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Abstract. We prove propagation estimates (of strong type) for long-range ΛΓ-body
Hamiltonians. Emphasis is on phase-space analysis in the free channel region.

1. Introduction

In this paper we prove various propagation estimates for a fairly large class of
long-range Λf-body Schroedinger operators (denoted by H). The form of these
estimates (in the configuration space representation) is

B(t)e-itHf(H)(x}-s> = O(ΓS) (1.1)

for ί-> + oo, and with <x> given by multiplication by (1 + | X | 2 ) 1 / 2 , / G C ^ ( R ) ,
0 ^ s < s ' , and finally with {B(t)}t>0 a family of pseudodifferential operators
(typically of non-negative order).

Among our estimates are the minimal and large velocity estimates of Sigal
ί x2 \

a n d Soffer [ S - S ] ( o b t a i n e d b y p u t t i n g B(t) = χ [ — - E < - ε \ o r B(ή =
4t2

x2

<x> 5 ' sχ\ E - < - ε , with 0 < E « E and assuming / to be supported in a
V 4r /

small neighbourhood of E, respectively), however obtained for arbitrary 5 and sf

as above and for a larger class of potentials.
We shall also prove maximal velocity estimates for the free channel, which are

obtained by localizing further in the configuration space namely to regions where
the potential "goes to zero." Finally if χfr denotes such localization operator, we
shall prove the estimate with B(t) = P-(X,D)χfr, where the symbol p_(x, ξ)
vanishes in a certain conical neighbourhood of the forward direction: x = cξ, c> 0.
The latter result was established for N = 2 by Isozaki [I] and independently by
Jensen [J] (in both cases under more restrictive conditions on the potential). For
N > 2 the most resembling results in the literature seem to be due to Mourre
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[Ml] , however these are given under very restrictive conditions (which cover the
pure Coulomb case though).

The estimates indicated above are stated as Theorems 3.3,3.4,4.4 and 4.5, res-
pectively. All hold under the conditions on the potential as given in Assumption 3.1.

In Sect. 2 we extend and refine the abstract theory of Sigal and Soffer [S-S],
which shows how to turn positivity of certain Heisenberg derivatives into estimates
of a type similar to (1.1). Main new things (crucial for applications) are the removal
of a certain commutativity assumption of [S-S] and that approximate positivity
is sufficient. We remark that the abstract theory is stated only for time-independent
Hamiltonians although one can extend it to time-dependent ones (cf. [S-S]).

In Sect. 3 we give examples. We are dependent on those of [S-S] and in
particular on a recent beautiful paper by Graf [G]. The results needed from [G]
are stated in Lemma 3.2.

Consequences of the examples are the free channel propagation estimates
indicated above. This is shown in Sect. 4. The main ingredient of the proofs is the
"global" estimate appearing as Example 4 in Sect. 3.

In Appendix A we prove that the Graf vector field is nicely behaved in the
forward direction in a certain sense, and in Appendix B we establish certain Mourre-
type estimates (depending on this vector field).

Under the same conditions on the potential one can use our estimates together
with the method in [H-Sl] to obtain the precise asymptotic behaviour in the free
channel region (as | x | -> oo) of the boundary values (from above) at positive energies
of the resolvent. This will be done in [H-S2], where also a relationship to scattering
theory will be shown.

2. Abstract Theory

Notations and Assumptions. By R, R + and N we mean the real numbers, the positive
real numbers and the positive integers, respectively.

Given a Hubert space Jf, 38(2?) denotes the set of bounded linear operators
on Jf. Given a linear operator H on J f, Θ(H) denotes its domain. For a selfadjoint
operator A on ^f < 4 > : = ( / + A2)112.

For xeR we put (x)_ = — min{0, x} and (x)+ = max{0, x}.
By C^ίR") and C J(Rn) we mean the smooth, respectively the smooth compactly

supported, functions on Rn; the support of a function / is denoted supp /. For
feC£(Rn) /denotes the Fourier transform off:f(k) = (2πyn$exρ(-ikx)f(x)dx.

The standard ί/-spaces on Rn are denoted by Lp(Rn).

Definition 2.1. Given β, α ̂  0 and ε > 0 let ^ > α , ε denote the set of functions

Λflf(^τ) = ̂ i β t i (x,τ)= -τ-β(-x)aχ(^\ defined for (x,τ)eRxR + and for

χeC°°(R) with the following properties:

χ(χ)=l for x<-2ε,χ(x) = 0 for x > - ε ,

d d ,
— X(x) ̂  0 and αχ(x) + x —- χ(x) = χ2(x),
dx dx

where χ(x) ^ 0 and χeC°°(R).
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We shall sometimes (in Sects. 3 and 4) use the notation χ(A < — ε) = χ(A) for
a selfadjoint operator A and with χ smooth and satisfying the first three properties
enlisted above. / d/ d \

For any inputs β9 α, ε as above &βaεφ0 and with g(n)(x9 τ) = ( — I g(x9 τ),

neNu{0}, (gilKx9τ))1/2 = (τ'β(-xγ'1)lf2χl-Jis smooth.

Assumption 2.2. Let n o e N with n0 ^ 2 , ί0 > 0, κ0 ^ 0, βo>09 n 0 — ̂ > α 0 > 0, /,
/2eC^(R),/2 realvalued with f2f = /, and #,,4(τ),£ fee selfadjoint operators on a
Hubert space ffl. Assume with τ = t + ί0, t ^ 0, ί/iaί ίne operators A(τ) have a common
domain Q),<2)(H)<~\$) is dense in @(H),B^I9H is bounded from below, and with
A = A{t0) that (Ayno/2B-no/2e^(J^).

Assume moreover
(1) With ad^(t)(/J) = H and l^n^nothe (commutator-) form (defined iteratively)

ίnzdn

A{τ)(H) = i[itt~1adn

A~τl(H\A(τ)~] on 3)(H)c\3) extends to a symmetric operator
with domain <2>(H).

(2) If A is unbounded sup || HeiA(τ)sφ || < oo for any ψe@(H) and τ ^ ίo

| s | < l

, (3) For any τ 1,τ 2 ^ tQ,A(τι) — A(τ2) is bounded, and the derivative dτA(τ) =
— A(τ) exists in @(3tf).
dt

For n^no — l and τ^t0 the form (defined iteratively)

P *d"Mx)(dτA(τ)) = ilf-1 adA-J(dτA(τ)\ A(τ)]

on 2 extends to a bounded selfadjoint operator on 3tf.
(4) For n^n0 2Ldn

A(τ)(H)(H -i)'1 and 2idn

A~J(dτA(τ)) are continuous @(Jf)-valued
functions of τ^t0.

(5)

(a) ad^HdiAiτ)) = O(τκo) in @{3f) as τ-> oo.
(b) For n g n0,

Άdn

A-j(dτA(τ))(H - i)-1 = 0(1) in Λ(*T) as τ-> oo.
(c) For n^n0,

&d"Λ(τ)(H)(H - 0 " 1 = 0(1) in @(3f) as τ-> oo.

(6) <?(/?„, «o):

With a'o = max{meN|m<α 0} (for l < α 0 ) the following (positivity) estimate
holds for (j5, α) = (0,1),..., (0, α^), (β0, αo)( = (β0, α0) i/ 0 < α 0 ^ 1):

Lei D 4̂(τ) denote the symmetric operator i\_H, A(τ)~\ + dτA(τ). Given ε > 0 and
g(x, τ ) 6 ^ t β t β ίterβ exists C > 0 siicfc ίnαί wiίn C(ί) = (g(l)(A(τ\ τ))ll2e-itHf(H)B-a/2φ9

]dt«ζ(t)J2(H)DA(τ)f2(H)ζ(t)y)_^C\\φ\\2

9

o

Remark 2.3. (1) As for (6) e-itHf(H)B-Λl2φe2((g{1)(A(τ)9 τ))1/2) for any φeJT and
τ ^ t0. A sufficient condition is obviously f2(H)DA(τ)f2(H) ^ 0. (See Corollary 2.6
for a more refined one.)

(2) If in sidA{τ)(H) extends to a bounded selfadjoint operator, continuous in τ
and 0(1) for τ-> oo, we don't need H to be bounded from below. (In particular
one can get results for Stark Hamiltonians.)
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(3) As proved by Mourre [M2, Proposition II. 1] if A is unbounded and
Assumption 2.2(2) holds one can verify Assumption 2.2(1) by showing the existence
of some subspace Sf £ @(H) n 2 such that eiA{τ)s6? c Sf\ \ s | < 1), Sf is dense in @{H)
and the assumption holds with <2>(H)n<2t replaced by Sf. This remark is useful for
Exs. 1 and 3 in Sect. 3.

