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Abstract. We prove propagation estimates (of strong type) for long-range N-body
Hamiltonians. Emphasis is on phase—space analysis in the free channel region.

1. Introduction

In this paper we prove various propagation estimates for a fairly large class of
long-range N-body Schroedinger operators (denoted by H). The form of these
estimates (in the configuration space representation) is

B(ne " f(H){x>™" =0(t"") (L.1)

for t— + oo, and with {(x) given by multiplication by (1 +|x|*)'/?, feCZ(R),
0<s<ys, and finally with {B(f)},~, a family of pseudodifferential operators
(typically of non-negative order).

Among our estimates are the minimal and large velocity estimates of Sigal
2

and Soffer [S-S] (obtained by putting B(t)=x<‘%—E< —s) or B(t)=
2

<x>s"’x<E’ _:ft—z< ——s), with 0 < E « E’ and assuming f to be supported in a

small neighbourhood of E, respectively), however obtained for arbitrary s and s’
as above and for a larger class of potentials.

We shall also prove maximal velocity estimates for the free channel, which are
obtained by localizing further in the configuration space namely to regions where
the potential “goes to zero.” Finally if x,, denotes such localization operator, we
shall prove the estimate with B(t)=P_(X, D)y, where the symbol p_(x,¢)
vanishes in a certain conical neighbourhood of the forward direction: x = c¢&, ¢ > 0.
The latter result was established for N =2 by Isozaki [I] and independently by
Jensen [J] (in both cases under more restrictive conditions on the potential). For
N > 2 the most resembling results in the literature seem to be due to Mourre
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[M1], however these are given under very restrictive conditions (which cover the
pure Coulomb case though).

The estimates indicated above are stated as Theorems 3.3,3.4,4.4 and 4.5, res-
pectively. All hold under the conditions on the potential as given in Assumption 3.1.

In Sect. 2 we extend and refine the abstract theory of Sigal and Soffer [S-S],
which shows how to turn positivity of certain Heisenberg derivatives into estimates
of a type similar to (1.1). Main new things (crucial for applications) are the removal
of a certain commutativity assumption of [S—S] and that approximate positivity
is sufficient. We remark that the abstract theory is stated only for time-independent
Hamiltonians although one can extend it to time-dependent ones (cf. [S—S]).

In Sect. 3 we give examples. We are dependent on those of [S-S] and in
particular on a recent beautiful paper by Graf [G]. The results needed from [G]
are stated in Lemma 3.2.

Consequences of the examples are the free channel propagation estimates
indicated above. This is shown in Sect. 4. The main ingredient of the proofs is the
“global” estimate appearing as Example 4 in Sect. 3.

In Appendix A we prove that the Graf vector field is nicely behaved in the
forward direction in a certain sense, and in Appendix B we establish certain Mourre-
type estimates (depending on this vector field).

Under the same conditions on the potential one can use our estimates together
with the method in [H-S1] to obtain the precise asymptotic behaviour in the free
channel region (as | x| = o0) of the boundary values (from above) at positive energies
of the resolvent. This will be done in [H-S2], where also a relationship to scattering
theory will be shown.

2. Abstract Theory

Notations and Assumptions. By R,R* and N we mean the real numbers, the positive
real numbers and the positive integers, respectively.

Given a Hilbert space &, #(s#) denotes the set of bounded linear operators
on 5. Given a linear operator H on , 2(H) denotes its domain. For a selfadjoint
operator A on #{A>:=(I+ A%)'2,

For xeR we put (x)- = —min{0, x} and (x), = max{0, x}.

By C*(R") and C’(R") we mean the smooth, respectively the smooth compactly
supported, functions on R"; the support of a function f is denoted supp f. For
feCPR" f denotes the Fourier transform of f: f(k) = (2n)"‘j exp(—ikx)f(x)dx.

The standard LP-spaces on R" are denoted by L”(R").

