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Abstract. We apply the Faddeev-Reshetikhin-Taktajan method for the construc-
tion of Quantum Groups to the Yang-Baxter matrices which are related to the
invariants of oriented links in Σ x [0,1], where Σ is a non-trivial 2-dimensional
surface. We obtain multi-parameter ribbon Hopf algebras that differ in many
respects from their one-parameter counterparts. Among the main differences we
mention the existence of a non-central quantum determinant and the fact that the
number of independent generators is higher than in the one-parameter case.

1. Introduction

It has been pointed out that invariants of links in the 3-dimensional space
Σ x [0,1], where Σ is a (open or closed) 2-dimensional surface, can be conveniently
described by an algebraic structure defined on the set of oriented link-diagrams
on Σ ([1,2]).

In order to define such an algebraic structure and construct the invariants, we
associate to each edge of a given link-diagram an integer (label) in {!,..., N}; some
properties being required for this labelling procedure (including a conservation
(Kirchhoff) law for the labels of the four edges meeting at any given vertex).
Furthermore we associate to each vertex a given function of the indeterminate
variables x, x"1,^, z'1 depending on whether v is of type L+ or L_ (here we use
the standard terminology of knot theory) and depending on the labels of the four
edges meeting at v. In this way we are able to construct a partition function which
defines the link-invariants [3].

* Supported in part by the Italian National Institute for Nuclear Physics (I.N.F.N.) and by the
National Science Foundation (N.S.F.) under Grant DMS 89-01975 and Grant DMS/PHY
88-16214
** Visiting Fulbright Scholar, on leave of absence from the University of Trento, Italy
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We can represent collectively the above rules, by encoding them into an
invertible matrix ReEnd(CN® CN) whose entries RΪ'j are defined as follows. Given
any four edges of the diagram, meeting at a vertex v of type L + , we associate the
four indices iJ9 fc, / to the possible value of the labels of the lower incoming edge
(0, of the upper incoming edge (7), of the lower outgoing edge (k\ of the upper
outgoing edge (/) and we set Rkλ equal to the following functions of x and z:x2

when i=j = k = l; z2 when i = k<j = l;z~2 when i = k>j = l; x2 — x~2 when
i = I < j = k and zero otherwise.

If we consider to the contrary the case when the vertex v is of type L_ and if
we keep exactly the same correspondences defined above between labels of the
four edges and indices of the relevant matrix, then the labelling rules are encoded
in a matrix which is the inverse of R.

We can in fact consider a more refined version of the above rules, by replacing
the variables z and z~l with the set of variables zktl subjected to the condition
zltk = z~l* In this case we have to set RkA = zkl for i = k Φj = /, the other entries
being equal to the ones previously defined.

The possibility of constructing link-invariants via the above labelling procedure
is related to some specific properties of the matrix K, including the fact that it
satisfies the Yang-Baxter equation.

It is then natural to try to describe the quantum groups which are connected
to these Yang-Baxter matrices. This is the problem which will be addressed in
this paper.

Since we want to describe a quantum group starting from a Yang-Baxter matrix,
the obvious approach will be to consider the method of Faddeev-Reshetikhin-
Taktajan for the construction of quantum groups [4].

Let us now give a short account of this method. Let .ReEnd(CN®CN) be a
generic invertible Yang-Baxter matrix, namely an invertible matrix satisfying the
following relation for operators in End(CN(χ)CN(χ)CN):

Here we use the following standard notation:

which is, by definition, the operator given by the matrix R acting on the mlh and
the nih factor and by the identity operator acting on the remaining factors.

We define the algebra A as the free associative algebra over the complex
numbers generated by the N2 elements ή (fc, / = 1, . . . , JV) (represented collectively
by the matrix T) and the unit 1.

