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Abstract. We consider random walks on Zd with transition rates p(x, y) given by a
random matrix. If p is a small random perturbation of the simple random walk, we
show that the walk remains diffusive for almost all environments p if d>2. The
result also holds for a continuous time Markov process with a random drift. The
corresponding path space measures converge weakly, in the scaling limit, to the
Wiener process, for almost every p.

1. Introduction

Random walks are probably the most extensively studied models of non-
equilibrium behaviour. On a lattice Zd, a random walk is defined by a matrix
p(x, y\ x,yeZd giving the probability of jumping from x to y at each time. The only
constraints on p are

(1)

) = l V x . (2)
y

Usually one considers walks on homogeneous environments, which means that

p(χ,y)=p(χ-y) (3)
For a random walk in a random environment (RWRE), p is a random matrix. The
randomness models the effect of impurities on a physical system, and one would
like to study properties of the walk (e.g. its long time asymptotics) for almost every
sample p.

Apart from its obvious interest in the study of diffusion in non-homogeneous
media, RWRE may be considered as a simple model related to various other
physical situations. These include Anderson's tight-binding model for disordered
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electron systems, deterministic motion among random scatterers (the Lorentz gas),
or the time evolution of disordered systems.

In this paper we consider a RWRE, where p is a small short range random
perturbation of a homogeneous walk. We can deal with rather generic such
perturbations, but the most interesting is the one where the environment is
asymmetric: p(x,y) and p(y,x) are independent. For such walks we show that
normal diffusive behaviour takes place iϊd>2: the diffusion constant is non-zero
and independent of p for almost all p. Also, the (long time) scaling limit of the walk
is the Wiener process.

The continuous time analog of random walk is Brownian motion. The analog
of RWRE is the Markov process (on the state space Zd), with generator

A+!>•?, (4)

where fΓis random. Thus, the transition probability P(x, ί) in time t from origin to x
satisfies the Fokker-Planck equation

dtP = ΔP-V (ζP}. (5)

Our results extend to such Markov processes for a distribution of S whose
covariance equals

E(bΛ(x)bβ(y)) = ε2δΛβδxy (6)

with ε small, and d>2.
One of the first results on asymmetric RWRE is due to Sinai [1]. He showed

that, in one dimension, the effect of the asymmetry in the environment is drastic:
the mean square displacement is typically of the order (logί)4, instead of t in the
homogeneous environment.

This result prompted investigations and some controversy about the behaviour
in higher dimensions. Some numerical work [2] indicated logarithmic behaviour
in d = 2, for strong disorder. Subsequently, perturbative renormalization group
computations were performed [3-5] which gave support to diffusive behaviour in
d^2. The argument showed that the zero disorder (homogeneous) fixed point is
stable: upon scaling space and time, the effective disorder renormalizes to zero. On
dimensional grounds this is easy to understand for d > 2. If we define P'(x, ί)
= LdP(Lx, L2t\ where P solves (5), then P' solves (5) with a new noise ff = LdS(Lx'). If
we replace the state space by Rd and if S is white noise, then

E(b'a(xWβ(y}} = ε2L2~dδΛβδ(x - y). (7)

Of course, to make sense of this argument one has to regularize the delta
function and replace scaling by a renormalization group (RG) analysis. In d = 2, a
second order computation in the disorder reveals the irrelevancy of the disorder
[3]. Of course the perturbative RG can be argued to be reliable at most for small
disorder. However, in [3], it was argued that the large disorder fixed point is
unstable under the RG, and, thus, this gives plausibility to the claim that the walk
is diffusive for all (local) disorder.

This claim was subsequently challenged [6,8] by explicit counterexamples. In
[6], environments with long-range correlations were constructed which have
logarithmic behaviour like the one found by Sinai in d = 1. These models do not fit
into the framework discussed above due to the non-localities. However, they can
be understood in the RG framework [7] at least heuristically.
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An important problem in the asymmetric walk is the presence of traps, i.e.
regions where the walk can remain trapped for long times. Such traps will occur in
all distance scales and, if too abundant, they may produce sub-diffusive behaviour.
These traps occur in local models and were used in the counterexample of [8].
However, as we explain below (see also [7]), such counterexamples again fit very
well in the RG picture.

