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Abstract. We discuss an algorithmic approach for both deriving discrete analogues
of Painleve equations as well as using such equations to characterize "similarity"
reductions of spatially discrete integrable evolution equations. As a concrete
example we show that a discrete analogue of Painleve I can be used to characterize
"similarity" solutions of the Kac-Moerbeke equation. It turns out that these
similarity solutions also satisfy a special case of Painleve IV equation. In addition
we discuss a methodology for obtaining the relevant continuous limits not only at
the level of equations but also at the level of solutions. As an example we use the
WKB method in the presence of two turning points of the third order to parametrize
(at the continuous limit) the solution of Painleve I in terms of the solution of
discrete Painleve I. Finally we show that these results are useful for investigating
the partition function of the matrix model in 2D quantum gravity associated with
the measure exp[— t^z2 — t2z

4 — ί3z
6].

1. Introduction

Painleve and Gambier [1], at the turn of the century, classified second order ODE's
linear in the second derivative, whose solutions are free from movable branch
points and essential singularities [2]. They found that, within a Mδbius trans-
formation, there exist fifty such equations. These equations can either be integrated
in terms of known functions or can be reduced to one of six distinguished equations,
called the six Painleve transcendents. It is quite remarkable that although the
Painleve equations were introduced from purely mathematical considerations, they
began, since the early 70's, appearing in several physical applications [3-4]. The
appearance of these equations in physics (in particular in connection with the Ising
model) and the realization that they are also closely related to integrable PDE's
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[5] (like the Korteweg-deVries equation) generated a renewed interest in them.
This led to the discovery [6, 7] of a new method, the so-called inverse monodromic
(or isomonodromic) method, for studying equations of the Painleve type. We recall
that integrable PDE's can be solved using the inverse scattering (or isospectral)
method. The isomonodromic method can be thought of as an extension of the
isospectral method for solving certain ODE's. Both these methods reduce the
solution of nonlinear equations to the solution of linear Riemann-Hilbert (RH)
problems. A rigorous methodology for studying the RH problems associated with
the isomonodromy method is given in [8].

In this paper, motivated from the recent appearance of Painleve equations in
2D quantum gravity [9-16], we study discrete versions of Painleve equations. In
particular:

(a) We shall show that there exist discrete equations which are integrable (in
the sense that they admit a Lax pair representation) and furthermore they reduce
to Painleve equations in an appropriate continuous limit. Such equations, which
we call discrete Painleve equations, can also be studied via the isomonodromy
approach, (b) It is well known that solutions of integrable PDE's in one spatial
and one temporal dimensions invariant under the action of Lie groups, satisfy
ODE's of Painleve type. Such solutions are usually referred to as similarity solutions
and the corresponding ODE's as similarity reductions. (The description invariant
is more accurate since not all invariant solutions are self similar; however we shall
use the terms similarity and invariant interchangeably.) Similarity solutions are
physically important; in particular they play a fundamental role in the long time
behavior of the associated PDE's. Since integrable PDE's have integrable discrete
analogues it is natural to ask the following question: Is it possible to characterize
"similarity" solutions for integrable spatially discrete equations? We use " "
since the group theoretic approach breaks down for discrete equations. We shall
show that discrete Painleve equations can be used to answer this question affir-
matively. Furthermore, similarity solutions of spatially discrete equations satisfy
continuous equations of Painleve type.

As an example of (a) above we note that the equation

n + c3 = y wπ + y wΛ(wn + ! + wn + W M _ J, (1.1)

where neZ and cl9c29c3 are arbitrary constants, is the compatibility condition of
the Lax pair

zβn^X'Λδn-M +X/2e»-l, (1-2)

^
(1.3)

where zeC. Furthermore, since the continuous limit ([10, 11]),

V/CΛ

maps Eq. (1.1) to the Painleve I equation

d2u ,

dξ2

We call Eq. (1.1) discrete PI.

