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Abstract. The left spectrum of a wide class of the algebras of skew differential
operators is described. As a sequence, we determine and classify all the algebraically
irreducible representations of the quantum Heisenberg algebra over an arbitrary
field.

Introduction

The role the Heisenberg algebra plays in mathematical physics (quantum
mechanics, quantum field theory, cf. [J,C]) and representation theory (cf. [K,D])
is well known. In the theory of Kac-Moody algebras the Heisenberg algebra
provides one of the major tools for construction of irreducible representations (cf.
[FK]).

The development of the theory of quantum and classical integrable systems
has lead to the notion of Quantum Lie Groups. These objects are certain Hopf
algebras created by deformation of universal enveloping algebras of Lie algebras
and algebras of functions on Lie groups (cf. [Ji, Dr, FRT, S]). It is natural to expect
that the quantum Heisenberg algebra introduced in [FG], which is one of the
principal actors of this work, is going to play the same role in the (not yet created)
representation theory of quantum groups as the classical Heisenberg algebra does
in the representation theory of conventional Lie groups.

The study of the quantum Heisenberg algebra involves naturally a more general
class of algebras - the algebras of skew differential operators. These algebras are
well known to specialists in ring theory. Here, however, they appear as the objects
of noncommutative geometry; and our first concern is to investigate their spectral
properties. The means of the investigation are provided by recently introduced
local noncommutative algebra (cf. [R1,R2]).

The article is organized as follows.
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In the first section we introduce the notions necessary for the rest of this work
and results of the local noncommutative algebra: the left spectrum, Gabriel
localizations and its connections with the left spectrum, and the left spectrum of
principal ideal domains.

The second section is concentrated around the definition of the algebra of skew
differential operators. It contains some important examples and a treatment of
skew derivations.

The third, and the most important, section is dedicated to the description of
the left spectrum of the algebra of skew differential operators.

The results of the third section enable us to obtain a description of the left
spectrum and, in particular, the maximal left spectrum, of the quantum Heisenberg
algebra over an arbitrary field. This description is effectuated in Sect. 4. As a
sequence, we determine and classify the irreducible representations of the quantum
Heisenberg algebra over an arbitrary field. The picture is particularly nice in case
of an algebraically closed field.

1. Preliminaries: Left Spectrum, etc

1.1 Definition. Let R be an associative ring with unity. Define a preorder > on the
set ^R of left ideals of the ring R as follows: m>n if there exists a finite subset x
of elements of R such that the left ideal (m:x):= {zeR:zx cm} is contained in n.

It is easy to see that if the ideal m is two-sided, then the relation m > n is
equivalent to the inclusion w <ϋ n.

The left spectrum Speq R of the ring R consists of all the left ideals p, satisfying
the following property:

(*) (p:x)>p for any xeR — p.

1.2 Note. If every left ideal of the ring R is two-sided then SpeCjK coincides with
the completely prime spectrum, Spec ft, which, by definition, consists of all the
two-sided ideals p' such that for any two elements x,y of R, xyep' if and only if
either x or y belongs to p'.

1.3 Left Spectrum, Maximal Ideals and Prime Spectrum

1.3.1 Left Maximal Ideals. For any associative ring R, the left spectrum SpectR
contains the set Maxj R of all the maximal left ideals of R.

In fact, if n,m are left ideals of R such that the relation (m:x)>m does not
hold if xen, then it does not hold if xew + n. But, if weMax,R and n is not a
subset of m, then m + n = R. In particular, m + n contains the unity 1 of the ring
R. Clearly (m: 1) = m>• m. Hence, if weMaxjR, then n g m.

7.3.2 The Left and Prime Spectra of Left Noetherian Rings and PI Algebras. Recall
that the two-sided ideal p of the ring R is prime if, for any pair of elements x, y
of R, the inclusion xRy c /?, implies that either x or y belongs to the ideal p.



Algebraically Irreducible Representations of Quantum Heisenberg Algebra 569

1.3.2.1 Proposition. // the ring R is left noetherian, or if R is a Pi-algebra, then
contains the set SpecR of prime ideals of R.

Proof. Cf. [Rl, Sect. 8.4].

1 A Left Spectrum and Localizing Filters. Recall that a non-empty set F of left
ideals of the ring R is called a localizing filter (or radical filter, or idempotent
topologizing filter) if the following conditions hold:

1) for any meF and xeR, the left ideal (m:x) belongs to F;
2) ί/meF and n is a left ideal of the ring R such that (n:x)eF for any xem, then

n belongs to F.
The importance of localizing filters is due to the fact that they are in one-one

correspondence with equivalence classes of localizations of the category jR-mod
of left R-modules.

Recall that the localization of an abelian category A is an exact functor Q: A->B,
having fully faithful right adjoint functor.

The correspondence {localizing filters} <-> {equivalence classes of the localizations
ofR-mod} realizes as follows: Let F be a localizing filter; and let R-mod/F denote
the full subcategory of the category R-mod formed by all the left modules M such
that the canonical map M -> HomR(m, M), which sends an element zeM into the
morphism r \-+ rz, is a bijection for any ideal m from the filter F. Denote by HF M
the direct colimit colim{HomΛ(m,M):weF}. The Z-module HFM has a unique
structure of R-module such that the map

induced by the canonical maps M -> HomR(m, M), meF, is an R-module morphism.
Moreover, the map M\-*HFM is uniquely extended to a functor HF: jR-mod -> R-mod
such that the collection ηF:= {ηF M:MeObR-mod} is a functor morphism
Id-»HF.

Denote the square of the functor HF by GF and call it the Gabriel functor.

1.4.1 Proposition. 1) For any localizing filter F, the functor GF takes values in the
subcategory R-mod/F, and the co-restriction ofGF onto R-mod/F is the localization
with the embedding R-mod/F -> R-mod as a right adjoint functor.

2) For any localization Q: R-mod -^B the set of all the left ideals m of the ring
R such that Q(R/m) = 0 is a localizing filter, and the category B is equivalent to the
category R-mod/FQ.

Proof of this statement can be found in [Rl]. It is also deduced without much
difficulties from the fundamental results of Gabriel (cf. [G] or [B.D]).

1.4.2 Proposition, a) There is a unique ring structure on GFRfor which the canonical
R-module morphism jF R:R-*GFR is a ring morphism.

b) For any R-module M, there is a unique extension of R-module structure on
GFM to GpR-module structure.

Proof. Cf. [Rl, Sect. 2] or [G].

For any left ideal m of the ring R, denote by <m> the set of all the left ideals
n such that the ideal (n:y) is not contained in m for any finite subset y or R.
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Note that <m> g <w'> if and only if w'>w. In particular, <m> = <w'> if and
only if m and w' are equivalent with respect to X

The basic property of SpeCjΛ is the following one:

1.4.3 Proposition, a) IfpeSpectR then the set <p> is a localizing filter.
b) Let m be a left ideal of the ring R such that the set <m> is a localizing filter.

Then m is equivalent to an ideal p from Spec^: <w> =

Proof. See [R, Proposition 2.2].