Definition 2.1. Given B,a =0 and ¢>0 let F;,, denote the set of functions
9:9(X, T) = gg 0.(x,7T) = —r""(—x)"x(f>, defined for (x,7)eRxR™ and for
x€C*(R) with the following propertiesf

¥x)=1 for x<—2¢xx)=0 for x> —¢,

d d
—x(x)=0 and ay(x)+x— x(x) = F*(x),
dx dx

where j(x) = 0 and jeC°(R).
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We shall sometimes (in Sects. 3 and 4) use the notation y(4 < — &) = y(A) for
a selfadjoint operator A and with y smooth and satisfying the first three properties

enlisted above. 3 \n
For any inputs B,a,¢ as above %;, . # & and with g®™(x, T)=<;9—) g(x, 1),
X
neNu {0}, (gV(x,1))"? = (x7#(—x)*~ ‘)‘/2;2(5) is smooth.
T

Assumption 2.2. Let noeN with ng 22, t5>0, k20, fo>0, ng—%>0ae>0, f,
f2€CZ(R), f, realvalued with f, f = f, and H, A(z), B be selfadjoint operators on a
Hilbert space # . Assume witht =t + t,,t 2 0, that the operators A(t) have a common
domain 2, 2(H)n D is dense in D(H), B= 1, H is bounded from below, and with
A= A(ty) that (AYm/2 B~ "2 B(H).

Assume moreover

(1) With ad?“,)(H) = H and 1 < n < n, the (commutator-) form (defined iteratively)
i"ad’y (H)=i[i" ' ad’ ] (H), A(t)] on D(H)N 2D extends to a symmetric operator
with domain 9(H).

(2) If A is unbounded sup | He'* ™y || < oo for any yeP(H) and 1 = t,,.

Isf<1

(3) For any t,,7, 2 ty, A(t,) — A(t,) is bounded, and the derivative d, A(t) =
EA(T) exists in B(H).

Fornsny—1landt > to the form (defined iteratively)
i"adly, (d,A(r)) = i[i"~ " ad’y,} (d.A(7)), A(7)]

on 9 extends to a bounded selfadjoint operator on .
(4) Forn<nyad’ (H)(H —i)”" and ad’, ., (d.A(x)) are continuous B(H -valued
functions of T2 t,.

®)
(a) ad®-1(d,A(t)) = O(t*) in B(H#) as 1 o0.

(b) For n<n,,
ad’, N(d, A@))(H — i)~ = O(1) in B(H) as T o0.
(c) For n<n,,
ad’y(H)(H — i)™ = 0(1) in B(HK) as t— 0.
©6) q(Bo, 2o):

With o, =max{meN|m<a,} (for 1<a,) the following (positivity) estimate
holds for (B,®) =(0,1),...,(0, o), (Bo, %o)(= (o, @) if 0 <o < 1):

Let DA(t) denote the symmetric operator i[H, A(t)] + d,A(). Given ¢>0 and
g(x, )€ F , , there exists C > 0 such that with {(t) = (g'V(A(x), 1))"/*e~ ™ f(H)B~** ¢,

g dr(L(e), fLH)DA@Sf,(H)(0))- S Cllg)*, Ve

Remark 2.3. (1) As for (6) e *Hf(H)B~*2 e D((g'"(A(7), 7))/?) for any ¢pes# and
T 2 to. A sufficient condition is obviously f,(H)DA(z) f,(H) = 0. (See Corollary 2.6
for a more refined one.)

(2) If i"ad),,,(H) extends to a bounded selfadjoint operator, continuous in
and O(1) for t— oo, we don’t need H to be bounded from below. (In particular
one can get results for Stark Hamiltonians.)
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(3) As proved by Mourre [M2, Proposition II.1] if A is unbounded and
Assumption 2.2(2) holds one can verify Assumption 2.2(1) by showing the existence
of some subspace & = 2(H) N 2 such that e4™¥ < Z(|s| < 1), & is dense in Z(H)
and the assumption holds with 2(H) 2 replaced by &. This remark is useful for
Exs. 1 and 3 in Sect. 3.