Main Results

Theorem 2.4. Suppose Assumption 2.2 and in addition

( 2 2 )

(2.3)

^ + 2 ^ n 0 (implied by (2.2)). (2.4)

TTien for (β, α) = (0,1),..., (0, α'o), (β0, α0), any ε > 0 ^

B-α / 2 O(l) in Λ ( J T ) for τ^oo.

The proof, given at the very end of this section, requires a series of preliminaries.

Corollary 2.5. With the situation as in Theorem 2.4 for (0,α) = (O, l),...,(0,αό),
0?o, α0), any ε > 0, #(x, τ ) e ^ f β f e and 1 ̂  0 ^ 0,

^'^2) in

Proof. We use that for 0 ^ 0 ^ 1 , - ^ f β , β ( x , τ ) ^ - τ - ^ ε τ Γ V α d - β ^ ε f c τ ) and the
spectral theorem. Π

In two applications (Exs. 2 and 4 in Sect. 3) the following result will be very
useful in verifying Assumption 2.2(6):

Corollary 2.6. Suppose Assumption 2.2(l)-(5) and that q(β0, oc0) is replaced for some
δ>Obyq(βθ9oc0iδ):

There exist bounded operators 51(τ) and B2(τ) on Jf such that

f2(H)DA(τ)f2(H) Z Bx(t) + B2(τ),

B1(τ) = O(τ->) for τ ^ o o , (2.5)

and for (β, a) = (0,1),..., (0, α'o), (β0, α0) the following estimate holds:
Given ε > 0 and g(x,τ)e^βxε there exists C>0 such that with ζ(t) =

(g^(A(τ),τ))1'2e-'"ιf(H)B-'"2φ,"

2Wai)>I^C||</.||2, Vφe^f. (2.6)

Suppose in addition (2.1-4).
Then q(β0, α0), and hence in particular the conclusion of Theorem 2.4, hold.

Idea of proof. Suppose Assumption 2.2(1)—(5), q(β0, α0, δ\ (2.1-4) and α0 ^ 1. Then
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for any δ' < δ and with β'o = max {βθ91 - <5'}, q(β'o, α0) holds. Hence the conclusions
of Theorem 2.4 and Corollary 2.5 hold with the input (β, α) = {β'Q9 α0). By iterating
we obtain g(β'0,α0) with β'o = max{/?0,1 - nδ'} for any neN. So g(/?o>

αo) holds
with the constraint m— l < α o ^ m , m = 1, imposed.

The rest of the proof goes by induction in m (cf. the proof of Theorem 2.4),
and involves a similar iteration argument. •

Preliminary Results

Lemma 2.7. Suppose A and P are linear operators on a Hilbert space, A selfadjoint
and P bounded, and neN. Suppose that for 1 ^ / n ^ n the form (defined iteratively)
ad™(P) = [ad - H n A] on 9(A) (by <</>,ad;?(P)ι/O = {φMT
(Aφ,ad[J 1(P)ψy) extends to a bounded operator.

Then for any ^ G C J ( R ) ,

(1)
Λ ~ 1 a(m)(A) °° y\

m=o

o (w —

(2)

m = 0 WII - o o

RnΛp{k)=-idlK } eilAadn

A(P)e-ilA,

(3) T/i^ norm of the integral is (in both cases) bounded by

Proof As a form on

- SίdA(P)}. (2.7)

This identity extends to an identity between bounded operators.
By iterating (2.7)

n -1 k ιn -1

m = l 0 0

By the latter identity

[P,flf(i4)] = $dkg(k)eikA{e-ikAPeikΛ - P]
n-ί

= X (ro!)-y%4)ad™(P) + J d f c 0 < n > χ
m = l

We have proved (1). Statement (2) follows similarly. Statement (3) is obvious. •

Remark 2.8. (1) Under suitable assumptions and modifications the expansions hold
for P unbounded. This will not be needed.
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(2) The expansions can also be generalized to larger classes of functions than
C£(R). This will be done/used (cf. the proof of Lemma 2.16).

Lemma 2.9. With the situation given by Assumption 2.2(1) and (2) (A(τ)* iλ)~x leave
9(H) invariant for sufficiently large real λ, and (H + ήiλ(A(τ) + iλ)'1{ia + 0 " 1

converges strongly to I as \λ\ -> oo.

Proof. The proof of [M2, Proposition II.3] goes through. (When A(τ) is bounded
we do not need the estimate of Assumption 2.2(2).) •

Lemma 2.10. Suppose Assumption 2.2(l)-(5). For large enough C, for 1 ̂  n s n0

and with H = (H + C)~1the form (defined ίteratively) in adA(t)(8) = i[in ~* adj"/ (HJ9

A(τ)~\ on Q) extends to a bounded selfadjoint operator. Moreover (H + i)in adn

A{τ)(H)
is a continuous &(3t) valued function, and 0(1) for τ-» oo.

Proof. As a form on Q) and by a repeated application of Lemma 2.9,

ίH,A(τ)l= lim ΓH,-±^L]= lim
Ί | A() + λj Λ

= lim Γ H , - ± ^

= lim -H\H,— \H= lim H ΆUΛ,JH) H
A-oo |_ A{τ) + iλj A-oo A(τ) + iλ ( ) ^4(τ) + iλ

= -Hadm{H)H.

Hence iadA(τ)(H) extends to the bounded selfadjoint operator — HiadA{τ)(H)H,
which is continuous in τ and 0(1) for τ-> oo. The same holds for Hia.dA{τ)(H).

We shall show by induction in ri that the statement of Lemma 2.10 holds for
1 ^ n ̂  ri ^ n0 and also (for the same values of n and as bounded operators) that

5). (2.8)

We have proved the above statements for ri = 1. Suppose they hold for ri. We
shall prove them for ri + 1 (provided n' + 1 ̂  n0).

Using (2.8) for n = ri we compute as a form on 0,

[f'adJ ( τ )(flλA(τ)]= lim

A(τ)
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Hence (2.8) and as an easy consequence (together with the induction hypothesis)
the statement of Lemma 2.10 hold for n = ri + 1. The induction is complete. •

Lemma 2.11. Suppose Assumption 2.2(l)-(5).
(1) For any ^eCJ(R) and 1 ̂  n g n0 the form (defined iteratively)

zdn

A{τ)(g(H)) = \_zάn

A-τ]{g(H)\ Λ(τ)] on 3)

extends to a bounded operator on 3tf. Moreover (H + i) 2Ldn

A(τ)(g(H)) and
adn

A{τ)(g(H))(H + i) are continuous &(J4f)-valued functions ofτ, and 0(1) for τ->co.
(2) Forl^n^ n0 adn

A(e " itHf(H)) is a continuous @(JT)-valued function ofteR.
(3) For any real s with 0 ^ s ^ n o (A)se~itHf(H)(Ay~s is a continuous

&(Jf)-valued function of ίeR.

Proof. As a form on ®,

]dle-ilSΪH iλΛ{λ)
= lim

which by Lemma 2.10 is bounded. The same holds when multiplied by (H + i).
Moreover (H + i) &dA{τ)(eikH) and 3idA{τ)(eikH)(H + ί) are jointly norm continuous in
k and τ with normbounds of the form C<fc>(<k> = (1 + k2)112).

By induction (cf. the proof of Lemma 2.10) for any 1 S n ̂  n0 the form (defined
iteratively)

adA(τ)(eikH) extends to the operator

U ^ ^ ^ f i Λ (2.9)o ni+π2+n3=n~ι nι\n2ιn3ι
B,£0

as an operator is bounded, jointly continuous and satisfies

\\adK

AJeikS)\\iC<ky, Vτ,ίc;

and similarly when multiplied by (H + i).
Since g(H) $dk§(k)ikS i h ()

inductively

i"ad°Λ(τ)(g(H)) = inμk§(k)ad''A(τ)(eikS), (2.10)

and thus bounded as are (H+-i)ad"A(τ)(g(H)) and ad"Mτ)(g(H))(H + i), and all are
continuous in τ and 0(1) for τ-* oo. This proves (1).

