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Abstract. Given a manifold M and a submanifold C, together with a Lie group
G acting on M and leaving C invariant, it is shown how the algebra of G-invariant
functions on C can be described in terms of cohomology when C is defined as
the common zero level of an irreducible set of (G-covariant) constraints. The
construction is independent of any additional structures such as, e.g., a symplectic
structure on M, and therefore it provides a natural framework for a unified
description of BRST cohomology both for Lagrangian and Hamiltonian systems.
Finally, it is discussed how one can, in various typical situations, replace invariance
under an infinite-dimensional gauge group by invariance under a suitable finite-
dimensional Lie group; this is a necessary prerequisite for handling BRST
cohomology for such systems within a completely finite-dimensional setting.

1. Introduction

Among the various approaches towards the problem of quantizing classical
dynamical systems, both in mechanics and in field theory, the method now
commonly called BRST quantization is the most recent one. In contrast to other,
more traditional techniques such as, e.g., canonical quantization or geometric
quantization, the BRST approach is specifically designed to deal with singular
dynamical systems, or to be more precise, with dynamical systems whose singular
nature is due to the presence of a local (gauge) symmetry (these are the only ones
that are of relevance to physics and will in the sequel be simply referred to as
gauge theories). The basic idea is to introduce additional unphysical degrées of
freedom (ghosts) and to replace the original local (gauge) symmetry by a global
(super)symmetry (the BRST symmetry), generated by a single operator (the BRST
operator) whose square vanishes and which therefore defines a cohomology theory
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(the BRST cohomology). This BRST operator appeared for the first time in the
pioneering work of Becchi et al. [4] on the quantization of Yang—Mills theories
by means of functional integrals a la Faddeev—Popov [8]. However, it soon became
clear that the concept is really much more general and that such an operator
should exist in any gauge theory — irrespective of whether one is dealing with
infinitely many degrees of freedom (as in field theory) or with finitely many degrees
of freedom (as in mechanics) and also whether one is looking at the classical theory
or at the quantum theory. In all cases, the main role of the BRST operator is to
single out the observables and the physical states within the theory.

In the present paper, we shall concentrate on classical BRST cohomology for
gauge theories with a finite number of degrees of freedom. Even in this restricted
context, there already exist different versions of the same basic idea, and so it
seems natural to ask for a unified mathematical framework which can serve as a
common denominator for all of them. One approach to the subject, which has
been the starting point for our investigation, is that of Kostant and Sternberg
[13]: they give the mathematical foundation for the BRST procedure in the context
of classical finite-dimensional Hamiltonian systems with symmetry (Hamiltonian
G-spaces) and relate it to symplectic reduction. Our work has grown out from
an attempt to a) understand the precise regularity conditions under which the
BRST cohomology, as introduced in [13], does yield the algebra of functions on
the reduced phase space and b) investigate how the construction in [13] can be
extended to encompass not only (constrained) Hamiltonian systems but also
(degenerate) Lagrangian systems: this necessarily involves generalizing the BRST
procedure in such a way that it no longer depends on the symplectic structure of
phase space.

On the other hand, Henneaux et al. have recently published a series of papers
[10,11,12] on classical BRST cohomology for constrained Hamiltonian systems
which do generalize the construction in [13], though in a somewhat different
direction. Common to their approach and to ours is that one is always dealing
with a manifold M and a submanifold C defined by some set of constraints; these
can be assembled into a single vector-valued function ¢:M — V* such that C
appears as the zero level of ¢:

C=¢ 10). (1)

(Normally, one introduces a basis {v;}; of V and represents ¢ by its components
¢; with respect to the dual basis {v'}; of V'*.) In addition, one has to impose some
regularity condition, namely that OeV* is (at least) a weakly regular value
of ¢.

To explain this in more detail, recall first that 0e V* is called a regular value
of ¢ if for every point meC, the tangent map T,,¢ to ¢ at m, as a linear map from
the tangent space T,,M of M at m to the vector space V*, is onto. As is well
known, this condition forces C to be a submanifold of M and implies that for
every point meC, the tangent space T,,C of C at m coincides with the kernel of
T, ¢ in T, M:

T,.C =ker T, ¢. )

But often the condition of regularity is too strong, and one would like to weaken
it. The simplest way to do this is to just use the consequences of regularity
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mentioned before as part of a new definition. Correspondingly, OeV* is called a
weakly regular value of ¢ if

o C is a submanifold of M,
o for every point meC, the tangent space T,,C of C at m coincides with the kernel

of T,,¢.

(Note that if one just requires C to be a submanifold of M, then for every point
meC, the tangent space T,,C of C at m is automatically a subspace of the kernel
of T,¢ in T, M:

T,.C cker T, ¢. 3)

Thus it is only the opposite inclusion which has to be required as an additional
condition.)

In more familiar terms, we shall call the set of constraints formed by the ¢;
irreducible respectively reducible when Oe V* is a regular value respectively a weakly
regular but not regular value of ¢.