Main Results

Theorem 2.4. Suppose Assumption 2.2 and in addition

Ko+ 0o +3 < Bo + g, 2.1
Ko+op+3<n, (if 1 <ap), 2.2
0;—°+ 2 <ngy+ Bo, 23)
% +2 < n, (implied by (2.2)). 2.4)

Then for (ﬂa a) = (0’ l)a LK) (Oa Cl;)), (ﬂo, aO), any & > 0 and g(x’ T)egﬁ,a,sa
(= 9p.ae(A(0), 7)) 2e" ™ f(H) B> = 0(1) in RB(H)for t— c0.
The proof, given at the very end of this section, requires a series of preliminaries.

Corollary 2.5. With the situation as in Theorem 2.4 for (f,a)=(0,1),...,(0, ap),
(ﬁOa a0)9 any &> 0, g(xa T)eyﬂ,a,e and 1 ; 0 g 0,

(= 9o,u1-0),(A(1), 7)) 2" f(H)B~*2 = O(c?~*"2) in  B(H) for 1 co.

Proof. We use that for 00 =1, —gg,.(x,7) 2 — 17 2(61)30 o1 —0).2:(%, 7) and the
spectral theorem. [J

In two applications (Exs. 2 and 4 in Sect. 3) the following result will be very
useful in verifying Assumption 2.2(6):

Corollary 2.6. Suppose Assumption 2.2(1)—(5) and that q(B,, %) is replaced for some

6> 0 by q(Bo, %o, 9):
There exist bounded operators B(t) and B,(t) on S such that

S2(H)DA(1) f2(H) Z B,(7) + B, (1),
B,(t)=0(x"% for 1- o, 2.5)

and for (B, @) =(0,1),...,(0, ag), (Bo, &) the following estimate holds:
Given ¢>0 and g(x,7)eFg,, there exists C>0 such that with {(t)=
(g"(A(x), 7)) 2e " "B f(H)B~** ¢,

gdtKC(t), B> Clil?, Vet (2.6)

Suppose in addition (2.1-4).
Then q(Bo, %), and hence in particular the conclusion of Theorem 2.4, hold.

Idea of proof. Suppose Assumption 2.2(1)—(5), g(B,, %o, 8), (2.1-4) and oy, < 1. Then
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for any ¢’ <  and with f, = max {f,, 1 — &'}, q(B,, o) holds. Hence the conclusions
of Theorem 2.4 and Corollary 2.5 hold with the input (B, a) = (B, «,). By iterating
we obtain q(f;, o) with B, =max{f,, 1 —nd'} for any neN. So q(B,, @,) holds
with the constraint m — 1 <aq < m, m = 1, imposed.

The rest of the proof goes by induction in m (cf. the proof of Theorem 2.4),
and involves a similar iteration argument. []

Preliminary Results

Lemma 2.7. Suppose A and P are linear operators on a Hilbert space, A selfadjoint
and P bounded, and neN. Suppose that for 1 <m < n the form (defined iteratively)
ad’(P)=[ad7 (P, A] on 2(4) (by {$.adl(PW>={d.ad} (P)AY> -
(Ap,ad%~ (P >) extends to a bounded operator.

Then for any geC7 (R),

(1)
Pg(A)= Zo )(A)ad"'(P)+ I dkg‘"’(k)e"‘AR; k),
R, (k)= jdl(k—ll);—;e-'“ ady(P)e™,
e
GAP = 20 adz®) = gy + j dkGP@ORY, , p)e™,
! =kt B}
Rl gl = = [l = cMad pyemi,