A is a bialgebra with comultiplication:

4(i*)E=£tJ® cf/; Δ(l)= 1®1, (1.1)
j

and counit: η(\) = 1, η(ή) = δk.
The bialgebra AR is defined as the quotient of A with respect to bilateral ideal

generated by



Quantum Groups Related to Link-Diagrams 591

Here the indices are defined as follows: R(ek ® et) = Y ^{(^i ® £/)> for a given basis
{es}mCN. u '

Let MN(C) denote the algebra of N x N complex matrices. We consider now
the bialgebra UR = Hom(AR,C) (dual to AR) and its sub-bialgebra UR generated
by the entries of the following four algebra homomorphisms ί :

which are defined as follows on the generators:

(AttfW^R^;?, (Ξ±(tk

l))^(R±)k

l^ (S±(1))» = (/1±(1)C = ̂ . (1.3)

Here and in what follows, we set:

R + = PRP, R - Ξ Ξ / T 1 ; R+=Rι R^ΞΞPR-^P, (1.4)

where PeEnd(CN®CN) is defined as: P(x®y) = y®x. Moreover (MN(C))opp

denotes the algebra MN(C) with the opposite multiplication.
We denote the entries of the above representations with the corresponding

lower case greek letters (λ*)*.; (£*))• Notice that the matrices Λ± and E±, with
entries in UR, can be matrix-multiplied, but the entries of the products are not
necessarily any more the entries of a representation of AR into MN(C) or MN(C)opp.

We have the following comultiplication rules:

J(8)K±)i, (1.5)

while the counit η' U^C is given by η'(ί)= 1; η'((λ±)ί

k) = η'((ξ±)i

k) =
The following relations2 hold in U 1

R :

= ±, (i.6)

;i, (1.7)

= ±, (1.8)

y;i,, (1.9)
i,j »,J

S ± Λ T = Λ ± S T = 1. (1.10)

We now set (^Γ2)['j = R^j and assume that RT2 and (R'1)72 are invertible. Then
there exists an invertible μeEnd(CN) such that μ®μ commutes with R and the

1 As far as the coalgebra structure of UR is concerned, notice that, if we do not want to assume
the existence of a completed tensor product UR®UR, then we can simply consider the Co-
multiplication V as a map

V: Hom(AR, C) -* Hom(AR ® AR, C)

with some suitable properties obtained by rephrasing the usual properties of the comultiplication.
This consideration is not needed for U1

R, which is bialgebra in the ordinary sense
2 As we shall see later on, there are in general other relations
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following equation is satisfied [5]:
N). (1.11)

So U^ becomes an Hopf algebra with the following antipode:

y(A±)^Ξ^'9 y(Ξ±)^μA^μ-^ (1.12)

As a consequence we have the following other constraints on the generators of UR:

[μΛ±μ-ιY(Ξ + )τ = (Ξ±)τ[μΛ + μ-1-]τ=l (1.13)

where the symbol τ means "transposed" (remember that our matrices have entries
in I/*).

We now consider four maps (see [6]) <Ά± and ̂ ± from AR to UR9 which are
defined as follows on the generators

£±(Q = (**%, &*(%) = (ξ^, έ±(i) = @±(i)^ι (i.i4)
and are extended respectively as algebra anti-homomorphisms (^±) and as algebra
homomorphisms (β*}. Hence βk± is a coalgebra homomorphism, while ̂ ± is a
coalgebra anti-homomorphism.

We define furthermore &±,&±eHom(AR®AR,C) as follows:

a±(tΛ®tβ) = (£±(tβ))(ta), ^(ί.βf^ΞΞίΛ^HίJ; tΛ,tpeAR. (1.15)

$+ is (an implicit expression for) the universal ^-matrix and will also be denoted
by the simpler symbol .̂

One can prove the following theorems:

@+@± = leHom(AR®AR9C); (1.16)

a±(tι,t2) = a±(t2,tl) Vtl9t2€AR, (1.17)

± =0»±) l f3(#±)2f3; (1.18)
±) l ι 3. (1.19)

Moreover for any vεUR we have the quasi-cocommutativity property

(1.20)

where V is the opposite comultiplication. Finally ̂  (as well as JL and ̂ ±) satisfies
the Yang-Baxter equation:

,2^1,3^2,3 ~ ̂ ^2,3^1,3^1,2' (1.21)

It is now possible to prove that we can choose the matrix μ which appears in
(1.11) (see [7, 5, 8]) so that for a suitable invertible αeEndίC*) satisfying: [#, 1 ® α] =

] = 0 we have:

l = α and m((l®μ l)R 1 ) = a \ (1.22)

) = θί~1 and m((l ®μ)R) = a. (1-23)

Here m:End(C"®CN)-»End(C") is the multiplication.
We can now consider the representations: V*:AR-+C\ aMN(C) defined on

the generators as: K*(ίjJ) = (μ±l)ll. The set of the entries of these representations
consists of one group-like element vμeUR and its inverse z;"1.
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We can adjoin t;*1 to UR obtaining a larger Hopf algebra, say 17 j*. In order
to do so it is enough to set y(v^ 1} = v*1.