(1.4)
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As an example of (b) above we consider the Kac-Moerbeke (KM) [17]
equation, a discrete analogue of the Korteweg-deVries (KdV) equation. Let us
first review the continuous case: The Lie group of transformations x' = x + 12βί,
t' = t + β, q' = q — β (which is a combination of time translation and the Galilean
group) leaves the KdV equation invariant; this group implies the transformation
u(ξ) = q(χ, ί) + 1, ξ = x — 6ί2, which in turn maps KdV to PI. It is important to
notice that there exists an alternative characterization of these invariant solutions:
These solutions satisfy simultaneously the KdV and the invariant condition
qt + I2tqx -1-1=0; using KdV to eliminate qt we find that q solves simultaneously
the KdV

ft + 3*** -12^ = 0, (1.5)

and the equation
0^-1=0. (1.6)

This q can also be found from

q(x9t) = u(ξ)-t, ξ = x-6t\ (1.7)

where u(ξ) solves the PI equation (1.4). We note that (1.6), when viewed as an
ODE in x (t considered as a fixed parameter), is also Painleve I. We now consider
the discrete versions of Eqs. (1.5) and (1.6). "Similarity" solutions of KM equations
are characterized by the simultaneous solution of the KM

wnt + wn(wn + 1 - w n _ 1 ) = 0, (1.8)

and of the discrete PI equation

n + y = 2twn + wn(wn + wn + 1 + wπ_ J. (1.9)

This wπ can also be found by solving the PIV equation

ϊ (1.10)
2wn 2 V 2

Equation (1.9) is a special case of (1.1) (cl=4t, c2 = 2, c3 = y). This example
illustrates the remarkable fact that similarity reductions of both continuous (like
KdV) and discrete (like KM) integrable equations yield Painleve equations.

Appropriate continuous limits of Eqs. (1.8) and (1.9) yield Eqs. (1.5) and (1.6)
respectively. This implies that there must exist an appropriate limit from Eq. (1.10)
to Eq. (1.4). Indeed the double limit

w->oo, ί-»oo, - = 0(1), (1.11)
n

maps PIV (Eq. (1.10)) to PI (Eq. (1.4)). Clearly, these kind of limits can be discussed
independently of the connection with KM and KdV. Actually such limits at the
level of equations are given in [2]. In Sect. 4 we shall discuss the limit (1.11) at
the level of solutions. Similar types of limits have also been discussed in [20].

Recalling the physical importance of similarity solutions for continuous equa-
tions, we expect that similarity solutions of discrete equations will also be significant
in applications. Indeed, Eq. (1.9) with y = 0 has recently appeared in the theory of
2D quantum gravity and as it was mentioned earlier, provided the motivation for
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the present study. In the work of [10,11] the question of computing a certain
partition function reduces to the question of evaluating hn, where hn is the volume
element associated with the orthogonal polynomials Pπ(z), defined by the ortho-
gonality relations

<5_,A(f)= ί P,(t,z)Pm(t,z)e-««*+*dz, P.(ί,z)=.z"+ . (1.12)
— oo

Using Eq. (1.12), and defining Qn,wn by

w"^ (U3)

it is easy to show (see Sect. 5 where we follow [10,11]) that wn satisfies Eqs. (1.8)
and (1.9) with γ = 0, while Qn satisfy Eqs. (1.2) and (1.3) with c1 = 4ί, c2 = 2. Also

00

J z e dz

wM = 0 for π = 0,-1,-2,..., and W l = 4 — . (1.14)
A 00

— oo

Using this fact we show in Sect. 3 that it is possible to express vvπ (and hence hn)
in terms of certain derivatives of parabolic cylinder functions. Furthermore the
results on continuous limits derived in Sect. 4 are used to discuss the physical signi-
ficance of these solutions.

In more details this paper is organized as follows:
In Sect. 2 we give an algorithmic approach for both deriving discrete analogues

of Painleve equations (such as Eq. (1.1)) as well as using these equations to charac-
terize "similarity" solutions of spatially discrete integrable evolution equations.