The trapping properties of the asymmetric environments are absent in models
of RWRE in symmetric environments, where e.g. p(x,y)=p(y,x). For continuous
time, this means that the random force S is the gradient of a stationary random
potential &= Vv. If v is white noise, then, in the formal scaling argument (7), the
power of L is replaced by — d, i.e. the noise is irrelevant in all dimensions. This is
indeed the case: in [9 and 10] it was shown that the diffusion is normal in all
dimensions and without our restriction on ε being small. These results were
subsequently extended to various lattice models [11-14].

Our proof is outlined in detail in Sect. 3. It is based on a RG analysis, somewhat
similar to the one in [15]. The RG transformation consists of decimation in time,
combined with the scaling of space and time. This transformation maps a RWRE
to another RWRE, with local transition probabilities, but weaker randomness, as
in (7). Iteration of the RG drives the system to a fixed point, given by the Wiener
process, which describes the long time asymptotics of the original RWRE.

The method should extend to d = 2, where a more detailed study of the RG in
the small disorder region is required. The proof given below works, formally, in
d = 2 + ε for all ε > 0. We hope to be able to use the method to study the emergence
of stochastic (diffusive) behaviour in deterministic models such as the Lorenz gas
and lattice versions thereof.

In Sect. 2, we state our results. The ideas of the proof are explained in detail in
Sect. 3, where the outline of the rest of the paper is given.

2. The Model and the Results

A random walk on Zd is described by the transition probabilities p(x, y) from x e Zd

to yeZd:

p:ZdxZd-+[0,ϊ] (1)

satisfying

Σpί*, jO=ι. (2)
yeZd

p allows us to define measures μτ, TeN on the space Ωτ of walks
ω: {0,1,..., T}^Zd starting from ω(0) = 0:

μτ(ω)=Hp(ω(i-l),ω(ί)). (3)
ί=l

We will study in this paper the large T properties of such measures. It will be
convenient to realize them as measures vτ on C([0,1]), the space of continuous
paths ω: [0,1] -»Rd, by rescaling the time in a standard way. Thus, given an ω e Ωτ,
we obtain a piecewise linear path

ω(i-l))), (4)
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where i — 1 = [Tί] and [ ] denotes the integral part. vτ is the measure induced by
(4) on C([0,1]), and we will study the limit

lim vτ (5)
Γ-»oo

also called the scaling limit, and its properties. For convenience, we will consider
below times given by T=L2π for neN and L a fixed integer chosen later. We will
denote vL2n by vn for short.

A random walk in a random environment is a random walk for which the
probabilities p(x,y) satisfying (1) and (2) are random variables with a given
probability distribution. We then investigate the existence of the limit (5) almost
surely with respect to this distribution.

Let us now specify precisely the properties of p which we impose. For simplicity,
we consider nearest neighbor walks (see, however, Remark 1 after Theorem 2):

1
^+b(x,y) \χ-y\ = l

ί Λ 2d ίt\
p(x'y)= 0 |χ-y|Φi. ( )

For b = 0, (6) defines the simple random walk. From (2) we see that

3>) = 0. (7)

The b = {b(x, y)}x^eχd is a family of random variables whose distribution 0* we now
describe.

(PI) Independence. We take b(x,y) and b(x',y') to be independent if x + x': order
the unit vectors in Zd in some arbitrary way: (el,e2, ...,e2d). Put

b(x) = (b(x, x + ej,..., b(x, x + e2d)) e R2d. (8)

We take [b(x)}X€Zd to be independent, identically distributed random variables with
mean zero

Eb(x) = Q (9)

satisfying (7) and (1) for p of (6). Note, in particular, that b(x,y) and b(y,x) are
independent: the environment is asymmetric

(P2) Isotropy. Let R e 0(d) be a rotation of Rd fixing the lattice Zd. This induces a
permutation π e S2d of the e/s, and thus a permutation of the coordinates of b(x),
π*b(x). Then, we require that

b(x) and π*b(x) (10)

are identically distributed (note that this and (7) imply (9)).
We next require that b in (6) is a "small" perturbation in the following sense.

