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Abstract. A mathematical theory is mounted for a complex system of equations
derived by Gear and Grimshaw that models the strong interaction of two-dimen-
sional, long, internal gravity waves propagating on neighboring pycnoclines in a
stratified fluid. For the model in question, the Cauchy problem is of interest, and
is shown to be globally well-posed in suitably strong function spaces. Our results
make use of Kato's theory for abstract evolution equations together with somewhat
delicate estimates obtained using techniques from harmonic analysis. In weak
function classes, a local existence theory is developed. The system is shown to be
susceptible to the dispersive blow-up phenomenon investigated recently by Bona
and Saut for Korteweg-de Vries-type equations.

1. Introduction

This paper is concerned with the initial-value problem

+ uux + uxxx + a3υxxx + aγvvx + a2(uv)x = 0,

ivt + rvx + vυx + vxxx + b2a3uxxx + b2a2uux + M i M * = 0,

κ(x,0) = κo(x), '

where aί,a2,a3ibί,b2 and r are real constants with bί9b2 positive, u = u(x,t),
v = υ(x, t) are real-valued functions of the two real variables x and ί, and subscripts
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adorning u and v connote partial differentiation. This somewhat complicated
system has the structure of a pair of Korteweg-de Vries equations coupled through
both dispersive and nonlinear effects. It was derived by Gear and Grimshaw
(1984) as a model to describe the strong interaction of weakly nonlinear, long
waves.

The model system (1.1) arises in the following general context. Consider a
medium represented by R x [ — ft, 0] in a standard Cartesian plane which can
support two-dimensional wave motion in the horizontal direction. Frequently,
the linearized theory for infinitesimal-amplitude wave motion in such a medium
leads to a representation of a significant dependent variable η, say, in the form
η = A(x, i)φk(y\ where x is the variable in the horizontal direction, y the vertical
variable and φk is an eigenfunction of some linear eigenvalue problem posed for
ye\_— ft,0], and with appropriate boundary conditions at y=—h and y = 0,
/c= 1,2, Different motions are associated to different modes φk which define
the particular vertical structure of the wave, though often interest is focussed on
one of the lowest modes. In this sort of representation, A = Ak is a function of
x — ckt9 where ck is the eigenvalue associated to the eigenfunction φk9 k = 1,2,
When the theory is extended to allow for the weak effects of nonlinearity and
dispersion, η is represented in the form εAkφk, where ε is a small, amplitude para-
meter and φk is as before. Such a form is based on substantial assumptions about the
spatial and temporal scales appropriate to the wave motion. Usually A is a function
of a long spatial variable εax and a slow time variable perturbation εβt of the basic
speed ck associated to the mode φk9 where α and β are positive constants that
reflect the particular laws governing the motion. The function A is then seen to
satisfy a nonlinear partial differential equation and the combination εAφk is taken
to be a good approximation to the underlying wave motion on a longer time scale
than provided by the corresponding solution of the linear equation.

An interesting possibility now presents itself, in which a motion may be initiated
in the medium which corresponds to more than one of the vertical modes φk.
Consider the case wherein there are two different modes φk and φm and the
motions associated with each are localized in space. If the fundamental phase
speeds ck and cm associated with these modes differ sufficiently, then basically the
motions associated with each will pull apart rapidly enough that, to leading order
in the parameter ε,Ak and Am are determined independently of one another.
However, if ck and cm differ by order εβ, there is the prospect that the motions
associated with φk and φm may remain in the spatial vicinity of each other long
enough that the effect of interaction between them can accumulate to make a
leading-order difference to each amplitude function Ak and Am. In this case, Ak

and Am will satisfy a coupled system of partial differential equations. It is to this
latter, interesting situation in the nonlinear regime that the present work is
devoted.

Consider now the concrete situation of wave motion in a density-stratified fluid
of constant total depth ft which is far from any lateral boundary. Assuming the
motion to be uniform in one of the unbounded directions, and neglecting dissipative
effects, the two-dimensional Euler equations are taken to be the full equations of
motion. If the undisturbed density variation is a function p0 = po(y) of the vertical
coordinate alone, then we find that the generalities outlined above apply. In
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particular, the linear eigenvalue problem for the vertical modes is

cl^[Poψ) + PoKΦk = Q for 0>y>-K
dy\ dy)

on y=-K (1.2)

on y = 0,
dy

where N2(y) is the Brunt-Vaisala frequency (and so proportional to pOy) and γ is
either zero in case the upper boundary is fixed or is the Boussinesq parameter (a
non-dimensional measure of g" 1 , where g is the gravity constant) if the upper
surface is free. Erkart (1961) examined the linearized problem in the case where
the undisturbed density variation p0 consists of two, well separated pycnoclines,
and determined that resonant transfer of energy between waves propagating on
each of the two pycnoclines is possible when the waves in question have nearly
identical phase speeds. In the same configuration, Liu, Kubota and Ko (1980) and
Liu, Pereira and Ko (1982) showed that such energy transfer was possible between
nonlinear waves propagating on widely separated, neighboring pycnoclines. In
particular, they found that solitary waves propagating on neighboring pycnoclines
could interact strongly. The model with which they drew these conclusions consists
of a pair of intermediate depth equation (cf. Kubota, Ko and Dobbs 1980) coupled
through a purely dispersive term. This system has recently been analyzed by Bona
and Saut (1991b). In contrast, when the overall depth h of the fluid is shallow with
regard to a typical wavelength L, so that, in particular, neighboring pycnoclines
are not widely separated, Gear and Grimshaw (1984) have shown that the strong
or resonant interaction between waves on neighboring pycnoclines is approxi-
mately governed by the pair of Korteweg-de Vries (K-dV) equations in (1.1)
which are coupled through both nonlinear and dispersive effects. Indeed, the
assumptions leading to (1.1) include that h2/L2 is of the same order as the amplitude
ε, and this plus the presumption of one-way propagation leads inevitably to a
K-dV-type model.

If φn and φm are two distinct solutions of the eigenvalue problem (1.2) with
phase speeds cn and cm differing by a quantity proportional to ε, i.e. cm = cn — εχ,
then Gear and Grimshaw found that the vertical displacement η = η(θ, y, τ) of the
fluid is given by

η = εμ M (τ , θ)φn(y) + Am(τ9 θ)φm(y)} + O(ε2),

where the wave amplitudes An and Am satisfy the evolution equations

! + Ad-^ + λd*At

δθ3

„ — + 3vmm —(AnAm) + λnm — ± (1.3a)
* δθ "nmδθ nm δθ3
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and the orthogonality condition

k -h ° dy dy

where δkl is the Kronecker delta. Note that 2Ikμk = ?>clvkkk and 2Ikλk = c\λkk. Now
by letting

rμm

1 J \ X

the system (1.1) is recovered with the constants a1,a2,a3,bι,b2 given by

= n n n m m ^
2 2Inμmλ/ 3

b _κ b _ v
The constant r is a non-dimensional, disposable parameter which does not affect
our analysis and which will henceforth be neglected. Notice that the parameters
bx and b2 are automatically positive since In and λn are strictly positive because
the density is strictly positive and the φk are not constant in the presence of true
stratification (pOy φ 0).