As for (2) we use (2.9), (2.10) and the fact that e-"Hf(H) = g,(H),gt(x) =

and similarly when multiplied by (H + i). , ^ x
Since g(H) = $dk§(k)eikS with g(x) = g( — Cj(eC»(R) for C large enough)

inductively ^ x /

- - c \ For ί,ίoeR,

|| adΛ(e - itHf(H)) - adA(e " iloHf(H)) ||

The right-hand side->0 for t->to.
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As for (3) it suffices (by an interpolation argument) to show that
Anoe~itHf(H)(A}~n° is a continuous ^(Jf)-valued function of ίeR. This is done
by showing inductively for l ^ n ^ n 0 , that e~itHf{H)(Ay~noφe®(An) for any

, and that (cf. Lemma 2.7(2))

m = 0

the right-hand side being bounded and continuous by (2). •

Lemma 2.12. Suppose Assumption 2.2(l)-(4).
(1) Then for 1 ̂  n ^ n0, A(τ)n(A)~n is a continuous @(3f)-valued function.

(2) For any 1 ̂ α ^ n o , 0 < ε and g0,no,ε(
x>τ)= ^ - * Γ * ( * W o , n o , ε >

( — A(τ))αχ( )<^> a is bounded, locally uniformly in τ ^ ί0.

/n particular the same statement holds for ( — gβaε(A(τ)9τ))1/2<A>~α/2 vviί/z
0 ^ )S, 0 < ε, 0 < α < n 0 - \ d

Proof. We prove by induction in ri, l^n' ^ n0, that for 1 g n g n',
is a continuously differentiable fflffl)-valued function with

^ )
«T m = 0

Clearly this statement p(nr) holds for ri = 1.
Suppose p(nr) for n ' ^ n o - l . Then

is continuously differentiable and (by a commutation)

1 ^ ) Σ
m = 0

1 Σ c;ad"
m = 0

It follows that

ίo m = 0

By multiplying by < A > on both sides we obtain that A(τf'+1 < A > "n> ~1 is bounded
and that /7(nr + 1) holds. This proves (1).

As for (2), with α = n0,
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locally uniformly in τ ̂  ί0 (by (1)). A similar statement holds with α = 0. We obtain
(2) by interpolating these estimates. •

Definition 2.13. Suppose the situation as in Lemma 2.12.
Letfi eCJ(R) be real-valued and satisfy fj2 = f2. Put D^(τ) = i adA(t)(ft

dτA(τ) (bounded by Lemma 2.11(1)).

Lemma 2.14. With the situation as above

M^D.A^MH) = f2(H)DΛ(τ)f2(H).

Proof. By Lemmas 2.11(1) and 2.9

f2{H)Ux(H)H,A(τ)y2(H)

)\fι(
|_

= s - lim f2(H)\fι(H)H9 l ^ . λ h i P ) (strong convergence)
A | A(τ) + ιλJ

Lemma 2.15. Suppose Assumption 2.2(l)-(5). Let /? ̂  0, n 0 — ̂  > α > 0, £ > 0, (5 > 0,
φeJίf and gβMe<FβM. Put φ(t) = e-

itHf(H)B~^φ and gδ(x9τ) = gβ^ε(x,τ)F2(δx\
where F is real, FeCJ(R) and F(x)=l for | x | < l . Then, with the convention
<PX = (φ(t),P\l/(t)} for an operator (or form) P, (gδ(A(τ),τ)}t is continuously

d
differentiable with —<gδ(A(τ)9τ)\ = (Dgδ(A(τ)9τ)\9 where

at

Proof.

dt

where (cf. the proof of Lemma 2.7)

^ ) , τ) = (^-
dt \ )

m = i

0 (^0 ~ Iji

e~ilA" aa%~»(dtA(τ))eίlA»dl.
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We use Lemmas 2.7(1) and 2.11(1) to expand i[f1(H)H,gδ(A(τ\τ)'\. •

Lemma 2.16. Suppose Assumption 2.2(l)-(5). With β,oc,ε,g = gβaε and φ(t) as in
d

Lemma 2.15 (g(A{τ), τ)}t is absolutely continuous with — (g(A(τ), τ)}t = (Dg(A(τ\ τ)>f,
dt

where Dg(A(τ\ τ) = E1 + — h E9, the forms being locally integrable on φ(t) and given
as follows (we use the notation of Lemmas 2.7 and 2.15):

Wϊί/l

E2 = g(A(τ), τ)f2(H)DA(τ)f2(H)g(A(τ), τ), g = (g^)1'2,
no— 1

£3= Σ (m\Γ1S{m\A(t),x)ad^MU 2(Iί))DίΛ(τ)f2(H)S(Λ{t),τ),
l

with

R0(τ) =

no-2 (—

γE5 = g(A(τ\τ) £ Ά

m = l

E6 = §(A(τ\τ)Ri(τ)

with

Eη= Σ 9m(A(τ),τ)hm(A(τ),τ) f ad^ r ) (HJ ( -^-^ m i ) μ(τ),τ)
m = 2 ntι=O m±\

h (x τ) — —( — x)~(a~m)+a{m)(x

£ 8 = Σ
m = 2

ΛJτ) = - μ/cg»->(fc, τ)Λio_m,Λ(τ),Hm(fc)e'
£9 = Λno(τ) = JdΛ>>(k, x)eikA"R'nJk).

Proof. By Lemma 2.15 for any δ91' > 0,

o)> *o) >o = J d ί < Dgδ{A(τ)9 τ) }t9 (2.
o
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where τ' = t' + 1 0 and

(2.12)
9

We shall rewrite the right-hand side of (2.12) as a sum of forms ]Γ Eιδ(τ), each

term being integrable on φ(ή and obeying, with Et(τ) = Et as introduced above,

<£Ifί(τ))f—• <£z(τ)>ί for <5-*0 (2.13)

and for any 0 < T

K^w(τ)> t I^C Γ V 0 < ί < Γ , 0<<5<l .

Since by the spectral theorem and Lemmas 2.11(3) and 2.12(2) the left-hand
side of (2.11) goes to (g(A(τ'),τ')\. - (g{A(to)9 ίo)>o for (5-^0 (an argument to be
used repeatedly in verifying (2.13)), the lemma follows from (2.13) and the Lebesgue
theorem of dominated convergence.

We proceed to the proof of (2.13):

Let Eίtδ(τ) = l—gδ\(A(τ),τ). Then we can write (for any 0o,α/2,ε/2e^o,α/2,ε/2)

>τ) = βo.*/2.ε/2(A(τl τ)F2(δA(τ))

By Lemmas 2.11(3) and 2.12(2) for any 0 < T,

l l^o f «/2^2(^λ^(ί) l l<C V 0 < ί < T .

Clearly by the above facts together with the spectral theorem (2.13) follows for

We look at the contributions from the second term gi

δ

)(A(τ),τ)DίA(τ) on the
right-hand side of (2.12). It shall be proved that g^\A{τ\ τ)DxA(τ) = E2yδ(τ) + ••• +
E6tδ(τ) for some Eι δ{τ\ 2 ^ / ̂  6, satisfying (2.13): Using the abbreviations

g = g(A(τ), τ), g = g(A(τ), τ), F = F(δA(τ)) and F = — F(δx\x=A(τ) we expand
ox

D2 = Fgf2{H)D1A{τ)f2{H)gF

D3 = Fg(I - f2{H))DxA{τ)f2(H)gF

Dt=-F§lD1A{τ)f2(H),gFl

D5 = F2g2D1A(τ)(I-f2(H)).
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( «
As for Dx we write I with an abuse of notation if — 1 < 0

D, = 2F'( - Λ(τ))1 " " M - g0ia/2 _ Uε/2(A(τ\ τ)F}DtA(τ)

and use Lemma 2.7(2) to commute {•••} with the last factor DίΛ(τ). The obtained
expansion together with arguments used above give that Ί)1 does not contribute
in the sense of (2.13), i.e. <DX > f-»0 for δ -•() and for any 0 < T: | (D1 >,| ̂  C Vί < Γ,
0 < < 5 < l .

As for D2, by Lemma 2.14 (and Lemmas 2.11(3) and 2.12(2) +the spectral
theorem) (D2}t^>(E2}t for <5-»0 and the uniform bound of (2.13) holds.

In the following the estimate

(2.14)

(valid whenever the right-hand side is finite) is useful.
As for D3 we notice that

<0 3 X= " <lFgJ2(H)-]DiA(τ)f2(H)gF)t.
By Lemma 2.7(1)

-IFg,/2(H)] = Σ (rnlΓ1 (jX{F(δx)g(x,τ)}]x=A(τ)ad™τ)(/2(tf)) + remainder.
m = i \vX/

This fact together with the bound (valid for any meN)

Ci-xy2-"-1!2, VO<*<1, to<τ, x<0, (2.15)

Lemma 2.7(3) and (2.14), imply that <D3)t-+(E3)t + <£ 4 > ί for <5->0. Moreover
the uniform estimate of (2.13) is satisfied for the relevant terms.