In Sect. 3 we use the isomonodromy approach to express the solution wπ(ί) of
the PIV equation (1.10) in terms of appropriate monodromy data {S}. We recall
that wπ(ί) is the "similarity" solution of the KM equation (1.8), characterized by
the fact that it satisfies simultaneously Eq. (1.8) and the discrete PI equation (1.9).
For a special choice of the monodromy data, the so-called triangular case, it is
shown that wn(t) can be expressed in terms of parabolic cylinder functions.

In Sect. 4 we first show that the transformations

map both the discrete PI equation (1.9) with y = 0, and the KM equation (1.8), to
the PI equation (1.4). Furthermore, the transformations

1/2 / ί,2^2N

(1.16)

map the Lax pair of the discrete PI (Eqs. (1.2) and (1.3)) to the Lax pair of PI
(ψ(ξ, k) denotes the eigenfunction associated with PI).

In Sect. 4.1 using the methodology of [27] we investigate the above limits at
the level of solutions. We consider only the case of t imaginary

t = iτ, τ>0, (1.17)

and we scale z by z = ^/τζ. Let Φπ(τ, 0 and Y(ξ, k) denote the matrix eigenfunctions
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associated with wπ(τ) and u(ξ) respectively. For the complete description of wπ and
u one needs 8 and 10 such matrices respectively; since these matrices will be related
asymptotically, we denote them with superscripts j and f(j) respectively. Let {S}
and {G} denote the monodromy data associated with Φn and Y respectively. As
τ-> oo, Φ^} can be found by using the WKB method, which in this particular case

e-iπ/4 e~ίπ/4

involves two turning points ζ+ = - and £_ = -- . The matrix solutions

V V •* WKBO>

φU\ j= 1,2,7, 8 can be expressed in terms of WKB solutions Φn near ζ+;

similarly the matrices for j = 3, 4, 5, 6 can be expressed in terms of WKB solutions

near ζ_ (see Fig. 4.1). Near the turning point ( + , the WKB solutions Φn ,
TP(j)

j = 1, 2, 7, 8 break down and are replaced by Φn , j = 1, 2, 7, 8. It is shown in Sect. 4.1
TP(j)

that Φn can be related to y/ ( Λ,with/(l)= l,/(2) = 2,/(7)= - 1,/(8) = 0 (similarly
TP(j) WKB

the Φn , j = 3,4,5,6 are also related to appropriate y's). Since Φn is related to
TP

Φn the above analysis provides a connection between the matrices ΦM's and the

matrix y's. Using this connection we find that the associated monodromy data
satisfy

σ\ j= 1,7,8, (1.18)

where α0 is a certain constant.
Let 5 and g denote the entries of the monodromy matrices S and G respectively.

In the special triangular case considered in Sect. 4.1 our analysis summarized
above yields

05=0, g2=g3 = i, g^--1—, g4 = -^-9 pφ^, α0 = -ln-^— . (1.19)
1+p l + p Si 2 s3 — s1

In Sect. 5 we show that the wπ(ί) corresponding to the triangular case studied
in Sect. 3.1, is associated with the 2D quantum gravity corresponding to the
measure e~

4(tz2 + z4) and discuss the physical meaning of the results of Sect. 4.1
concerning the calculation of the parameters of the Pi-function u(ξ).

Some of the results of Sect. 5 we were announced in [29] and were also obtained
in [14].

2. Discrete Analogues of Painleve Equations and Similarity Reductions
of Spatially Discrete Integrable Equations

As it was mentioned in the introduction, there exist integrable discrete analogues
of the Painleve equations (see for example Eq. (1.1)). Such equations can be used
to characterize similarity reductions of spatially discrete integrable equations. Since,
in this paper we are mainly concerned with this particular application of discrete
Painleve equations, we concentrate on how to find a discrete Painleve equation
associated with a given spatially discrete integrable equation. For this purpose we
propose the following algorithmic approach.