We now set:

Ψϊ = [«±(Id®ι?;1)]4/ = [Λ±(Id®f;μ)]4/, (1.24)

where Δ' is the opposite of the comultiplication Δ on AR. The element ψ~ is
usually called the ribbon element ([5]); its inverse is ψ* . Moreover one can prove
that the comultiplication of ψ* is given by:

) = (^μ

±®^μ

±)Λ±Λ± (1.25)
and that we have:

ψ f v = vψϊ VveUR. (1.26)

In other words starting from an invertible Yang-Baxter matrix ReEnd(CN(χ) CN\
such that RT2 and (R~ 1)T2 are invertible, we have constructed a Hopf algebra which
is "essentially" quasitriangular and ribbon.

In order to have a quasitriangular ribbon Hopf algebra in the sense of [9] and
of [10] we need to have an antipode on AR which is dual to the antipode y (1.12)
and which moreover descends to AR/KR, where KR a AR is the bi-ideal generated
by the kernel of 17 £

This problem will be addressed in the next section, for the special case when
ReEnd(CN® CN) is the Yang-Baxter matrix related to link-invariants for Σ x /.
In the last section of this paper an explicit presentation of the relevant quantum
group, via generators and relations, will be provided.

A direct proof of all the statements contained in this introduction is in [11].

2. Multi-Parameter Quantum Groups and Quantum Determinants

In this section we want to apply the FRT construction to the Yang-Baxter matrix
ReEnd(CN®CN) given by:

(2.1)

where x and zu are non-zero complex numbers with zltk = z k f . When we set
z k > / = l V f e , / we obtain the Yang-Baxter matrix relevant to the fundamental
representation of <%x(sl(N)). Such multi-parameter Yang-Baxter matrices are
considered in [12].

On the other side the matrix R(x9zktl) is obtained by "twisting" the matrix
R(x) = R(x9 zktl = 1) with the following diagonal matrix M = M(zkJ)eEnd(CN®CN):

O otherwise, (2.2)
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By "twisting" we mean that the following equation holds: R(x, zkj) =
M(zktl)R(x)M(zktl). The matrix M satisfies the Yang-Baxter equation and the
equation: PMP = M- 1.

In a more general setting we have the following statement [12]:

2.1 Theorem. Let ReEnd(CN®CN) be a Yang-Baxter matrix and let M defined
as in (2.2). Then MRM is also a Yang-Baxter matrix. Moreover if μeEnd(CN) is
invertible, μ®μ commutes with R and Eqs. (1.11), (1.22) and (1.23) are satisfied, then
μ (x) μ commutes with MRM and (1.1 1\ (1.22) and (1.23) are satisfied with R replaced
by MRM (without modifying αeEnd(CN)).

In the case of (2.1) the matrix μeEnd(CN) can be chosen as

(N-1),x2(N-3),...,x2(1-N)), (2.3)

with α = x2Nl. The Hecke relation for R(x, zkj) (2.1) is the same for any value of
the parameters zw, namely we have:

PΛ(x, zkιl) - K(x, zMΓ *P - (x2 - x'2)I. (2.4)

From now on, we assume that the parameter x satisfies the following condi-
tion:

xV -1.

We can now consider the following two projection operators [4] in End(C]V (x) CN):

_ _
- * + - <> 9 ? Γ - - -

X -f X X + X

where we set here and from now on, R = R(x, zkj).
The above projection operators are the quantum analogues of the symmetriza-

tion and, respectively, of the antisymmetrization operator; they satisfy the following
relations:

PR = x2P+-x~2P_l P + + P _ = I , P + P _ = P _ P + = 0 (2.6)

and also

Following Gurevich [13], we consider the quantum exterior algebra /1*(CN) defined
as the quotient of the tensor algebra of the vector space C^ with respect to the
two-sided ideal generated by the image of P+.