Gear (1985) showed that although these coupled equations possess an exact,
traveling-wave solution involving the characteristic sech2-profile of the K-dV
equation, they are in general not solvable by the inverse-scattering transform
technique.
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Our aim in this article is to study local and global well-posedness of the
initial-value problem (1.1) in the classical Sobolev spaces Hs(JR)xHs(JR). The
problem (1.1) is said to be locally well-posed in HS(JR) x HS(JR) if it generates
a continuous local flow in HS(IR) x HS(1R) (i.e. if existence, uniqueness, persistence,
and continuous dependence on the initial data hold). The problem is globally
well-posed if the local flow can be continued indefinitely in the temporal variable,
so defining a solution of (1.1) valid for all ί^O. Such a theory is basic to the
analytical or numerical study of the system.

It will be demonstrated that (1.1) is locally well-posed in F ( R ) x H s ( R ) for
any s ^ 2. As with other, dispersive wave equations, global well-posedness in any
particular Sobolev space seems to depend on the available local theory and on
the conservation laws or energy-type inequalities satisfied by the solutions. In
general, solutions of (1.1) satisfy the following conservation laws:

00 00 00

Φ1(u)= J udx, Φ2{v)= J vdx, Φ3(u,v)= I (b2u
2 + b1v

2)dx. (1.4)
— oo — oo — oo

The time-invariance of the functionals Φ1 and Φ 2 expresses the property that the
mass of each mode separately is conserved during iteraction, while that of Φ 3 is
an expression of the conservation of energy for the system of two modes taken as
a whole. In general, while total energy is conserved, it may nevertheless be passed
between the two modes. As remarked by Liu, Kubota and Ko (1980) in a related
problem, the functional Φ 3 supports the tentative conclusion that a mode can
increase its energy only by increasing its amplitude and decreasing its width, while
the other mode must correspondingly decrease its energy by decreasing its
amplitude and increasing its width. Solutions of (1.1) satisfy an additional conser-
vation law which is revealed by the time-invariance of the functional

Φ4(w,v) = J I b2u
2

x + vl + 2b2a3uxvx — b2 b2a2u
2v — b^^uv2 rv2 \dx.

-oo\ 3 3 /
(1.5)

The functional Φ 4 is a Hamiltonian for the system (1.1), and if b2a\ < 1, Φ 4

will be seen to provide an a priori estimate for the solution pair (w, v) in the space
// 1 (R)xH 1 (R). Furthermore, the linearization of (1.1) about the rest state can
be reduced to two, linear K-dV equations by a process of diagonalization. Using
this remark and the smoothing properties (in both the temporal and spatial
variables) for the linear K-dV derived by Kato (1975, 1979, 1983) Kenig, Ponce
and Vega (1989, 1991a, b), it will be shown that (1.1) is locally well-posed in
Hs(IR)x/fs(lR) for any s ^ l if y/^a^Φ ± 1 . It will therefore follow from the
a priori estimates provided by Φ 3 and Φ 4 that the system (1.1) is globally well-posed
in Hs(JR)xHs(1R) for any s ^ 1 whenever \a3\ < 1/y/b^,.

It is worth contrasting the theory developed here for (1.1) with the early methods
used to prove global well-posedness for the K-dV equation in the spaces Hk(JR)
for /c^2 (see Bona and Smith 1975; Kato 1975; Saut and Temam 1976). These
theories relied on an a priori bound in H2(ΊR) provided by one of the infinite string
of conservation laws with polynomial densities. For the system (1.1), we have only
found the four conservation laws listed above, and these only provide a priori
information in Hi(JR)xH1(ΊR). Hence, to establish global well-posedness, it is
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central to our argument that (1.1) is locally well-posed in the relatively weak space
^ ( R j x ί f 1 ^ ) . In consequence of this requirement, we must call on the sort of
theory developed recently in Kenig, Ponce and Vega (1991b) for the initial-value
problem for the K-dV equation posed in the space HS(1R) for smallish values of s.

This paper is organized as follows. The general, local well-posedness result
together with a sufficient condition for local solutions to be globally continuable are
presented in Sect. 2, while a priori estimates in Hί(lR)xH1(lR) are derived in Sect.
3. Estimates concerning the linear propagator are contained in Sect. 4, and our
main result for smooth solution is established in Sect. 5. In addition to the theory
of strong solutions, we are also able to develop existence results in case the
initial data lies only in L2(R) x L2(R). This theory of weak solutions is coupled
with a theory of existence in weighted Sobolev spaces to demonstrate a type of
singularity formation termed dispersive blow up in Bona and Saut (1991a). These
results, which appear in Sect. 6, are a result of the way dispersion appears in the
model, with a negatively unbounded group and phase velocity.

Notation. The norm in Z/(R), l^p^co will be denoted by || | |p. We shall use
the abbreviations Js = (1 - d 2) s / 2 and Ds = ( - δ 2 ) s / 2 to denote the Bessel and Riesz
potentials of order - s , respectively. Define Lξ = J~sLP9 a Banach space whose
norm will be denoted by || | | s p = \\JS- \\p. When p = 2, L 2 is the classical Sobolev
space HS(TR), and /f°°(R) = (\ /fs(R). Also define the commutator between two

s>0

operators A and B by [Λ, B~] = AB - BA. Thus, [J s, f]g = J\fg) -fJsg in which
/ is regarded as a multiplication operator. The space H\OC(Ω\ where Ω is an open
set in 1R and s ^ 0 connotes the class of measurable functions / defined on Ω such
that for every φeC%(Ω)9 φfeHs(1R). If [0,Γ] is an interval and X is a Banach
space with norm || | | x , then

ί/(0, T X) = jtι:[O, T] ^X such that J ||u\\p

x < oo i .

The space C(0, T; X) comprises the class of all continuous functions mapping [0, T]
into X. If [0, T] is compact, C(0, T; X) is a Banach space when equipped with the
norm || | | L β ( O f Γ ; J O .

2. General Local Theory

In this section, we shall present a theorem about the local well-posedness of
the initial-value problem (1.1) and a continuation principle that ensures local
solutions to be extendable to smooth solutions defined globally in time. The
well-posedness theorem is obtained by a straightforward application of the abstract
techniques of Kato (1975, 1983) for quasi-linear evolution equations and hence
the proof is abbreviated. The continuation principle uses the local theory and
energy-type estimates.

For simplicity of exposition, we shall restrict ourselves to integer-order Sobolev
spaces. This is a restriction of convenience only. For any T > 0 a finite number
and s an arbitrary integer Sobolev index, let

XS(T) = C(0, T iFtRHnCHO, T;HS~3(1R)).
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Theorem 2.1. Let s ^ 2 be an integer, and (uθ9vo)eHs(JR)x HS(M). Then there exists
a T= Γ( | | (u o , ι ; o ) | | s < 2 )>0 and a unique solution (u,v)eXs(T)xXs(T) of the system
(1.1) corresponding to the initial data (uo,vo). Moreover, the pair (u,v) depends
continuously on (uo,vo) in the sense that the mapping (M0, VO)\—>(U, V) is continuous
from HS(JR) x HS(1R) into the space XS(T) x XS(T).