1.4.4 Local Categories. Call the abelian category A local if
a) every nonzero object X of the category A has a simple subquotient; i.e. there

exist two monomorphisms V—>W-*X such that W/V:= Cok(i) is a simple object',

b) any two simple objects of the category A are isomorphic each other.
It is easy to see that the category of modules over a commutative ring R is local

if and only if the ring R is local.

1.4.5 Proposition. For any associative ring R and any peSpectR the localization
jR-mod/<p> of the category Λ-mod at <p> is a local category; and G<py(R/p) is its
(unique up to isomorphism) simple object.

Proof can be found in [Rl] or [R2].

1.5 Ring Morphisms and Maps of Spectra. The left spectrum does not be have itself
functorially with respect to ring morphisms; i.e. if /: A -> B is a generic ring
morphism, then the map m\-^f~1(m) does not induce the morphism of spectra.
However, we can try to assign to / a map ~ Spec,!?-* ~ Spec/ A as follows.

Take a left ideal p from Specjβ, set pf'=f~1p and consider the set
Ωp, = {(p':a):aeA — p'} of left ideals of the ring A. Suppose that the set Ωp, has a
maximal element with respect to the preorder X; i.e. there exists aeA — p' such
that if (p':a)>(p':a') for some a'eA-p' then (p':0)«(p':0')

In particular, if xεA - (p':ά) (or, equivalently, xae A - p') then (p':a) « (p':xa) =
((p':a):x); i.e. (p':a)eSρeclA.

Note now that (p':a):= ( f ~ 1 p : a ) = f~1(p'-f(a)). Since, by condition, peSpec,£
and f(a)φp, the left ideal (p:/(0)) is equivalent to p.

1.5.1 Remarks. 1) Suppose the left ideal p of the ring B satisfies the condition:
(p:r) ϋ p for any reB — p (it is natural to call such ideals completely prime). Then,
for any aeA — f ~ 1 ( p ) we have:

In words, it means that all the ideals of the set Ωf'\p) are equivalent one to
another. In particular, f~1(p)eSρeclA.

2) The most obvious sufficient condition of the existence of maximal elements
in the set Ωpί is the following one:

(i) The preordered set (ItA9 >) is noetherian.
If the ring A is commutative (more generally, if all the left idals of A are

two-sided) then condition (i) is the same as
(ii) A is a noetherina ring.
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3) Even if MaxΩf-ί(p} is nonempty, the map

is not, in general, well defined with respect to >; i.e. it may be that two ideals
from Specj# are equivalent, but their "preimages" in SpeCj/4 are not.

However, this construction provides one of the main tools for studying left
spectra of rings.

The other major instrument is a properly chosen localization. Any localiza-
tion functor Q = QF:R-mod-+R~mod/F sends the ideals from Spec^-F into the
ideals from Spec,GF#. And often (for an appropriate R) the left spectrum of
localized ring, SpecjGFK, is much easier to describe than SpectJR. The most
favorable situation is when GFR turns out to be a left and right principal
domain.

L6 The left Spectrum of a Principal Domain. Let R be left and right principal ideal
domain. I.e. R is a ring without zero-divisors such that each left and right ideal of
R is generated by one element.

1.6.1 Proposition. Let R be a left and right principal domain. Then every nonzero
ideal from Spec,/? is equivalent to a left maximal ideal. Every left maximal ideal of
the ring R is of the form Rf, where f is an irreducible element of the ring R.

Proof. Let peSpeCjβ. Since R is a left principal ideal domain, p = Rf for some
element feR. It is easy to see that the absence of zero-divisors guarantees that
the right ideal fR is proper.

In fact, if fg = 1 then (1 — gf)g = g(\ —fg) = 0; therefore, gf is also equal to
1; i.e. p = Rf=R.

Being a proper ideal, fR is contained in a right maximal ideal μ. Since R is a
right principal ideal domain, μ = gR for some irreducible element g of the ring R.
The inclusion fR g gR means that / = gh for some h. Note that hφp.

Indeed,

[hep'] o [Λ = h'f for some feR~]o[_ghr = 1] o[μ = gR = R].

Since peSpec^K and hφp, the left ideal (p:h) is equivalent to p. Clearly
Rg ϋ (p:h). But Rg is a maximal left ideal (thanks to the irreducibility of g)\ hence
Rg = (p:h).

1.6.2 Lemma. Let R be a left principal domain. Then every localizing filter of left
ideals is of the form

Fs\= {we/fβ mnS 7^ 0}

for some Ore multiplicative subset S.

Proof. Let F be a localizing filter of left ideals. Denote by S the set of all the
elements teR such that RteF. Since R is a left ideal principal ring, (Rt:x) = Rt'',
i.e. for any teS and any xeR there exist yeR and tΈS such that t'x = yt. The
second Ore condition - if sa = 0 for some seS then there exists s'eS such that
as' = 0- holds automatically.

It is rest to show that if s, teS then steS; i.e. RstεF.
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In fact, for any element x = at of the left ideal Rt, we have:

(Rsf.x) = ((Rst:t):a) ^ (Rs:a).

Since (Rs:a)eF for any aeR, then (Rst:x)eF for any xεRt. Therefore
RsteF. m

2. The Algebra of Skew Differential Operators. Skew Derivations

2.1 Definition. Let A be a commutative algebra with unity over a field fc; let 9
be an automorphism and d a S-derivation of A; i.e. d is a fc-linear map A -> X such
that

(1)

The associative ring A [x; 5, d~\ of θ-skew differential operators is a left ,4-module
of polynomials in x with coefficients in A and with the multiplication, which is
uniquely defined by the property:

xa = <9(α)x + d(a) for any aeΛ. (2)

2.2 Example. The algebra A\x\ «9,0] coincides with the algebra [Λ[x; #] of skew
polynomials over A.

2.3 Example. Let v4 = /c[y]. Then the algebra A[x;Id, '], where ' is the usual
derivation in k[y]9 is the first Weyl algebra A^k).

In fact, the relations (2) are equivalent to the relation

2.4 Example. Quantum Heisenberg Algebra Hqh. Let A = /c[>>], and let 5 be a
generic automorphism of the /c-algebra fc[y]; i.e. θ(y) = qy + a for some q, αe/c.

The condition 'd is a ^-derivation of /c[y]' implies that

(3)

where /ι = ay. It is easy to verify that any choice of the polynomial h determines
a 5-derivation of the algebra k[y]. So we fix hek[y~] and denote the corresponding
algebra k[y] [x; 5, d]9 ay = /ι(y), by A ̂ 5, ft). In other words, A^θ, ft) is the /c-algebra
with generators x, y and the determining relations

xy-(9(y)x = h(y). (4)

Clearly A! (Id, 1) is a first Weyl algebra.
If 9f(y) = f(qy) for some q^O and deg(ft) = 0 then Λ^θ, ft) is a so-called

q-Heisenberg algebra. It will be denoted by Hqh.