As for Z)4 we apply Lemma 2.7, (2.14) and (2.15) similarly to obtain that
<D 4 > f -><£ 5 ) f 4- (E6)t for <5->0, still with the uniform estimate of (2.13) satisfied
for the terms involved.

Clearly <£ 5 > f = 0.
It remains to look at the "w> 1" terms and the last term on the right-hand

side of (2.12). The latter contributes with E9 in the limit <5->0 (by an analogue of
(2.15)). The others with EΊ and E8 (by similar arguments as used above). •

Proof of Theorem 2.4. With the situation of Lemma 2.16 we have (by the
conclusion) for any ί' > 0 (with τ' = t' + ί0)

< -gβ,aM(Λτ')>t' = < - W ^ o ) , ίo)>o " f Λ < £ i + - + E9\. . (2.16)
o

In various cases (to be specified below) we shall estimate the right-hand side of
(2.16) from above. For that we notice that due to Assumption 2.2(5), Lemma 2.11(1)
and (2.14) the following estimates hold for τ-> oo:

£ 3 = Π ° Σ gim)(A(τ),τ)O(l)g(A(τ\τ),
w = l



Propagation Estimates for ΛΓ-Body Schroedinger Operators 79

E5 = g(A(τ),τ) £ 0{l)g™(A(τ),τ),
m = l

no — 1 wo ~ m — 1

m= 2 mi = 0

π o - 1

Σ
m = 2

£ 9 = O ( τ - ^ α - Λ O + 1 / 2 + ' c o ) . (2.17)

We shall prove Theorem 2.4 by showing by induction in neN the statement
p(ri) that the theorem holds under the further restriction n — 1 < α0 ^ n.

We start by proving p(l): So suppose the conditions of Theorem 2.4 and in
addition that 0 < α0 ^ 1. For </>e<?f let φ(t) = e~itHf(H)B~aol2φ (as in Lemmas 2.15
and 2.16). It suffices to verify the estimate (—gβOt<to,ε{A{τ),τ)}tSC\\φ\\2 for any
ε > 0. For that we use (2.16) and (2.17): Clearly (by Lemma 2.11(3)) the first term
on the right-hand side of (2.16) satisfies such estimate. The contribution from Eί

trivially (since it is non-positive), the one from E2 by Assumption 2.2(6), and the
ones from £ 3 , . . . , £ 9 , because by (2.17),

(2.18)

By (2.1) and (2.3) the terms on the right-hand sides of the inequalities of (2.18) are
integrable (to infinity). This proves p(l).

Suppose now that p(ή) (with 1 g n ^ n0 — 1) is true. We shall verify the statement
for n + 1. So suppose the conditions of Theorem 2.4 and that n < α o ^ n + l . Then
by p(n% (2.2) and (2.4) (all assumed to hold)

,5,nΛM\))f{) () for τ^oo

for any ε > 0 and ^/s.n.ε^/s.π.ε
In particular (cf. Corollary 2.5)

(-g0,n-UMτ),τ))ίl2e-itHf(H)B-n'2 = O(τ-llί0) for τ^oo. (2.19)

We shall prove that

for τ-+oo. (2.20)

For that we use (2.16) and (2.17) (as above), now in conjunction with (2.19). We
obtain the following analogue to (2.18):
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By (2.2) and (2.4) the right-hand sides of these inequalities are integrable. Thus
(2.20) holds.

It remains to prove that

(-9βo,aoAΛ(τlτ))1/2e-UHf(H)B-^2 = O(l) for τ-+oo. (2.21)

Again we use (2.16) and (2.17), now in conjunction with (2.20). We obtain the
following estimates:

The integrability follows from (2.1) and (2.3). This proves (2.21) and hence
P(π + 1). D

3. Applications to TV-Body Schroedinger Operators

In this section we shall give four examples. In all cases H= — Δ-\-VonJ^ = L2(X)9

ί N • 1
where X is the C. M-confϊguration space < x = (x1,..., xN)\x*eRv

9 £ m^ = 0 > of

N v-dimensional particles with masses mf. The inner product in X is given by

x-y= Σ im^-yK The operator —A denotes the Laplacian.
i=l

Put for any cluster decomposition a
Xa = {xsXlx1 = xj iΐίJeC for some Cea]

and Xa = the orthogonal complement in X.
The corresponding orthogonal projections are denoted Πa and Πa, respectively.

The cluster decomposition {ΐ)~-(t) "(j)-~{N)(ij)9 where A indicates omission is
denoted by ((/').

The momentum operator — N is denoted by p. We put pa = Πap and pa = Πap,
and similarly for any xeX we define xa = Πax and xa = Πax. For further ΛΓ-body
notation we refer to [G].

We assume throughout this section and Sect. 4 that the potential
V(χ) = Σ Vij(χ(ij))> where V^(y) are real-valued and as operators on L2(X(lJ)) respec-

(ij)

tively as functions on X{ij) satisfy

Assumption 3.1. (1) ViJ( — Δ + I ) " 1 are compact.
(2) 3 Λ 0

Vij(y) are smooth in the regions \y\> Ro

and

M-εo) for \y\-+oo9 V multiindices α.
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(3) H as well as all sub Hamiltonians Ha(deflned by -Δ + £ K0(i7 ( ί j ) ) on

L2(Xa)) have no positive eigenvalues. (ι</)<=fl

Remark. (1) Due to [F-H2] Assumption 3.1(3) is a rather weak additional
assumption. For instance it is superfluous for v = 3.

(2) As for Assumption 3.1(1) infinitesimal smallness with respect to the
Laplacians (see [R-S, p. 162] for the definition) would suffice as for the theorems
of Sects. 3 and 4.

We shall use various properties of a vector field and a partition of unity
constructed recently by Graf [G]. These are enlisted in the following

Lemma 3.2. Given k>\. Then 3rί9r2 > 03ωeC°°(X, X) {a smooth vector field) with
the derivative ω# symmetric, IC^lxypartition of unity {ja}, indexed by the cluster
decompositions α, such that

(1) ω*(x)^Σ/α(x)77fl,

(2) ω(ij)(x)=aθif\xiij)\<ru

(3)Ja(kx)ωa(x) = 0,
(4) \xb\ > krx on supp ja ifbφa,
(5) ω(x) = xif\xa\>r2forallaΦ(l)...(N),
(6)h(kx)]b(x) = 0ifa^φb9

(7) \xa\<r2on supp/α,
(8) Forany<x3C>0:\d*Ja(x)\^C,
(9) For any α and neNv{0}3C>0:\(x'V)nda

x(ω(x)-x)\ g C.

The property (2) follows from (3) and (4) (but is also contained explicitly in
[G, Lemma 3.7]). Property (5) will play an important role in Sect. 4, however it
is not used in the discussion below. It follows readily from the definition of ω in
[G]. A similar remark is due for (7). The property (8) is contained in [G, Lemma 3.1].
As for (3) the statement follows from an application of [G, Lemma 3.2] (not to
be discussed). Similarly (4) follows easily from [G, Lemma 2.1]. (It is a generalization
of [G, Lemma 2.3]). The statements (1) and (6) are contained in [G, Lemmas 3.7
and 3.4 respectively]. As for the remaining property (9), it will be proved in
Appendix A.

We shall only apply Lemma 3.2 with the input k = 2. Moreover in all examples
Assumption 2.2 can be verified for n0 arbitrary. It is in the following tacitly assumed
that n0 is chosen large.

Example 1. Fix 0 <E <E. Choose / and f2 as in Assumption 2.2 and supported
in a small neighbourhood of E. Put t0 = 1, κ0 = 0 and let βOi(xo>0 arbitrarily.

Let for any R > (M(τ) = R c Φ / * ) P + ̂ ^ - 2Fτ(τ = t + 1) and B = <Λ> (By

an application of Lemma 3.2(9) and [R-S, Theorem X.37] A(τ) is essentially
selfadjoint on C^(X)). The action of the group eiA(τ)s can be expressed explicitly

?x\
in terms of the flow associated with the vector field Rωl — I in X. Using this

expression one verifies readily Assumption 2.2(2). As for Assumption 2.2(1) and
(3)-(5) we need to have R large. Then the statements follow by using Remark
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2.3(3), Lemma 3.2(2) and (9). (In computing the commutators in Assumption 2.2(1)
/x\ / /x\ x\

we replace repeatedly Rωl — I by Kl ωl — 1 I + x and treat the contributions
\RJ \ \RJ RJ

from the two terms separately.)
As for Assumption 2.2(6) we shall prove in Appendix B that for given large R

and for any/2 supported in a small neighbourhood of E9f2(H)DA(τ)f2(H)^.O.
So the conclusions of Theorem 2.4 and Corollary 2.5 hold.
In particular for any s ̂  \ and ε > 0,

f o r

0 0 b y x >We remark that all the above statements hold upon replacing Rω

however with further smoothness assumptions on the potential (by the usual
Mourre estimate cf. [F-Hl]).

