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Abstract. In this work we study the behavior of embedded eigenvalues of Sturm-
Liouville problems in the half axis under local perturbations. When the derivative
of the spectral function is strictly positive, we prove that the embedded eigenvalues
either disappear or remain fixed. In this case we show that local perturbations
cannot add eigenvalues in the continuous spectrum. If the condition on the
spectral function is removed then a local perturbation can add infinitely many
eigenvalues.

Introduction

Let us consider selfadjoint realizations of differential expressions of the form

(lu) (x) = - u"(x) + q(x)u(x), x e [0, oo),

where q is a real valued, locally integrable function defined in [0, oo). The end point
0 is regular and we assume that the limit point case occurs at oo. We are interested
in studying the behavior of embedded eigenvalues when we add a function of
compact support to the potential q.

In some way these local perturbations are very natural and the operators
considered are very simple since they are second order ordinary differential
operators. Nevertheless the behavior of embedded eigenvalues in this case is not
yet completely understood.

The main hypothesis of this work is that the spectral function of the
unperturbed operator should have a positive derivative. This prevents the
occurrence of new eigenvalues and allow us to prove that the remaining
eigenvalues cannot move.

Since we are using tools of the theory of ordinary differential equations our
results hold only for one dimension. Under other assumptions on the potentials
and for higher dimensions many interesting related results can be found in Agmon-
Herbst-Skibsted [1].
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The organization of the present paper is as follows: in Sect. 1 we define an
unperturbed operator L and the corresponding perturbed operator L using the
theorem of Gelfand-Levitan (see [9]) in a similar way as is done in [3], but here we
allow the operator L to have embedded eigenvalues. We end this section stating
formally the result mentioned above.

In Sect. 2 with the help of several lemmas we give a proof of the theorem stated
in Sect. 1. The main point is to generalize some results of [3] which allow us to
prove that the eigenvalues of the perturbed operator are contained in a certain
discrete set. Among other results this enables us to prove that the embedded dense
point spectrum disappears under any local perturbation.

In Sect. 3 we prove that some local perturbations will remove embedded
eigenvalues.

In Sect. 4 we give some examples of potentials which generate operators with
embedded eigenvalues in the continuous spectrum and which have the property
that any local perturbation cannot add embedded eigenvalues.

1. Construction of the Unperturbed and Perturbed Operators

Let us construct operators L and L in the following way. Let {λn}™=1 be an
arbitrary sequence of real numbers and let

^:1R->R for i = l,2,3

be non-decreasing functions such that

a. ρx is absolutely continuous in /„ for n = l,25... and

dλ λeIΛ

holds, where /nClR are intervals, not necessarily disjoint, such that λneln,

b.

n=l

oo

where an are positive numbers such that £ an< °° an<3 #:R-»R is defined as
«=ι

follows:

O if

c. ρ3 is singular continuous in /„, n=l,2, ... or ρ3=Q.
d. The function ρ: = £ι+ρ2 + £3 satisfies the hypotheses of the theorem of
Gelfand-Levitan (see [9]).

Definition of L. By (d), we know that there exists a differential operator L with
spectral function ρ, defined by the differential expression

(lu) (x) = - u"(x) + q(x)u(x) , 0 ̂  x < oo ,
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where #:R+-κIR is continuous, and the boundary condition

u(0) cos α + w'(0) sin α = 0 .

The limit point case occurs at oo.

Remarks.

1. If we choose, for example

fO if λ^O

and an, rc = l,2, ... small enough, then we can take {λΛ}"=1 to be any arbitrary
sequence of positive real numbers and the function

will satisfy the hypotheses of (d). See [6], p. 101.

2. The sequence {λn}£L 1 could be finite (we have only to choose λn = λn +1 = λn+2...
for some n).

3. The constant N can depend on /„.

Definition of L. Let tr.R+-»R be a locally integrable function with compact
support S C R+. Let us define the selfadjoint operator L as the one generated by the
differential expression

Tu=— u" + {q(x) + v(x)}u xe [0, oo)

and the boundary condition

u(0) cos β + κ'(0) sin β = 0 β e [0,2π).

The limit point case occurs at oo since this happens for L.
We are interested to see how the embedded eigenvalues λw n = 1,2,... behave
under the local perturbation v.

We shall prove the following result.

Theorem 1. Besides λn, n = 1,2,... (which are eigenvalues of L) no other point in

00

/= U 4
n=l

can be an eigenvalue of L. The spectrum of L in I\{λn\n=ί,29...} is purely
absolutely continuous.

We shall need first some definitions and some lemmas.