2.5 The Skew Derivations of Algebras and of Their Algebras of Fractions. Let
S = S(A) denote the set of all the non-zero divisors of the algebra A. Clearly any
automorphism 3 of the algebra A induces a bijection S-+S. This implies that the
automorphism θ extends (uniquely) up to an automorphism of the algebra
Fract(A):= S~1A, which we denote by the same letter.
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2.5.1 Lemma. Any 9-derίvation d of the algebra A has a unique extension up to a
9-derivation of the algebra Fract (A).

Proof. In fact, if d~ is an extension of a ^-derivation d on Fract(^4) = S~ 1A then,
for any aeA and seS, we have:

d(a) = d~((a/s)s) = d~ (a/s)s + 9(a/s)d(s)

or, equivalently,

d~(a/s) = d(a)/s - 9(a)d(s)/(s9(s)). (1)

The equality (1) shows that the extension d~ is uniquely determined by d, and,
at the same time, provides the formula for this extension.

Therefore, it remains to verify that the map d~, defined by (1), is a ^-derivation
of Fract (A) for any 5-derivation d.

It follows from (1) that, for any seS,

d~(\/s)=-d(s)/(s9(s)). (2)

We have:

d~(\/(st)) = - d(st)/(st9(st)) = - {d(s)t + 9(s)d(t)}/(st9(st)))

= - {d(s)/(s9(s))}9(l/t) - {d(t)/(t9(t))}m

= d~(l/t)(l/s)+9(l/t)d~(l/s). (3)

Set for convenience x = 1/s, y = 1/t. Then it follows from (2) and (3) that

d(ab-xy) = d(ab)xy -h 9(ab)d(xy) = [d(d)b + 9(a)d(b)}xy + 9(ab){d(x)y H- 9(x)d(y)}

= d(a)bxy + S(a)d(b)xy + &(ab)d(x)y + 9(ab)3(x)d(y)

= {d(a)bxy + 9(ab)9(x)d(y)} + &(a){d(b)x + 9(b)d(x)}y

= {d(a)bxy + 9(ab)9(x)d(y)} -f 9(a)d(bx)y.

On the other hand,

d(ax)by H- 9(ax)d(by) = {d(a)x -f 9(a)d(x)}by + 9(ax){d(b)y -f 9(b)d(y)}

= d(a)bxy + 9(a)d(x)by + 9(ax)d(b)y + 5(

= {φ)6xj; H- 5(αb)5(x)d();)} + 9(a){d(x)b -f

= {d(a)bxy -f 5(flfe)5(x)d(y)} + 5(α)i(ftxy)y.

This shows that

d~((a/s)(b/t)) = d~(a/s)(b/t) -f 5(αAW(fc/ί), (4)

i.e. d" is a «9 -derivation of the algebra Fract (A).

2.6 The Simplest 9-Derivation. It is easy to see that the map

d&:a\-^a — 9(α), αeA,

is a ^-derivation:

d9(ab):= ab - 9(ab) = (a- 9(a))b + 9(a)(b - 9(b)):= dθ(a)b + 9(a)dθ(b).
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In the classical case, 3 = Id, (and only in the classical case) the ^-derivation d&
is trivial. But if, on the contrary, the difference between 3 and Id is such that there
exists an element u such that u — 9(u) is not a zero divisor, then, as we shall see
in a moment, the 9 -derivation d # is universal in the following sense: every
^-derivation of the algebra A is equal to gdθ for a unique element g ofPract(A).

2.7 A Formula for 9 -Derivation. Let d be an arbitrary ^-derivation of the algebra
A. Since A is commutative, we have the following equations:

d(a)b + 9(a)d(b) = d(ab) = d(ba) = d(b)a + 9(b)d(a)

which imply that

d(a)(b-9(b)) = d(b)(a-9(a)). (1)

Therefore, if 9(b) — b is not a zero divisor, we can embed the algebra A into
its algebra of fractions, Fract(^), (or, at least, into the localization of A at
multiplicative subset (9(b) — b) generated by the element 9(b) — b, and rewrite the
equality (1) in the following form:

d(a) = d(b)(b - 9(bΓl(a - 9(a)). (2)

2.7.1 Lemma. Let u be an element of the algebra Fract(A) such that the element
u— 9(u) is invertible.

Then every 9-derivation of the quotient algebra QA is of the form

= h(u-9(uΓl(a-9(a)\ (3)

where h = du may be any element o/Fract(A).

Proof. If h = du then the formula (3) coincides with (2).

Since a\-^hd(a) is a ^-derivation for any ^-derivation d and for any element h,
and the map d&9 d&(a):=a — 9(a), is a θ-derivation (cf. 2.6), then the map

is a 9 -derivation.

2.7.2 Corollary. Let the 9 be an automorphism of the algebra A such that there
exists an element u of A, for which d$(u):=u — 9(u) is a non-zero divisor. Then each
9-derivation d is equal to gd$:a\-^g(a — 9(a))for a unique element g of¥mct(A).

2.7.3 Corollary. Let u be an element of the algebra A such that
1) u — 9(u) is a non-zero divisor,
2) for any element aeA there exists an element dθ u(a) of A such that

Then the map d9tU:a\-+d&>u(a) is a 9-derivation; and any 9-derivation of the
algebra A is equal to hd$tUfor some unique element h of A.

2.7.4 Example, q-derivations. Let ge/c, g^O, 1, y4 = /c[y] and 9= q^:f(y)\~^f(qy)
for any fεk[y~\. Take u:=y. Then u — 9(u) = y(\ —q). Obviously the conditions
of Corollary 2.7.3 are satisfied and the ^-derivation d$tU = dqty is defined by the
formula:

sq,yf(y) = (f(y) - f(qy))/(y(i - β)) (i)
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According to Corollary 2.7.3, every ^-derivation d is equal to h(y)dqty for a
unique polynomial h(y\

3. The Left Spectrum of the Algebra of Skew Differential Operators

We assume that A is a commutative noetherian domain. We also suppose that
d(d) = 0 if and only if aek.

Fix an ideal p from Spec, ,4 [x; $,</]. Replacing, if necessary, the ideal p by an
equivalent ideal (p\a\ where a is an element of A — p such that (p\ά)r\A is a
maximal element of the set {(p:a')r\A:aΈA — p}, we assume that pnAeSpecA
(cf. 1.5).

Consider the possibilities.
(a) pnA = {0}. Note that this condition implies that A is a prime ring. The

localization Q at the set A — {0} sends the algebra A[x\9,d~\ into the algebra
QA [x; 3,d~\ over the skew field of quotients QA, and the ideal p into the left ideal
Qp from Spec, (λ4[x; £,</].

The ring <2/4[x;$, d~\ is a left and right principal ideal domain (since it is
euclidean). Therefore Qp is a left principal ideal generated by an irreducible element
b = bp of the ring A [x; 5, d]. The ideal p coincides with A n Qp — A n QA[x; $, d]bp.