As mentioned above, Theorem 2.1 is an easy consequence of the general results
of Kato. The functional-analytic setting for Kato's theory consists of a pair of
reflexive Banach spaces X and 7, where Y a X with the injection continuous and
dense. A central role in the theory is played by a Banach-space isomorphism S of
Y onto X, and the norms on these two spaces are chosen in such a way that S is
an isometry. The theory applies to the abstract, quasi-linear evolution equation

F(t9Ul (2.1)

for 0 < ί, with

U(0)=Uo,

where UOGY is a given initial value. Kato's theory asserts that there exists a
positive time T=T(\\UO\\Y) such that (2.1) possesses a unique solution in
C(0, T; Y)nCί(09 T X) provided that certain conditions are satisfied. Moreover,
the mapping that associates to Uo the solution U is continuous from Y into

1

To apply this theory to the situation of interest here in case s ^ 3, take
X = Hs~ 3(R) x Hs~ 3(R) and Y = tfs(IR) x tfs(R), let S = (J\ J 3 ), let A be the matrix
operator

A = A(W) = 1
b b2a2 ~ b2a^ _ 1 ^ 1 b2aλ

y d + z d d + z δ +

where

and let the operator F be zero. With this choice of A and F, and writing

(1.1) reduces to (2.1), if Uo = (u0, υ0). To verify the hypotheses of Kato's theory, it
is convenient to take the inner product of two elements (f,g) and (η,h) in
L 2(R)xL 2(R) to be

<(f,9\(η,h)> = b2 J fη + bx J gh.
— oo — oo

Hence the norm of an element (/, g)eHr(JR) x Hr(JR.\ where r ^ 0 will be given by
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where as mentioned above, bί and b2 are known to be positive. It is then
straightforward to verify that the hypotheses of Kato's theory are satisfied.

In case s < 3, one takes X = L2(R) x L2(R), Y = #S(R) x HS(JR), and S = (JS,JS).

To apply the theory, one needs to use the trick observed by Kato (1979) in which

new variables u and ΰ are defined by conjugating w, v with etdχ

9 viz

The details follow exactly the lines laid down by Kato, and so they are passed
over here.

Lemma 2.2. If (u,v)eXs(T)xXs(T) is a local solution of the initial value problem
(1.1) corresponding to the initial data (uo,vo) as specified by Theorem 2.1, then for
any k with 1 ^ /c ̂  5,

sup ||(M( , ί), f< , ί)) 11̂ 2 ^ ||(«o, t̂ o) llit.2 « P f c J ( | | M,(-, τ) ||«, + || !;,(•, τ) | |αo^ίτ\ (2.2)
[0,Γ] \ 0 /

Proof In light of the local well-posedness theory sketched above, the following
formal calculations can be easily justified provided k ^ s by simply regularizing
the initial data, making the calculations for the associated smooth solutions, and
then passing to the limit in which the regularization is allowed to degenerate to
the identity operator. Consider the case k= 1. Differentiate the first equation in
(1.1) with respect to x, multiply by ux and integrate the resulting expression over
IR, thereby obtaining the equation

1 J °° 00 * 00 00 00

iΊ* f "* + α 3 J u*v*χχ>=-ϊ ί "Vcxx-y f v2uxxx-a2 J uvuxxx. (2.3)
Z (XX — o o — o o .Z — oo Δ — oo — o o

Now, divide the second equation in (1.1) by b2 and perform calculations similar
to those leading to (2.3) to arrive at the relation

b l 00 00 A 00

τr T: J »l + *3 1 vxuxxxx=-— J Λ,,,
Z D 2 α f -oo -oo 2Λ)2 -oo

- y ί «2»«,-«i ϊ «^«, (2-4)
Z — oo — oo

Adding (2.3) and (2.4) leads to the equation
1 7 OO L 00 I 00

" Γ /Ϊ 2 Ϊ ?\ ^ 2 p ? ^ 1 ^ 2 p 9

- - J (Mί + 6i»ί)=-y ί Λ m - y ί »2«ra
Z u t — oo Z — oo Z — oo

00 1 °°

Z— oo

ϊ «2»xx,-βi*2 ί «w««, (2-5)

from which one obtains the inequalities

I r oo i oo < oo

Lul — oo Z — oo -Z — oo
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^CdlnJI^ + lli JIJίfejIlMjI^ + feJIf J I ^ (2.6)

Now consider the case k ^ 2. Apply <3* to both sides of the first equation in (1.1),
multiply this expression by dk

xu and integrate the resulting expression over R. One
finds that

+ a3 J dxudk

xvxxx = - J
— oo — oo

- f l l J dxudx(vvx)~a2 J ^ ( t r o ) , . (2-7)
— oo — oo

Next, divide the second equation in (1.1) by b2 and perform a similar set of
operations to obtain

•j 00 00 00

= f dkvdk(vvx) — ai f dkvdk(uv)x — a2 f dkvdk(uux). (2.8)
fy 2. — °o — oo — oo

Adding (2.7) and (2.8), using Leibniz's rule and several integrations by parts together
with Holder's inequality, one obtains the estimates

^ C ^ a I I ^ " H i -i- fri I I ^ » l l i > ^ C7CII«,l l„ -i- I I » * I I o o > C I I ^ " H i -H I I a ^ ϋ H f >

^ ^ ^ ^ (2.9)

GronwalΓs inequality applied to (2.6) and (2.9) yields the desired results. •

Remark 2.1. Actually Theorem 2.1 is valid for fractional exponents s > 3/2, while
Lemma 2.2 is valid for fractional indices s^O. However, to prove the latter
assertion, we seem to need the commutator-estimates of Kato and Ponce (1988)
and so this level of generality has been eschewed in favor of the simpler proof
presented above.

Lemma 2.3. Let (UO,VO)EHS(1R)XHS(JR)9 where s ^ 2 and let {u,v) be the local
solution as in Theorem 2.1 emanating therefrom. Suppose there are finite constants
K and T1 such that for any t ^ Tx for which the solution exists on the interval [0, ί ] ,
we have

t

f(ll«»( ,r)IL + ||»»( ,r)|L)Λ gK. (2.10)
0

Then the local solution can be extended at least over the time interval [0, 7\].

Proof. Let To be the maximum temporal existence interval for the solution (u, v)
and suppose Γo g r x . Thus for any T < Tθ9 (u, v)sXs(T) x XS(T), and so from (2.2)
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and (2.10) it follows that for any such T, we have

sup II (u(t\ v(ή) ||5t2 S II (a* v0) L,2 exp(CX), (2.11)
[0,T]

for any s ^ 1. Hence there is a uniform bound on (u,v) in HS{ΊR) x HS(1R) on the
time interval [0, T). This fact and the local existence theory contradict the definition
of To unless T0>T1. •

3. A Priori Estimates in Hι(K)xHι(WL)

The conservation laws Φl9 Φ2 and Φ3 were derived by Gear and Grimshaw (1984).
The Hamiltonian functional Φ 4 in (1.5) appears to be new and hence its derivation
is offered now.