Example 2. Fix 0<E" <E' <E. Let f9f2>to>κo>βo a n d α0 be as in Example 1.
For ε" > 0 let ge&Ό x ε« and A(τ) = multiplication by g( — τM9 τ), M = M(x, τ) =
/ x 2 \ 1 / 2x \

E" I . Let A(τ)' = the A(τ) considered in Example 1 (in terms of R large
4τ 2/

and the given E) and B = (^(ίo)')1 +κ for some κ> 0.
Then (l)-(5) of Assumption 2.2 hold. As for (6) we verify the condition q{β0, α0, δ)

of Corollary 2.6 with δ = 1: By using Lemma 3.2(9) we compute (cf. Lemma 2.15)

— + 2 ( F - £ " ) + 0(τ-

The first term is non-negativev As for the second we observe that

with ε' = E' — E".
τ τ

Hence it suffices to show that

ί-A(τ)'\112 /A(τ)f \
If we commute the first factor I 1 χl < — ε' \ in front of the last

factors e-itHf(H)B~al2 it follows from (3.1) and the fact that ||Λ(τ)|| =O(τ) for
τ->oo, that the indicated estimate holds. It remains to control the commutator.
This can be done by using Lemmas 2.7(2) (or rather an extension cf. Remark
2.8(2)), 2.11(1) and 3.2(9) together with similar arguments.

We conclude that Assumption 2.2(6) holds.
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Since gβ(XfE(A(τ), τ) = gβt0Ctε( — τM, τ) for any ε > 2ε" (in this case the two operators
are given by multiplication by the same function) and ε" > 0 is arbitrary, we obtain
for any s ^ 0 and ε > 0 the estimate

\ = O(Γs). (3.2)

But since κ,E" and E are arbitrary (up to some relations) and since
(A(to)

f)n(H-i)~n{x)-n «χ>=(l-fχ 2) 1/ 2) is bounded for any n (cf. [J-M-P]), a
consequence of (3.2) is the following.

Theorem 3.3 (minimal velocity estimates). Let E, ε > 0 be given. Then for any
^(R) supported in a small neighbourhood of E and any s' > s > 0,

s' = O(ΓS) for ί-> + oo.

Remark. By the same method one can obtain similar results for negative non-
threshold energies not eigenvalues (cf. Appendix B).

Example 3. Fix 0 < E. Let /, / 2 , ί0, /c0, β0 and α0 be as in Example 1. For υ > 0 let
A(τ) = vτ — <x> and B = <Λ>. For v large enough

f2(H)DA(τ)f2(H) = f2(H)\v - - ί-p -pJίAf2(H) ^ 0. (3.3)

For such v Assumption 2.2 holds, and consequently (by Corollary 2.5)

Theorem 3.4 (large velocity estimate). Let E, ε > 0 be given. Then 3E'^E: For any
R) supported in a small neighbourhood of E and any s ^ / ̂  0,

^ < ε \ e f ( H ) ( x y O(Γ) for

Remark. As noted by Sigal and Soffer [S-S] one can refine (3.3) as to obtain
Theorem 3.4 with the explicit value E' = E — inίσc(H) (σc(H) = thc continuous
spectrum of//). There exists a different proof along the line of the proof of Theorem
4.5. As before there are similar statements below zero.

Example 4. We shall apply Lemma 3.2 (again with k = 2). Let

-1/4

Then£/fl(x)4 = l.
a

Let v, t0 > 0 be given such that (with Ro given in Assumption 3.1(2) and rγ in
accordance with Lemma 3.2)

vtorx > Ro. (3.4)

Let κ0 > 0 be given. We shall verify the condition of Corollary 2.6 with E > 0,
fτfiiβo a n d αo given as in Example 1, t0 and κ0 above, δ = min{εo,2κ:o},
B = ( x ) 1 + κ o , and A(τ) given as follows:
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With τ = t + t0 and E" = Ef + 4,E'^E large enough (cf. (3.28)), (and with some
abuse of notation) let ja(τ) and χ(τ) be the operators given by multiplication by
-[2x\ IV \
ja [— and χ I — - E" < - 1 , respectively.

\υτj \4τ2 /

Put

Ia(τ) = τ2*°(τ2κo + ( p j V ' , B.(x) = ]a(τ)Ia(τ) JM

A(τ) = Σ χiτ)Ba(τ)χ(τ)Ά{τ)χ{τ)Ba(τ)χ{τ). (3.5)
a

The operator Λ(τ) should be thought of as a regularisation of A(τ). We claim
that (when properly interpreted) A(τ) is bounded and that the conditions of
Corollary 2.6 are fulfilled.

The boundedness holds since by Lemma 3.2(3),

-)ja(τ) = paω(-)jM (3.6)
vτj \vτj

and similarly for the adjoint expression.
Since pala(τ) = 0(τK0) for τ -• oo we also have that

A(τ) = O(τ1 + κo) for τ->oo. (3.7)

We compute (using (3.6) again)

ί[H, A(τ)2 = Σ ί(Pa)2 + (Pa)2 + Qa, χ(τ)Ba(τ)χ(τ)A(τ)χ(τ)Ba(τ)x(τ)l (3.8)

where Qa= Σ Vij(χ(ij))' Notice that if ((/) c α then pa and K0(x(i7)) commutes.
(0) Ψa

On the other hand if (ij)φa we have by Lemma 3.2(4) that \xiij)\ >vτrι on
-[2x\

the support of Vu{x{ij))ja\ — . So for any ε > 0 we can write
\vτj

ri)2 -ε - ̂ < ~ C O = α (3 9)

By choosing ε > 0 small enough we have (remember (3.4)) by Assumption 3.1(2)
and with χ( ) as on the left-hand side of (3.9), that χOK^x^) is smooth and satisfies
the uniform estimates

K,x){x(')Vij(χ(iJ))}\ ^ Cατ-'α '-ε o. (3.10)

The similar bounds, obtained by replacing ε0 on the right-hand side by 0 (cf. (3.12))

and χiήVJx™) on the left-hand side by ja(τ)χ(τ), 7fl(τ)χ(τ)ω — or by
ίx\x ^vτ'

Ja(τ)x(τ)ω - - , hold.
\vτJ2τ

Using (3.9), (3.10) and the statements above we conclude that the right-hand
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side of (3.8) is given as a finite sum of terms of the form

{hJaWl'-^ίPaVaWhnOM (3.11)

where Oi(pfl) and 0x(p) are first order polynomials in components of pa and p,
respectively, and with constant coefficients, and hj = hj(x, τ) are smooth and satisfy

|^ t iX)fc(x,T)|^CeT-'e«. (3.12)

The form of A{τ) is a finite sum of terms of the form

τft1/fl(τ)/i201(pα)/fl(τ)/i3, with hs and O^pJ as above. (3.13)

As for the time derivative of A(τ)9 it is a finite sum of terms of the form

{Λ1/fl(τ)/i2. .}O1(pα)/α(τ)/ιm,/2J.(x,τ) as above. (3.14)

In order to verify Assumption 2.2(1)—(5) (the other part q(βo,oίθ9δ) of Corol-
lary 2.6 will be discussed afterwards) we must examine the commutators of
operators of the form (3.13) with some of the form (3.11) and (3.14). For that it is
convenient to take a more general point of view by introducing operators Ba of
the form

Ba = (Caτ
2«° + OMτ** + O2(pα))(τ2«° + (ft,)2)"x

with Ox(pα) as above and O2(pa) second order polynomials similarly defined. Given
such operator Ba and h(x,τ) smooth and obeying (3.12), we get by an elementary
computation the following (convenient) identity:

[Ba,K] = finite sum of terms of form τ~il + Ko)BahBa,

with Ba9Ba and h given similarly. (3.15)

By the statements associated with (3.11), (3.13) and (3.14) A(τ) is a finite sum
of terms of the form

τ1+«°h1B1h2B2h3, (3.16)