(b) Suppose now that the ideal p' =p n /4 is nonzero.
(bl) Let p' is invariant with respect to the automorphism ι9and to the derivation

d. Then we can take quotient algebra /I [x; ,9, d]/,4 [x; ι9,d]p' ^A'[x; 5,d], where
Λ': = y4/p'. The image p" of the ideal p in >Γ[x; $, d] has the trivial intersection with
A. Therefore either p" = {0} (i.e. p = A[x\ 5, d]p') or p" = A[x\ 5, d] n βΛ'|>; 5, d]frp

for some irreducible element bp of the principal ideal domain QA'[x\ B,d~\.
(b2) Suppose that p' is invariant with respect to the automorphism #, but is

not invariant with respect to d.

3.1 Lemma. For any positive integer n and for any

' ' ) x 1 ' . (l.n)

Proof. Equation (1.1) is equivalent to the determining Eq. (2) in 2.1. Assuming that
(l.n) holds, we have:'

£ x"-*-1^^^^ = x"(xa-da)

3.2 Lemma. Suppose that the ideal p' = p n A is invariant with respect to 9; but
there exists a positive integer N, satisfying the following condition:

For any integer n, 1 ̂  n ̂  N, an rep' can be found such that

Σ &-ld(Sf(r)φpr (D
0 ̂  i ̂  n - 1

Then, for any element g(x) = xma + xm~1b + ••• /row ,4[x;$,d] SMC/I ί/iαί
aeA—p and n^N, there exists an element u of the algebra A, for which
uge(A+p)-p.
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Proof. 1) Let deg(#) = 1; i.e. g(x) = xa + b for some elements a, b of A. By condition
(1) (for n= 1) there exists rep' such that drφp'. We have

%)#(*) = xra + dr + θ(r)bedr + p.

2) Suppose that the statement is true for polynomials of degree less than
n,n^N; and let g(x) = xna 4- x""lb + ••• be a polynomial of degree n such that
at A — p'.

By hypothesis, an element rep' can be found such that

£ 9-ld(&(r))φp'. (1)
0 i i ̂  n - 1

It follows from Lemma 3.1 that

9n(r)g(x) = xnra

where /z(x) is a polynomial of degree less than n-\.
Since rα and &(r)b are elements of p, we can write:

Thanks to the condition (1), we can find, by induction hypothesis, an element
veA such that

3.3 Corollary. Suppose that the ideal p' = p n A is invariant with respect to $;
and for any integer n^l there exists rep' such that

Σ 9~'d(Sf(r))W. (1)
O g i £ π - l

Then the ideal p is generated by p':= pr\A; i.e. p = A[x\ 5,

3.4 Proposition. Suppose that p' is a prime ideal of the algebra A satisfying the
following conditions:

(a) p' is invariant with respect to $;
(b) for any integer n^l there exists rep' such that

X 9-id(tf(r))φp'. (1)
0 ̂  i ̂  n - 1

Then
1) The left ideal p = A[x;9,d]p' belongs to the left spectrum of the algebra

A[_x\3,d].
2) If the ideal p' is maximal then the left ideal p = A[x\ Q,d~]p' is maximal.

Proof. 1) Note that the only hypothesis used in the argument proving Lemma 3.2
are the conditions on the ideal p', the same as here, and the equality p' = pnA.
Therefore the statement of Lemma 3.2 holds for the left ideal p = A[x\ 9,d]p'.

Let g = g(x) be an element from A[x\ 9,d~\ - p. We have to show that the left
ideal (p:g) is equivalent to p.
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By Lemma 3.2 there exists an element ueA such that uge(A + p) — p; i.e.
ug(x) = a + /(x), where aeA — p' and /(x)ep. Therefore we have:

((p:g):u) = (p:ug) = (p:a

Note now that (pf:a) = p', since the ideal p' is prime and aeA — p', and, therefore,

Thus, ((p:g):u) = p. In particular, p and (p:g) are equivalent each other.
2) Suppose now that the ideal p' is maximal. Let g(x) be an arbitrary element

from A [x; $, d] — p. We have to show that the left ideal μ = p + A [x; 5, d~]g coincides
with A[x',99d].

In fact, there exists we.4 such that ug(x) = a + /(x) for some αe^ — p; and
/(x)ep. Since ιι0(x) and /(x) belong to the ideal μ, the element α also belongs to
μ. But then μ contains p' + Aα; and p' + Aa = A thanks to the maximality of p'.
In particular, μ contains the unity element of A[x\ &9d~\.

3.5 Proposition. Suppose that p' = pπ A is a prime ideal of the algebra A satisfying
the following conditions:

(a) p' is invariant with respect to θ;
(b) for any integer n^i there exists rep' such that

Σ θ-WWφpT. (1)
0 ̂  i ̂  n - 1

Then
1) The quotient module Vp':= A[x; $,d]/p is the direct sum of its k-submodules

V t = X'FO, i ̂  0, where V0 is the image of A with respect to the canonical epimorphism
Alx;3,d]->Vp'.

The action of A[x; $,d] is given by the formulas:

x'(xiv) = xi+1v; a'(xlv)= Σ

for any veVQ9 aeA and i ̂  1, where the functions φί>7 (from A to A) are determined
by the relations:

φ0» = a φit0(a) = (-d<> &' ^(a)l

φί» = Φi-ι. i-ι(5"1(fl)) far i^ l ; (3)

/or i^ l , 0 ^ y ^i-1.
2) The following properties of the A[x\ ι9, d~\-module Vp' are equivalent:

(i) Tfce >4[x;θ,d]-modMk Kp / is irreducible.
(ii) T/z£ A-module V0 is irreducible.

(iii) T/z^ ideal p' of the algebra A is maximal.

Proof. 1) The formulas (2), which follow from the relations:

show that the sum of /c-submodules (subspaces) F ί:=xIF0, i^O, is a submodule
of the Λ[x;S,έ/]-module Vp>.



578 A. L. Rosenberg

Now, suppose that £ xlVi = Q for some elements vt of the subspace F0.
O i i ^ m

Every element vt can be written as atuQ9 where 0 ,̂4 and w0 is the image of the
unity of A [x; 5, */]. Thus, the equality £ x'X = 0 means exactly that the element

0 ̂  i ̂  m
£ xlat of the algbera ,4[x;$,ί/] belongs to the ideal p. But, according to

O ^ i g m
Corollary 3.3, p = A[x; 5, d]p'\ in particular, all the coefficients ai9 0 ̂  i ̂  m, belong
to p' = pr\A. Since p' is the annihilator of the element w0, this means that all the
elements vi9 0 ̂  i ̂  m, are zeros.

2) Evidently, (ii)o(iii) since the Λ-modules K0 and A/p' are canonically
isomorphic each other.

(i)=>(ii). For any nonzero proper submodule W of the A-module K0, the
submodule A[x\9,d~]W of Vp' is also nonzero and proper.

In fact, it follows from the formulas (3) (cf. the heading 1) of this proposition)
that A\x\bd\WnVo=W.

(ii)=>(i). Let w be a nonzero element of Vp'. We have to show that, provided
V0 is an irreducible A-module, A[x\ S,d] w = Vp'.