The quantum exterior algebra is a graded algebra: Λ*(CN) = ^Λ^(CN).
k

Analogously to the ordinary exterior algebra case we denote by the symbol
a /\qb the image of a®b in Λq(CN). We have now:

2.2 Theorem. A basis of Λk

q(CN) is given by {etί Λqeh Λ ^ Λqeik] with

ii <*2 <•••<**•

Proof. From the equations:

Σ^(βJ Λ^ί) + χ- 2(e f cΛ^ /) = 0 V f c , ί
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we have immediately:

elAqeι = fy VI; ek/\qet=-x2z2

ίιl(el/\qek\ V k > l , (2.7)

and there are no further relations between the elements {et Λ^ }. Hence the
quantum exterior algebra is not alternating and in particular given any aeCN, a /\qa
is not necessarily zero3. Π

We consider now the quantum analogue of the antisymmetric tensor; it is
denoted by the symbol uσ(1}σ(2)...σ(N} and, by definition, it satisfies the equation:

for any permutation σ of 1,2,..., N. It is given by the following expression:

u —( — γ\2l(σ) Π 72 (Ί Q)Uσ(l)σ(2) σ(N) ~ \ Λ; 11 zfe,P \^"y)
trans(σ)

where l(σ) is the length of the permutation σ and the product is extended over
all the transpositions ek Λqel->el /\qek which are needed in order to transform
eσ(i) Aqeσ(2) /V * ' ^qe

σ(N) ^° eι Λ<^2 Λq'" Λ

q

e N> irrespective of the chosen
sequence of transpositions4.

If we transpose the projection operators (2.5) we obtain the projection operators
P + and Pτ_ which satisfy Eqs. (2.6) with R replaced by PRΓP. We have a corres-
ponding quantum exterior algebra (ΛΓ)*(CN) with wedge product Λ J.

The relevant quantum antisymmetric tensor t?

er<1>*<2>-ffW is defined by the
equation:

eσί Λτeσ2 ΛT> ΛτeσN =vσ(1)σ(2)'''σ(N)e1/\Te2/\τ >/\TeN, (2.10)

and it is given by:

trans(σ)

where the product is extended exactly as in (2.9).
The definition of both u and v is then extended to the case when we are given

an arbitrary set of indices; we simply set both the above tensors to be equal to
zero when two repeated indices appear. Moreover, given any permutation σ, we
will use the shortened notation uσ and vσ instead of wσ(1)σ(2)...σ(N) and v

σ(1}σ(2}'"σ(N}.
Notice that if ZM = 1, V fe, /, then we have PRΓP - R, Pτ

± = P± and u = v.
We now have the following:

2.3 Definition. The quantum determinant Dq in AR is defined as:

Dq^Σuσtσι t°2 '"ΪN (2.12)

3 As a comparison, note that the quantum analogue of the symmetric algebra satisfies the
following relations (the notation is evident):

£fc® s\qeι = *~2zl,ι(eι®s}qek} V fc > I,

and so the quantum symmetric algebra is not commutative
4 I.e. the minimum number of transpositions of contiguous vectors which are needed in order
to transform eσ(ί) s\qeσ(2) /\q Λqeσ(N) into el /\qe2 /\q /\qeN
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By considering the basic relations in AR we can prove:

2.4 Theorem. For any set of indices i1? i2, . . . , iN, we have the following identities in
AR:

_ . . .
V Uq— LV Lσ(l)lσ(2) Lσ(NΓ \Δ

σ

where the sums are extended over the set of all permutations σ of {1,2, .. . , N}.

2.5 Corollary. Dq is group-like.

Proof. From (2.13) we have immediately:

σ,p

2.6 Theorem. // zk t Φ 1, then Dq is not a central element. Namely we have

We denote now by the symbol A% the bialgebra obtained from the bialgebra
AR by adjoining the group-like element (Dq)'1. We want to prove that A\ is an
Hopf algebra. In order to define an antipode in A% we need to consider ji quantum
comatrix, namely a collection of N2 elements of AR denoted by TR = {(tR)lj}
satisfying the equation:

The previous equation defines in fact a right quantum comatrix. The correspond-
ing left comatrix TL = {(ίL)j) is, by definition, the collection of ΛΓ2 elements of AR

satisfying the equation:

2.7 Theorem. The right and left comatrices exist and are unique. They are given by
the following expressions:

(?4=(-*)2(ί-Λ Π ή,k Π *wM, (2.i8)
k<j k<i

(ίL); = (-x)2(''-J) Π <; Π zlM (2-19)
k > j k>i

where in both the above expressions the symbol (D^. denotes the quantum determinant
of the matrix obtained from the matrix T by eliminating the ith row and thejth column.

