{i) are given by the products of a cycle c{i) defining the respective three-

point vertex and a cycle d(i) supported on a circle around oo, 1 or 0 defining
β(D, (2(2) or β ( 3 ) . They are elements of H® H' = Hι/(Y(r)/S(r)% ^p+m[jύ,m2

Let us assume that τ ^ M l M 2 M 3 obeys the fusion rules. Then the numbers r
and r; satisfy the inequalities m 2 [y 2 ] ύr,r — m2\_j{\ ^ m 3 [ 7 3 ] - 1 and O ^ r ' ^
m i n ^ — 1, m2 — 1, m'3 — 1).

From the Proposition in 3.3, we see that dimH = 2 and dim//' = 1. Therefore
the Γ(i) are linear combinations of only two inequivalent cycles. On the other hand,
an explicit verification shows that they are in fact pairwise independent. It follows
that there is precisely one linear relation between the three composites ^

We have proven the first part of the

Lemma 1. Assume that obeys the fusion rules. Then

(i) (BRST invariance). There are nonvanishing complex coefficients λt for which
3

£ = 1

(ii) Fix the normalization of the cycle (3.9) defining ^MIM2M3

 t0 be

jrMluιW2U2WΛh] = εlJ2>J3]> forj2>h even

= £[7 2 J"3](- l ) ( m 3 ~ 1 ) ( m i " υ ^ " ( m i + m 2 m 3 ) forj2 oddj3 even

= e D * 2 j ' 3 ] ( - l ) ( p " m i K + m 3 ^ " ( m i + m 2 m 3 ) forj2 evenj3 odd
ί 1 ) + ' ί " 1 ) + m 2 m 2 forj2,h

Fig. 3
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whereε[./2J3] = ( - l f ^ K - D - ^ ^ ^

K = jUi — 1) for Ji °dd. Let Jt be the grading operators which take the values j t on
&%]. We have

Part (ii) of the lemma is the commutation property of the three-point operators
(obtained from the vertex by duality) and the coboundary Q (see 4.1). The proof
relies on the explicit form of the cycles defining the three terms of the above
equation.

As an immediate corollary of point (i) of the lemma: ir

MιM2M3 is w e U defined
on the product of cohomologies if it obeys the fusion rules. For the restriction
rMιMlM,9 defined by rMiUί]M2iJ2]MήJ3]:KerQ^ x Kerβ<*> x K e r β ^ C , vanishes
on all submodules I m Q U i ~ υ c KerQ i j i ).

(3) It remains to prove that the restriction ^ ? MIM 2 M 3 vanishes if it does not obey
the fusion rules. Let us consider the case where the fusion rules are violated by
the first components WiC/i], m 2 [ j 2 ] a n < l m 3U3] of the pairs M J I J Ί ] , M 2 | J 2 ]
M3[7*3]. Then the above vanishing statement follows from the fact that ^
can be written as a linear combination of the composites ^MIM 2 M 3 ' 2 (O-

As an example, consider the case where 0 ̂  r[β ^ mm(mί[jί'] — 1, m 2 | j 2 ] ~ 1)>
rίjl ^ W3IJ3], 0 g r'[β ^ min(m; - 1,m2 - 1,m3 - 1). Let c®cf be the (r[;] + r'[;])-
product cycle defining the three-points vertex. From the Proposition in 3.3, we
have that the classes of c and d are both unique, d is given by (3.8). c can be
computed as the kernel of the boundary matrix in 3.3 in the form of a linear
combination of the chains co,c1,...9cr[j].m3[j3] in (3.4). Let d(m3[73]) be the
WaU'aΊ-cycle (3.6) defining the BRST operator Q acting on J ^ . The product of
cmή^m2[h],P~mήh] m (3.7) and Φ13IJ3]) gives a cycle of H^(y(r[;])/5(r[ j ]) ,
^miiji) miUi] m3[h^ which is necessarily homologous to c. We have thus proved that

^ / MiM 2 M 3

 = ^ M i M 2 M 3 ' 6 ( 3 )

More general violations of the fusion rules can be analyzed in a similar way.
The cases where these are violated by the second components of the pairs M l 5 M 2

and M 3 do not require any new proof. The argument lies in the fact that, if we
exchange β+ with β_ (i.e. p with p'\ a complex isomorphic to that of Theorem 1
can be defined with a coboundary Q' constructed in terms of Vβ_ screening
operators. A violation of the fusion rules implies that ^"MIM 2M 3 be equal to a linear
combination of composites ^MiM2M3*6ίo τ ^ e PΓO°f of the theorem is now
complete.