Clearly w is the image of polynomial

from A[x\ 9,d~] such that aeA — p = A — p'. By Lemma 3.2 there exists an element
ueA such that uge(A + p) — p. This means that w w is a nonzero element of the
image K0 of the algebra A in Vp'. Since, by condition, the /ί-module K0 is irreducible,
there exists aeA such that au- w is the image of the unity of A[x\ 5, d}. This means
that

Λ[x; 5,d]w 2 X[x; ftflαu- w = Fp/.

3.6 Example. q-Heisenberg Algebra. Let A = /e[y], and let 5 be a generic
automorphism of A\ i.e. (5/)(y) = f(qy -f α) for some q and α from /c, ̂  ̂  0. If α ̂  0;
then there are no 5-invariant ideals. Therefore we consider the case when α = 0;
i.e. when the algebra /c[y][x; fyd] coincides with the g-Heisenberg algebra
Hq,h = Hq,h[x, y]9 where h = d(y) (cf. Example 2.4).

If q is not a root of unity, then the only $-in variant prime ideal in k[y] is k\_y]y.
As we have seen (cf. Example 2.4.3), any ^-derivation of k[y~] is uniquely

determined by dy = h(y) (cf. Example 2.7.4):

df(y) = h(y)dyf(y) = h(y)(f(y) - f(qy))(y(l - q)Γl-

In particular,

d(yn) = ( Σ yn-i$(yΓί}h = yn-ίh(y)(i-qn)/(\-q). (2)

It follows from (2) that the condition £ #~'d(#V))Pb;]); for some re/c[>]y
0 ̂  i ̂  π - 1

means that X ^'^OOte/cMy. But
0 ̂  i ̂  π - 1

= Σ 9'0-ΆθΉ Σ
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So, if h(y) = £ hty\ then

In particular, if q is not a root of unity then the condition £ 9~ ί

holds if and only if d(y)(0) = h(Q) φ 0.
Note that in case q = 1 (as well as in the general situation, when 9 = Id) it is

necessary to require that Char(fc) = 0, since then £ θ~ ld(9l(y)) = nd(y) = nh(y).
0 ̂  i ̂  n - 1

By Proposition 3.5, the representation V(y\(y) = k[y]y, of the ^-Heisenberg
algebra Hqh is irreducible. We can describe it more precisely. Suppose for simplicity
that deg(fc) = 0; i.e. d(y) = hek.

Note that V0 is isomorphic to the field k (as a /c[y]-module). Therefore
V(y) = Σ χίVo is isomorphic, as a fc-module, to fc[x].

i^O

It follows from Lemma 3.1 that the transfered from V(y} action of k[y] on fc[x]
is defined as follows:

yxn = xn^h(\-q-n)l(\-q\ (3)

It is easy to see that the right part of (3) can be written as the operator
— (h/q)d1/q(xn)9 where dί/q is a 1/g-derivation (cf. Example 2.7.4). Recall that the
1/g-derivation is defined by the formula:

S,/q(f)(x) = x-1(f(q-1x)-f(x))/(q-1 - 1). (4)

It is advisable not to mix the generators of the algebra Hqh with the description
of the spaces of the representations of H^h. Thus we say that the canonical
representation V(y} is realized as the fc-module /c[z] = {£zmαm:αmefc} of
polynomials in z, where x acts by the multiplication and y by the 1/g-derivation:

(χ /)(z) = z/(z), (r /)(z) = - h/qdllqf(z). (5)

Clearly, when q = 1 the representation (5) becomes the canonical representation
of the Weyl algebra:

(χ /)(z) = z/(z), (yf)(z) = ~h^-(z). (6)
dx

3.6.1 The Conjugate q-Heisenberg Algebra. It is seen from determining the
quantum Heisenberg algebra relations

xy — qyx = h (7)

that in the conventional case, when hek, we can change places x and y. More
explicitly, the correspondence xH->yA, y\- >XA determines an isomorphism σ of the
quantum Heisenberg algebra Hq^ = Hqth[x9y] onto H1 / ί §_Λ / ί = H1/ίf_Λ/ί[xA,/].

Obviously the inverse to σ isomorphism is defined by the same formulas:
<rV) = ;y,ff~V) = x.

We call the algebra Hi/q^h/q the conjugate to Hqh quantum Heisenberg algebra.
Evidently, this "conjugation" relation is reflexive.
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Now we can transfer, using the isomorphism σ, the already gathered data about
left maximal ideals and representations from H1/qt_h/q to Hqh.

In particular, to the maximal left ideal H1/qt_h/qy* and the representation V(y }

corresponds the maximal ideal Hqhx and the canonical representation V(x) of the
algebra Hqh in the space /c[z] of polynomials in z, which is (automatically) described
by the formulas:

(yf)(z) = zf(z\ (x f)(z) = hdqf(z), (8)

where dq is the ^-derivation (cf. Example 2.7.4):

Thus, the g-derivation is, in a certain sense, conjugate to the 1/g-derivation.

Now consider the case when the ideal p' = p π A is not ^-invariant.

3.7 Proposition, (i) Let p' be a prime ideal of the algebra A', and let there exist an
element rep' such that θ'1^) does not belong to p'.

Then μr,p':= A[x\ $,d]p' + A[x\ $,d]rx is a left ideal of the algebra A[x\ $,d],
properly containing A[x\ 9,d~]p' and such that μr^nA = p'.

Besides, μr^p, is a right A-module: μr,p>A = μr p,.
(ii) // the ideal p' is maximal then the left ideal μ^p> is two-sided. The quotient

algebra A[x\S,d~]/μrtp> is naturally isomorphic to the field A/p'. In particular, μrp,
is maximal as a left (and right) ideal.

~l

μr p/;= A[x\ «9,d]p' + A[x\ 5,d]rx, since the element rx = χ9~1(r)- d^'1^)) does
Proof. Let rep' but 9~l(r)φp'. The ideal A[x\3,d~\p is a proper subset of

r p /;
not belong to A[x\ 9,d}p'.

(i) The intersection of the left ideal μr >p, with A coincides with p'.
In fact, if it were opposite then an element g(x) = Σ χiaί could be found

0 ̂  i s; m

such that g(x)rxeu + A[x\ 9,d]p' for some element uεA - p'. Since

O ^ i g m - 1

the condition g(x)rxeA + A[x\ θ,d~]p' can be expressed as follows:
(1) θ-l(amr)ep'. Since 9'1(amr) = θ~'1(am)9-i(r) and 9~\r)φpf by hypothesis,

9-l(am}ep'.
(2) B- ^far) - d(&~ l(ai+lr}}ep' for 0 ̂  i ̂  m - 1.
Fix i,0 g i ̂  m — 1, and suppose that 9~ί(ai+1)epf. Then

Therefore the condition 2) means that S~1(air)epf, or, equivalently, 9~1(ai)εpf.
Thus, S~l(ai)epf for 0 ̂  i ̂  m; and, therefore, atrx = xS'^r) - d(S~ ^(a^E

xp' 4- p' for each ί,0 ̂  i ̂  m; i.e. g(x)rxεA[x; θ, d~]p'.
This implies, in particular, that there are no elements g(x) of the algebra

/l[x;ι9,cf| such that g(x)rxeu + A[x\ 99d]p' for some ueA — p'.
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It is easy to see that μr tp, stands the multiplication by elements of A from the
right: μ,,p,/lcμrp,:

rxa = r($(α)x 4- da) = 9(a)rx + rdaeArx 4- p'.