[//, A(τ)~\ of terms of the form

τ βoΛ1B1Λ2 . Bm_1ΛmO1(p), (3.17)

and dτA(τ) of terms of the form

In all cases each Bj is given by some Ba as above. Moreover among these factors
there will always exist at least one of the specific form

) - 1 . (3.19)

Now using (3.15) and the statement associated with (3.16) repeatedly together
with the ones associated with (3.17)—(3.19) we obtain that for any n,adn

A(τ)(H) is
given by terms either of the form (3.17) and with one B3 of the form (3.19), or of
the form τ2κoh1Bι # m _ xhm and with two of the Bβ of the form (3.19). In particular

^nA(τ)(H) = Σ^Bι-Bm-iKO2{p\ (3.20)
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Similarly adn

A(τ)(dτA(τ)) is given by terms of the form (3.18) and with one Bj of
the form (3.19). Hence

and also

ί -Bm-1hmOί(p). (3.22)

It follows from (3.20)-(3.22) that Assumption 2.2(l)-(5) hold.
For future applications (in particular some in Sect. 4) we state some estimates:
With h(x,τ) smooth and satisfying (3.12), and for any m,n1eN9

ad™τ)(/z(x,τ)) = Σ O(τ |β|)(3;fc)(x,τ) + O(τ-" 1 ( 1 + I β o ) ) for τ ^ o o . (3.23)
\a\^m+m-ί

In particular

ad;(τ)(fc(x,τ)) = O(l). (3.24)

For any /leC^R") and weN

(3.25)

It is remarked that (3.23) follows by a closer examination of the right-hand
side of (3.15), while (3.25) follows by an application of the calculus (for example) of
the Ps.D.Op.s. introduced in Sect. 4. The details are omitted.

We are left with verifying q(βo,θio,δ\ δ = min{εo,2κ;o}:
/ ds

Formally with D = i [ # , •] + —
\ dt

vτ) 2v(vτ) \vτ

By Lemma 3.5(1) and (2) the first term is non-negative and the (z )-indexed term
in the summation is supported in the region where

Here V^ is smooth and the estimate

Assumption 3.1(2)).
Thus

vτ
<Cτ~

t;τ(>K o by(3.4)) .

ω( — )\ holds (by
vτ

Σ /a(H)χ(τ)B.(τ)χ(τ)(DA(τ))χ(τ)B.(τ)χ(τ)/2(H) ^ O(τ~^). (3.26)
a

As for the factor χ(τ):

To treat the contributions to f2{H)DA{τ)f2(H) from terms containing such factors

we note that χ'( ) = Zi( )V( λ where Xl(-) = χU - £-2 < - l\ £' = £"-4. We



Propagation Estimates for ΛΓ-Body Schroedinger Operators 87

pull one factor χ ^ ) to the left and the other factor to the right, and obtain (using
Lemma 2.11(1)) that the form of such terms is

+ Oίτ- 1). (3.27)

Clearly the latter satisfies (2.5). The former (2.6) since cf. Lemma 2.7(1) we can write

XlC)S(A(r),T) = Σ S(m)(A(τ),τ)(m!)"»ad-^ί ))
m = 0

+ remainder, g = (g(1))1/2.

For n large enough the right-hand side is of the form

by an application of (3.23) with h = χ1(-). (We use that || gim)(A(τ\ τ) || g C τ ( α - 1 ) / 2 ( 1 + κ o )

which in turn follows by (3.7).) But by Theorem 3.4 (with B as introduced in the
beginning of Example 4, for E' large enough and / supported in a small neigh-
bourhood of E)

/ x2 1\
(«-i)/2(i+κo)y( E>_±_< _L )e-

ίtHf(H)B-Λ/2 = (
\ 4τ2 2/ JK }

This completes the discussion of terms of the form (3.27).
It remains to consider

(3.28)

τ)(DBa(τ))x(τ)Λ(τ)χ(τ)Ba(τ)χ(τ)

fiffl.

We use (3.9) and (3.10) in computing

= /fl(τ)2D/fl(τ)4 + / a ( τ ) 4 ^ /a(τ)2

= D/fl(τ)4 - {/ - /.(τ)2}D/.(τ)* + /a(τ)4 ^ {Ia(τ)2 -1}. (3.29)

Terms of the first type do not contribute to the summation on the right-hand side
of (3.29), since

Because / - Ia(τ)2 = {/ + /Λ(τ)}(pα)2(τ2κo + (p f l )
2 )" 1 the remaining terms contribute

with an operator which is O{τ~2κo). Putting together

R = O(τ-2κo) + O(τ~εo). (3.30)
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By (3.26), (3.30) and the statements following (3.27) q(β0, α0, δ\ δ = min{ε0,2κ0},
holds.

We conclude that the conclusion of Theorem 2.4 holds.
In particular (to be used in Sect. 4) for any E' ^ E sufficiently large and /

supported in a small neighbourhood of E (so that (3.28) holds), and for any s ^ 0
and ε > 0,

Y\ί^ λ ) = O(τ-s) for τ_>Q0>

4. Free Channel Propagation Estimates

In this section we shall apply the results of Sect. 3 to obtain two propagation
estimates (stated as Theorems 4.4 and 4.5) for the free channel, by which we mean
certain estimates involving decoupling operators χfr defined as follows:

Consider C°°(X)-functions χ / r ( ) , homogeneous of degree zero outside the
unitsphere in X and satisfying the support condition

suppχ/r( )n (J Z α # 0 . (4.1)
aΦ

(l) (N)

Clearly (with dist = distance)

<5:=distjsuppχ/r( ), \J Xa\>0. (4.2)

( l) (JV)

With Ro given in Assumption 3.1(2) and χfr(') and δ as above, χfr and χfr are
the operators given by multiplication by χfr(x) respectively

«/,(*) = z ( - 1 * 1 + y < - l ) z / , M (4-3)

We notice that (by Assumption 3.1(2)) V(x)χfr(x) is smooth and satisfies

d"x{V{x)χfr{x)} = 0{\x\-W-*% Vα. (4.4)

We introduce the following class of pseudodifferential operators (Ps.D.Op.s):
Let S™ be the symbol class of C™(X x X)-functions p(x, ξ) with

ξ Vα,#m,/eR.

The corresponding class of Ps.D.Op.s defined by

(P{X,D)ψ)(x) = (2πΓv{N- ll

will be denoted by S™.
If p(x, ξ)eS™ is supported away from an interval zlc=R+ in the sense that

p(x,ξ) = 0 iϊ ξ2eΔ, then_by convention p(x,ξ)eS?(Δc) and P(X,D)<=S?(ΔC).
Moreover S»(4<):= (J (J S J W

/ m

As for the calculus of the above Ps.D.Op.s we refer to [H-Sl] and [K]. It will
be used without further references in the following.

We will need the following extension of [H-Sl, Lemma 3.3].



Propagation Estimates for ΛΓ-Body Schroedinger Operators 89

Lemma 4.1. Let ΔaR+ a compact interval, /eCJ(4) (Δ = the interior of Δ\
seR,P{X,D)eS™{Δc) and χfr(x) of the form {4.3) be given.

Then

Idea of proof. We will only sketch the proof since it goes like the one of [H-Sl,
Lemma 3.3].

For a suitable closed curve Γ in C around supp / and intersecting R in Δ we
write

P(X,D)ftfrf(H) = ̂ -. i dzP(X,D){R0(z)χfr-χfrR(z)}f(n),

where Ho = p\ R0(z) = (Ho -z)~* and R(z) = (H-z)~1.
But

Λo(z)jt/, - 2/,*(z) = Ro(z){XfrH ~ Hoχfr}R(z)
= R0(z){i(piVχfr)(-) + (Vχ/r)( ) p) + Vχfr}R(z).

Using the above facts, the calculus and (4.4) we obtain that

P(X,D)χfrf(H)= I dz{Gί(X,D,z) + G1(X;D,z)}χfrΛR(z)f(H),

where χ / r l(x) = l on suppχ/r( ) and given^ with only slightly larger support,
GiCY, D, zjeS™s for some m and Gt(X, D, z)eS™(Δc) with the x-decay of the symbol
improved by a factor <x>~εo.

Now we iterate the arguments to obtain the total x-decay to the power - s. •

Lemma 4.2. With the conditions of Lemma 4.1 and for any 0<s<s\

P{X,D)χfre-ίtHf(H)(xys' = O(ΓS) for ί-> + oo.

This result is a consequence of Lemma 4.1 and the following lemma, which in
turn follows from Theorem 3.3 and a covering argument.