Observe that, in the notation of 3.1, ^ l Λ ί 2 M 3 , (t~*ψf'Ψi)MlM2M3>
(^*'ΦI'Ψ*)M1M2M3

 a n d (^*'Φ*'ΦΌM1M2M3 satisfy the same fusion rules. It can
be easily verified that they are in fact proportional. The same observation applies

to ( r * ψ*)MlM2M3, ( r * ψ*)UlM2M3, (r*-ψ*)MlM2M3 and {r*-φ*-ψ*-ψ*)UlU2Uί.
They are nonvanishing and all proportional if and only if {Mί9 M 2 , M 3 ) obeys the
fusion rules. In view of the remarks of Sect. 3.1, this fact implies that there are
several equivalent representations of minimal models' three-points conformal
blocks CMιMlMy They are expressed as integrals of multivalued forms of maximal
degree on braid spaces of different dimensions. For example, CMιMlM3 can be
identified with ir%ϊM2M3 when this is nonzero and with (TΓ* ψ*)MίM2M3 otherwise.
An explicit form for the isomorphisms φf ("background operators") is given in 4.2.
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4. Conformal Blocks on Genus g

4.1. We will formulate "sewing" [G; So; MoS] using operators rather than trilinear
forms. The difference is merely in notation; however, this choice makes the notion
of summing over "intermediate states" somewhat more direct. The dependence of
three-points vertices and operators on the points will be usually left as implicit
when no ambiguity can arise.

Three-points operators are the operators obtained from the three-points vertex
by duality. For example ^M2M3'"^TM2®V&TM3~*'&7μx *s ̂ e three-points operator
with matrix elements between ξ* e^1^ = ^ , " 1 ^ and ξ 2 ® { { I
defined by

with j \ =j2 4-73. It is expressed as the integral

J WM2[J2lM3[j3)
cM1[jι]

of the multivalued operator obtained from (3.2) by duality on the cycle ^ [ j Ji
C(P-Ml)[-Ji]M2[J2]M3[J3]'

Analogously, we define r%\M2:^M3-*&ux ® < Λ 2 , ^M,M2M3^
^Ml, As a rule, the direction of the mapping goes from the lower to the upper
indices, and (the matrix elements of) an operator with upper indices Mk are defined
by the corresponding three-points vertex with indices P-Mk.

The operators with indices Mί,M2, M 3 , one of which is upper and two lower,
obey the fusion rules if the triple (Ml9M2, M 3) does. Those with two upper indices
and one lower obey the fusion rules if (P - Mί9M2, Λί3) does.

Lemma 1 and Theorem 2 have obvious versions for three-point operators. In
particular, point (ii) of Lemma 1 implies that, with the normalization there estab-
lished:

Theorem 1 ensures that ^ ^ : / / * ( ^ M 2 ) ® C ^ * ( ^ M 3 ) - > ^ * ( ^ Γ Λ / 1 ) is uniquely
defined and nonvanishing if and only if it obeys the fusion rules. Analogous
statements apply to V^χM\ ^tΐ?M3>

4.2. Observe that the Fock space J^°l x = F{2β0, β0) has vanishing highest weight.
Consider the degree zero bilinear form &MIM2(OI>O2>QY ^MI X^M2-*& with
components given by

where υ is the highest weight vector of ^ o l r Since hP_1 = 0 , ^M,M2ΨUO2,Q)
does not depend on the reference point QeS where we insert the primary vertex
operator with charge βP_1 =2β0. The dual two-points operator Λjfj(O1,O2,β)
("background operator") induces Sf^ι(OyO2\ Q)' H*(&r

MJ-+H*(&Mι) on cohomo-
logy which is nonvanishing if and only if it obeys the fusion rule Λf x = P — M 2 .