(3) The norm of the integral is (in both cases) bounded by
N
)7 g™ ) lad’y(P) .-
Proof. As a form on 2(A)

k
e~ *4pe* — P =ikad (P)+i[dl{e”"*ad ,(P)e"* — ad 4(P)}. (2.7)
0

This identity extends to an identity between bounded operators.
By iterating (2.7)
n—1 k In-1

e"*4peA _p= 3 (iky"(m!)~'ad7(P)+i"[dl,.. | dl,e”"*ad"(P)et,
0 0

m=1
By the latter identity
[P,g(4)] = [dkg(k)e’** {4 P4 — P)

n—1
=) (m!)"‘g‘""(A)adﬁ(P)+fdk5(\'"(k)e‘k‘R’ a.pk).

m=1
We have proved (1). Statement (2) follows similarly. Statement (3) is obvious. []

Remark 2.8. (1) Under suitable assumptions and modifications the expansions hold
for P unbounded. This will not be needed.
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(2) The expansions can also be generalized to larger classes of functions than
C3(R). This will be done/used (cf. the proof of Lemma 2.16).

Lemma 2.9. With the situation given by Assumption 2.2(1) and (2) (A(t)*iA)~?* leave
D(H) invariant for sufficiently large real A, and (H + i)iA(A(x)+id)~*(H +i)~*
converges strongly to I as |A|— co.

Proof. The proof of [M2, Proposition I1.3] goes through. (When A(t) is bounded
we do not need the estimate of Assumption 2.2(2)) O

Lemma 2.10. Suppose Assumption 2.2(1)—(5). For large enough C for 1=nz=n,
and with H = (H + C)™! the form (defined iteratively) i* ad", (,,(H) =i[i""tad" ) (H)
A(t)] on @ extends to a bounded selfadjoint operator. Moreover (H + i)i" ad A(:)(H)
is a continuous B(H#)-valued function, and O(1) for ©— co.

Proof. As a form on 2 and by a repeated application of Lemma 2.9,
~ ~ il ~ 2
(A, A1 im | A2 | im [H—‘—]
PR AR)+id] - A(r) + il

2
= lim —HI:H,——']I‘:I= lim H# dyoH)————
Ao A(t) + iA imw A(T) + A At )+ i
= —ﬁadA(,)(H)ITI.

Hence iad Am(ﬁ) extends to the bounded selfadjoint operator — Hiad A(,,(~H)I-I,
which is continuous in 7 and O(1) for T— co. The same holds for Hiad ,,(H).
We shall show by induction in »’ that the statement of Lemma 2.10 holds for
1 £ n < n' < nyandalso (for the same values of n and as bounded operators) that
. DL, :
ad),(H) = > - ady (H)ady?(H)ads (H).  (2.8)

ni+nz+n3=n—1 nl'nz'
niz0

We have proved the above statements for n’ = 1. Suppose they hold for n’. We
shall prove them for n’ + 1 (provided n’ + 1 < n,).
Using (2.8) for n=n" we compute as a form on 2,

[i" ad’ (), A(1)] = lim [; ad®, (), Al(if.(:),,l]

LR
= lim | " ad”_(F),———
Mo[’ adjo )A(r)+i/1]

Y (2 )T PE
F ol e '{[ FolH )A()m]

n2 n2 ——12
adil () adA(r)(H) ta A(r)(H)l: a3 (H), Ar) + il]

n3 ni n2 n3 )'2
-ad?, () + ady () ad?2 l(H)[ ad?, (H), yTow u]}

- n: n n
=—i X ad "o () ad s (H) adiy (D).
mi+nyns=n Mylnyln
niz0
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Hence (2.8) and as an easy consequence (together with the induction hypothesis)
the statement of Lemma 2.10 hold for n=n'+ 1. The induction is complete. [

Lemma 2.11. Suppose Assumption 2.2(1)—(5).
(1) For any geCZ(R) and 1 < n < n, the form (defined iteratively)

ad’,,(g(H)) = [ad’y, (9(H)), A(1)] on 2

extends to a bounded operator on H. Moreover (H +i)ad),(g9(H)) and
ad’, ,(g(H))(H + i) are continuous 2(#)-valued functions of 7,and O(1) for T — co.
(2) For1 £n<ngad’(e” " f(H))is a continuous B(H )-valued function of teR.
(3) For any real s with 0<s<n, {(AYe "Mf(H){A)™* is a continuous
B(H)-valued function of teR.