Multiply Eq. (2.3) by b1b2 to obtain
1 1 1 00 00

-J+ J ux + bxb2a3 J uxvx
at

ΊΓJ+ J ux + bxb2a3 J uxvxxxx2 at — oo

Differentiating the first equation in (1.1) with respect to x, but this time multiplying
by bib^sVχ and integrating over R, we find that

o i / j x xt o i z j x xxxx

λb2 \ uvvxxx. (3.2)j M ι ? x x j e j υvxxx
Z -oo Z - oo

A similar operation applied to the second equation in (1.1) gives

J "x^xxxx
- o o

f u 2 u _ - a i α 3 ^ J maw (3.3)

Adding (2.4), (3.1), (3.2) and (3.3), we find that

h A °°

T ^ ί ( M ' + ̂  + 2α3b2wΛ)
2 αί -oo

2 _'„ —
00

-a2b1b2 J w φ ,
— 00

fl2ft2 "

2 _ „ "

-ra3b2 J r u ^ . (3.4)
— oo
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Finally, using the original Eqs. (1.1) in (3.4) gives

7 7 f (b2ul + vl + 2a3b2uxvx-b2

U--b2a2u
2v-b2aίuv2-V--rv2)dx = 0,

2 at - oo \ 3 3 /
(3.5)

which says that Φ 4 is time-invariant when evaluated on a solution pair (w, v) of (1.1).

Lemma 3.1. Let (u9v)eXs(T)xXs(T) be the solution to (1.1) corresponding to the
initial data (κ0, v0) in //S(R) x //S(R), where 5^2.

(1) Then ||(M(ί),t;(ί))|l2 ί S bounded independently oft, with a bound depending

only on | |(κo,ι>o)ll2
(2) // \a3\ < 1/̂ /̂ 2, then \\(u(t\v(t))\\ίi2 is bounded independently of ί, with a

bound depending only on \\{uo,vQ)\\li2.

Proof. Part (1) follows easily from the time in variance of the functional

Φ3 = b2 ιiκ(t)ii2 + *i ιι»(ί)ii2=*2 ii "o wi + bi \\vo\\2

2.

For (2), use is made of the functional Φ 4 defined in (1.5). Using the time-in variance
of Φ 4 together with straightforward estimates leads to the inequality

fellHl l l l l i ( l | l l l l l l ) ( l l o l l 2 , l l ^ o l U X I I ^ I U - h H a l l o o )

Using the elementary bound H/H^ g | | / | |^ / 2 H / J ^ 2 , o n e finds t h a t f o r ε < U

-WMuΛiWvΛi

l - ε

The last inequality follows from an application of Young's inequality. It therefore
transpires that

/ 1 ^

^ 2 t l l M x l l 2 " 1

b2a
2

Note that if \—b2a\>0, then for small, positive ε we have that 1 —
1 — ε

Hence, another application of Young's inequality yields the desired result provided
1 - b2a\ > 0. •

Remark 3.1. The a priori estimates provided in this section would allows us to
conclude that the local solutions of (1.1) in H1(JR)xH1(ΊR) (the existence of which
will be shown in Sect. 5) can be globally continued for all ί ^ 0 provided | α31 <
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4. Linear Estimates

In this section, the aforementioned estimates established by Kenig, Ponce and
Vega for solutions of the linear KdV equation are extended to solutions of the
linear system

(4.1)

where it is assumed that

Without loss of generality we can suppose that α3 φ 0, for otherwise the result
follows from the previous theory of Kenig et al. For α ± to be nonzero, it is sufficient
to assume that ^fb^1a2i ^ ± 1, an assumption weaker than that imposed in Sect. 3
(the latter condition is equivalent to assuming α ± to be positive). Now let

and note that by assumption λ is positive. Introduce the new dependent variables
wx and w2 defined as

1/ 1-bΛ 31 ) u + —
λ2\ λb, J λ

1/ 1-feΛ a3w2 = - l-l ]u v.

2\ λb2 J λ

In these variables the system (4.1) can be written in the equivalent, diagonal form

~α + W l * « " 0 ' (4.2)

Since α+ and α_ are non-zero, the decoupled, non-degenerate system (4.2) is
easily analyzed using the existing theory, and this analysis leads to the desired
results for the linear system (4.1).

First, we recall the sharp version of Kato's local smoothing theory for solutions
of the K-dV equation (Kenig et al. 1991a, Theorem 4.1).

Theorem 4.1. Let (wl9w2) be a solution pair of the system (4.2) corresponding to the
initial data (w10, w20)eL2(JR)xL2(]R). Then there are constants cί and c2 such that
for any X G R ,

/ °° \l/2

I f \dxWi(x, t)\2dt I = c. || w 0; | | , (4.3)
V-00 /

forj =1,2. •
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Next the reader is reminded of the following estimate related to the boundedness
of an associated maximal function.

Theorem 4.2. For j = 1,2 and w7- as above, we have that

/ oo \ 1/2

j sup \wj(x,t)\2dx) £ φ + Ty\\noj\\s,2
\-oo[-Γ,Γ] /

for any p and s which are both larger than 3/4. •

Vega (1987) (see also Kenig and Ruiz 1983) showed that this estimate is sharp
in the sense that (4.4) does not always hold for s < 3/4.

By interpolation between the estimates (4.3) and (4.4), one obtains immediately
the following result which will be used in the next section.

Corollary 4.3. For j = 1,2 and wj as above, we have that

oo Γ \ l / 4

J J \dχWj(x,t)\Utdx g φ + TY|| w0J\\h2 (4.5)
, - o o -T J

for any y > 3/8 and I > 7/8. •

Finally, we will make use of a version of the global smoothing effect of Strichartz
type (cf. Kenig et al. 1989, Lemma 2.4).

Theorem 4.4. For wx and w2 as in Theorem 4.1 and for any (θ,β)e[0,1] x [0,^], it
follows that

\\D^2Wj('9t)\\q

pdt\ ^Cj\\wOj\\29 (4.6)

for 7=1,2, where (q, p) = (6/θ(β + 1), 2/(1 - 0)). •

Returning to the original problem (4.1), and introducing the notation

it is easy to see that u and v satisfy estimates analogous to those presented above
for wt and w2. This remark leads directly to the final result of this section.

Theorem 4.5. The solution of the initial-value problem (4.1) corresponding to initial
data (uo,vo), namely

W(ή(u09 vo)(x) = (u9 υ)(x91)9

satisfies the following estimates:

sup( J \dxW(t)(u0,v0)(x)\2dtX/2^C\\(u0,v0)\\2, (4.8)
* V-oo /

oo \ 1/2

f sup \W(t)(uo,vo)(x)\2dx) ^C(l + Ίγ\\(u09Ό0)\\at29 (4.9)

-oo[~Γ,T] /

/ oo T \ 1/4

j J \dxW{t)(uθ9υo){x)\*dtdx) ^C(l + TY\\(uθ9vo)\\l29 (4.10)
V-oo -T J
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and

( f || D^/2M^(ί)(w0, ^o)W I I ^ Λ 1 / 4 ^ <̂  II («o, t;0) II2, (4.H)

where p > 3/4, s>3/4, y>3/8, />7/8 and (0,j3)e[0,1] x[0,1/2] with (q,p) =
(6/0(0+1), 2/(1-0)). •

5. Global Well-Posedness in /ys(R) x /P(R), 5 ̂  1

In this section, the results obtained in Sect. 2 concerning the local well-posedness
of the initial-value problem for the system

ut + uux + uxxx + έijt;^, + axvvx + α2(wy)x = 0,

M * + w* + ^ + b2a3uxxx + b2a2uux + b2a1{uv)x = 0

will be improved. Temporarily, the system (5.1) will be abbreviated as

+ uxxx + a3vxxx + fγ{u, ux9 v, vx) = 0,

1 b2a
 ( 5 ' 2 )

+ 7- vxxx + ^ wxxx + fl{u> "x> v> υx) = 0,
bi b1

with (M, V)(X, 0) =t (u0, t?0)(x).
Fixing (uo,vo)eH1(1R)xH1(JR.), consider the initial-value problem for the

system (5.2) with initial data (wε

0,^) = (/9ε*M0,pε*ι;0)e//00(R)x//00(R), where
00 /Λ

, p ^ 0, j ρ(x)dx = 1 and pε( ) = ε~1ρ[ - . Notice that we do not ask
-oo W

for the moments of p( ) to vanish as in Bona and Smith (1975).
We denote by (uε,vε)(x,ή the corresponding solution of this problem, defined

on the time interval [0, Tε] (with the possibility that Tε->0 as ε->0) provided by
Theorem 2.1. The first goal is to obtain an a priori estimate for the interval [0, T]
of existence of the solution (wε( ), vε(-)) of (5.2) showing that T is independent of ε
whenever (uo,vo)eH1(JSl)xH1(lR).