2. Proof of Theorem 1

For peR and θ,ye[0,π), let us define the regular operator Πθ as the operator
generated through the differential expression
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and the boundary conditions

u(p) cosy + u'(p) sin y = 0 .

Similarly we define the operator EQ as the operator generated by the differential
expression

Tu = - u" + (q(x) + v(x)}u O^x^p

and the boundary conditions

u(p) cosy + u'(p) sin 7 = 0 .

Lemma 1. Let γ'9 ye[0,π), y'φy. // μ is an eigenvalue of Eθ then μ cannot be an
eigenvalue of Πθ.

Proof. Let φ(x9 μ) be the eigenfunction of Πθ corresponding to the eigenvalue μ.
Assume that μ is also eigenvalue of Eθ and let ψ(x,μ) be the corresponding
eigenfunction.

Since φ and \p are solutions of

and satisfy the same boundary condition at zero their Wronskian is zero and they
are linearly dependent. Hence it follows that they satisfy the same boundary
condition at p and we have a contradiction since y'φy. Q.E.D.

This lemma holds also for ZJΘ, Πθ.
Let δ be an arbitrary but fixed point of [0,π) and choose peR such that

S C (0, p\ where S is the support of v. Let α and β be as in the definition of L and L.
Let {uι(x9z\ u2(x,z)} be a fundamental system of solutions of

fc = l, 2 and 0^

such that

M1(0,z) = sinα,

,z)= — cosα,

u'2(p,z)= —cos δ

holds.

Analogously, let (β^z), ύ2(x,z}} be a fundamental system of solutions of

(Tuk)(x) = zuk(x) fc = l,2

which satisfies

u'i(Q9z)=-cosβ,

u2(p,z) = sίnδ,

ύ'2(p,z)= —cosδ.
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Now, for all n e N let

= or

or

where W denotes the Wronskian evaluated for some x>p.
The points of An are isolated since they are roots of analytic functions which are

not identically zero. To see this, assume that W(ul9 u 2 ) ( ' ) = 0 holds. Then it follows
that every point is an eigenvalue of ΰΛ and we have a contradiction. In the same
way it can be seen that W(ul9u2)( ) is not identically zero.

If αΦ β orj φO then it follows that the spectrum of ί?α is different from the
spectrum of Έβ (see for example the end of [5]) and this implies, similarly to
Lemma 2 of [3], that W(ul9ul)( ) is not identically zero.

The set An depends on the boundary condition satisfied by u2 and ύ2 at the point
p. In order to make this dependence explicit we shall write An(δ).

We shall denote by m(z) the Weyl-Titchmarsh-Kodaira coefficient of L with
respect to ul9u2. By ρ we denote the spectral function ofL.

Lemma 2. // α Φ β or v φ 0 and λeln is an eigenvalue of L, then λ e An(δ) for every δ
in [0, π).

Proof. Assume λ φ An(δ) for some δ e [0, π). Similarly to Lemma 4 of [3] it can be
proven that it is not possible to have

lim
ε i O

(See Remark 4 at the end of the proof.)
On the other hand, since λ is an eigenvalue of L we have that ρ is discontinuous

at λ and therefore the symmetric derivative equals infinity, i.e.,

«),JP
ε io 2ε

Since λ e In\An(δ) we have W(ul9 U2) (λ) φ 0 and from here it follows, as in the proof
of Lemma 7 of [3], that

lim \m(λ + iε)| = oo .

Therefore we have a contradiction and λ e An(δ). Q.E.D.

Remarks

4. The critical step in the proof of Lemma 4 of [3] is an estimate which depends on
the inequality

aλ

The particular form of the non-decreasing function ρ2

 and of the boundary
condition satisfied by u2, u2 at p is not important in the proofs of Lemmas 1-4 and 7
of [3]. In fact, to conclude that ρ is absolutely continuous, it is only necessary to
have the inequality above and ρ continuous.



426 R. R. del Rio Castillo

5. If some bounded interval /„ contains an infinite number of embedded
eigenvalues of L, then any local perturbation is going to leave only a finite number
of them. This follows from the fact that if λ e /„ is an eigenvalue of L then, from
Lemma 2, we know that λ e An(δ). Since the points of An(δ) are roots of analytic
functions and /„ is bounded we have that An(δ) is finite and, therefore, L has at most
a finite number of eigenvalues in /„. This happens in particular if we have a dense
point spectrum in /„. If the eigenvalues are not embedded, then for any local
perturbation we may have an infinite number of eigenvalues. This happens for
example if the spectrum of the unperturbed operator consists of isolated
eigenvalues in a bounded interval which accumulate to a point of the interval. This
is a consequence of the fact that the essential spectrum is preserved under local
perturbations.