Proof. We set:

I7ίΞ|?,M,...i-ιfi + ι,.,N= YK-x^z^).
k<i

For any permutation σ satisfying the condition σ(l) =7, we have vσ = vJv

σW>σW> >σ(N\
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Hence from (2.14) we have:

Π — Y f t Λ - V V f V «<r<2).σ<3),.. .,σ(W)*l +2 . Λ - 1 Λ + 1 . . . JV
Vq—LWl V lj\ L V Lσ(2)Lσ(3) Lσ(i)Lσ(i+l) Lσ(N)

j L < τ s . t . σ ( l ) = j

where the term in square parentheses is the quantum determinant of the matrix
obtained by deleting the ίth row and the /h column.

Also from (2.14) we have:

O - Y i 'ί* V υ*(2),σ(V,...,σ(N)tl t2 . Λ - 1 Λ + 1 . . . A T f JL / -
υ - Λ , ϋ r j 2- D Γ<τ(2)Γσ(3) Γ *KO Γ σ(i + D Γ*(N) IOΓ / C^ l

j Lσs . t .σ( l ) = j J

This proves (2.18).
In order to prove (2.19) we have to perform completely analogous calculations

in which we first define:

( ~~ X

thus obtaining:

Γ) _ Y f M \ - l M Y u tσ(ί)tσ(2)ttttσ(i-l)fσ(i) . . * σ ( N - l ) Lj
Uq- L(Ui> Uj\ L M

σ(l),σ(2),...,σ(N-l) ίl 1

2

 li-l li+l 1N fi >
7 Lσs. t .σ(Λ?)=y J

where again the term in square parentheses is the quantum determinant of the
matrix obtained by deleting the /h row and the z th column. Π

From (2.15) we deduce:

2.8 Theorem

DβJj^tfJjD,. (2.21)

The previous theorems allow us to define an antipode S in A%. In fact we can set

S(φ = (?Λ)#>βΓ ' =(DqΓ
1(tL)i

J. (2.22)

Equations (2.16) and (2.17) guarantee that (2.22) is consistent with the requirement
for an antipode. In particular we have:

ίί = 5i- (2.23)
j j

Also from (2.16) and (2.17) we deduce the following comultiplication rules:

Due to the identities: η(Dq) = 1; f/((fΛ)p = ^/((?L)J) = ̂  > we have to set:

We want now to compute S((?Λ)j) From the previous equations we have:

2.9 Theorem. The following equivalent equations hold:

(2.26)

(2.27)
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Proof. We prove (2.28) namely we consider S2(φ = DgS((ίR)j).
It is given by:

Σ fπ
f l

( l )

σs.t.σ(ί)=j

(2.28)

(2.29)

(2.30)

here we have used the symbol σ[ij~] to denote the permutation of (1, 2, ... J — 1,
j+l,...,N} associated to each permutation σ satisfying the requirement σ(ί)=j.

We define now

",• = ",•,1,2,...,* = Πί-*2*2*)-

Equation (2.31) is in turn equal to:

Σ γ f π(l) f π(
L Γ j Γσ(

σs.ί.σ(i)=j π

fπ(i)

.e.
. Π

In conclusion we can state that the bialgebra
algebra with bijective antipode.

Now we want to define the action of U1

R on (D^
a natural pairing between the two Hopf Algebras

First notice that we have

A| is a (non-involutive) Hopf

l. In this way we will establish
and UR.

where pf = x±2 Y[ z} ..
j*t

This implies that we have to set:

(A±)J((Dί)-1) = (pί

±)-Mj; (?*)}((!),)" ̂ spΓδ}. (2.32)

As the element υμ is concerned, notice that the equation υ*1(Dq) = dQt±1(μ)= 1
leads us to set r^HΦg)'1) = l It: is immediate to prove the following theorems:

2.10 Theorem. Let y be the antipode in UR and let S be antipode in A^ defined
before. We have:

2.11 Theorem. When R is given by (2.1), then the matrices A * and Ξ ± are triangular,
namely for i >j we have (λ + )( = 0 and (ζ~)lj = 0, while for i <j we have (/l~)*. = 0
and (£ + )j = 0. Finally all the elements (ξ±)\ and (A ± )J are group-like, they commute
with each other and (£*){ = [(A*)}]"1.
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We consider now the two-sided ideal KR a A\ given by the kernel of UR. The
antipode S maps KR into itself; hence S descends to A^/KR and the latter algebra
is a Hopf algebra. Furthermore we have, as a consequence of the previous consi-
derations, that the Hopf algebras A% /KR and UR are dually paired and that the
pairing is non-singular.