Proof. As a form on 2,

P P k a0y ~ 'iA a0
[, A(z)] = lim ™A jdle—'“"[H, i ]e”"
ol A() + ik

k
=ie* [ e~ "M ad , (H)e" dl,
0

which by Lemma 2.10 is bounded. The same holds when multiplied by (H + i).
Moreover (H + i) ad 4, (e*") and ad 4,(¢*")(H + i) are jointly norm continuous in
k and t with normbounds of the form C{k)({k) = (1 + k?)'/?).

By induction (cf. the proof of Lemma 2.10) for any 1 < n < n, the form (defined
iteratively)

ad’;(t)(e"“; ) extends to the operator
'k ._(n__ 1)' ny itk—DH na+ 1,17 n3 ilH
ifd Tt 234 (€ )adyy “(H)adi,(e™),  (29)
0 nyt+n2+n3=n-—1 nl.nz.n3.
ni20

as an operator is bounded, jointly continuous and satisfies
lads (™) < CCkY, Y,k
and similarly when multiplied by (H + i).
Since g(H) = [dkg(k)e™™ with g(x)= g<;-— C )(GC;’,"(R) for C large enough)
inductively X
i"ad? ,(g(H)) = i*[dk §(k) ad’, (), (2.10)

and thus bounded as are (H +1i) ad’,(g(H)) and ad’,(g(H))(H + i), and all are
continuous in 7 and O(1) for T — co. This proves (1).
As for (2) we use (29), (2.10) and the fact that e”*Hf(H)= §,(H), j,(x) =

. 1
e-uu/x—C)f(_ — C): For ¢, t,€eR,
X

lad (e~ (H)) —ade ™" (D)
< Cfdk k)" g (k) — g,,(K)|
~(n+1)

= Ci(l1g: = ol 2wy + 11§
The right-hand side —» 0 for t —¢,,.

~ 1
- g§:+ M L2(ry)-
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As for (3) it suffices (by an interpolation argument) to show that
Ame "M f(H)( A) ™ is a continuous %(#)-valued function of teR. This is done
by showing inductively for 1 £n<n,, that e ¥ f(H){A) " ¢peP(A") for any
¢esf, and that (cf. Lemma 2.7(2))

Are Hf(H)(AY ™" = io cmadT(e ™f(H)) A" ™m{A)Y ™™,

the right-hand side being bounded and continuous by (2). [
Lemma 2.12. Suppose Assumption 2.2(1)—(4).
(1) Then for 1 <n<ngy, A(7)"<A) ™" is a continuous B(H#)-valued function.
(2) For any 1=a<ng,0<e and gg,,.(x,7)=—(—x)"% X EF 0.no.e>
A T
(— A7)y < (T))(A> is bounded, locally uniformly in © = t,.
In particular the same statement holds for (—g;,(A(z),7))'?CAY ™% with
0=B,0<eg0<a<n,—%and g;,.€F;,.

Proof. We prove by induction in n’, 1 £n’ <n,, that for 1 <n<n', A(r)'<4A)™"
is a continuously differentiable #(#)-valued function with
n—1

—{A(f)"<A> "} = Z Ccmadly, (d A@)AR (AT
Clearly this statement p(n’) holds for ' =1.
Suppose p(n’) for ' <n, — 1. Then
CAYTHA@Y TIKAY T T = (A@KA) TR AGTCAY T
is continuously differentiable and (by a commutation)

i<A>—1A(T)n’+1<A>—n’—1
dt

={(A4) 7 d AQA@) Ay !
n—1

+ (A>T A() Z cmad ) (d.A@) AR "1 TmCAY T

=y~ z ¢, a7 (d A@) A (AL

It follows that
(AL Ay Ay

=A"I{AY T T4 (AY ! _f Z cpady (d, AT)DAT)Y ™AV Ldr.
tom=0
By multiplying by { 4 ) on both sides we obtain that A(t)* *1{( 4> " 1 is bounded
and that p(n’ + 1) holds. This proves (1).
As for (2), with a = n,,