(P3) The generating function of b satisfies

Eetb(x>y)^et2ε\ (11)

Finally, we impose a condition on the probability that the p(x, y)'s are near zero:

(P4)

(12)
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This is designed to avoid the walk getting "trapped" in some region of Zd, see the
discussion in Sect. 3; ε in (11) will be taken small and Γ in (12) large.

We now state the main result concerning the limit (4). Let us denote by

(13)

the transition probability density for the Wiener measure VD with diffusion
constant D. The scaling limit of our walk is given by VD for almost all environments.
The convergence takes place in at least in two senses: first of all, as Theorem 1
shows, suitable correlation functions converge, and this implies convergence of the
diffusion constant and of the finite dimensional distributions (take f(x) = eίkx

below, and use Theorem 7.6 in [16]). We consider the following class of smooth
functions:

9 = {/ε C«(Rd)\ I/Ml + 1 Vf(χ)\ £ Ce^/2} .

Then,

Theorem 1. Let & satisfy (P1)-(P4) and d>2. Then there is anε0>0 and Γ0 such that
for ε < ε0, Γ > Γ0 there exists a D > 0 such that the limit

exists and is given by

for any /x ... /ke J*, and ίx ... ίke [0, 1] ^-almost surely. Moreover, D satisfies

|D-l|^cε2. (15)

Let us define the diffusion constant in time T= L2n by

A^)=^ΣMω)ω(Γ)2 (16)
I ω

and

D(p)=limD ϊ l(p). (17)
w-> oo

Then,

Corollary. The limit (17) exists ^-a.s. and equals

where D is given in Theorem i.

Indeed, (16) equals

whereas
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Actually, the convergence to the Wiener measure also holds for all bounded
continuous functions on the path space, not only facίorisable ones, as in
Theorem 1 :

Theorem 2. Under the assumptions of Theorem 1,

VT-+VD (14)

weakly, ^-almost surely. D is the same as in Theorem 1.

Remark 1. Theorems 1 and 2 hold for a much more general class of RWRE's than
described above. While the general case is described by our inductive assumptions,
our results extend, for example, to the following class of models: we assume

p(x,y)=T(\X-y\) + b(x9y) (18)

with

and

y

The random fields b(x) = {b(x,y)}yeZd satisfy
(a) b(x), b(x') are independent, identically distributed.
(b) G(/) EE E exp ft 6(0, y)f(y)\ ^ expε2 £ e~ ^f(y)2.

(c) (Isotropy) G(/)=G(R*f\ where ReO(d) fixes Z4.
(d) Prob(p(Q,y)>l-e-

N)<e-NΓ; JV^l.

Remark 2. The analysis covers also a continuous time version of RWRE. Let
P\x, y, β) be the solution of

dPt

— ̂ -p./ϊ)/*, po(Xjyfβ) = δχy (20)

with A the Laplacian on Zd, V the finite difference operator and let /?.(χ), ί = 1,..., d,
x e Zd be independent identically distributed random variables with mean zero
and

IA(χ)l<β (21)
This problem essentially reduces to the previous ίeN case by putting

p(χ, y)—eΛ v β(χ> y). (22)
Clearly Σp(x,y) = l and p(x,y)^Q. Furthermore, p is analytic in {βi(x)}itX in the

y
polydisc (21) (as a bounded operator on /2(Zd)) with

A 0p f ! , (23)

where n^ are the multiplicities of β£x)'s, and d(X), for Jf cZd, is the length of the
shortest connected graph on X; (23) may be obtained via a repeated application of
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DuhameΓs formula and of

Therefore

p(x,y) = Ep(x9y) + £ M*,3>) (24)
YcZd

and

IV*, y)\ ̂  (cε)'y| exp [ - d(xuyu F)] .

These p(x, y)'s fit into our inductive assumptions. Here bγ collects terms in the
Taylor series of p with β£x\ xeY. Thus the ί?y.'s are independent for disjoint l?s.