Here we use the same definition considered by Majid [14], namely two Hopf
Algebras Hl and H2 are said to be dually paired if there exists a bilinear form
<v> such that the multiplication of H1(H2) is adjoint to the comultiplication of
H2(Hl\ the two antipodes are adjoint to each other and < 1, y > = η2(y); <*, 1 > =
rjι(x)l VxEHl;yeH2, where ηt denotes the counit in Ht.

Now we want to consider the morphisms $± and ^± (1.14). Due to the
triangularity of the matrices Λ± and Ξ ± we have:

= Π
and so we can set:

From the definition above we can straightforwardly extend the definition of ^P±, ̂ ±

and of Ψ* so to include their action on elements of A% ® A\ and respectively of A%.

2.12 Theorem. The following identities hold:

The existence of a bijective antipode in A% and the ensuing Eqs. (2.33) allow
us to express the four homomorphisms $± and ̂ ± in terms only of &+ and ^_
(or in terms of $+ and &+ if one prefers)v

From (2.33) and from the identity: y°^+ = $+ other useful identities follow.
In particular we have:

As a consequence we recover the standard properties of the universal K-matrix:

and

As far as the ribbon element is concerned, notice that by setting u^Ξv'^ψ'
we have,

u(t) = ̂ _ (S2 (x) Id)Δ(t) = @+ (Id ® S)Δ'(t); u~~1(t)^=^+ (Id ® S2)Δ'(t\

and moreover:

Given any Hopf Algebra H, we denote now as usual by the symbol /ίopp the Hopf
algebra with opposite multiplication.
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Also we denote by the symbol ϋ^ the Hopf subalgebra of U^ generated by
the entries of [A + } and {Ξ ~ } and by the symbol U^ the Hopf subalgebra generated
by the entries of {A" } and {Ξ + }.

We consider the following two-sided ideals of A%:

As a consequence of the previous identities we have the following Hopf Algebra
isomorphisms:

->(£/£ )opp; J_ :A«/KR ^(URΓ*. (2.38)

For any teA$ we denote now by [t]+ and by [ί]_ the corresponding equi-
valence classes in A$ /K* and, respectively A%/KR . We define the bilinear form:

<[ί2]-ί[ίι]+>Λ = *+(ί2>ίι) = «t<ίι,ί2) = «-(S(ίι),ί2). (2.39)

Notice that <v>& is a non-singular bilinear form: A%/K~ xA^/K^-^C (and
consequently a non-singular bilinear form: (l/^)opp x (l/ + )opp-»C).

On the other hand we have UR(KR) = U~(KR) = 0 and from the isomorphisms
(2.38) it follows that the dual pairing of the Hopf Algebras A% and U^ gives rise
to a non-singular dual pairing <•,•> between the Hopf algebras 17 + and (l/~)opp

and between the Hopf algebras 17 ~ and (£/+)opp.
In other words, if we consider the (restricted) duality induced by the pairing

<V>> we have: (l/~)* = (17 + )°PP; (C7 + )* = (U~)opp, and the factorization property
of the Universal R-matrix. Namely 0ί can be seen as an element of U* <§) U~
where ® denotes a completed tensor product (so that formal power series5 of
ordinary tensor products are included).

The Hopf algebras UR are the multi-parameter generalizations of the ύltx(b±\
where b+ are the Borel subalgebras of sl(N).

Once we are given linear bases in U* and in UR which are mutually dual
under the pairing < v>, then we can compute explicitly the universal K-matrix for
the multi-parameter quantum groups. A P.B.W. theorem can be proved in this
case by adapting the arguments of Rosso [15]. This explicit calculation will be
given elsewhere. The step which will be considered in the next section will be to
express the algebra U^ in terms of generators and relations.