Let Ox = oo and O2 = 0 on S = C. ψ*%1 denotes # j £ ! ( o o , 0; Q) with the choice
of coordinates z on C and 1/z around infinity. It can be easily shown that Ψlf~M

commutes with Lk for keZ and thus defines a canonical module isomorphism
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mapping every vector of H*(^M) to its dual in H*(#p_ M ) . The composites

Φΐ-L^tίj,"1' * Ί ί - W f l E ~ M l a n d r*MMJ-M} nPίMi are proportional.
From the concluding remarks of 3.6, a representation for minimal models'

three-point operators CjU*M3 is given by ^ j £ f i 3 if ( M 1 , M 2 , M 3 ) obeys the fusion
rules and by ^^-u/Vm^ i f (Mi> M2> ^ - M3) obeys the fusion rules. Let μt

be M 4 or P - M .Ve then conclude that Cj£'M3 and the duals C M l M 2 Λ ί 3 , CjJ^ 2 , . . .
are all nonvanishing if and only if one of the triples (μ l 5 μ2, μ3) obeys the fusion rules.

4.3. Let X be a three-punctured Riemann sphere S\{a, b, c] together with a choice
of local analytic coordinates z(Λ), z{b) and zic) which vanish at, respectively, α, fc and
c. X will be denoted by the graphical symbol of a vertex with three incident edges,
where each edge (or "leg") corresponds to a puncture. To X we associate three-
point operators ΊΓ*(a9b9c) defined on cohomology with representation indices
L,M and N corresponding to the vertex operators inserted respectively at the
points a, b and c. A three-point operator is represented by an analogous graphical
symbol, where now each leg corresponds to a cohomology module and carries a
representation index and an arrow. The orientation of the arrows is an agreement
with the direction of the mapping between cohomology modules. In Fig. 4 the
symbols representing (i) Ίr* f^v(α,6,c):H*(erM)® (CH*(JZΓ

iV)-^H*(JZΓ

L) and (ii)
^* L M (α,b,c)://*(^ i V )-^i/*(^ L )(χ) c //*(J 2 Γ

M ) are given as examples.
The generic expression "sewing" will be understood as a sequence of elementary

sewings. An elementary sewing is a surgery operation of three-punctured Riemann
spheres. It proceeds in two steps. Let p and q be two punctures on either the same
or two distinct spheres, zip) and z{q) be local coordinates defined around them. In
the first step we delete two small open disks centered at p and q on the sphere (or
the spheres) to which p and q belong. Secondly, we identify, on annuli around p
and q, the local coordinates by setting z{p) = z^. In the general case, moduli
parameters are introduced in the definition of the local coordinates. We say that
sewing has been performed "around p and qΓ

Graphically, we represent an elementary sewing operation by joining with a
solid line two legs of either the same or of two distinct three-punctured spheres.

α,L \ α,L

b,M y >-b,M

c,N ' c,N

( i ) ('»)

Fig. 4

( i ) ( ϋ )

Fig. 5



Conformal Blocks of Minimal Models on a Riemann Surface 33

The respective sewing diagrams are drawn in Fig. 5: (i) is the one-punctured torus
obtained by sewing X around its punctures a and c; (ii) is the four-punctured
sphere obtained by sewing Xί=S1 — {aub1,c1} and X2 = S2 — {a2, b2, c2} around
the punctures b1 and b2.

The associated elementary sewing of three-point operators has an analogous
graphical representation, where two legs can be joined if they carry equal representa-
tion indices and have compatible orientations. It is defined by the following
operations: (1) sew around the punctures associated with the two legs; (2) if L is
the common representation index of the two legs, take a sum over all "intermediate
states", i.e. over a basis ξj of vectors of definite weight of i ί * ( # L ) .

Concretely, diagram 6(i) represents the map from H*(^M)3η to C defined by

(4.2)

associated with the one-punctured torus 5(i). Here, ξj denotes the dual basis with
ζξj9ξιy = δjt. This expression depends on the puncture b and on a modular
parameter introduced in the sewing operation. This dependence is prescribed by
the coordinate dependence of three-point operators. Diagram 6(ii) represents the
four-point operator mapping H*{3?Ni) ®<cH*(^r

N2)3ξ1 ® ξ2 to H*(3?Li) ® H*(^Ll)
whose matrix elements are

Σ < ^ 1 , ^ L

Λ ; 1 ^ ® ί 1 > < ω 2 ® ^ , ' r * ^ 2 > , (4.3)

where ω t are in the dual spaces. It is associated with the four-punctured sphere
in 5(ii).