(ii) Now suppose that the ideal p' is maximal.
The ideal μftp, is two-sided.
Since 9~ (r)φpf and the ideal p' is maximal, there exists an element u of the

algebra A such that 9~1(r)uel 4-p'. Therefore,

rxu = x«9~ ̂ r)^ — yex — y 4- xp', (1)

where 7 denotes ud(9~1(r)).
Since rxweμ r?p> and xp' c μΓίί/, the inclusion (1) implies that x - yeμr^. In other

words, the ideal μr^ contains the ideal

X[χ; fl,d](χ - 7) = p' + A[x; 5,d](χ - 7).

The inverse inclusion also holds, since

(x - γ)9~ l(r)exS~ » + d(9~

Now we can see that μr p, = vγ p, is a right (hence two-sided) ideal, since not
only μrtp,A g μr,p<, but also

μr)//x g μftp.(x - y) 4- μr,p'? g vy 5

Clearly the element g(x) = ^gfjX 1 of the algebra A[x\ 9,rf] belongs to the ideal
μfιp, = vytp, if and only if g(y)ep'.

This implies that the map g(x}\- >^(γ)modp/ defines an isomorphism of the
quotient algebra A[x\ 9,d~]/μrtp, onto the field A/pf.

3.8 Corollary. Let p' be a maximal ideal of the algebra A such that 9~l(p') — p' is
not empty. Then

1) The generated by p' two-sided ideal [pr] of the algebra A[x\ 5,d] is maximal
as left (and right) ideal, For any element rep1 such that $~1(r)φpf the ideal
μr,p>'.= A[x\ $,d]p' 4- A[x\ S,d~]rx coincides with [p'].

2) Let r and r' be elements of the ideal p' such that θ~1(r)φp' and 9~1(r')φp'.
Then the element θ-l(rf)d(θ~l(r))- S~l(r)d(θ~l(rf)) belongs to p'.

Proof. 1) Clearly the ideal μrp, .= A[x\9,d]p' + A[x',9,d]rx is contained in [p']
for any rep'. If the element rep' is such that 5"1(r)εp/ then, by Proposition 3.7,
the ideal μr>p> is two-sided and maximal as a left (and right) ideal. In particular,
μrtp, coincides with [p'].

2) Let φ denote the canonical epimorphism A -> A/p'.
According to the first statement of this corollary, μ r?p< = [p'] = μr'tp>.
On the other hand, it is clear that the ideals μr>p' and μr,tp, coincide if and only

if the images of x with respect to the corresponding epimorphisms A [x; θ, d] -* A/p'
coincide. Clearly these images are φ(d(9~ 1(r)))/φ(5~ ») and φ(d(&~ ί(rf)))/φ(9' ^r'))
respectively. They are equal each other if and only if 9~1(r')d(9~ί(r)) —

^ep'.



582 A. L. Rosenberg

3.9 Proposition. Let pf be a maximal ideal of the algebra A such that, for any
positive integer n, there exists an element αep' such that 9n(a)φp'.

Then any proper left ideal of the algebra A[x\ 9, d], which contains p', is contained
in [p'l

Proof, (i) Note that the condition 9(p') — p' is not empty implies that 9~ ί(pf) — p'
is not empty.

Indeed, since the ideal p' is maximal, the ideal 9~i(p') is also maximal. Therefore,
the inclusion 9~ l(pf) g p' means that 9~l(p') coincides with p'. But then 9(p') = p'.

(ii) Let m be a left ideal of the algebra A[x\ $,d], which contains p'. Suppose
that m is not a subset of [p']. Then the ideal m has an element of the form u + g(x)rx,
where r is an element of p' such that 9~1(r)φp', and ueA — p'.

In fact, the ideal [p'] coincides with the ideal μftp, = A[x\ $,d]p' + A[x\ 5,d]rx
(cf. the point 1) of this proof); and the ideal μrp, is equal to p' + A[x\ $,d](x — y)
for an appropriate element ye ,4(cf. the proof of the statement (ii) of Proposition 3.7).

Every element / = f(x) of the algebra A[x\ 9, d] can be represented in the form
/M = /ιM(* — y) + fly)f°rsome element/1(x)e^l[x; ι9,d]. Since fι(x)(x - y)ep' +
A[x\ 9, d](x-γ) = μr,p>, the polynomial/Ί(x)(x - y) belongs to g(x)rx + A[x\ 9, d]p';
and, therefore, f(x)ef(y) + g(x)rx + A[x;S,d]p'. If/(x) belongs to a left ideal m
and /l[x; ι9,d]p' c m, this inclusion means that f(γ) -f 6f(x)rxem.

On the other hand, the equality p'+ A[x;9,d'](x — γ) = μftp. shows that
f(x)Φμr,P'

 if and only if /(y)e^ - p'.
(iii) Now we need the following lemma, which, having in mind some further

applications (cf. Sect. 4), we give in a slightly more general form than strictly
necessary for Proposition 3.9.

3.9.1 Lemma. Let p' be a maximal ideal of the algebra A. Suppose that there exists
a positive integer N such that, for any n, 1 gj n ̂  N, an element αep' can be found
with the property: 9n(a)φp'.

Then for any element g(x) of the ring A[x; $,d] such that deg(#(x)) ̂  N — 1 there
exists an element aεA — p', for which ag(x)rxεA[x\ 9,d~]p'.

Proof. 1) Let deg(#) = 0; i.e. geA. By condition there exists an element aep' such
that 9(a)φpf. We have:

9(a)grx = gr(xa — d(a)) = grxa — d(a)reA\_x:> 9, d~]p'

since a and r are elements of p'.
2) Suppose now that the statement is true for polynomials of degree less than

n - 1, 2 g n ̂  JV; and let g(x) = bx"~1 4- #ι(x), where deg^J ̂  n - 2. By condition
there exists an element α'ep' such that 9n(a')φp'. Now,

9n(a')g(x)rx = b9n(a')xn~1rx + 9"(a')g1(x) = bxn~19(a')rx + g~ (x),

where g~(x)=3ft(a')gί(x)- X xn~i~1d(9i(af))xi.
O i i ^ n - l

As it has been shown in 1), 9(a')rxeA[x\ $,d]p'. Since deg(g~)^n — 2 then,
by induction hypothesis, an element aΈA — p' can be found such that
a"g~(x)rx€A[x\9,d~]p'. Therefore

a" ff*(a')g(x)rx - a"bxn^: 9(a')rx + a"g^(
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It remains to notice that, since p'eSpec.4, the element a"9n(a') does not belong
to p'.