For the time being, taking into account the results obtained so far, we can
state the following:

2.13 Theorem. The FRT construction applied to the matrix (2.1) provides a multi-
parameter family of quasi-triangular ribbon Hopf Algebras.

Let us now compare briefly the situation when the matrix R (3.1) depends on
generic parameters x and zk>1 vs. the situation when x is generic and ZM = 1, V/c, /.
In the second situation (i.e. in the ordinary one-parameter quantum group) we have:

(λ±yi = (ξ±yi v ΐ (zw = i). (2.40)
In the one-parameter case usually the matrix ReEnd(CN ®CN) is normalized

by a constant factor, i.e. one consider, instead of R the matrix R ~x~2/NR [4] so

5 The variable h for this power series expansion is obtained by setting x = exp( — h/2)
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that det(R) = 1. Let us denote the corresponding generators in 17 ~ by the symbols
Λ± and Ξ±. As a consequence of the normalization we have the following
constraint on the generators of (/ ~:

N

Π (**)!=! (z»,ι=l) (2.41)
i= 1

In the generic multi-parameter case Eq. (2.40) is not valid any more. Moreover if
we multiply the matrix R given by (2.1), by the same factor x~2/N (so that again
we have detK = 1) then we obtain a constraint diίferent from (2.41), namely we
obtain:

Hence in the one-parameter case U^ and U^ have in common the set of N
generators (λ + )\ = (ζ + )\9 subjected to the relation (2.41), and their inverses
(ζ~)li = (λ~)\9 while in the generic multi-parameter case l/| and U% have in

common only the element (2.42) and its inverse f j (ξ~)|= Π (?+)r Since ̂ e

i = l i=^l

element (2.42) is given by $(Dq) = $-(Dq) (with R replaced by R\ we will refer to
it as the dual quantum determinant and denote it by the symbol Δq. Like Dq, Δq

is not a central element in the generic multi-parameter case.
As far as the quantum double [16] of U£ is concerned, this will be isomorphic

to some tensor product of the quantum group times the abelian algebra generated
by the dual quantum determinant Δq and its inverse. Again here we have a difference
with respect to the one-parameter case, namely the introduction of many parameters
removes a "degeneracy" of the quantum double.

3. Generators and Relations

In this section the Yang baxter matrix R will be always given by (2.1). In fact we
will mainly consider the matrix R obtained by dividing R by its determinant.

We will give now an explicit presentation of U^ in terms of generators and
relations. From this construction it will be apparent that, for generic values of the
parameters:

a) the number of independent generators of U^ is given by the same number of
independent generators of <%(sl(N)) plus N. This extra number of generators is
due to the fact that corresponding to each generator of the Cartan subalgebra
oϊsl(N) we have two generators in U ~ and moreover we have the dual quantum
determinant;

b) the relations among generators correspond to a multi-parameter quantum
version of the Serre relations. Moreover when zk f,h-> 1 then U ̂  becomes <%x(sl(N)).
For these reasons we replace, from now on, the symbol U^ with the symbol

The basic relations for the generators of U1

R are expressed by Theorem 2.11
and the following theorems:
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3.1 Theorem. For j ^ k ̂  i we have:

(r)}=*v-*-2r^n}(n^ (3.i)
while for i^.k^.j we have:

3.2 Corollary. Each one of the generators (λ + )l

jy i <j can be expressed in terms of
the generators (λ + )\ + 1 and (ξ~)k

k and similarly each one of the generators (λ~)(9 i >j
can be expressed in terms of the generators (λ~)\+ί and (ξ + )£.

3.3 Theorem. Each one of the generators (£")*•, i <j can be expressed in terms of
the generators (ξ~)l

i+1 and (λ + )k

k and similarly each one of the generators (ζ + )i

j, i >j
can be expressed in terms of the generators (ξ + )l

i

+1 and (λ~)k

k.

3.4 Theorem. The generators (ξ ~)\+1 and (ξ + )\+1 can be expressed in terms of the
generators (Γ)ί,(Γ)ίί},(A+)ί+1 and respectively (£ + )!ίi,(£ + )ί,(r)!+1.

Proof. Equation (2.24) and the triangularity imply:

and a similar equation for (ξ + )\+1. Π

We are now left only with the following independent generators:
(λ + )\ + j , ( λ ~ )? * l , (λ ± ) \ and the inverses of the latter ones (ξ + )( . In the one-parameter
case one has ( ζ ± ) i

i = (λ±)ί

ί9 while in the generic multi-parameter case, this is not
true any more and that is the main difference between the two cases.