Note that a concrete computation of the above sums over cohomology modules
is made possible by replacing them with suitable sums over complexes. From
property (4.1), the sum over H*(^L) = H°(^L) in (4.2) is equal to the alternated sum

teZ j

over the complex &L. Here ξf is a basis of &f9 and ξfv the dual basis in the
dual complex. On the other hand, the sum in (4.3) could be obviously replaced
by a sum where η ranges over a basis of the entire complex J*M. For, in virtue of
(4.1), all terms with η not in the cohomology are identically zero.

Sums over Fock spaces can be computed using coherent state techniques
[DiPFHLS; Fel 1].

( i )

Fig. 6
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P-N ,

Fig. 7

X
Fig. 8

In order to complete the set of graphical rules, we also need a symbol for the
background operators B%p~N{a, b; Q). This is represented in Fig. 7. The dot corres-
ponds to the reference point Q.

The sewing of a three-point operator i^^p-^a^b.d^) and a background
operator B%p~N(c,d2;Q) is drawn in Fig. 8. The resulting three-point operator is
associated with X = S — {α,b,c} and coincides with i/**f

L

p_N{a,b,c)'ψ*p~N, of
which Fig. 8 establishes the graphical symbol.

Finally, the construction of conformal blocks of minimal models on a Riemann
surface is formulated as follows. A /c-punctured surface Σgk of genus g can be
obtained by sewing a number (2g — 2 4- k) of three-punctured spheres. The same
Σgk may be represented by different sewing diagrams, according to differently
chosen patterns of elementary sewings. These diagrams are related by transforma-
tions of the mapping class group of Σgk. To every sewing diagram representing
Σgk we associate the k-point operator obtained by sewing three-point operators
*V* (Fig. 4) or i^*-\j/* (Fig. 8) according to the same diagram. The matrix elements
of this operator are minimal models' fc-points conformal blocks on genus g. In
particular, the matrix element taken between k highest weight vectors is a primary
conformal block.

4.4. We call genus g characters the zero-point conformal blocks on genus g defined
by sewing. For g=l9 they are the characters χL(q) = TτH*{^L)q

Lo of L(/iL, c) = H*(JFL)9

where q — exp(2πrr) with Imτ > 0. χL(q) is computed by sewing a single operator

iΓ*£(oo, 1,0) with the choice z(oo) = - and z ( 0 ) = qu of local coordinates around oo

and 0. On higher genus, let us choose a specific sewing diagram for Σg in the form
of two one-punctured tori and (g — 2) two-punctured tori connected by their legs.
Fix the canonical basis for H^Σ^Έ) which is given by the a{ and bt cycles of the
g tori, and let τ be the period matrix on the Siegel upper half-plane defined in
terms of a basis of abelian differential vt of first kind as J Vj = δi}, J vj = τί<7 . The

genus g characters χ corresponding to the sewing diagram for Σg are labelled by
t h e sets {L,M,N} of r e p r e s e n t a t i o n indices Lι,...,Lg,Ml9...,Mg-ί9N2,...,Ng-ί

and turn out to be functions of τ. The characters corresponding to any other
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L| L 2 Lg-i Lg

Ml

" ' ( ! ) •

Lα-I

( i i )

Fig. 9
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Ng_,

choice of sewing diagram can be obtained from the above ones via the action of
the symplectic group Sp(2g,Έ) on τ. The action of Sp(2g,Έ) on the genus g
characters is calculable, in principle, from the results in [Fel S2].

χ{L,M,N} is represented in diagram 9(i) for g even and in 9(ii) for g odd. A
parity argument based on the fusion rules shows that a number s of three-point
operators (with s — g = 1 mod 2) must have the representation of Fig. 8. We choose
the smallest numbers s = 1 for g even and s = 0 for g odd. All other possibilities
give in fact proportional results.