The main difference between the approach of Henneaux et al. and the one
taken here is now, roughly speaking, that these authors deemphasize the
group-theoretical aspects but make strong use of symplectic geometry, while we do
exactly the opposite: our constructions rely heavily on group-theoretical methods
but do not make any reference to symplectic geometry. This means that in addition
to the hypotheses made above, Henneaux et al. assume M to be a symplectic
manifold and C to be a coisotropic submanifold (i.e., the constraints are first class),
while we suppose M to carry an action and V* to carry a representation of a Lie
group G such that the map ¢ becomes G-covariant. In our view, each of the two
approaches has its own advantages and its own drawbacks; for example, the
symplectic method extends naturally to the so-called open gauge algebras
(characterized by the fact that the Poisson brackets between the constraints involve
structure functions rather than structure constants), while the group-theoretical
technique is directly applicable to the Lagrangian framework as well. Of course,
the two approaches have a large overlap because they can both be applied
to Hamiltonian G-spaces with ¢ as the momentum map [1]: this is the scenario
envisaged by Kostant and Sternberg [13]. A complete comparison is however only
possible in the regular (irreducible) case, that is, when the action of G on C is
required to be almost free (cf. Sect. 4), because only then does the construction in
[13] produce the correct BRST operator.

The plan of the paper is as follows. In Sect. 2, we explain the construction of
the BRST double complex and use a contracting homotopy operator to prove
that the cohomology of the BRST operator in degree 0 reproduces the G-invariant
functions on the constraint manifold C. In doing so, we explicitly assume that we
are dealing with an irreducible set of constraints (regularity). Generalization to a
reducible set of constraints (weak regularity) is possible, but the details are quite
complicated and will hopefully be presented in a future publication. In Sects. 3
and 4, we discuss applications of the general construction to Lagrangian systems
and Hamiltonian systems, respectively, and in Sect. 5, we show how in some typical
cases, gauge invariance can be coded into invariance under an appropriate
finite-dimensional Lie group.
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2. Construction of the BRST Complex

The present section will be devoted to explaining how the algebra of invariant
functions on a constraint manifold can be described in terms of cohomology.
Briefly, we shall show that this algebra can be identified with the cohomology in
degree zero for the total differential operator D =d; +d, in a double complex
(S,d,,d,), which is obtained as the tensor product of a Lie algebra complex (Ag*, d,)
with a certain Koszul complex (K,d,). The whole construction has a purely
algebraic aspect as well as a more geometric one; we begin with the former.

First of all, let g be a finite-dimensional Lie algebra, let Ag* be the Grassmann
algebra over its dual g*, and let d, be the unique derivation of degree 1 on Ag*
that satisfies

dya&,n) = —a([£,n]) 4)
for all xeg*,&,neg. Then d2 =0, so (Ag*,d,) is a complex

d; dz d b i d,
0—R—Sg*—H ... S Agr——SATIgk ...

whose cohomology is, by definition, the cohomology of g (as a Lie algebra).
Incidentally, this Lie algebra complex (Ag*,d,) consists of a simply graded
(Z-graded), graded commutative algebra, which is freely generated by finitely many
generators of degree 1 (and is connected in degree zero, i.e. satisfies A°g* =R),
together with a differential operator of degree 1, and it is not difficult to show
that conversely, every such complex arises from a suitable finite-dimensional Lie
algebra (given such a complex, one uses Eq. (4) to define the Lie bracket [-,-] and
deduces the Jacobi identity from d2 = 0).

Next, assume that (K, d,) is some other complex consisting of a simply graded
(Z-graded), graded commutative algebra K, together with a differential operator
d, of degree 1, such that K carries a representation pg of g (by derivations of
degree 0) under which d, is covariant, i.e.

px(©)d,(k)) = d(px(E)k) ®)

for all keK, éeg, the most important situation being that where this complex is
acyclic, i.e., has trivial cohomology except possibly in degree zero:

Hi (K)=0 for i#0. (6)

Then taking the graded tensor product of K with Ag*, we obtain a graded
commutative algebra S =K ® Ag*: in fact, S is doubly graded ((Z x Z)-graded)
and hence also simply graded (Z-graded), namely with respect to the total degree
defined as the sum of the two components of the bidegree (graded commutativity
refers to this total degree). Explicitly,

S=@s, s= P S, S=K'®Ag*. W)

keZ i+j=k

Moreover d, and d, can both be extended to unique differential operators d, of
bidegree (1,0) and d, of bidegree (0, 1) on S by letting d, act trivially on the second
factor (i.e., d;(k®a)=d,(k)®a for all keK,aeAg*) and requiring d, to satisfy

(= D™(d,R)() = px(&)k ©®
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for all keK of degree |k| (we write k for k® 1). In addition, it turns out that d,
being g-covariant is equivalent to requiring that d, and d, anticommute on S or
that D =d, + d, satisfies D> =0 on S, so under the assumptions made, (S,d;,d,)
is a double complex and (S, D) is a complex. Each of the three differential operators
on §,d,,d, and D, then defines its own cohomology, H, (S), H,,(S) and Hy(S),
which are of course not independent. But although the relation between d,,d, and
D is simple, that between the corresponding cohomologies is not: it can be
determined by means of a standard but rather complicated technique from algebraic
topology known under the name “spectral sequences.” In this context, the
importance of the requirement that the complex (K,d;) be acyclic becomes
apparent: it lies in the fact that in this case — which is the only one we shall consider
from now on — the spectral sequence collapses at the E,-term [5], which means
that

HY%(S) = HY (H, (5) ©9)

Here, the equality sign is understood to hold in an abstract sense, that is, up to
a canonical isomorphism. Concretely, finding the element in H%(S) that corresponds
to a given element of Hﬁz(Hgl(S)) under this isomorphism amounts to explicitly
solving the so-called descent equations. In the following, we shall assume that an
appropriate choice is made for the complex (K, d,) (see the discussion below) and
call (S,d,,d,) the BRST double complex, (S, D) the BRST complex and D the BRST
operator.