Lemma 3.

<5e[0,π)

Proof.

"C": We need only to observe that ύ^u^ do not depend on δ.
" D ": Take λ e f| An(δ) and assume W(ul9 uj (λ) φ 0. Take δle[09 π). Then

<5e[0,π)

we must have W(ul9u2)δί(λ) = Q or W(ul9u2)δ2(λ) = Q.
We have written the subscripts δl9δ2 to stress the fact that the Wronskians

depend on the choice of δl9δ2 since u2 and ύ2 do.
Without loss of generality, assume that Wδί(ul9u2)(λ) = Q holds. This implies

that λ is an eigenvalue of ί̂ 1. If we take <52 Φ δl9 δ2 e [0, π), then using Lemma 1 it
follows that λ cannot be eigenvalue of I?α

2 and therefore we have W(ul9 u2)δ2(λ)=0.
This implies that λ is an eigenvalue of Bα

2. If we choose δ3 e [0, π) different from (5X

and δ2 we have, again using Lemma 1, that λ cannot be an eigenvalue of 2?α

3 and λ
cannot be an eigenvalue of ί?α

3 either. This implies that

W(ul9ύ2)δ3(λ)^Q and W(ul9u2)δ3^Q.

Together with the assumption W(ul9 uγ) (λ) φ 0 it follows that λ φ An(δ3) which is a
contradiction. Q.E.D.

00 ^

Proof of Theorem 1. Assume λ e/= (J /„ is an eigenvalue of L. From Lemma 2 it
n=ί

follows that λe f| An(δ) for some n e N.

Using Lemma 3, we obtain that W(uί9 uj (λ) = 0 holds. From here it follows that

where k is a constant, for x ̂  p. Hence, λ is an eigenvalue of L. Now, take an interval
/' C I\{λn I n = 1,2,...}. The inequality

dλ

holds in /'.
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Since ρ2 is constant in /' we have that Q = Qι + Q2 + Q3 is continuous in /'.
From here it follows,^as in [3] (see Remark 4), that ρ is absolutely continuous
in /'. Therefore L has purely absolutely continuous spectrum in

n = \,2,...}. Q.E.D.

The function W(ύly MJ) ( ) is an entire function of order less than or equal to \
(see [7], Sect. 4, Prop. 1). From the factorization theorem of Hadamard we know
that the roots rn of W(ui9 uί)( - ) satisfy

Σ \rjf<oo
n = l

for some integer θ> — f.
Assume now, for example, that L has embedded eigenvalues {Aπ}£°=1 and

lim λn = co. If λn, n = 1,2, ... are also eigenvalues of the perturbed operator L,
n~* oo

then we must have W(ΰl,u1)(λn) = 0, n = 1,2, ... and, therefore,

ΣW^oo (i)
n

must be satisfied.
If we choose for example λn = 0(ri*) with 0<α:gl then condition (1) is not

satisfied and therefore there are infinitely many λn which cannot be eigenvalues of
L. In other words, infinitely many embedded eigenvalues disappear under any
local perturbation.

Corollary. I f v = 0 and α φ β then L has no embedded eigenvalues in L

Proof. From the theorem it follows that λ must be an eigenvalue of L if λ e I is an
eigenvalue or L. It can be seen directly or by applying Theorem 4 of [2] that it is
not possible to have the same eigenvalue for two different boundary conditions.
Therefore the conclusion of the corollary follows. Q.E.D.

3. Another Result

From Theorem 1 we know that local perturbations cannot add eigenvalues in /.
The question then is whether embedded eigenvalues can disappear under these
perturbations. The next theorem asserts that this happens for many perturbations
but not for all. Assume φ is an eigenfunction of L with corresponding eigenvalue λ.
Let peR be such that Sc(0,/?), where S is the support of the perturbation v. Let
γ E [0, π) be such that

φ(p) cosy + φ'(p) sin 7 = 0

holds.

Theorem 2. λ is an eigenvalue of Loλ is an eigenvalue of Πβ.

Remarks

6. We need only assume that L is in the limit point case at oo and that λ is an
eigenvalue of L. The theorem holds without any other assumption on the spectral
function of L.
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7. The point λ is an eigenvalue of L7

α. Therefore the theorem asserts that λ is an
eigenvalue of L if, and only if, the local perturbation is such that the regular
operators Lv

α and Πβ have the common eigenvalue λ. Therefore, not every local
perturbation is going to make the eigenvalue λ disappear but there are many for
which this property holds.