'( 4@ ( “><A> < | A@yoC Ay < C
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locally uniformly in 7 = t,, (by (1)). A similar statement holds with « = 0. We obtain
(2) by interpolating these estimates. []

Definition 2.13. Suppose the situation as in Lemma 2.12.
Let f,€CJ (R) be real-valued and satisfy f, f, = f,. Put D, A(t) = iad 4,(f,(H)H)+
d.A(t) (bounded by Lemma 2.11(1)).

Lemma 2.14. With the situation as above
Sf2(H)D, A(7) f,(H) = f,(H)DA(7) f,(H).
Proof. By Lemmas 2.11(1) and 2.9

F(H)Lf{(H)H, A(7)]f>(H)
e ilA(7)
=s }Lgfz(H)[fx(H)H,A(tHM

ek i1A(7)

=S }T:)fz(H)[ A() ]f2( )

= f2(H)[H,Alf,(H). O

Lemma 2.15. Suppose Assumption 2.2(1)~(5). Let f20,n, —1>0>0,6>0,5 >0,
$eH and gy €F ;. Put Y(0)= e~ “Uf(H)B~2h and gy(x,) = gp,,.{(x, DF*(0%),
where F is real, FeCJ(R) and F(x)=1 for |x|<1. Then, with the convention
(P, = Y(t), PY(t)> for an operator (or form) P, {g;(A(t),7)), is continuously

differentiable with %(g‘,(A(t), 7)), = {(Dg;s(A(z), 7)),, where

] f>(H) (strong convergence)

no—1

Dg,(A(7),7) = ( aa ga)(A(T),TH Z (m!)™'g5"(A(1), 7) ad%,) (D1 A(7))

jdké}w(k D AOR? (K,

(k—Iyo~?

Roosl)= jdl —1)vknoe—w” adyi; (D, A(r))e™.

Proof.
d
X Y (2), g5(AR), Y (1))

= {Y(0),ilf1(H)H, g5(A(2), ) Y (1)) + <l//(t) < ga(A(), T))l//(t)>

where (cf. the proof of Lemma 2.7)

k
‘%g,,(A (1),7)= ( ;— g,,)(A(r), 1)+ [dk gf}’(k, 1)e 4Ok~ | dle™ 14O g A(r)e!4®
T 0

a no—1

< o ga)(A(r) )+ ,..Z_:l (m!)~gdM(A(r), 7) ady ) (d.A(7))

+ [ kg, 1)e A | (—)1)': e~ adre=1(d, A(7)) e dl.
ng —
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We use Lemmas 2.7(1) and 2.11(1) to expand i[ f,(H)H, g;(A(z),7)]. O
Lemma 2.16. Suppose Assumption 2.2(1)~(5). With B,a,¢e,g = g4, and Y(t) as in
Lemma 2.15 {g(A(7), 1)), is absolutely continuous wzth d (g(A(t) 7)), =<{Dg(A(7), 7)),

where Dg(A(t),7) = E; + --- + Eq, the forms being locally integrable on i(t) and given
as follows (we use the notation of Lemmas 2.7 and 2.15):