The traces over the cohomology modules H*(^L.) are written as alternated
sums over the respective complexes, as in (4.4). Using then (4.1), we easily see that
all sums over intermediate vector states in H*{^Mi) and H*(lFNι) can be
equivalently replaced by sums over the larger Fock spaces ^JJI a n c * ^N?* f°Γ aU
additional terms so introduced are equal to zero. Thus

χ{L,M,N}=
i = l

(4.5)

where

= Σ ••• Σ Σ ••• Σ Σ ••• Σ

Σ <δ;®fl;-i^^fc1C f><C;,Λ^f ) ϋ 1ί i> for β even

; <-i, ̂ t1i:Γ9 ' ι^> f o r 9 odd.
The notation £ means the sum over a basis of vectors with definite weight,

and ξ v denotes the element of the dual basis dual to the basis element ξ.
Each three-point operator is expressed as an integral over a cycle supported

on the associated three-punctured sphere. K{L[y], M, Λf[/]} has then the form
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Fig. 10

of an integral

J
Γ{L[j],M,N[J]}

over the cycle given by the product of cL^]{hV <ή$$*1, c^{^[j2]9.... This cycle is
drawn in Fig. 10. Each of its factors is given by (3.9) as a product cycle times a
normalization. Let <J. = (—I)-7'* be the parity of j \ . Using the fact that every
three-point operator in diagram 9 obeys the fusion rules, one can show that
Γ{L\_j~\, M, N[β} depends only on the parity δ = (δl9...,δg) of j l 9 . . . Jg. For an
integer n such that 0 ̂  n g p — 1, let n[<5] be the integer equal to n if <5 = 1 and
equal to (p — n) if δ = — 1. As a result:

Π L L / ] , M, ΛΓ[;] } = Γδ{L, M, N} (4.7)

is given by the product of

Cn2[ - δ2],m2,l2lδ2] ® C ' p - n ' 2 , m ' 2 , n ' 2 > ' ~ >

each cycle being supported as in Fig. 10, times the normalization factor

i - 1 i = 2

•̂f2^ for g even 1 for g odd. (4.8)

The integrand in (4.6) can be computed explicitly. The direct method [DiPFHLS]
makes use of a concrete (Schottky) parametrization of Σg. The sums over Fock
spaces are evaluated and shown to be convergent. A simpler method is suggested
by the observation that the integrand in (4^) is a conformal block of a conformal
field theory constructed upon: a pair s/, stf of commuting Heisenberg algebras; a
representation space 0 F{βN, J30)®C^(/?JV> βoϊ* the duality product introduced in

NeZ 2

Sect. 2. This theory has a formulation in terms of a single scalar field
φ:Σg-+Έi/2πβ+Z, with action [Fr]

S(φ) = ̂ -\d2xjy{y»*dμφdaφ + 2iβ0Rφ)9
oπ

where R is the scalar curvature of a metric y given on Σ . Local correlation
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functions are path-integral expectation values of products [ j exp(ίβaφ(Pa)) obeying

the neutrality condition Σβa= —2βo(g — 1). The path-integral is computed by a
a

saddle-point method. Let us choose a complex coordinate system for which γ takes
the local form ds2 = p(z, z)\dz\2. The analytic structure of local correlation functions
was analyzed by E. Verlinde and H. Verlinde [VV1].

The same analysis can be repeated in our case. We first observe that Ω{L[j] M N[j]}

is a conformal block of the expectation value

(l/2)g(p-2)

f ] eip+«Pi) Π ^-*(p;y2/ϊoΦ(Qo)\ for ^ even,
i=ί i = l /

for g o d d .
i = 1 i = 2 /

Here the total number of screening operators is computed by summing the numbers
of those associated with each three-point operator of diagrams 9(i) and 9(ii). A
diagrammatic algorithm can be easily derived, which shows that the total numbers
of β+ and β_ screening operators are, respectively, equal to the topological numbers
\{p{# of arrows) - (p + 1)(# of vertices) - 2(# of dots)} and \{p'(# of arrows) -
(pf + 1)(# of vertices) — 2(# dots)}. This makes it clear why they depend only on
the genus and not on the representation labels {L | j ] ,M,N[β) .

Secondly, we compute the path-integral. Let the canonical basis ah b{ chosen
as specified above, vt be the corresponding abelian differentials of first kind with
τ as period matrix. We use the following standard notations. Given on Σ two

B

p o s i t i v e d i v i s o r s A a n d B h a v i n g t h e s a m e d e g r e e , \v w i t h v = (vl9...,vg) is t h e
A

Jacobi map to J(Σg) = <E9/(Z9 + τΈ9\ E(P9 Q) is the accordingly defined prime form.
A

Finally, let A be the Riemann divisor class and J v be the projection to J(Σg)
(g-ί)P

of the vector of Riemann constants with base-point P. By σ(P) we denote the
unique homomorphic>^/2-difΓerential having: no zeroes, no poles, and multipliers

ί Δ 1
1 and exp < iπ(g — \)τ^ — 2πi J v} > when P is moved around, respectively, α,-

I (g-DP J
and bj. σ(P) was introduced by Fay [F, p. 31] (see also [VV1]).