Before going on, we would like to remark that even when we disregard all
algebraic structures on K, namely the multiplication, the grading and the
differential operator d,, we still obtain a complex

d, d, d, . dy . d,
0—K-—>5SK®g*— - —>KQA'g* —S KA lg* — ...

whose cohomology is, by definition, the cohomology of g (as a Lie algebra) with
coefficients in K; in particular, the cohomology in degree O gives precisely the
g-invariant elements of K:

H) (S)=K®. (10)
In particular, this can be applied with K replaced by Hgl(K), so that we get
HJ (HJ (S)) = HY,(HJ (K)® Ag*) = (HJ,(K))®, (11)

where the first equality holds because d, acts trivially on Ag*.

Except for the condition of carrying a representation of the Lie algebra g, the
complex (K,d;) has so far been left completely arbitrary. Usually, however,
it is constructed from more elementary data, suggested by the situation at hand.
Here, we shall choose it to be a Koszul complex, given by the following construction:
Let V be a finite-dimensional vector space and R be a commutative algebra (with
unit), both of which carry representations p, and py of g, respectively, and let
d,:V—>R be a g-covariant linear map from V into R. Then define K to be the
simply graded (Z-graded), graded commutative algebra K = R® AV and extend
d, to a unique derivation d, of degree 1 on K by letting it act trivially on R; thus
in particular

dy(r®v)=rd;(v) (12)
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for all reR,veV. Then d? =0, so (K, d,) is a complex
d . dy . dy dy dy
-+ —RAV—RRA'V—... — ROV —R—0

whose cohomology in degree zero is given by
H} (K)=R/Rd,(V). (13)

Note that in order to let d, really have degree + 1 (and not — 1), we must consider
K to be negatively graded, i.e.,

Ki'=R®A™V. (14)

In addition, it should be observed that the given representations p,, of g on ¥ and
pr of g on R (by derivations) give rise to a representation py of g on K
(by derivations of degree 0) and that d, being covariant as a linear map from V
to R forces d, to be covariant as a differential operator on K. Thus all that remains
to be seen is whether the resulting complex is actually acyclic. The importance of
this condition has been explained before, and we will later discuss conditions to
be imposed on the map d, in order for that to be the case. But even when d; does
have non-trivial cohomology in degree # 0, there is a way to construct an acyclic
complex which is an extension of the complex (R® AV, d,) considered here: this
method, due to Tate [16], can be applied (at least) as long as R is a Noetherian ring.

Turning to the more geometric part, we now want to show how BRST
cohomology can be used to describe the algebra of invariant functions over a
constraint manifold, thus bringing algebraic concepts into contact with differential
geometric ones. To this end, let G be a connected (real) Lie group with Lie algebra
g and let M be a (smooth real) manifold carrying a (smooth) action of G. Let R
be the algebra of (smooth real) functions on M: R = % (M). The action of G on
M induces a representation of g on % (M) (by derivations) which is given by
associating with each generator £€g of G minus the Lie derivative along the corres-
ponding fundamental vector field &,, on M. (The fundamental vector field &,
corresponding to ¢ is defined by &, (m) = (d/dt)(g(t)-m)|,- o, where g(t) is a curve
in G with g(0)=1 and §(0) =¢; see e.g., [1]. Thus pz, (&) = — &) Next, let V
be a (finite-dimensional) vector space carrying a representation py of g, let V* be
the dual vector space carrying the dual (contragredient) representation pj of g,
and assume we are given a g-covariant (py-equivariant) map

O M-oV* (15)
from M into V*, or equivalently, a g-covariant (p,-equivariant) linear map
dy:V—F(M) (16)

from V into & (M); these two maps are related by interchanging their arguments:
d; (v)(m) = ¢(m)(v) (17)

for meM, veV. (One could actually write d¥ instead of ¢; this notation would be
justified by noting that the points in M are precisely the points of #(M) as a
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commutative algebra, i.e., the continuous homomorphisms of & (M) into IR: so in
that sense, M can be considered as the dual of # (M) and d¥ as the dual of d,.)
The zero level C of ¢, C = ¢~ 1(0), can be viewed as a constraint set embedded in
M, the constraints being the functions ¢; = d,(v;) with respect to some basis {v;},
of V. Due to Eq. (13), ng (K) projects onto & (C), the algebra of functions over C
(since F(C)=F (M)/F,(C), F,(C) being the ideal of functions which vanish on
C). Three questions arise naturally in this context, namely as to what are the
conditions under which

e C is a submanifold of M,
e H} (K) is equal to #(C),
o the Koszul complex (K, d,) is acyclic.