Suppose we are given a spatially discrete integrable evolution equation in one
spatial dimension, and its associated Lax pair. To find a "similarity" reduction of
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this equation we first find an appropriate discrete Painleve equation. This is
achieved by looking for an equation of the form βΠz = F(Qn, Qn+ 1? . . . , βπ_ 15 . . . )
which is compatible with the ί-independent part of the given Lax pair. The
compatibility condition of the ί-independent part of the Lax pair and of Qnz = F
defines a discrete Painleve equation. This equation will depend in general on a
number of constant in n parameters. We then choose these parameters so that
<2Πz = F is also compatible with the ί-part of the given Lax pair. The discrete
Painleve equation with this choice of parameters is compatible with the original
spatially discrete equation. Hence, the simultaneous solution of these equations
characterizes a "similarity" reduction of the given spatially discrete evolution
equation. We emphasize that the above procedure is completely algorithmic. Also
in the examples we have studied it is possible to manipulate the above two equations
to obtain a single ODE.

Example. Consider the KM equation (1.8); its Lax pair is given by Eq. (1.2) and by

Qat = >„ + wn+1)βn + wj'x^e.-j. (2.i)
In order to find a discrete Painleve equation we consider the compatibility of
Eq. (1.2) and of Qnz = F. Let for example F = F(ρM_1,βn_3) (other choices of F
will give us "higher" Painleve equations). That is, we consider

Qnι = AnQn-,+BnQn_,. (2.2)

Demanding that Eqs. (1.2) and (2.2) are compatible we obtain three equations;
these equations are obtained by equating the coefficients of βπ_4,<2,,_2, and Qn

to zero. The coefficient of βn_4 yields

B

This equation can be written as

Bn

(w π w π _ 1 w M _ 2 ) 1 / 2 (w n _ 1 w n _ 2 w n _ 3 ) 1 / 2 '

and hence it implies Bn = c 2(wπwn_ 1wπ_ 2) 1 / 2. Using this expression for Bn, the
coefficient of Qn-2 yields

2 n ( n _ .
(Wn)

1/2 (Wn-l)1

Adding to both sides of this equation the term — c2wn — c2wn-1, it follows that

Using these expressions for An and Bn, Eq. (2.2) becomes Eq. (1.3); also the coefficient
of βπ implies Eq. (1.1).

Demanding that Eqs. (2.1) and (1.3) are compatible we find c1 = 4ί, c2 = 2, and
c3 = y; hence Eq. (1.1) reduces to Eq. (1.9).

The similarity reduction of the KM equation, characterized by the simultaneous
solution of the KM equation (1.8) and of the discrete Painleve equation (1.1) can
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be characterized further: Equations (1.1) and (1.8) can be written in the form

2wπ + 1=--^-2ί-ww, (2.3a)

H W
- + -^-2ί-HV (2.3b)

Writing Eq. (2.3b) as,

and using Eq. (2.3a) to eliminate ww + 1 we obtain a second order ODE for ww(ί).
Since the KM equation is integrable we expect that this ODE is also integrable.
Indeed, we obtain Eq. (1.10) which is a special case of Painleve IV (PIV).

Other approaches to deriving discrete Painleve equations are given in
[18 and 19].

3. A Method of Solution

It was shown in Sect. 2 that a "similarity" reduction of the Kac-Moerbeke equation
satisfies the PIV equation (1.10). This equation can be solved by the isomonodromy
method. For the sake of completeness we indicate how Eq. (1.10) can be solved
in the present context.

•Letting c1 = 4ί, c2 = 2, c3 = 7 = 0 and

Φn = (Qn+1,Qn)Te-2"2-224, (3.1)

and writing Eqs. (1.2), (1.3), (2.1) in matrix form we find

Φn+1(z)=l/n(z)Φπ(z), (3.2)

Φπ,(Z)=Kπ(z)ΦB(z), (3.3)

Φnι(z) = An(z)Φn(z), (3.4)

where the matrices Un, Vn, An are defined by

~1 / 2 - 1 / 2 ~ 1

(3.6)

and

- 8z3 - 4tz - 4zwB+ ls w^ί + 8z2 + 2(wn+1 + wπ+2))