Lemma 4.3. With fas above and for any 0<s<s\

-s' = 0{Γs) for ί-> + oo.

T h e o r e m 4.4. Suppose P _ ( X , D ) e S £ and that s u p p p . a {(χ9ξ)\χ-ξ < ( 1 - ε j l x l \ξ\}
for some εx > 0. Then for any decoupling operator χ / r ,/eCJ(R + ) and 0<s<s\

P_(X,D)χfre-itHf(HKxys' = O(ΓS) for ί^ + oo.

Proof. Let εf > 0, χ / r ,0 < s < s'y 0 < E and ξoeX with \ξo\
2 = E be given.

By covering arguments it suffices to find neighbourhoods NE of E and Nξo of
ξ09 respectively, such that the estimate holds for any / e C £ ( R + ) and P_(X,D)eS°
with the properties: suppfcNE9suppp^cz{(χ9ξ)\χ-ξ<(l—ε1)\x\\ξ\} and
P-(x, ζ) = 0 for ξφNξo. Here we use Lemmas 4.2 and 4.3.

For that it is sufficient (by the calculus and Lemma 4.3) to prove the estimate
for P_(X,D) having a certain product form to be specified below.
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Let χx = χx{X) be a decoupling operator as χfr but with the additional property

and let δ be the corresponding positive number given by (4.2).
We introduce rx, r2 > 0, ω and {ja} in accordance with Lemma 3.2 with k = 2.
Put t; = (2r2)~ 1 δ £ 1 / 2 , and let t0 be chosen in accordance with (3.4), and κ0 > 0

with s(l+κ;0) = s'.
Corresponding to the inputs E given above and ε = f in Theorem 3.4 we can

find a neighbourhood iVJ; of E and £' ^ E, such that the estimates of the theorem
hold for E' and for any / with supp/ c= NE.

With this E' (and the other quantities introduced above) we define A(τ) and
A(τ) by (3.5). Clearly (3.28) and (3.31) hold for any / with supp/ cz NX

E.

( F i

1 - — ,
4/

| ( ^ ( | ^ 1 / 2 , (4.6)

and

sup |ω(x) |3ε<-. (4.7)
|x|<2t;-1(£/ + 2)1/2 6

Corresponding to the inputs E and ε (above) in Theorem 3.3 we can find a
neighbourhood N% of £, such that the estimates of the theorem hold for any /
with supp/ c N2

E. Put NE = NEnN2

E.
With 5, s7, χ/r, χu ε, ξ0 and N £ as above we shall prove the estimate of Theorem 4.4

with P-(X, D) = Zi(Ar)χ2Φ)J where χ2(ξ) is any smooth function with

and for any / with supp/ cz NE.
Explicitly we shall prove for φeJf and with ψ(t) = e~itHf(H)(x}~s'φ9 χ2 = χ2(D)

and ιAi(ί) = XiX2Z/rΆW that

ll̂ iWII ^ c r || φ ||. (4.8)
For that let

We claim that

|| ίAiWII2^2||β(ί) ίA1(ί)||2 + Cr 2 s | | (/>| | 2 . (4.9)

This estimate is verified by writing (/ — B(t))χ2 as a sum of three terms. The
contributions from two of these can be handled by using the identity
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— ε

As for the ones from the first two terms on the right-hand side we use our
assumptions (cf. Theorem 3.3), and as for the contribution from the last term we
notice that the operator is O(t~s) (by the calculus of Ps.D.Op.s). A similar argument

/ x2 \
works for the third term χ\ E < — 1 )χ2.

\ 4r /
In order to estimate the first term on the right-hand side of (4.9) it is noticed

f i x 2 \\ x2

that on the support of 1 — χ[ —- — E < — 3ε I m(x), —- — £ ^ — 6ε, and hence
\ \4ί 2 / / 4ί2

— ^ 2{E - 6ε) 1 / 2 > £ 1 / 2 . Thus on this support, for any t > E~1/2 and a φ (1) \N\

\x\ > 1 and
xa

lί! δ-
Vt V

In particular by our choice of v for all x and a as above and t > max{£ 1 / 2 , ί0}
(and with τ = t + ί0)

xa

vτ
(4.10)

By Lemma 3.2(5) and (4.10) we obtain that for t > max{£ 1 / 2 , t0}

(4.11)
κvτj vτ/

Due to (4.5), (4.6), (4.9) and (4.11) the following estimate holds for all

ί 4 / ε M
t > max < E~1/2, ί0 — I 1 — - I > (and with d as defined above)

I β i \ 4 / J
h^iίί) 2 ^ - ( β ( ί ) ^ i ( 0 ? - ω — • ίo )B(t)ΨΛt) ) + C ί " 2 s | | φ | | 2 . (4.12)

d\ \vτj \ 2τ) /
I t F
I Notice that the constraint on t implies that - > 1 — - .
V τ 4

The next step is to replace ξ0 on the right-hand side of (4.12) by p. For that
pick χ3(ξ)eC™(X) such that suppχ 3 c B3ε(ξ0) and χ3(ξ) = 1 on B2e(ξ0). Then

(4.13)

By applying (4.13) twice

Λ(τ)

τ

vτ
B(t)ω[-)(p-ξo)χ3(D)B(t) (4.14)
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But by (4.7)

B(t)ω(-\(p-ξo)χ3(D)B(t)
vτ

S sup
x

ω\ —
vτ

(4.15)

As for the first term on the right-hand side of (4.14), we notice that (by using
(4.13) again)

We choose t' > 0 such that

C2(ί')' )~ m i n { 2 > c o ' 1 }

+ c2r
mi»{2κ^\\φ1(t)\\2 (4.16)

< - . (4.17)
6

We obtain by (4.14)-(4.17) and a subtraction that for

(4.18)

Putting ε' = — we get from (4.18) and another subtraction, that for all t > 0,

6 d

Next we decompose

τ \ τ
. (4.19)

= B(t)XlX2X (^-E<- ε\χfrφ(t)

4?+ B(t)XlX2( 1 -X[ -~2-E<-ε ) )χfrφ(t).

The norm of the first term is bounded by Ct ~s \\ φ ||, as is the case when multiplied
by p.

Using these facts together with (4.19) we obtain the estimate

gτ(A(τ))P(t)Φ(t)\\2 + C2C
2s\\φ\\\ (4.20)

where gτ() = \ — - ) χ[-<—ε') and P(t) = h1χ2h2 with hx and h2 smooth
\ τj \τ J

functions in x and τ and satisfying (3.12).
By an extension of Lemma 2.7(2) for any neN,

gτ(A(τ))P(t)=
m=o ml

τ)) + remainder. (4.21)
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Since by (3.24) and (3.25) ad™r)(P(ί)) = 0(1) for τ->oo (for any m), we finally
conclude from (3.31), (4.20) and (4.21) that (4.8) holds.

Theorem 4.5 (maximal velocity estimate). Let E,ε>0. Then for any
supported in a small neighbourhood ofE, decoupling operator χfr and sf > s ̂  / ̂  0,

-—2<-εhfre-ιtHf(HKxys=O(Γs+ι) for ί^ + oo.

Idea of proof. We will only give a brief outline of the proof since it is very similar
to the one of Theorem 4.4.

By Theorem 3.4 it can be assumed that / = 0.
As in the proof of Theorem 4.4 we define κ0 by 5(1 + κ0) = sf, and introduce

cutoff functions χx(x) and χ2(ξ) with similar properties except for (4.5), and the
operator A(τ) of Example 4 in Sect. 3. Then we derive an estimate of the type
(4.18) but with

^2
X

At2 ~JJ " " r i w ~ V ~ 4 ί
< \ \ \ and φ1(t) = χ\E- — <-ε\χ1(X)χ2(D)χfrψ(t)>

and apply it together with (3.31) (as in the proof of Theorem 4.4). •

Appendix A

We shall prove Lemma 3.2(9).
By the construction of ω(x) in [G],

ί {d*xφ)(x-y)fdy,

ί = 0

where ψeC$(X)9 for some positive numbers ca

0,c\9...,c
a

ma and orthogonal pro-
jections Pa

1,...,P
a

ma,Ω
a

0 = {y\\Πay\Sca

0} and Ω%\^i^m\ are given by either
{ϊy\^c<!} or {y\\P°y\>c°}.