We are going to show that all three questions have rigorous and very natural
answers.

Proposition 1. If 0eV* is a weakly regular value of ¢, then C is (by definition) a
submanifold of M and % ,(C) =% (M)d,(V), implying

H} (F M)®AV)=F(C). (18)

Sketch of Proof. The proof relies on the observation that the requirement for Oe V*
to be a weakly regular value of ¢ is equivalent to the existence of special local
coordinates at the points of the submanifold C, namely local coordinates of the
form (x;,..., %, X, 4 15+, X, 44), With p+g=dim M and g=dim C, where the subset
(xy,.-.,X,) is chosen from the family of constraints ¢; with respect to some basis
{v;}; of V, while the subset (x,,...,X,,) forms a system of local coordinates for
the submanifold C. Moreover, note that Oe V* is even a regular value of ¢ if and
only if p=dim V* (otherwise, p <dim V*). The proposition, together with the
relation F,(C) = F,(C)F,(C) (F,,(C) being the space of functions in F,(C)
which vanish on C together with their first derivatives), now follows from the mean
value theorem of real analysis (in its integral form, applied to the first p coordinates,
with the last g coordinates as parameters).

Proposition 2 (Poincaré Lemma). Assume that 0eV* is a weakly regular value of
¢. Then it will be even a regular value if and only if the Koszul complex
(FM)® AV,d,) is acyclic.

Proof. Assume first that 0 is a regular value of ¢, and observe that the cohomology
of the Koszul complex (#(M)® AV,d;) can be computed locally, that is, upon
replacing M by (sufficiently small) open subsets U of M. (In fact, every d,-cocycle
and every d,-coboundary on M can be suitably localized by means of a partition
of unity, because d; vanishes on & (M).) In the course of the calculation, it is useful to
distinguish two cases, according to whether the intersection U C is empty or
not. In both cases, however, we prove the vanishing of cohomology by giving a
contracting homotopy, i.e. an operator h:# (U)® A*V —» F(U)®@ A**'V which
has the property that the operator hd; +d,h becomes the identity on that part
of the complex where the cohomology is supposed to vanish. More precisely, we
can construct h in such a way that (hd, +d h)t=t for all teF(U)@ AV if
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UnC= and for all teF(U)®A*V if UNnC # &, where
ATV = @ AV (19)

k>0

(The first statement means that the cohomology of (# (U)® AV, d,) vanishes even
in degree 0-when UnC = J.) For Un C = (J, define h by

Z éiv;
Ty @)

For UnC # g, we choose coordinates as indicated above, so that x;= ¢¢ for
1 £i<p. Then if te F(U)® A*V is represented in the form ¢t = Loy Vi A 2 A Uy
define hte?’(U)@A"+ ly by

(20)

(ht)(x) = j dllka[itil...ik](i'x)vi A Ui1 ANRARIVAY le, (21)
0

where square brackets on indices are understood to denote full antisym-
metrization and A-x=(4x;,...,4X,,X,41,...,%,4,). A lengthy but standard
calculation shows that h is indeed a contracting homotopy on #(U)® A* V. For
the reverse statement assume 0 to be a weakly regular value of ¢ which is not
regular, i.e., p < dim V*. Then the differentials d¢, are linearly dependent on C, so
there exist functions f;eZ# (M) which do not all vanish on C but satisfy

Zf,dd) |c=0. This implies Zd(f,qﬁ Ne=0, i Zfd),e?m(C). Now using
5701(C) =F,(C)F,(C),it follows that there exist functlons i, hje# (M) such that
Zﬁ¢l = Z gih;d;d;.
i i,j
In other words, Y < fi—=Y. 9:h;0 j)vi is a d,-cocycle which cannot be a
i j

# 0 for at least one i, g.e.d..

d,-coboundary, because ( fi—=Y. 9:h;¢ j>
i c

To summarize, we have shown that in the regular case, the BRST cohomology
in degree 0 yields precisely the G-invariant functions over the constraint manifold
C, or equivalently, the functions over C/G, the space of G-orbits in C:

HYF(M)® AV ® Ag*) = F(C)° 22)
(cf. Egs. (9), (11) and (18)).

3. Application to Lagrangian Systems

Historically, BRST cohomology was originally developed as a tool for dealing
with degenerate Lagrangian systems whose degeneracy is due to the presence of
local symmetries. Here, we want to demonstrate how the construction performed
in Sect. 2 can be applied to such systems and, in particular, that it provides a
natural framework for incorporating the usual gauge fixing and Faddeev—Popov
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terms appearing, e.g., in Yang—Mills theories (where these terms must be added
to the original gauge invariant Lagrangian before Feynman rules can be derived).
As mentioned before, we restrict ourselves to systems with finitely many degrees
of freedom; moreover, we shall consider only Lagrangians which are strictly gauge
invariant, not just quasi-gauge-invariant, i.e., not just gauge invariant up to addition
of a total time derivative.