Based on the properties put forth in Sect. 4, and following an argument similar
to that given by Kenig et al. (1991b) we shall prove the following result.
Proposition 5.1. With the above notation, there exists T* = T*(| |(M o,t; o) | | 1 > 2)>0
and M = M( || M0, V0) \\ 12) > 0 such that for all ε > 0, the solution (wε, t;ε)( , t) can be
extended to the time interval [0, T*] where it satisfies the following:

(wε, vε)eC(0, Γ*; #°°(IR) x H °°(1R)), (5.3)

s u p {IIu ε(t)\\ι 2 + \\vε\\1 2} ^M, (5.4)
[O,Γ*]

/ τ * \ 1 / 6

( j (IIdxu
ε(t)\\% + II3xϋ (t)\\6Jdή ^ M, (5.5)

oo T* \ l / 4

f f (|wx |
4 + |ι;J C |4)dίdx < M , (5.6)

-oo 0 /
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/T* \l/2

sup $ (\d2

xu(x9t)\2 + \d2

xv(x,t)\2)dt) £ M , (5.7)
* \ o /

and

J ( sup |i*(x,ί)|2 + sup |i?(x,ί)|2 Jdx ) ^ M . (5.8)
[0,Γ*] [0,T*] / /— 00

Remark 5.1. The results of this proposition still hold if one only assumes that
(uo,Όo)eHs(R)xHs(R) with s>3/4 (with s a n d s + 1 replacing 1 and 2 in (5.4)
and (5.7) respectively). However, for simplicity of the exposition, consideration is
given to the case s = 1 for which one only encounters derivatives of integer
order.

Proof. Using DuhameΓs formula, the solution (uε, vε) can be written in the form

(„«, t;*)( , ί) = W(t){u09 Ό0) + \W{t- τ)(Λ, / 2)( , τ)dτ, (5.8)

where W() and (fl9f2) were defined in (4.7) and (5.2) respectively.
Since W(t)(uθ9υo) denotes the solutions of the linear system (4.1), it is easy to

check that
(5.9)

where C depends only on bx and b2.
Combining (5.9) with Holder and Sobolev inequalities, and Fubini's theorem

shows that for any T ̂  Tε ^ 1,
T T

sup ||(tt,»)(ί)||1.2^C||(« 0,» 0 ) | | 1 , 2 + Cf IKΛ.DWMt + C j ||(/ lx,/2x)(t)ll2Λ
[0,Γ] 0 0

T

f J (|«tt«|2 + |tt»|* + |w
0 -oo

l/2

[0,T]

oo T

I ~l" I ux I "I" I vuxx I( oo T

ί id
- o o 0

y/2
• \uxvx\

2 + \uvxx\
2 + 117,1* + \iwxx\

2)dtdx)

> y o ) II 1,2 + C Γ 1 / 2 ί s u p II(w,ϋ)(ί) II l f
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+ CTil2\( J
l\-oo\[0,Γ] [O,T]

T \l/2

ί (lWxx|2 + \Vxx\2)dt I
x 0 /

ί ί(|wJ4 + KΓVίdχ) [ = A (5.10)
-oo 0 / J

where here and subsequently the subscript ε has been suppressed. Next using the
estimates (4.11) with (0,j8) = (l,O), it follows from (5.10) that for any T^Tε9

(T \l/6 T

ί \\Sxu
ε(t)\\l + \\dxv*(ή\\ίdt S C||(iι ,ϋ 0 ) | | l i 2 + C\ \\(f,xJ2x){t)\\2dtύD.

\0 / 0

(5.11)

The same argument and the estimates (4.8)-(4.10) show that for T< Tε ^ 1,
/ T \i/2

^ A (5.12)
* \o

oo / \ \ l / 2

J ( sup |w|2 + sup |t;|2 Irfx ) ^ D , (5.13)
-oo\[0,Γ] [0,T] ) J

and

( oo Γ \ 1/4

ί ί ( I W J 4 + \υx\
4)dtdx I ^ D . (5.14)

-oo 0 /

Introducing the notation
ί ίτ V2

max^sup ||(u,ι;)(ί)llif2; S U P ί (I"xxl2 + I^*I2)Λ
l[0,T] x \θ )

/ oo / \ y / 2 / oo T \ 1/4

I f ( sup |w|2 + sup |t?|2 JίZx ) ί J J ( | M J 4 + \vx\
4)dxdt I

\-oo\[0,T] [0,T] / / \-ooO /

1/6 )̂

(5.15)

(note that X(T) is a non-decreasing function of T as long as the solution (ι/ε, vε)
remains in the space defined in (5.3)), it is inferred from (5.10)—(5.14) that

X(T) SC\\(u09υ0)\\u2 + CT1/2(X(T))2 (5.16)

with T^ Tε ^ 1. Now define T* = min{l; To}, where To is given by the identity

X(T0) = 2C\\(u0,v0)\\U2 = M. (5.17)

Thus, from (5.16), it is found that

Γ o ^ ( 2 C 2 | | ( W o , ι ; o ) | | 1 , 2 ) - 2 . (5.18)

Notice that both estimates (5.17) and (5.18) do not depend on the value of ε.
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If Tε< T*9 we obtain (5.17) with Tε replacing To. Combining this with the
energy estimate (2.5), the definition of X(-) and Holder's inequality yields a bound
which allows one to reapply the local existence theorem (see Theorem 2.1 and
Lemma 2.3) to extend the solution to the time interval [0, 71*] where it satisfies
(5.16).

A small modification in the proof allows the removal of the condition T* ^ 1
and thereby proves that T1* = T*(||«0,ί;0)II 1,2) t e n c * s t o infinity as \\(uθ9vo)\\ίt2

tends to zero. However, this point will not be considered here as. our goal is to
establish global well-posedness (i.e. T* = + 00 for any (uo,vo)eH1(ΊR)xH1(R)).

•
Next, we shall prove that the net {(u\vε)}eC(0, Γ if "(RJxff^R)) converges

in C(0, Γ HHRJxH^R)) for some T<T*.

Proposition 5.2. For some T < T*9 the family {(uε

9v
ε)}ε>0 converges on the interval

[0, T] in the norms appearing on the left-hand sides of (5.4)-(5.8) to a strong solution
(u9v)eC (0, Γ;iί1(R)xiί1(R)) of the system (5.1).