Let us fix the metric ds2 = ρ\dz\2. Then [VV1]Π l Σ \s{L}(Pl9...,Pk)\2,
a=l / L a J Lι,...,LgeZ2

where SL(p) = J(d log pdz)/\ (d log pdz) is the Liouville action. The conformal
487Γ

blocks s{L] = siLu Lg) are sections of a line bundle over the /c-fold product

J(Σg) x x J(Σg) minus its diagonal subspace. Explicitly:

sίL](PP)
(Pu...,Pt) = (def d)~Wexp\iπβ{L}-τ-βiL] + Hπβ{L)Wβa

P\ v + 2β0 J v]\
L L a Po (g-l)Po J J

Y\σ{P.)-2MΎlE(P.,Pb'f'>'>,
a a<b
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where det' d is the holomorphic square root of the regularized determinant of the
Laplacian without zero mode and β{L) = (βL^' - ^ L 9 ) Note that, in virtue of the
condition YJβa= — 2βo(g — 1), the above expression does not depend on the base-

a

point Po. Putting {L} equal to {L[β}, some of the charges βa equal to /?+, some
equal to /?_ and one equal to 2β0 if g is even, we obtain an explicit formula for
Ω{L[j]MN[j]). Note that this formula depends only on {Llβ}.

The final part of the computation is straightforward. We have ^/2pp' βLi[ji] =

l'iP-hPf-(p-p')+JiPPf if Λ is even and Jΐpp'βLι[jί] = l'iP + liP

f -(p- p') +

(Ji — 1)PP' if Ji is °dd. Set

ε = (εl9...9εg), εi = p-p'.

We perform the sums in (4.5): over ki\_δi = Y]=\jieΈ for j t even and over
kilδi = — 1] = j(jt — 1) for ji odd. The result is

χ{L,M,N}= Σ (f\8i) J Ωδ{L},
δi,...,δg=±l \i=l / Γd{L,M,N)

where, if g is even

Θ(P-2)/2

Ωδ{L} = ΔΛ[δ](Zeyen\τ) Π E(Pί9Pj)2^
i<j

9(P' ~ 2)12 g(p - 2)/2 g(p' - 2)/2

• Π E(P'.,,P'.,)2<>">' Π Π E(Pι,PΊ)-2

i'J'=l i=l ϊ = l
i'<jf

g(p- 2)/2 g(p' -2)/2

• π σ ( p i ) 2 ' 2 p Ί p Π σ(p'i> ) 2 " 2 W p ' σ ( δ ) " 4 + 2 p 7 p + 2 p / p '
i=l ϊ=l

g(p-2)/2 g(p'-2)/2

Π

if g is odd

(g-Dip-2)12 (9-Dip'-2)12

Ωδ{L} = ΔΛ[δ](Zodd\τ) Π £ ( Λ , Λ ) 2 P ' / P ΓΊ
»,J=1 Γ,/ = l

(0 - 1 )(p - 2)/2 ig - 1 )(p' - 2)/2 (g - 1 )(p - 2)/2

• Π Π E(P,,Fer
2 Π

ί=l i=l i=l
(0-l)(p'-2)/2

• Π σίP;,) 2- 2^'^?!) Λ ... Λ dz(P\) A -.;
ΐ ' = l

and

^Λ(ZIτ) = X exp{iπ(2pp'k + Λ-ε)τ{2pp'k + Λ-έfβpp'
kεZg

+ ί4π{2pp'k + A- ε)Ztβpp'},
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g(p-2)l2 Pi g(p'-2)/2 p\ ΓQ ά η

Zeven= Σ P' ί » ~ Σ P ί •> " (P " P'Ά f » + f 4
i = l Po ί ' = l Po l_Po (flf-l)Po J

(g-l)(p-2)/2 Pi (g-l)(p'-2)/2 p'i' A

zodd= Σ P Ί » - Σ J O - ( P - P ' ) ί »•
i = l Po Γ = l Po (^-DPo
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