For a Lagrangian system defined over a manifold Q (the configuration space),
specified by a Lagrangian L which is a (smooth real) function on the tangent
bundle TQ of Q, degeneracy means that the fiber derivative FL of L fails to be a
local difftomorphism. More precisely, what is degenerate in such a case is the
Hessian, or second fiber derivative, F?L of L. (Geometrically, FL is a map
FL:TQ - T*Q, while F>L is a map F>L:TQ — T*Q v T*Q, where T*Q denotes
the cotangent bundle of Q and v the symmetrized tensor product, so T*Q v T*Q
is the bundle of covariant symmetric rank 2 tensors over Q. Locally, FL is just
the usual Legendre transform, where conjugate momenta are defined by taking
first derivatives of L with respect to the velocities, while F2L is defined by taking
the matrix of second derivatives of L with respect to the velocities:

N oL
FL(q, 61)<—i ) =—-(q,9), (23)
aq'l, a4
0 0 0L
FZL o /| - s T = - \qs ] . 24
(q q)( odl, o0 ,,) EYEy @.9) (24)

See [1].) The simplest case —and the only one we shall consider — occurs when
the Hessian of L has constant rank on all of TQ: then the zero modes of F2L form
an involutive vector subbundle of T(TQ) (in fact, of the vertical bundle Ver(TQ)),
giving rise to a foliation of TQ whose leaves are the levels FL™'(g,p),
(q,p)e FL(TQ) = T*Q, of the Legendre transform FL.

The standard method to deal with a degenerate Lagrangian system is to
regularize it by a choice of gauge. This is normally done by picking a vector-valued
function F:TQ — E to represent the gauge condition in the form F = 0. Technically,
we shall suppose E to be a Euclidean vector space whose scalar product will be
denoted by - and will be used to identify, once and for all, E with its dual E*; then
we shall call F a gauge function if

e OcE is a weakly regular value of F,
o the zero level F~1(0) of F intersects every level FL™ (g, p) of FL in at least one
point and in at most a discrete set of points.

Under these conditions, it can be shown that the gauge fixed Lagrangian Ly on
TQ given by
Ly=L—3FF (25)

is regular on an open neighbourhood of the zero level F~1(0) of F and that it
leads to the same dynamics as the original Lagrangian L. Moreover, it is common
practice to introduce the vectors in E as auxiliary variables and to pass to an
appropriately extended Lagrangian L;: these additional (bosonic) degrees of
freedom are needed, for example, to define a BRST operator which is nilpotent
off-shell. More precisely, one enlarges the configuration space by adding a copy
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of E, ie., by setting 0 =@ x E, TQ = TQ x (E® E), and defines Ly on TQ as
Le=L+1b-b—bF. (26)

(Points in TQ are denoted by (g, 4) and points in TQ by (g, 4, b, b).) Obviously, Ly
can be recovered from L, by inserting the equation of motion for b derived from L.

Within this general setup, we consider degenerate Lagrangian systems whose
degeneracy is entirely due to some kind of gauge invariance. More specifically, we
assume that TQ carries an action of a connected Lie group G under which the
Lagrangian L is invariant and such that G contains a closed subgroup G,,. whose
orbits in TQ are precisely the levels of FL. Then letting G act trivially on E, we
can apply the cohomological method from Sect. 2: take

M=TQ=TQx(E@E), V=E@E=E*®E*=V* 27)

and let ¢: M — V* be the projection onto the second factor. Since G acts trivially
on V (p, =0) and is trivially extended from TQ to M, ¢ is obviously g-covariant;
moreover, ¢ has OeV* as a regular value, with ¢ ~1(0) = TQ. Therefore, Eq. (22)
gives

HY(F(TQx(E®QE)®AE®E)® Ag*) = #(TQ)". (28)

(Thus in this version of the BRST complex, the elements of E play a double role:
they appear as bosonic degrees of freedom, (b, b)e M, and also as fermionic degrees
of freedom, (n,7)eV.) In particular, Eq. (28) implies that every G-invariant
Lagrangian L on TQ, being an element of % (TQ)%, must correspond to a BRST
cohomology class. In general, explicit determination of a BRST cocycle
representing this class requires solving the descent equations, but in the present
case, this is trivial. Namely, d,L =0, so L itself is a solution and every other
solution is of the form LT = L+ D ¥, where ¥eS~! is arbitrary. In particular,
choosing ¥'=#(3b — F) leads to the well-known form

LT =L+ 1b-b—b-F+n-DF, (29)
or
LIoT=L+ LS + L, (30)
where
LS =1b-b—b-F @1

is the gauge fixing term and
LY =n-DF (32)

is the Faddeev—Popov term. In this context, the identification of the Lagrangian
L with a BRST cohomology class, rather than a BRST cocycle, is the mathematical
expression of the requirement that physics should be independent of the choice
of gauge.

It should be pointed out that the notion of gauge fixing employed here is rather
restrictive, because there is in general no guarantee that a gauge function in the
above sense exists. For example, there may be topological obstructions of the type
encountered as the “Gribov ambiguity” in Yang—Mills theories. However, the
above procedure can be generalized to topologically non-trivial situations if one
replaces the vector-valued functions F on TQ by sections of appropriate vector
bundles over TQ.
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4. Application to Hamiltonian Systems

Given the fact that the BRST operator is supposed to characterize observables
and physical states, it is natural to consider BRST cohomology not only in the
Lagrangian framework but also in the Hamiltonian one. Here, the singular nature
of the theory is expressed through the fact that one is dealing with constrained
Hamiltonian systems [6,9,15].