3. The Renormalization Group - Outline of the Proof

1. The RG Transformation

The RG will allow us to replace the analysis of long time properties of the walk by
the study of a map, the RG map, relating transition probability densities of
successive scales.

Given a matrix p(x, y) satisfying (2.1) and (2.2) and thus defining a random walk,
choose an integer L>1 and set

fl p(ω(i-l\ω(ί))^LdpL2(Lx9Ly) (1)
ω i =Ί

for x,ye(L~lΈf. In the sum, ω(0) = Lx, ω(T) = Ly and we write |ω|=L2. Let
Pτ(x, y, p) be the probability, in the random walk defined by p, to go from x to y in
time T. Explicitly

PΓ(x,^pHΣΠ«-l),ω(0) (2)
ω i= 1

v/ithω(Q) = x,ω(T)=y.
With definition (1) and T=L2", we have

PT(x,y,p) = L-<PT*(L- 'x, IT V.Pi)

= L-« Σ L-^'-^ΠpΛωίi-lί.ωO )), (3)
ω:ω(i)e(L-1Z)d ί=l

where (̂0) = L~1^:, 6^(Γ1) = L~1j;) ^i =L~2T. The powers of L in (1) are of course
chosen because we expect the long time limit to be diffusive. The ones in (3) become
very natural, provided we note that, since ω now are walks in (L" 1Z)d, due to the
scaling involved in p1? it is natural to replace £ by an "integral." Therefore, we will

ω

shift to the following notation:

ldafx.y= ί Π dω(i)δ(ω(Q)-x)δ(ω(t)-y), (4)
L~lZd t = 0

where

j dω(ί) = L~d Σ (5)
(L-1Z)d ω(i)e(L-1Z)d
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and

(6)

Equations (4-6) will shortly be used with L replaced by L", neN. Thus (3) reads

(7)

(8)
i = l

Equations (2) and (3) are of course nothing but a convenient rewriting of Pτ. It is
obvious that we may iterate this operation, to obtain

Pτ(x,y,p) = L-ndPL-2nτ(L-nx,L-ny,Pn), (9)

where the right-hand side refers to walks on L~nZd with transition probabilities
pπ:L~/IZdxL~wZί/-»[0,l]. Indeed, we have the recursion

ypn(ω), (10)

where the right-hand side involves (4-6) with L->L". Clearly, the property

(11)

is preserved under the map (10); (10) is the Renormalίzation Group map. It maps an
"environment" pn to another pn+1. Thus pn, π^l, are random variables, being
functions of p. The meaning of (10) is that the rescaled long-time transition
probabilities for our RWRE are given as the transition probabilities in the rescaled
time of a RWRE with renormalized p's. Given (11), it may be useful to think of
pn(x, y) as a transition probability density, in Rd, which is constant on cubes of side
L~nd. To solve for the scaling limit we need to solve for the p'ns.

Consider for example the diffusion constant (2.16). We get from (2.16) and (9)

Dn(p) = D0(pn) = $dypn(0,y)y2. (12)

Thus the long time behavior is reduced to a time 1 problem for pn, as n->oo.
The next step consists in dividing pn into a "deterministic" and a "random" part :

pn(x,y)=TH(x-y) + bn(x,y), (13)

where

Tn(x-y) = Epn(x,y), (14)

bn(χ, y) = pn(χ, y) - Epn(χ, y) , (i 5)
and we used the translation invariance of the distribution of ft. Evidently, by (11),

jdyTJ(y) = l, (16)

!dybJίx>y)=0=EbJίx,y). (17)

The bulk of this paper consists in showing that bn tends to zero as n->oo,
whereas Tn tends to (2.13). Let us consider Tn first. Thejteration (10) is very easy to
solve if ft = 0: we have a convolution and denoting by f the Fourier transform of T,
we have

ίk\L2

fn+l(k)=fn , (18)
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i.e.

/ £ \ L2»

fn(k}=f(— j , (19)

where, from (2.6)

1 ί
^ cos/cα. (20)

a α=ι

Hence, as n-»oo,

where

Of course b is not zero and, at each scale, bn will modify the diffusion constant.
Since bn goes to zero, we shall obtain a sequence of approximations Dπ, given by

)1(pn)), see (12), to the true diffusion constant D.