Proof. The argument is similar to that given in the proof of the previous pro-
position, so, a sketch will suffice. For ε > ε' > 0, define {zί9z2) = (uε — uε\ vε — vε).
This pair satisfies

x + KZ1 " U*'Zlx + aΛVχZ2 " Vε'z2x) + a2(υεZ1 ~ Uε'z2)χ = 0,

with initial data (z1 0, z2 0) = [uε

0 - wε

0, v
ε

0 - v^).
As in the previous proof, define Y(T) in analogy with X(T) in (5.15), where

(zi,z2) replaces (u9v). Following the same argument exposed in (5.8)—(5.14), it is
discovered that for T < T*9

S C | | (z l o ,z 2 O ) | | l f 2 + CT^MYCΓ), (5.19)

where the constant M was defined in (5.17). Hence, fixing T ^ 7* such that

it is concluded that

when ε > ε' > 0 tend to zero. This completes the proof. S

Combining Proposition 5.1 and 5.2 leads to the local well-posedness result
advertised earlier.

Theorem 5.3. The following points are valid concerning the initial-value problem for
the system (5.1).

(i) For any (uθ9vo)eH 1(R)xi/^R), there exists T=T(\\(uθ9v0)\\U2)>0anda
unique strong solution (u, v) of the system (5.1) with (uθ9 v0) as initial data such that

(u,v)eC(0, T H'mxHHm, (5.20)

(ux9 vx)eL6(0, T; L°°(R) x L°°(R)), (5.21)

and

sup \(\d2

xu(xM + \d2

xv(xM)dt) < oo. (5.22)
* \o /
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In particular, (5.22) guarantees that

(u9 v)eL2(0, T; tf 2

C (R) x Jf * C(R)). (5.23)

(ii) Moreover, the solution (u, v) in the space given in (5.20) and those defined by
the norm used in (5.21)-(5.22) depends continuously on the data in Hί(JR)xH1(R).

(iii) If in addition (w0, vo)eHs(JR) x i/ s(R) with s > 1, then the solution (w, v) belongs
to C(0,Γ;// s(R)xH s(R)).

Proof. The proofs of the parts (ii)—(iii) are similar to that provided in detail for
part (i), and therefore they will be omitted here. Uniqueness is immediate since

T /T \l/6

J (IIux(t)IL + || vx(t)|| Jdt ^ T5l6l J (||ux(t)||„ + || vx(t)|| J 6rfί
0 \0 /

T \i/6

Theorem5.4. (Global Well-Posedness). If\a3\< 1/̂ /b̂ , then the results in Theorem5.3
are true with T arbitrarily large.

Proof. Theorem 5.4 follows by combining Theorem 5.3 with Lemma 3.1. •

Remark 5.2. (1) The linear estimates in Sect. 4 depend on the fact that the eigen-
values {α±} of the coefficient matrix of the dispersive terms in (4.1) are both
nonzero. If either of these eigenvalues is zero, then the corresponding equation in
(4.2) is hyperbolic and hence no smoothing effect can be derived from it. As a
consequence, we would not have the local well-posedness result (Theorem 5.3).

(2) It should be noted that as long as bx is positive and finite (regardless of its

magnitude), the existence of global solutions in if *(R) x Hι(ΊR) is assured provided

the condition | α 3 | < \jsjb~2 is satisfied. Indeed this condition is satisfied by the

examples given by Gear and Grimshaw (1984) wherein (i) α3 = 0.139389, bι =

2.267029, b2 = 21.513946 and (ii) α3 = 0.5, bι=b2 = 2. For (i) 1 / ^ = 0.2155956

and for (ii) l/Jb^ = 0.7071068.

6. Local Well-Posedness in L2 and Dispersive Blow-up

In this section use is made of Kato's original local smoothing ideas to obtain
existence of solutions to the initial-value problem for (5.1) corresponding to data
which lies only in L 2(R)xL 2(R). This result in turn will be used in the analysis
of a certain type of singularity formation termed dispersive blow-up by Bona and
Saut (1991a).

Let (UO,VO)EL2(1R)XL2(1R.) be a given pair of initial data for (5.1) and suppose
that (wOjM,t;θ5,ι)e//3(IR)x//3(lR) are smoother data which converge to (wo^o) ^n

L 2(R)xL 2(R) as n tends to infinity. Presuming that | α 3 | < l/y/b^9 Theorem 5.4
assures that the system (5.1) has a unique solution pair (un,vn)eC(0, oo;H3(R)) x
C(0, oo;# 3(R)) corresponding to the initial data (uOn,von).
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Dropping the subscript w, and writing (w, v) for (um vn\ we proceed to derive
bounds on (un, vn). Let p be a C00 real-valued function which is bounded on IR
along with its first few derivatives, and which is such that px > 0 for all xeR.
Multiply the first equation in (5.1) by b2pu and the second equation in (5.1) by pv
and integrate the results with respect to x over JR. After several, justifiable
integrations by parts, there appears the relation

b ϊ 00 I J 00 ΛI 00 -Λ 00

— — f pu2dx + — — f pi;2 H ^ f pxu
2dx + - f pxv

2dx
α ί - c χ ) z α ί 2 z

f
z α ί -

-I 00

- J
- ^ — 0

2 ^ - 3 f c 2 α 3 J pxuxvxdx
— o o

00 00

J pxuv2dx + b2a2 J pxw

•5—
f

Ϊ 00

(6.1)

If Eq. (6.1) is integrated in time over the interval [0, Γ] and use is made of the
invariance of the functional Φ 3 , and thus the boundedness of || u( , t) \\ 2 and || t;( , t) || 2,
independently of t ^ 0 and n = 1,2,..., and the properties of/?, then one obtains that

^ T 00

x ί ί (b2pxu
2

x+pxvl)dxdt
^ 0 - 0 0

^ C ( T , p, II u 0 II2, II v 0 II2

J pxu
2vdx

Using again the elementary inequality
cubic in u,v in (6.2) may be estimated as follows:

3b2 0 3

T

ί
0

h T

dt + ~\
J o

0 0

j pxuxvxdx
— oo

0 0

J pxu
3dx

— oo

ύ

dt + b2

1 τ

lt + - J
3 o

a1

0 0

ί
— oo

T

0

PΛ

0 0

ί P
— oo

v3dx

xuv2dx

dt. ((

2 / 2II/Ίl2 / 2 ' t n e t e r m s t n a t a r e

- 00

00

J pxυ
3dx

- 00

0

J pxuv2dx
- 00

00

J pxu
2vdx

^ (II P , « II I12 II P x x « II2 / 2 + II Pχ« II ΐ / 2 II P A II2 / 2) II«I

^ (II P x « II 2

/ 2 II Pχχ» II2 / 2 + II P . " II1 / 2 II P , « X II2 / 2) II»II2.