To set the stage, recall first that a Hamiltonian system (P, w, H) consists of a
symplectic manifold (P, w) (the phase space) together with a Hamiltonian He % (P).
Similarly, a constrained Hamiltonian system (P, w, C, H) or (P, w, ¢, H) consists of
a symplectic manifold (P, ®) (again called the phase space) together with a sub-
manifold C of P that can be represented as the zero level of a suitable vector-valued
function ¢ on P (cf. Eq. (1)) and with a Hamiltonian He % (C). In general, the
Hamiltonian H is considered as being extended to the entire phase space P, but
such an extension is of course far from unique. In fact, if (as usual) O is supposed
to be a weakly regular value of ¢, then Proposition 1 shows that any two such
extensions will differ by a linear combination of the constraints (with coefficients
in & (P)); they should be physically indistinguishable. The BRST procedure,
however, cannot be directly applied to arbitrary constrained Hamiltonian systems
but only to those which are, roughly speaking, “first class.” This means that a)
the constraints close under Poisson brackets, viz.

{¢i9 ¢j} = f’i‘j¢k’ (33)

with structure functions f° i.‘jeﬁ" (P), and b) the Hamiltonian reproduces the
constraints under Poisson brackets, viz.

{H, ¢i} = h{"d’k’ (34)

with structure functions h*e.# (P). In more invariant algebraic terms, Egs. (33) and
(34) can be restated as saying that the ideal #,(C) in & (P) consisting of those
functions on P that vanish on C has the property that a)

{Z(C), Z,(O)} =« F4(C), (35)
i.e., ,(C) is a Poisson subalgebra of #(P), and b)
{H,70(0)} = Z4(C), (36)

ie, H normalizes %,(C) under Poisson brackets. (Note that the first condition
implies that the second condition does not depend on the choice of extension of
H off C.) Geometrically, Eqs. (33) and (35) mean that C is a coisotropic submanifold
of P, while Eqgs. (34) and (36) say that H can be chosen so that on C, the
corresponding Hamiltonian vector field X is tangent to C.

As in the Lagrangian case, a particular role is played by constrained
Hamiltonian systems in which the constraints are the result of “local” symmetries.
The appropriate concept for this kind of situation is that of a Hamiltonian G-space
(P, w, G, J), which consists of a symplectic manifold (P, ) together with a connected
Lie group G with Lie algebra g such that G acts on P by symplectic diffeomorphisms
and

J:P-g* 37
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is a G-covariant (Ad*-equivariant) momentum mapping for this action [1]. In this
case, the natural choice for defining a constrained Hamiltonian G-space is to take
¢ = J so that the constraint manifold is the zero level C = J ~1(0) of the momentum
mapping. (Indeed, considering G as a local symmetry and not just a global one
forces the trajectories of the system to be constrained to the zero level of the
momentum mapping: this has first been observed in the context of Yang—Mills
theories and of general relativity but is in fact quite a general feature; see, e.g.,
[2,7] and references therein.) What remains to be added to fix the dynamics of
the theory is the choice of an invariant Hamiltonian H. When there are no
constraints, H is simply supposed to be a G-invariant function on P, while in the
case where the system is constrained to the zero level J~!(0) of the momentum
mapping, H should be a G-invariant function on J~*(0). This function can, as
mentioned above, be extended to a function on the entire phase space P, but the
extension need not be G-invariant. (If G is compact, then one can always find a
G-invariant extension.) Also, with this choice G-covariance of the momentum
mapping J and G-invariance of the Hamiltonian H force Eqgs. (33) and (34) to
be satisfied, the f}; here being the structure constants of g. The observables
of the system are not the functions on J~*(0) but rather on the reduced phase
space P, obtained from J~(0) by taking the quotient with respect to the action
of G:

P, =J"1(0)/G. (38)

Now the interpretation of BRST cohomology given in [13] is quite natural: take
M =P, V=g and ¢ =J. Then according to the results obtained in Sect. 2, we
have the equality

HY(F(P)®Ag® Ag*)=F (7 1(0)3 = F(Py), (39)

and hence the BRST cohomology in degree 0 gives precisely the observables of
the system, if and only if Oeg* is a regular value of J.

Proposition 3. 0eg* is aregular value of J if and only if G acts almost freely on J ~*(0).

Proof. G acts almost freely on J~!(0) if and only if for any X eg, the fundamental
vector field X, on P corresponding to X does not vanish anywhere on J~1(0),
that is, if for any point peJ ~*(0) and any X eg, dJ(X)(p) # 0, which means exactly
that at any point peJ~!(0), T,J is onto, g.e.d..

This shows the requirement that Oeg* should be a regular value of J to be
very restrictive: it is therefore a natural and important problem to extend the
BRST cohomological constructions to cover more general situations, such as the
one where G acts on J ~*(0) in such a way that all isotropy groups are conjugate.