2. The Flow of the Disorder

Now, let us see in what sense bn goes to zero. The recursion (10), written for b, reads,
using (15)

bn + !(x, y) = (Rbn) (x, y) = lί f dω£Ly[(ΓΛ + ftj (ω) - E(ΓM + fej (ω)] . (23)

Equation (23) defines the renormalization group map R for the stochastic
part b oϊp. The main difference between bn and b of (2.6) is that bn(x, y), bw(jc', /) are
no longer independent. Indeed, we have

bn(x, y) = Lnd J datfrxLny{(T+ b) (ω) - £[(T+ 6) (ω)] } , (24)

which shows that foM(x, y) depends on b(x, y) for

|Lwx-Jc| + |Ln>;-Jc|^L2w. (25)

Also, pn are not strictly local: pn(x,y) = Q only if

(26)

Of course, we expect bn(x, y) and bn(xf, y'} to be only weakly dependent if |x — x'\ is
large, and be exponentially small if \x — y\ is large. The third difference is that bn

lives on L~"Zd, i.e. we have a proliferation of variables: obviously bn(x,y) and
bn(x',y'} should be "almost the same" if |x — x'| and \y — y'\ are very small; in
particular, they will not be independent but, rather, strongly correlated.

These problems are solved by localizing bn(x, y) in terms of which b(x, j)'s it
depends on. We write

bn(*,y)= Σ bnγ(x,y), (27)
yczd
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where bnY(x, y) are random variables that are functions of b(x, y) for x e L"Y (more
precisely, in a neighborhood of this set, see below). Y denotes the union of unit
cubes in the lattice of spacing L~n centered at y e Y. An expression like (27) would
result from (24) upon expanding the ft's:

= Σ Σ T^(Lnx-x1)b(x
("i) (χi)(yt)

(28)

and letting bnY(x, y) be the sum of the terms for which Y is the smallest set of cubes
such that uXfCί/Ύ. We cannot however proceed to straightforwardly. There are
two reasons for this.

First, the expansion (28) is not a good thing to do, if some ft(x, y) is not small, i.e.
in particular if T+ b is near 0 or 1. This is the problem of traps: configurations oϊb's
that will cause the walk to be trapped in some region in Zd.

Second, even if all the b's are typical, i.e. of order ε, the expansion (28) turns
out to be uncontrollable, due to multiple scales. This means that even small initial
ft(x, y)'s can give rise to a bn at some later scale, which is not a small perturbation of
Tn: traps can occur in longer scales as a collective conspiracy of small ft(x, y)'s. This
mechanism was exploited in [8] in order to provide examples of RWRE with
subdiffusive behaviour.

We now describe these two problems in turn and the ways we deal with them.
First, consider the RG map (23), for n = 0 (the first step) and all ft(x, y) entering in

ftι(x,y) small:

\b(x9y)\<S9 (29)

where <5<O Provided δ>ε, (29) is probable. Then, to first order in ft,

y}. (30)
x,y 1 = 0

Let us localize (30) in b as indicated above. We define, for u e Zd,

bίu(x',y') = Ld Σ Σ Σ T\Lx'-x)TL2-\Ly'-y)b(x,y), (31)
JceLu y t = 0

where Lu is the Ld-cube centered at Lu (note that ftltl is taken to be localized in Lu
due to the scaling by L). Clearly, ftlttl and b2t42 are independent if uίή=u2

Let us inquire the variance of (31). We will study later in great detail the
linearized RG map (30), so let us now just get a qualitative picture of it. The free
walk part T* satisfies

r(x)SϊJϊexp[-2|x|/ί1/2]; ί>0 (32)

(the 2 is arbitrary: the true behavior is rather as exp[ — cx2/t] but we won't need
such accuracy here). Consider for example the case x' = y' = u = 0. Then, we walk
freely from 0 to x in time t and from x back to 0 in time L2 — t. The walk, in time
s L2 predominantly stays near the Ld-cube LO, hits a particular x with probability
LΓ d at a given time t and 0 again with probability L~ d. Altogether, summing over L2