^ (4ί -h 8z2 + 2(wΛ H- WΛ +1)), 8z3 + 4ίz -f 4zwΛ +1

(3.7)

For simplicity of notation we have suppressed the explicit dependence on ί. The
transformation (3.1) was used in order to obtain a traceless matrix An.
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Equation (3.4) plays a fundamental role in the subsequent analysis, while
Eqs. (3.2) and (3.3) play only auxiliary roles. The basic idea of the isomonodromy
method consists of using Eq. (3.4) to formulate an inverse problem for Φn(z) in
terms of appropriate monodromy data. This can be achieved by determining the
analytic structure of solutions of Eq. (3.4) with respect to zeC. Since Eq. (3.4) is
a linear ODE in z, the analytic structure of Φn depends only on An. Actually,
Eq. (3.4) has only one singularity, namely an irregular singular point at z = oo. A
formal solution at z = oo has the form,

Φ ~ <Z><°°) φ(oo) _ φ(oo)-(2z 4 +2fz 2 -(«+!) lnz)(T3 (Ϊ Q\
ψn ψ

n ' ψn ~~ ^n κ ' V~' CV

where σ3 = diag(l, — 1), and ΦJI

00) is a formal power series. However, the actual
asymptotic behavior of Φn changes form in certain sectors of the complex z-plane
(Stoke's phenomenon). These sectors are determined by Re(2z4 + 2ίz2) = 0; thus
for large z the boundaries of the sectors which we call ΣJ9 are asymptotic to the

rays argz = 1 , 05^7^7. Let Ωj be the sector containing the boundary
8 8

Σp i.e. if zeΩi9 ^ argz < -, etc. Then, if Φn ~ Φjl°
0) as z-> oo in Ωί9 it turns

8 8
out that Φn~Φ(

n

co)SίS29...,Sj9 as z->oo in Ωj+ί9l^j£%. The matrices SJ9

1 ̂  j ^ 8 are triangular and are called Stokes matrices. Alternatively, it is more
convenient to introduce different solutions Φj,j), 1 g j ^ 9 such that Φj^ is
asymptotic to Φ^00) in Ωj. Then Φj/+ 1 ) = Φ®SP 1 ̂ ;^8; also it can be shown
that Φ<ϊ\z) = φ^)(z^/π^2M«+i)σ3 = φW(ze^ Therefore

2ίπ)S8, (3.9)

jn Q, (3 1Q)

Σ4
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The Stokes matrices have the form

S2J = (1 °\ 0^;S4mod4. (3.11)
\^2j A /

Using the symmetry relationship

(- 1)"+1, (3.12)

it follows that the Stokes matrices satisfy the constraints

SJ+4 = σ3Sjσ3. (3.13)

Also, Eq. (3.9) implies the cyclic equality

S1S2-S8 = /. (3.14)

The constraints (3.13), (3.14) identify the set of the monodromy data as a three-
dimensional algebraic variety. The quantity wπ can be reconstructed via

1, (3.15)

where Φ ) are the coefficients of the formal series

(3 16)
Equation (3.15) implies that WM depends only on the orbits of the action

Skh->exp((5σ3)Skexp(- &τ3), <5eC. (3.17)

This action is well defined on the algebraic variety specified by Eqs. (3. 1 3) and (3.14).
Since An depends on n and on f, it follows that the monodromy data will also

depend in general on n and t. However, it is possible to normalize Φn in such a
way that, if wπ satisfies Eqs. (1.8) and (1.9) then, the monodromy data are n and
ί independent (this is a usual situation in the isomonodromy method [7]). The
correct normalization is achieved by choosing Λn(t) so that the formal solution
Φ^00) defined in Eq. (3.16), is also a formal solution of Eqs. (3.2) and (3.3). This is
the case if

(3.18)π4wπ + 1 2 4

and

Hπ + 1-Hπ = ln2- | lnw n + 1 w n + 2. (3.19)

Indeed substituting Φj,00' in Eq. (3.3), where Φj,00* is given by (3.16), we find

and