As in the Lagrangian case, Eq. (39) implies that every G-invariant Hamiltonian
H on J7'(0), being an element of #(J~1(0))%, must correspond to a BRST
cohomology class. Again, explicit determination of a BRST cocycle representing
this class requires solving the descent equations. When H is extended to P in a
G-invariant manner, this is trivial, since then d,H =0, so H itself is a solution.
Otherwise, the solution may be complicated, but up to BRST coboundaries, it will
lead to the same result as the formalism of Batalin, Fradkin and Vilkovisky

[31
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5. Realization of Local Symmetries
Through Finite-Dimensional Lie Groups

In the standard approach to Lagrangian systems with local symmetries, the
symmetry group is viewed as an infinite-dimensional group ¢ acting on the
infinite-dimensional space 2 of all possible trajectories. For typical systems with
finitely many degrees of freedom and configuration space Q, the space 2 is more
or less fixed, while for the group ¥, one encounters two essentially distinct
possibilities. Namely, if I = R denotes some parameter interval fixed one and for
all (e.g., I =[0,1] or I =R), 2 is the space C*(I,Q) of (smooth) paths in Q or a
subspace thereof (usually defined by imposing suitable boundary conditions), while
9 is

e cither a subgroup of the group Diffy(I) of (smooth) orientation preserving
diffeomorphisms of 1,

e or a subgroup of the group C*(I, G) of (smooth) paths in some finite-dimensional
connected Lie group G acting on Q.

In both cases, we want to argue that invariance of the action

S[q]= fdt L(q(t), 4(2)) (40)

under % can be reformulated as covariance or even invariance of the Lagrangian
L under an appropriate finite-dimensional connected Lie group G acting on TQ.

The first case, where ¢ < Diffy(I) acts by transformation of the independent
variable (the argument) according to

(o-9)(®)=q(a™"()) (41)

for oeDiffy(I), geC*(I,Q), tel, covers systems defined by an action which is
reparametrization invariant, the standard example being the relativistic point
particle. It is well known [14] that these are exactly the actions derived from
Lagrangians which are homogeneous of degree 1 in the velocities, or equivalently,
which are covariant under the one-dimensional Weyl group that acts trivially on
the positions and just rescales the velocities. Thus in the present context, the Weyl
group is a copy of the additive group R which acts on TQ according to

(g, 9) = (g, €*9), (42)
for aeR, (q,4)e TQ, and covariance of L under the Weyl group means that
L{x(4,9)) = ¢"L(g, 9), (43)

for aelR, (q,4)eTQ. Unfortunately, the BRST cohomological constructions
discussed in Sects. 2 and 3 are tailored to invariant Lagrangians and are therefore
not directly applicable to the present situation; they should be extended to cover
this more general case as well.

The second case, where ¥ < C®(I, G) acts by transformation of the dependent
variable according to

(9°9)(1) = g(t) (1) (44)
for geC*(1,G), qeC*(I,Q), tel, is the one of interest to us. Here, the group G
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with its action on TQ can be constructed explicitly from the group G with its
action on Q; it is the Lie algebra of this group G, rather than that of the original
group G itself, which has to be inserted into the BRST complex considered in Sect. 3.
In the following, we are not going to give a completely general treatment, but
shall discuss two classes of models which can both be viewed as finite-dimensional
(mechanical) analogues of gauge theories of the Yang—Mills type: the first class
corresponds to the Yang—Mills sector, while the second class mimics the matter
sector. This implies that in the first case, gauge invariance is manifest from the
beginning, while in the second case, we start out from a global symmetry and
obtain gauge invariance as a result of the procedure of “gauging the global
symmetry”: thus we expect that we must enlarge the configuration space by
introducing a Lagrange multiplier A which is nothing but the (mechanical) analogue
of the Lie-algebra-valued gauge potential.

Common to both classes of models to be discussed is that we begin with a
manifold Q as the original configuration space and with an action of a
finite-dimensional connected Lie group G on Q. This action of G on Q can be
lifted to an action of G on TQ by putting, for any curve g(-) in Q,

d d
9 A0l-0= a(g'Q(t))IFo, (45)

together with
9(a,9) =(9°9,9"9)- (46)

In what follows, a Lagrangian L on TQ will be called globally G-invariant if it is
invariant under this lifted action. In infinitesimal form, this condition can be written
as XpoL =0 for all Xeg, where X1, denotes the fundamental vector field on TQ
corresponding to X eg.

The first class of models is obtained by applying the tangent functor once, i.c.,
by making use of the fact that the lifted action of G on TQ extends naturally to
an action of the tangent group TG on TQ. Indeed, the tangent map TG x TG - TG
to the group multiplication in G (viewed as a map G x G — G) defines a group
multiplication in T'G. Similarly, the tangent map TG x TQ —» TQ to the group
action of G on Q (viewed as a map G x Q — Q) defines a group action of TG on
TQ. Now observe that as a vector bundle over G, the tangent bundle TG of G is
globally trivial: one can use either left translations or right translations to write
down an explicit trivialization TG = G x g. We shall employ right translations
and thus identify TG with G xg by identifying (g,d)=(g9,Xg)eTG with
(9, X)eG x g. Then as a group, TG = G[> g, where > denotes taking the semidirect
product; explicitly, the group multiplication in G > g and the group action of G> g
on TQ are given by