We are thus led to proving

Lemma A. Let ΦECQ(X), FeC°°(ΛΓ,X),P 0 , . . . ,P m be orthogonal projections on
X,co,...9cm be positive numbers, Ω{, = {y11Pty\ ^ ct} for i = 0, . . . ,m, and

Ω= f] Ωt. Then for any n e N u { 0 } ,

sup
xeX

$F(Poy)(x'Vyγφ(x-y)dy < oo.

Proof. Let P = Po v ••• v P m , the orthogonal projection onto the span of vectors
in the ranges of Pi9 and Pλ = I — P. Then since Ω is invariant with respect to
translation with vectors in the ranges of P1, a change of variables shows that

J F(Poy)(-x Vy)
nφ(x-y)dy = J (£){F(P0(tPλx + y))φ(x + tPx-y)}lt = ody.

The norm of the right-hand side is uniformly bounded since P0P
λ = 0 and the
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integral is zero for Px outside a bounded set. The latter statement follows from
the fact that PΩ is bounded, which in turn follows by a repeated application of
a formula in [H] (expressing for instance Pov Px analytically in terms of P o and

Appendix B

πr i 11 w r i . Rω(x/R)p + pω(x/R)R
We shall prove Mourre-type estimates for the operator ΛR:= ,

where ω is given by setting k = 2 in Lemma 3.2 and R > 0 is large (cf. Example 1
in Sect. 3).

Lemma Bl. For any cluster decomposition b ̂ ( l ) (iV) there exist rlxr2>0 and
C00(Xbypartition of unity {Jb

bi}bίCZb such that

(1) \xln\>2r1 on supp jb

b2ifb1φb2,
(2) \xbi\<r2 on supp/j^,
(3) For any (x3C>0:\da

xj
b

bι(x)\ ^ C.

Proof If b = (1 ••• JV) the result is obtained from Lemma 3.2 by putting jb

hγ =jbί.
Otherwise we copy the proof (i.e. we introduce certain characteristic functions as
in [G] however now involving only cluster decompositions contained in b, and
then we smooth out by convolution).

Corresponding to the partition of unity {ja} of Lemma 3.2 let (cf. [G])

/ \- l/2

Ja=Ja[LJb)
\ b J

For any cluster decompositions a and b,baa and a φ (1) (N\ let

Hl=-Δ+ Σ VtJ{lPiJ> ) on L\Xa).
(ij)^b

We abbreviate Hj,1 ~'N) = Hb and Ha

a = Ha. By convention for a = (l) (iV) Ha = 0
on L2(Xfl) = C.

Clearly for any a,

on L2(X) = L2(JTα)(x)L2(

As is well-known the continuous spectrum of H is given by

σc(H) = \ min σ{Ha\ oo .

\_aΦ(l'"N) )

The set of thresholds is defined by

& = (J {eigenvalues of Ha).

It is known that &u {eigenvalues of H) is closed and countable, see [ F - H l ] (a
fact which also follows directly and quite easy from the proof given below).

Theorem B2. Let Eeσc(H)\^ u {eigenvalues of H} and d(E) be the distance from
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E to {E'e^\Ef < E). Then for any given ε > 0 and (sufficiently) large R, the following
estimate holds for any feC J(R) supported in a small neighbourhood of E:

H, ΛRmm ^ (2d(E) - ε)f(H)2.

Proof For purely notational convenience we assume that E > 0. Let ε > 0 be given.
By combining Lemma 3.2(1) and (6) we obtain (cf. [G])

Using this estimate together with Lemma 3.2(2) and (9) and a straightforward
computation leads to

f{H)HH,

valid for any
Introducing the abbreviation

where the second operator on the right-hand side is the spectral operator associated
/ s\

with (pa)
2 and the characteristic function of the interval I — oo, E — I, we conclude

that for R large enough ^ '

f(H)HH9 ARmm £ [IE - ε)f(H)2 + U(H)2 - 2EΣf(H)Ba,Rf(H).
4 a

Hence the theorem follows if for any given C > 0, cluster decomposition a and
large R we can prove that for any/eC^(R) supported in a small neighbourhood
of E

C-ιf{H)2^f{H)Ba,Rf{H). (B.I)

So let a cluster decomposition a and C > 0 be given. Then there exists a
s

geC^iR) supported in the region x > - such that for all b^a and f^C^iR)

supported in the interval Bε/9(E) we have that

fi(Hh)BatRf(H) = MHb){g(Hb)BatR + O(R~ ι)}f{H\ (B.2)

where we suppress a tensor symbol on the right-hand side (as also will be done
in the following). Notice that (by the Fourier transform) for suitable g as above
fί(Hb)(I-g(Hb))F((pb)

2<E-±ε) = O and that (/ - F((pb)
2 < E -±ε))Ba,R =

( 1

We also remark (for another future application) that (suppressing the Fourier
transform)

fΛHb)g(Hb) = \®dξJMb)
2 + Hb)g(Hb). (B.3)
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We will prove (B.I) by first expanding the right-hand side into a sum of terms
indexed by decreasing strings of cluster decompositions: (1 N) = b0 ^ bγ ^ => a.
In doing so we go through a finite number of very similar steps (to be explained).

The expansion involves families of C^(R)-functions {fb} indexed by b ^ a and
with the following properties:

I / J ^ l , 3 0 < ε 1 < ε 2 < < ε # a < - , SEJ-^SJ:

supp/6 <= BεJE), fb(x) = 1 on Bv2εJE).

With this order of scale in mind we perform the first step in expanding the
right-hand side of (B.l):Pick 0 < δ < 1. Then for any / supported in B1/2ει(E),

f(H)Ba,Rf(H) =

f(H)fbΰ(H) Σ k(A)f,,λHbι)Ba,Rf(H), (B.4)

where K is compact and independent offbo. Here we use that jbl —- \jal — I is
\|x| / \2RJ

compactly supported if either b = b0 or b φ a (by Lemma Bl), and the fact that
for a suitable curve Γ independent of fbo (but not of fbi)

The form is (by Lemma Bl and a computation similar to the one in the proof of
Lemma 4.1) fbo(H)K, where K is as above.

By combining (B.2) and (B.4) we arrive at the statement

+ f(H)

with Bbι bounded, uniformly with respect to /b, b^>a,K compact and independent
of fbo, and finally the estimate OiR'1) uniform with respect to fb, b^a.

Now we repeat this procedure by letting fbl(Hbι)g(Hbι) play the role oϊfbo(H)
in writing as the first part of the second step,

fbι(Hbi)g(Hbί)Ba,Rf(H) = fbι(Hbl)g(Hbι)KbiBbJ(H)

+ fbi(Hbι)g(Hbι) Σ

with Bbί bounded uniformly with respect to {fb\#b ^ #bι}, and Kbι = IL2(Xbι) ® Kbl,
where the second factor on the right-hand side is compact on L2(Xbl) and
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independent oί{fb\#b^#b1}. (This is true with Kbi =g(Hbι)(xbι}-δεo, geC™(R)
and gg = g) Here we use Lemma Bl and an analogue to (B.5). The second part
consists in invoking (B.2) (as before).

By continuing in this way (or rather by a simple induction) we obtain the
following expansion valid for any / supported in B1/2ει(E):

f(H)BatRf(H)

+ f(H) Σ Σ Bbi_bJbj(Hbj)g(HbήKbί_bl^ bjf(H\

(B.6)

where Bbu b. and Bbu b. are bounded, the former uniformly with respect to
fb, b=>a, and the latter uniformly with respect to {fb\#b ^ #bj}, KbuJ)j = IL2(Xbj) ®
Kblt""bj

9 where the second factor on the right-hand side is compact on L2(Xbj) and
independent of {fb\#b^#bj}, K is compact and independent of fbo, and finally
the estimate OiR'1) is uniform with respect tofb, b =>a.

When multiplied (from the right) by a compact operator on L2(Xb) each fiber
on the right-hand side of (B.3) goes to zero (in uniform topology) when the support
of the function fι shrinks. This convergence is uniform with respect to ξb, which
means that the integral goes to zero. (See [Ml, p. 295] for a similar argument.)
Hence the statement (B.I) follows from (B.6) by first choosing R large, then/α with
ε#α small, then fb with #b = #a — l and ε#b«ε#α, and so on, at last fbo with
εί«ε2. •

Remark. One can also prove Theorem B2 along the lines of the proof of the usual
Mourre estimate as given in [ F - H l ] . This was communicated to us by G. M.
Graf. The crucial point of that proof is (as in the proof of the usual estimate) a
formula relating the vector field to vector fields of subsystems, so that an induction
argument applies. As for the proof of the usual estimate an analysis at thresholds
is required. This was not the case for the proof given above.
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