^ (II PXV I I 2

/ 2 II pxx» IIV2 + II PXV I I 2

/ 2 II P « » , II I12) II«II i ( 6 . 3 )

If it is now assumed that b2a\ < 1, then (6.2), (6.3), the invariance of Φ 3 and Young's
inequality imply that

ί f P*(«2 + Odxdt S C(T,p, || u 0 1 | 2 ) || v01|2), (6.4)
O - o o
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and therefore, by an appropriate choice of the increasing function p, that

ί f (u2

x + υx)dxdt^C(T,R,\\u0\\2,\\v0\\) (6.5)
0 -R

for all finite, positive values of T and R. It is thus concluded from (6.5) and the
invariance of Φ 3 that the sequences

{un}n=ι a n d kL°°=i a r e bounded in L°°(0, T;L 2 (R))nL 2 (0, T;H\-R,R)l (6.6)

independently of n, for finite values of R and T. Using Eqs. (5.1) satisfied by (un, vn),
it is then straightforward to conclude that for each Γ, R > 0, the sequences

{dtun}n = l a n d { 5 A } " = i a r e bounded in L2((\ T;H~2(- R, R)), (6.7)

independently of n. It is then standard to use the Aubin-Lions compactness result
to pass to the limit in (5.1) as n tends to infinity, so obtaining the following existence
theorem.

Theorem 6.1. Assume that | α 3 | < 1/̂ /̂ 2 an& let (uo,vo)eL2(JR)xL2(ΊR). Then the
system (5.1) has a solution (u,v) corresponding to the initial data (uo,vo) such that

u, i;eL°°(0, oo; L 2 (R))n L2(0, Γ; H\- JR, R))

for each T, R > 0. Any such solution has the property that

ut,vteL2(0,T;H-o

2(ΊR)\

and hence

w, VECS{Ό, 1\Ϊ*\OC (1*V)) ^ Cw(u, 11 ti |oc(JKJ).

The initial values are taken on at least in the sense of the latter space.

Attention is now given to the so-called dispersive blow-up properties which
obtain for the Gear-Grimshaw system (5.1) in much the same way as for the
generalized Kortweg-de Vries equation. For simplicity, the theory is only
developed in the L2-context, though the reader will readily appreciate how a theory
relative to Hk can be carried out along the same lines. Indeed, the theorem stated
below encompasses this generalization.

Theorem 6.2. Assume that | α 3 | < 1/^/ϊ̂  and let a non-negative integer k and real
numbers T > 0, x * e R and 0 < ί* < T be given. Then there exists initial data u0, v0

in H f c(R)nC£(R)nC°°(R) and a corresponding solution pair (u,v) of (5.1) such that
w,t;GL0O(0,T;i/fc(R))nL2(0,Γ;//fo+

1(lR)), Sk

xu,dk

xv are both continuous functions of
(x,ί) in the domain R x ( 0 , T)\{(x*,ί*)}, and

lim |S*M(X,ί)l = lim \dk

xv(x, t)\ = + oo. (6.8)
χ-*x* χ-+x*
t->t* t->t*

Remark 6.3. By C£(R) we mean the Cfe-functions defined on R whose derivatives
up to order k are uniformly bounded on R. In case k ̂  1 above, the solution pair
(w, v) is unique and w, v actually lie in C(0, T; fίfc(R)), as stated already in Theorem 5.3.

Proof. As mentioned above, the proof is sketched here only for the case k = 0.
The line of argument follows very closely that appearing in Bona and Saut (1991a).
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The first step in the proof is to obtain an existence result for solutions of (5.1)
in weighted spaces. Consider the special class of weights w = wσ which are
non-decreasing C00 functions depending on the positive parameter σ such that

ί \ ί \ ί 1 for x < 0 , and
vφc) = wJx) = < „ (6.9)

1 } Λ } l ( l + x 2 r for x>l .
The class Hfe(R, w) is the class of Hfc(R)-function whose derivatives up to order k
are square integrable with respect to the measure w2(x)dx. If k = 0, this space is
denoted L2(1R, w).

Proposition 6.4. Assume that \a3\< 1/̂ /fĉ  and suppose that the initial data (uo,vo)
for the system (5.1) lies in L2(IR, w) x L2(R, w). Then there exists a solution pair (w, υ)
to (5.1) corresponding to (uo,vo) as in Theorem 6.1 such that for any T > 0, one has

Proof. The argument is made as in the proof of Theorem 6.1 by working with
initial data which is smooth (e.g. uOn, v0?/JeC^(R), n = 1,2,...) and which converges
to uo,vo in L2(R, w). It is then only required to derive a priori bounds on the
associated solution (un, vn\ n = 1,2,..., in L2(]R, w) in order that, when the limit is
taken as n tends to infinity, the resulting weak solution may be inferred to lie in
L°°(0, T; L2(R, w)) x L°°(0, T; L2(R, w)).

To this just mentioned end, define A = uw and B = vw so that yl,B satisfy the
slightly complicated system of equations

A, + Axxx + a3Bxxx + (A + a3
W VV' W

+ (Ax + a3Bx)[6^-3^)-3^(Axx + a3Bxx) + a1(-BBx-
W±

\ w w / w \w w

+ α2 [ - ( ^ 4 - 2^/45 ) + -AAX - ~A2 = 0,
\W W / W W

, W V W V V W 3 Wv

w 2 w 3 w

f ) + Bxx)
W VV / W

w w w w

- 2^AB) = 0. (6.10)
w w2 /

All the coefficients appearing in (6.10) are smooth and bounded, because of the
properties of w, and hence this system admits a local existence theory along the
lines enunciated in Sect. 2. Since for each integer n, the initial data
A(x,0) = w(x)uOn(x) and B(x,0) = w(x)vOfH(x) lies in //°°(R), it will follow that the
initial-value problems for (6.10) possess unique solutions (A, B) = (An, Bn\ such that
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A,BeC(0, T;Hk(ΊR)) for some T > 0 and any k. By uniqueness for the initial-value
problem for (5.1), it follows that Λn = wun and Bn = wvn. In any case, we are thus
assured of solutions of the system (6.10) having more than enough regularity and
decay at infinity to justify the quest for energy-type estimates upon which we now
embark.

Multiply the first Eq. (6.8) by b2A and the second by B, integrate the results
over R, and integrate by parts to reach the relation

2 at
^J ^Aldx + 3 J ^

w= 6b2a3 f ~AxBxdx + 3b2a3 f ( — I ΛBdx + J e,A2dx
W \ W J

i J . . . 2 y

L c wx -x
"ϊ ί —2Ba

3 -oo w2

-ooW

W

+ {AB)xB~\dx-a2b2 J -
-ooW

AAxB~]dx

J ^ Λ £ 2 Λ x + 3α2fc2 J -^A2Bdx,
- o o W 2

(6.11)

where, due to the properties of w, θ l 5 θ2 and θ 3 are smooth functions which are
bounded, along with all their derivatives. First notice that

wv6b2a3 J —AxBxdx

Further integration by parts shows that

ί

00 1
f -

- o o W

w

and similarly

00 1 °° w

f -(A(AB)x + AAxB)dx=-a2b2 j" ~

(6.12)

Estimating straightforwardly

{jpΛΛll + bΛB

<c \\A\\2 + c \\B
= 1 2 2

2
+ 3

00

- oo W

in (6.11)
00

l2

2) + 3 j α

| 2 + 6αfc
2 2

+ 53)dx

thus

) W

3

0 0

— oo

f 2Z

leads

wx

w
oo

to th(ϊ inequality

v4β2 + a2A
2B)dx (6.13)

Proceeding exactly as in the proof of Theorem 3.1 in Bona and Saut (1991a, the
case p = 1), one readily derives that the last two terms on the right-hand side of
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(6.13) are majorized by an expression of the form