Now we are in a position to construct explicitly generators and relations for
WXtZk z(s/(Λf)). From now on we consider the renormalized matrix R.

In order to have a better picture of the relation between the generators of the
multi-parameter quantum group and the corresponding one-parameter generators,
expressed in the most common form, we find it convenient to consider the square
roots of (I*); and of (£*);:.

More specifically we set for any

that is:

A similar definition is given for -
The introduction of such square roots does not create any serious problem,

since they are group-like elements. In fact it enables us to express the element vμ

in terms of these square roots as follows:

We are now ready for a redefinition of the generators. We set:

);(Γ)::!, (3.3)
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^KPJ!, (3-4)- T - + i . '
(X — X )

ίΐT. (3-5)

= ft V(I*Ji. (3.6)
;= i

Hence the independent generators of < x̂ )Zk ,(s/(N)) are6

(In the one-parameter case we have K* =(K + )~l and X = 1.)
£r satisfy the following comultiplication rules:

V(E*) = E*®(K*Γί+(K*)±l®E*, (3.7)

the other generators being group-like. The commutation relations become:

[£',£*] = 0; \i-j\Z2, (ε=±); [£;",£; ] = 0 Vi,./; (3.8)

[KJ,KJ]=0 ViJ(ε=±); [K,+ ,K;] = [K,1, K] = 0, VίJ; (3.9)

[£*,£,-] =-(x2-χ-2Γ1((K i

+Γ1KΓ-^+(^Γ)"1). V ί; (3-10)

and the "quantum Serre relations":

E (E?± l )
2 + (E+± , )2 £(

+ = (x2 + x - 2)£;

+

± t £;

+ £;

+

± t , V i; (3.11)

2£f± 1=(x 2 + χ-2)£Γ£Γ±ι£f, Vi . (3.12)

Finally the commutation relations between the group-like generators and the non-
group-like ones read as follows:

E + K+=x2K + E + ; £.+ K-=x- 2xr£ ;

+, Vi; (3.13)

£Γχ-=x 2 K-£-; £ΓX.+ =χ-2K.+ £Γ, V i ; (3.14)

E?Kΐ+1=χ-lzίtί+ίzi + 1,l + 2zt + 2,tKΐ+lEΐ, Vi; (3.15)

fii^t^x-Vu+iZM-i^uKi-iE*. V i ; (3.16)
£f κϊ+1 = x ~1 zι +1 ,izi+2,, +1 z, ., +2 K/~+1 £Γ' V i; (3.17)

£Γ/CΓ-ι=*~ 1 Zf+ι. ί -ιZί-ι.(2w + ι κ Γ-ι£Γ. Vi; (3.18)

E+KΓ+l=XZu+1zί+l,ί + 2zί + 2,KΓ+lE + , Vi; (3.19)

fi^Γ.^xz,.!,^!^.!^^,^-!^, Vi; (3.20)
ErKi'+i=xzi+i,tzi + 2,i + iZi,i + 2K^.lEr, Vi; (3.21)

fiΓK^^xz,^.,.,^-!.^^,^^,-, Vi; (3.22)

Vi; (3.23)

V/; (3.24)

With the above definition of the E*'s we have £.+ (ί*) = δk.+ ̂  and £~(ί*) = δkδi
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EΐKΪ=Zj9i+lzίJzi+lJ+lzJ+ltiKΪE + 9 |ί-;Ί^2; (3.25)

E-Kϊ=zi + lJzjtizj+1j+ίziJ+1KΪE?9 \i-j\^2; (3.26)

E+K7 = zj,+ 1ziJzi + 1J+ίzj+1,K-E^ \i-j\^2; (3.27)

E-Kί=zl+ltJZj9izJ+u+1zlJ+ίKΪE-, \i-j\^2. (3.28)

Notice that if we assume:

zίtk = z for i > k\ and z^k = z~1 for ί < k,

then all the coefficients in Eqs. (3.25), (3.26), (3.27), (3.28) become simply 1. This
assumption corresponds to the case concerning the construction of invariants of
links in Σ x [0,1] (Σ being a non-trivial 2-dimensional surface), as is shown in [2].
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