(iv) Let the left ideal m contain the ideal A[x;9,d]p' and an element of the
form u + g(x)rx, where ueA — p'. According to the heading (iii) of this proof, there
exists an element aeA — p' such that ag(x}rxEA[x\ S,d~\p'. Hence au = a(u + g(x)rx) —
ag(x)rx is an element of the ideal m. But aueA — p'. This implies, since the ideal
p' is maximal, that m z> Aau + p' = A. Therefore m = A[x\ 9, d~\.

4. The Restricted Algebra of Skew Differential Operators
and Its Left Spectrum

4.1 Definition. Let, as before, & be an automorphism of a commutative noetherian
algebra A and d a 9-derivation. Fix a positive integer N and an element p of the
algebra A. With this data one can connect the restricted, or N-restricted, algebra
AN p[x; ι9,d] of 3-skew differential operators defined as the quotient of the algebra
A [x; 9, (Γ\ by the two-sided ideal generated by XN — p.

Note that this definition is not so harmless as it seems to be at the first glance.
In fact, since the algebra A is commutative, the relation XN = p imposes, that

θN(a)xN = xN3N(a) for any aeA.

On the other hand, we know from Lemma 3.1 that

9"(a)xn = x"a- £ xn-i-1d(9i(a))xi (l.n)

for any positive integer n. Therefore, if we want the powers x, x2, ...,xN~l to be
independent over A (and we certainly do), we have to impose some additional
relations; at least those, which come from the requirement of the independency
and from the Eq. (l.n):

SN(a) = a for each aeA; i.e. SN = Id; (1)

= 0 for each aeA; (2)

(cf. Propositions 3.4 and 3.5)

φij(a) = 0 for every aeA, Q^i^j^N, (3)

where the functions φitj are determined by the relations:

φ0» = α; φ^(a} = (- d^~l}\a\

φi,i(a) = Ψi-ι,i-ι($-1(a)) for i^ l ; (4)

for i ̂  1, 0 ̂  ^ i - 1 (cf. Proposition 3.5).
Besides, the relations px = XNX = XXN = xρ = 9(p)x + d(ρ) and the requirement

"x is a non-zero divisor" imply that p is a fixed "point" of the automorphism &
and of the ^-derivative d: θ(p) = p, d(p) — 0. All together these conditions are
equivalent to the following one:

(*) the elements XN and p of the algebra A[x\ θ,d~] are central.
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4.2 Lemma. Suppose that the relations (l)-(3) hold, and 9(p) = p. Then the elements
1, x, x2, . . . , XN~ 1 form a basis ofANp[x\ $, d], considered as a right or left A-module.

Proof. In fact, since the elements XN and p are central, the determining algebra
y4Np[x;,9,d] (in A[x;9,d']) two-sided ideal is a left (and right) principal ideal,
generated by XN — p. The equality £ a^^Q in AN p[x\3,d] means that the

l ^ i ^ n
polynomial (an element of A[x\9,d}} g(x)= £ atx

l belongs to the ideal

l ^ i ^ n
A[x; S, d](xN - p). This implies that g(x) = 0 if degfe) ̂  N - 1.

Further on we will include in the notion of N-restricted algebra AN p[x; 5,d]
of skew differential operators the requirement θ^ = Id and the rest of conditions
of Lemma 4.2 (i.e. the condition (*) above).

4.3 Example. Restricted Quantum Heίsenberg Algebras. Let now Hqh = Hqth[_x]
be a quantum Heisenberg algebra, q.hek. By definition, a necessary condition for
the existence of TV-restricted quantum Heisenberg algebras is q being a Nth root
of unity: qN = 1. This condition is also sufficient.

Indeed, y x" = q~"xny - xn~lh(\ - q~n)/(l - q) for any integer n ̂  1 (cf. 3.6).
In particular, yxN = xNy if qN = 1. Therefore the monom XN belongs to the center
of the algebra Hqh.

Suppose that qN = 1, but qn Φ 1 for 0 ̂  n ̂  N — 1. Clearly an element p of the
algebra k[y~\ is ^-invariant if and only if it is a polynomial in yN. If q φ 1 and
h Φ 0, then the polynomial /(y) is q^. -in variant if and only if d(f) = 0. If q = 1 (and
h Φ 0) then d(/) = 0 if and only if deg(/) = 0.

4.4 Restriction by Changing the Base. We have introduced the restricted algebras
of 5-skew differential operators to study the spectrum and irreducible
representations of non-restricted algebras A[x\ &,d] in case when &N = Id for some
N. The corresponding reduction is made as follows.

Let the algebra A[x\ 3,d~\ admit a N-restriction; i.e. ΘN = Id and the element
XN belongs to the center of A[x\9,d~]. In particular, the generated by A and XN

subalgebra B:= A\_xN] of the algebra A[x;,9,d] is commutative. Denote by $"
and by d~ the trivial extensions on the algebra B of the automorphism S and of
the ,9-derίvation d respectively: θ ~ (XN) = xN,d~ (XN) = 0. Finally, take p:= xNeB.

Then, clearly, the algebra A[x\9,ά} coincides with the N-restricted algebra

4.5 The Left Spectrum of the Algebra AN p[x: 5,d]. We suppose that the algebra
A is noetherian and the conditions of Lemma 4.2 hold; i.e. 3N = Id, and XN, p are
central elements of the algebra ANtf>[_x\ 9,d}. Thanks to the noetherian condition,
we can (and will) take into consideration only those peSpecf AN p[x\ 5, d], for which
the intersection pr\A belongs to Spec ,4.

There are two possibilities for an ideal peSpec^ AN >p[x; θ, d~\: either (a) p n A ^ 0,
or (b) pr\A — 0. Consider each of them.

(a) The set of all the left ideals p from Spec, AN p[x; 9,d] such that pr\A is a
nonzero prime ideal of A9 is described by the straightforward analogues of
Propositions 3.4, 3.5, 3.7 and 3.9, which we formulate here for the convenience of
the reader.
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4.5.1 Proposition. Suppose that p' is a prime ideal of the algebra A satisfying the
following conditions:

(a) p' is invariant with respect to 9;
(b) for any integer n such that 1 ̂  n ̂  N — 1, there exists an element rep' such

that
X 9~*d(ff(r))φpr. (I)

Then
1) The left ideal p — AN p[x\9,d~]p' belongs to the left spectrum of the algebra

Λ^lx ^d-].
2) The left ideal p = Aχ^p[x\ 5, d]pf is maximal if and only if the ideal p' is

maximal.

Proof is a repetition of the proof of Proposition 3.4.

4.5.2 Proposition. Let p' be a prime ideal of the algebra A satisfying the conditions
of Proposition 4.5.1. Then

1) The quotient module Vp':= ΛN>p[x; 5, </]/p is the direct sum of its k-submodules
y. = xlV0, 0 ̂  i g N — 1, where V0 is the image of A with respect to the canonical
epimorphίsm AN p[x\ $, d] -> Vp ' .