Proof of Theorem 2.

<=) Let ψ be the eigenfunction of Πβ corresponding to the eigenvalue λ. Let us
define χ as the solution of

which satisfies

Now, let us construct φ as follows:

{ ψ(x) if 0 ̂  x ̂  p

χ(x) if p ̂  x < oo .

We shall prove that φ is an eigenfunction of L with corresponding eigenvalue λ.
Since φ and φ' are absolutely continuous in [0,p], χ and χ' are absolutely

continuous in every bounded subinterval of [p, oo) and χ(p) = tp(p), χ'(p) = Φ'(p), it
follows that φ is continuously differentiable in [0, oo) and that φf is absolutely
continuous in every bounded subinterval of [0, oo).

From the definition of φ it is obvious that φ satisfies the boundary conditions at
zero. So we have only to prove that φ is in L2(0, oo) in order to have that φ is an
eigenfunction of L.

From the construction of φ it follows that

φ(p) cosy + φ'(p) siny = tp(p) cosy + φ'(p) siny = 0. (2)

Now, the eigenfunction φ which satisfies

Lφ = λφ

also satisfies the boundary condition (2). If we calculate the Wronskian of φ and φ
at the point p we obtain

W(φ, φ) (p) = Φ(p)φ'(p) - φ(p)Φ'(p) = 0

since φ and φ satisfy the same boundary condition at p. Therefore, there exists k
such that

φ(x) = kφ(x) p^x<oo

and, since φeL2(p, oo), it follows that φeL2(p, oo).
Now, from the definition of φ, it follows that

and, therefore, λ is an eigenvalue of L.
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=>) Let us assume that φ is the eigenfunction of L corresponding to the
eigenvalue λ. We know that there exists α e [0, π) such that

cos αφ(p) + sin αφ'(p) = 0

holds.
If α = y then it follows that λ is an eigenvalue of Ώβ9 since φ satisfies in this case

the boundary condition at p.
Assume that α φ y. In this case we have that φ and φ are linearly independent

functions in [p, oo) since, otherwise, we would have a constant k such that

φ(x) = kφ(x) p ̂  x < oo

holds and this would imply that φ and φ satisfy the same boundary condition at p.
Since φ and φ are linearly independent and are solutions of

, (3)

it follows that for every solution u of (3) there exist constants cl9c2 such that

u(x) = c ! φ(x) + c2 φ(x) p ̂  x < oo

holds.
Since φ and φ are in L2(0, oo), we have

J |«(ί)|2A= ? \

<00,

and therefore weL2(p, oo) for every solution u of (3).
Since L is in the limit point case at oo, we know that there always exists

uφL2(Q, oo) [and therefore uφL2(p, oo)] such that

Lu — λu

holds (Weyl's alternative). Here we have a contradiction and, therefore, we have
α = y always. Q.E.D.

4. Some Examples

Example i. Let g0(x) be a periodic potential in [0, oo). Let φ0(x9λ) denote the
solution of the initial value problem

Choose λQ E S where S is the set of stability intervals and consider

d
2*°~dx

l+α 0 f
o

where α0 > 0.
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Now, let us define the unperturbed operator L as the one generated by the
differential expression

(/w) (x) = -u" + q(x)u 0 ̂  x < oo

and the condition

«'(0)=(Λ0-α0χθ).

The spectral function ρ of L has the form (see Levitan [8, p. 45])

where ρ0 is the spectral function of the operator L0 generated by

-u" + q0(x)u

and

In other words, the operator L has the same spectrum as the operator L0 except for
the embedded eigenvalue λ0.

It can be proved that

dλ
where /„ is an arbitrary stability interval and Γn is an arbitrary compact interval
such that ΓnCln.

Now, if v(x) is a function with compact support and we consider the operator L
generated by the differential expression

and the boundary condition

then, from previous theorems, we know that the embedded eigenvalue A0 can
disappear or remain fixed depending on how we choose v and that L cannot have
other embedded eigenvalues.

Example 2. Let qQ(x) be a potential in [0, oo) which admits the following
decomposition:

where qv( ) is of bounded variation in [c, oo) with qι(x)-+0 for x->oo,

where ce(0, oo) (see [10, p. 233]).
It can be also be proved that

dλ λel

where / is an arbitrary interval such that /C(0, oo) (see [4]).
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If we construct the operators L and L exactly as in the preceding example then,
from previous results^ we know that the embedded eigenvalue λQ can disappear or
remain fixed but cannot move in (0, oo).
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