(91, X1)(92,X3) = (9192, X, + Ad(g,)X ), (47)
and
(9. X)(9,9)=(9°9,9°4 + X(9°9)), (48)

respectively, where X, denotes the fundamental vector field on Q corresponding
to Xeg.
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Proposition 4. A Lagrangian L on TQ is invariant under the action of G=TG
if and only if for every path q(-)eC*(I,Q) in Q, the function L(q(-),q4(-))eC>(I) is
invariant under the action of C*(I, G). Therefore, we shall call such a Lagrangian L
locally G-invariant.

d
Proof. Let geC™(I,G), geC*(I,Q) and X eC*(l, g), where X(s) = E(g(t)g' N0) |-
Then

d d d

&G DO = o0 A G O,
— L 409 99 4. + 9900
“Eg g “(S)g\s)"q i=s T 9 dtq t=s

= X(9olol5)409) + 09 a0,
that is

((g'q)(S),g;(g'q)(t)I,q)=(g(S),X(S)) (q(S) —q(®)],= s>

The proposition follows directly from this formula, g.e.d..

In the case of a regular action of G on Q, where the orbit space Q/G is a manifold
[1], a nice interpretation of the above situation can be given. Namely the
TG-invariant Lagrangians on 7Q are in one-to-one correspondence with the
Lagrangians on T(Q/G). Thus the physical configuration space is in fact Q/G and
the action of G cannot be observed.

The second class of models provides a natural answer to the question how to
construct locally G-invariant Lagrangians from globally G-invariant ones. To this
end, we construct an extended configuration space, together with an extended
symmetry group, enlarging both Q and G by a copy of g:

0=0xg G=GDg (49)

By definition, the group multiplication in G is (as indicated by the notation) that
for the semidirect product (cf. Eq. (47)) and the group action of Gon Qs given by

(9.2)(q,2) =(9°9, Z + Ad(9)4). (50)

Applying the tangent functor to G and @ as above leads to an action of TG on
TQ. Note that TG can be viewed as the double tangent group T(TG)= T?G of
G but can also be identified with the semidirect product (G > g)>(gC> g), while
TQ can be identified with TQ x (g(—Bg) Combining Eqs. (47), (48) and (50), we infer
that the group multiplication in (GI>g)l>(gl>g) and the group action of
(GDg)>(gP>g) on TQ x (@ g) are given by

(91,21, X1, Y1)(92, 22, X5, Y))
=(9192Z, +Ad(91)Z,, X, + Ad(9)X,, Y, + Ad(9,)Y, + [Z,,Ad(g9,)X,]),
(51)
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and
9.2, X,Y)(q, A4, ’1)
=(9'¢.Z + Ad(9).9°4 + Xo(g'9), Ad(9)A + Y + [X, Z + Ad(9)A]), (52

respectively. But this is not exactly what we want, since it describes a locally
G-invariant system over TQ instead of a G-invariant one over T'Q. It turns out
that the right symmetry group to look at is not T>G but the subgroup T'*!G
consisting of those elements that define a second order differential equation on G
[1]. Under the identification

TG = (GD> g)l> (gl g), (53)
we get
TG = {(g,Z, X, Y)e(G> g)> (3> 9)| Z = X }. (54)

Proposition 5. A Lagrangian L on TQ is invariant under the action of G = T12G

if and only if for every path (q(), A(-))eC*(l, Q) in Q the function Lig("), (), 4(°),
A(*))eC*(I) is invariant under the action of C*(I, G) = C*(I, G). Again, we shall call

such a Lagrangian L locally G-invariant.

Proposition 6. Every globally G-invariant Lagrangian L on TQ defines a locally
will therefore be omitted.

The construction is completed by observing that one can identify globally
G-invariant Lagrangians on TQ with locally G-invariant ones on TQ.

Proposition 6. Every globally G-invariant Lagrangian L on TQ defines a locally
G-invariant Lagrangian L on TQ according to

Conversely, every locally G-invariant Lagrangian L on TQ arises in this way from a
globally G-invariant Lagrangian L on TQ: just put

L(g,4) = L(g,0,4,0). (56)

Proof. Let L be a globally G-invariant Lagrangian on TQ, and let L be defined
by Eq. (55); then

L9, X, X, Y) (@, 2,4, 4)

=g g, X + Ad(9)h,g°d + Xy(9°9), Ad(9)A + Y + [X, Ad(g)A])

=Lg°9,9 4+ Xo(g9-9) — (X + Ad(g)A)g(g-9))

=L(g,4— 9™ " (Ad(9)A)glg°9)

= L(q,4 — Ao(q))

=L(g, 4,4, 4),
so L is locally G-invariant. (In the third step we have used that L is globally
G-invariant.) Conversely, let L be a locally G-invariant Lagrangian on TQ, then

L(q, A4 q, '1) = L((L Ay l)(qa 0,9 — AQ(q)a 0))
= 1(g,0,4 — A(4), 0),
thus proving the validity of Eq. (56).
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Clearly, the variable A acts as a Lagrange multiplier, because L does not depend
on the corresponding velocity A.
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