The action of ΛNp[x;ι9,d] is given by the formulas:

X'(xiv) = xi+iv9 a'(xlv)= £ xj(pij(a)-v (2)

for any veV0, aeA and 1 g i g N — 1, where the functions φitj (from A to A) are
determined by the relations:

f°r i^b

2) The left ideal p = ANίp[x; ι9,rf]p' is maximal if and only if the ideal p' is
maximal

Proof follows the argument of the proof of Proposition 3.5.

Denote by B the algebra AN p\_x;θ,d'].

4.5.3 Proposition. Let p' be a prime ideal of the algebra A; and let there exist an
element rep' such that θ~ί(r) does not belong to p'. Then

(i) The left ideal μr^-\= Bp' + Brx of the algebra B contains properly the left
ideal Bpf and μrtp,nA = p'.

Besides, μr>p> is a right A-module: μr^p>A = μr^pl.
(ii) // the ideal p' is maximal then the left ideal μrjp> is two-sided. The quotient

algebra B/μrtp, is naturally isomorphic to the field A/p'. In particular, μrp, is maximal
as a left (and right) ideal.

4.5.4 Proposition. Let p' be a maximal ideal of the algebra A such that 9n(p') is
not a subset of p', for any positive integer n, l^n^N — 1.
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Then any proper left ideal of the algebra ANp[x\9,d'], which contains //, is
contained in the two-sided ideal [//] generated by p'.

(b) Consider now the set of the left ideals p from Specz/lNp[x; £,d] such that

Since the ideal p n A is prime, the condition p n A = 0 implies that A is a prime
ring. The localization Q at the set A\{0} sends the algebra AN ,p[x;$,d] into the
algebra QAN ,p[x;ι9,d] over the skew field of quotients QA, and the ideal p into
the left ideal Qp from SρectQAN p[x; 5,d].

According to Lemma 4.2, βANp[x;ι9,d] is a ^-dimensional algebra over the
field QA. Again we have two possibilities: p = 0 and p =£ 0.

4.5.5 Lemma. Lei ρ = 0; i.e. x^ = 0. Then any left ideal from SpeCj(MNp[x; $,d]
is equivalent to

Proof. The left ideals from SpQCtQANtp[_xι $,d] are exactly the left maximal
(principal) ideals (M[x; «9,d]r, which contain XN; i.e. XN = /(x)r(x). Clearly this
implies that the irreducible element r(x) of the algebra (λ4[x;θ,d] is equivalent
to x.

4.5.6 Lemma. Let XN and peA\{0} be central elements of the algebra γ4[x;$,d].
Then the set of all the maximal left ideals of the algebra AΉp[x\S,d~\ strictly
containing XN — p, consists of

α) all the (two-sided) ideals, my:= m + A\_x, $,d](x — y), where mεMaxA,pφm,
and ye A is such that yN — pern and y(a — 9(a)) — d(a)emfor every αem;

β) the left ideals A[x\ $, d] n β/1 [x; 9,d~\r, where r = r(x) is an element of
A[x\ 5, d], which is an irreducible element of the algebra QA[x\ 5, d] such that

β.l) x" - p = g(χ)r(x) for some g(x)εQA[_χ 5,d]\βX;
β.2) r(γ)φmfor every weMax A and every γeA\m such that y(a — &(a)) — d(a)em

for every αem.

Proof.
(1) Suppose that XN — p is not an irreducible element of the algebra QA[x\ $, d].

Then XN — p — /(x)r(x), where r(x)e^[x; $,d] is an irreducible element of the
algebra QA[x; 5,d] such that deg(r(x)) < N.

Denote by m<r> the preimage of the ideal QA[x\ 9, d]r in ^[x; 5, d]. There are,
as usual, two possibilities; either m<r> is a maximal left ideal or not.

If not, then the ideal w<>> is contained in some maximal left ideal μ of the
algebra Λ[x, $,d] such that μr\A is a maximal ideal of the algebra A.

If the ideal μnA were ι9-invariant then, by Proposition 4.5. l,μ = ,4[x; &,d~](μr\A).
In particular, the element XN — p belongs to A [x; $, d] (μ n A). But this is, obviously,
not the case.

Hence the ideal μr\A is not ^-invariant. Then, by Proposition 3.7, there exists
yeA\μ such that

Or, in other words, the ideal μ consists of all the f(x)eA[x; $,d] such that
nA As a sequence, taking f(x) = xN — ρ, we obtain the relation:

N — peμr\A.
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4.5.6.1 Sublemma. Let m be a maximal ideal of the algebra A such that pφm, and
there exists ye A, for which

y(a — S(a}} — d(a)em for any aem. (1)

Then
(i) my:= m 4- A[x; $,d](x — γ) = {f(x)eA[x; 99d']:f(γ)em} is a t\vo-sided ideal in

A[x\ $,d], which is maximal as a left (and right) ideal;
(ii) The following conditions are equivalent:

a) the ideal my contains XN — p\
b) yN — pern for some y, satisfying the condition (1);
c) yN — pern for any y, satisfying the condition (1).

Proof. For any maximal ideal m of the algebra A and an element ye A, the left
ideal my is proper if and only if y(a — 9(a)} — d(a)em for any aem. It is easy to see
that if the ideal my is proper then it is maximal as a left ideal.

If y, y~ are elements of A such that y(a - 9(a)) - d(a)em and y~(a - <9(α)) - d(a)em,
then (y — y~)(α — θ(a))em for any aem. Since, by condition, the ideal m is not
^-invariant, a — d(a) does not belong to the ideal m for some aem. This implies,
since the ideal m is prime, that γ — fern.

Conversely, if y(a — θ(a)) — d(a)em and y~ is an element of A such that y — fern,
then y~(α - $(α)) - d(ά)em.

We know from Proposition 3.7 that the ideal my is two-sided. This and the
considerations above imply that my = mγ~ if y — y~em. It follows also from the
equality

Now the equivalence of the conditions a), b), c) in (ii) follows immediately.

•
Thus, if the element XN — p is reducible then the set of the left maximal ideals

containing XN — p consists of
α) two-sided maximal ideals, my:=m + Λ[x;5,d](x — y), where weMaxA,

pφm, and ye A is such that yN — pern and y(a — S(a)) — d(a)em for every aem\
β) the left ideals ,4[x;<9,d]n<2/4[x; $,d]r, where r = r(x) is an element of

v4[x; $,d], which is an irreducible element of the algebra QA[x; $,d] such that
β.l) xN-p = g(x)r(x) for some g(x)eQA\_x; 5,d];
β.2) r(y)φm for every weMax A and every yeA\m such that y(a — 9(a)) — d(a)em

for every aem.
(2) Let now XN — p be an irreducible element of the algebra QA[x; 9,d~\. Then

the set of the maximal left ideals, strictly containing XN — p, consists of all the
two-sided ideals

mγ:= m + A[x\ 5,d](x - y) = {/(x)€^[x; 5,d]:/(y)em}, (2)

where meMax^4, pφm, and ye A is such that yN — pern, y(a— 9(a)) — d(ά)em for
every aem.
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