C(η)(\\A\\2

2+\\B\\2

2) + η J ^(b2λ
2

χ +B2

χ)dx,
— oo W

where η > 0 is arbitrary and C(η) depends inversely upon η. Combining this with

(6.12) and (6.13), using the hypothesis that \a3\ < \j^Jb~1, and choosing η small

enough, it is adduced that there is a δ > 0 such that

1 Λ °O

r T (&2Mll2 + M * H ! ) + « f -(b2A
2

x + B2

x)dxSC3(\\A\\2

2+\\B\\ll
2at - o o vv

and this in turn leads to a priori bounds on A and B in the space
L°°(0, Γ;L2(R))nL2(0, T; #ίo c(R)). In fact, the Gronwall lemma yields bounds on
A and B in L°°(0, T;L2(R)) and then, by integrating the last inequality over the
temporal interval [0, T] and using the fact that A(\ T) and 2?( , T) are bounded
in L2(R), it is concluded that

0 - o o VV

is bounded, and that the bound only depends upon Γ, the weight function vv, and
the L2-norm of the initial data Ao and Bo. Since b2 > 0 , it thus follows that for
any finite value of K > 1,

0 1

is bounded with a bound that again only depends upon T, the weight function
w and the ίΛnorm of the initial data. By considering spatial translates of the
weight function, the desired bounds on A,B in L2(0, T;Hloc(ΊR)) are then easily
concluded. In particular, it is seen that for any T > 0 , there is a constant
C = C(T, R, σ, || Ao \\ 2 , || J501| 2) depending only on T, R, the value of σ in the definition
of w, and the ίΛnorm of the initial data for A and B such that

iμ( , ί ) | | 2 + | | B ( , ί ) | | 2 + f j (A2

x{x,t) + B2

x(x,t))dxdtZC (6.19)
0 -R

for 0 ^ t ^ T. Thus in the situation at hand, wherein (A, B) = (An, Bn)9 but
where the initial data (AOn,BOn) remains uniformly bounded in L2(R)xL2(1R), the
entire sequence {{An9Bn))?=ι'is concluded to be bounded in L°°(0, T;L 2(R))n2 i

Energy-type estimates may be derived in the same way in L°°(0, T; H;(R)),
j = 1,2,..., since the initial data AOtΛ9 BOn lies in //°°(R) (cf. again Bona and Saut
1991a, Theorem 3.1). These bounds may be used to conclude that the local solution
guaranteed by Kato's theory is in fact global in time. However, since
{(AOn,JBOn)}^°=1 does not remain bounded in HJ(]R) for ^ l , nothing can be
concluded about boundedness of the sequence of solutions {(An9Bn)}™=1 in such
Sobolev spaces. Of course, these cases come especially to the fore when the k in
the statement of the theorem is larger than zero.



310 J. L. Bona, G. Ponce, J.-C. Saut and M. M. Tom

In all events, the bound in (6.14) allows one to pass to the limit as n tends to
infinity and so establish the veracity of the proposition. •

With Proposition 6.3 in hand, attention is refocussed on the proof of
Theorem 6.2. Consider the potential blow-up point (x*, ί*). By a translation of the
spatial variable, we may take it that x* = 0 without loss of generality.

The idea is to choose initial data (w0, υ0) which is such that when the linearized
initial-value problem is solved, the solution forms the desired singularity at the
point (0, ί*). Then using DuhameΓs principle, the solution of the full system is
written as the solution of the linearized problem plus an integral term involving
the linear solution-semigroup and the nonlinear terms. The first term in the
last-mentioned sums forms a singularity at (0, ί*), whilst the second will be shown
to be well-behaved, thus leading to the desired conclusion.

First consider the decoupled system (4.2) where, since |α31 <: 1/̂ /̂ 2, the
eigenvalues α ± introduced in Sect. 4 are positive. According to the theory developed
in Bona and Saut (1991a), if ^,-(-,0) is chosen as

£ ^ , (6-15)
m

for i = 1,2, where -^ < m 5Ξ £, then the solution of (4.2), namely

has the following properties. First the initial data is such that wf( ,0)eL 2(R)n
QR)nC°°(lR) for i = 1,2. Secondly, the solutions w, are in Cfc(0, oo;L2(R)) and
are continuous everywhere in the upper-half plane except that the points (0, ίf),
i = 1,2, where tγ = l//?iα + and t2 = l/β2a-. Thus, it behooves us to choose β1/t*oc +

and β2 = l/ί*α_ so that both wι and w2 loose continuity and blow up at the same
point (0,ί*) in space-time. It follows that if (wo^o) is constructed from (w^-,0),
w2(*>0)) and (ϋ,v) from (w1,w2) via the transformation in (4.7), then

u09 v0 G L 2 ( R ; wσ) n Cb(lR) n C°°(R)

for any σ < m — | , and u and v both have the blow-up property in (6.8) for k = 0
at the point (0, ί*). As m > ^ , it follows that w0, ι;0eL2(lR; wσ) for values of σ > y ,̂
and so according to Proposition 6.4, the solution pair (u,v) of (5.1) corresponding
to the initial data (uo,vo) lies in L°°(0, Γ;L2(R,wσ))xL°°(0, T;L2(lR,wσ)) for such
values of σ. Appeal is again made to DuhameΓs principle to write (w, v) in the form
expressed in (5.8), namely

(ii, υ)(t) = (δ, ϋ)(t) + $W(t- τ)(fl9f2)(τ)dτ9 (6.16)
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where (ύ,v) is our current notation for W(t)(uo,vo) and recall that W is the linear
semi-group generated by ignoring the nonlinear terms in (5.1).

Attention now focuses upon the second term on the right-hand side of (6.16).
Each component of this integral is a sum of two terms that have the general
form

1
f f
JoΛo[α(ί-S)] 1 / 3

x-y dyP(u,v)dyds,

where Λi is the Airy function again, a is a positive constant and P is a polynomial
in u and v each of whose terms is exactly quadratic. After an integration by parts
in the variable y, we are presented with integrals of the form

ί
1

ί At
x-y P(u9 v)dyds.

Because the functions u and v both lie in L°°(0, T; L2(R; wσ)) for σ = -fe at least, it
follows that the inner integral above is majorized by

C
At

x-y

Wί-s)] 1 / 3

I V H L X ( 0 , T ; L 2 ( R ; W ) ) )
L*{dy)

This quantity is easily determined to be a locally bounded function of (x, t) in the
domain IR xIRΛ Hence after performing the temporal integration, we are left with
a continuous function of (x,ί) just as in the proof of Theorem 3.1 in Bona and
Saut (1991a).

This latter deduction combined with the already established properties of (w, v)
completes the proof of the theorem in the case k — 0. The proof for fe> 0 follows
very similar lines and so is omitted. •

Remark 6.5. The results contained in this paper are easily seen to hold in a
somewhat more general context, as already hinted in the last proof. In particular,
the global existence of smooth solutions, global existence in if1, existence in L2,
and dispersive blow up are all valid for a class of gradient system of the following
form:

^ + auxxx + bvxxx + ~\ A
dxldu

vt + c u x x x + d v x x x + - I - / (u, v)\ = 0,

where the functional / is given by

00

/(«,»)= j P(u,v)dx
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and P is a polynomial in u, v composed of terms of degree at most five, and where
it is assumed that (a + d)2 + 4(bc - ad) > 0.
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