0
E = <§ g)(A(f), 7),

E, = §(A(2), 1) f,(H)DAQ) f,(H)§(A(x),7), §=(g")">,

no—1

Ey= ; (m!) ™13 (A(x), 7) ad,(f2(H))D1 A7) fr(H)(A(), 7),

E4 = Ro(1)§(A(x), 7)

with
'"/'\no 1 T, r
RO(T) = Sdkg( )(k, T)e kA )R no,A(t), h(H)(k)D A(T)fZ(H)a
no—2 "
Es= (400 3 ad, 0, 4@ £ =L gmam,
Eg = §(A(t),7)R,(7)
with
Ri(0)=—] dkg(no V(k, DR, - 1,Am,D:A(r)fz(H)(k)eikA(t)
no—1 no—m-—1 mi
Er= Y, gulA@ (A0 Y adgy(Hy) 0 g4, 7
m=2 m;=0 1
with
# o
Im =Y9p2.@-my2)s 12 %o ’)=,F (=x)7em g™, 7)
and
H, = adﬁml (D, A(7)) f,(H),
no—1
E8 = Z gm(A(‘c)> T)hm(A(T)a T)Rm(r)
m=2
with

R, (t)= —jdkg"'° ""(k DR, . a0, (€A,
E,=R, (1) = [dkyg °’(k, 1)e*4OR? (k).
Proof. By Lemma 2.15 for any 6,¢ >0,

$g5(A(T), ) — {gs(A(to) to) Do = g dt{Dgs(A(1), ), 2.11)
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where 7' =t +t, and
no—1

Dgs(A(1),7) = ( %%)(A(f), )+ Y (m)71giM(A(), 1) ady (D, A7)

m=1

N .
+ [dkg{(k, T)e*@R; (k). (2.12)
9
We shall rewrite the right-hand side of (2.12) as a sum of forms ) E, 4(), each
1=1

term being integrable on (t) and obeying, with E,(r) = E, as introduced above,
(E 5(t)), = <E(r)), for 60 (2.13)

and for any 0< T

[KEs(t))|SCy VO<t<T, 0<d6<l1

Since by the spectral theorem and Lemmas 2.11(3) and 2.12(2) the left-hand
side of (2.11) goes to {g(A(7'), ') D — {g(A(to), to) Do for 6 -0 (an argument to be
used repeatedly in verifying (2.13)), the lemma follows from (2.13) and the Lebesgue
theorem of dominated convergence.

We proceed to the proof of (2.13):

Let E; 4(t) = aig“ (A(1), 7). Then we can write (for any g, ., ,2€F 4/2.¢/2)
T
g 2
Ega (Ax), 1) = go,a/z,e/z(A(T)a T)F*(0A(7))

0
(= A(T))—a<ag)(f4(f), 090,412.6/2(A(D), 7).

By Lemmas 2.11(3) and 2.12(2) for any 0 < T,
1190,4/2,62(AC), W@ <C VO<t<T.

Clearly by the above facts together with the spectral theorem (2.13) follows for

Eq 5(1).

We look at the contributions from the second term g$"(A4(z), ©)D; A() on the
right-hand side of (2.12). It shall be proved that g{"(A(z), ©)D, A(1) = E, 4(t) + --- +
Eg 5(t) for some E, 4(1),2<1<6, satisfying (2.13): Using the abbreviations

g= g(A(‘[)s T), g = g(A(T)a ‘l'), F= F(aA(t)) and F = ;F(éx)‘)::/i(t) we expand
X

gf,”(A(r), 1)D,A(t)=D; + -+ + D5,
D, =2FF'gD,(A(v))

D, =F§f,(H)D, A(v)f,(H)gF

Dy =Fg — f5(H))D, A(7) fr(H)GF
D,= —F§[D,A(r)f>(H),§F]
Ds=F*§*D; A(x)(I - f,(H)).
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As for D, we write (with an abuse of notation if % —1< 0)

D, =2F(— A(r))! ~*?g{— 9o./2-1,52(A(), T)F} D, A7)

and use Lemma 2.7(2) to commute {---} with the last factor D, A(t). The obtained
expansion together with arguments used above give that D; does not contribute
in the sense of (2.13),i.e. (D, ),—»0ford >0and forany0 < T:|{D, > | S CVt< T,
0<d<l

As for D,, by Lemma 2.14 (and Lemmas 2.11(3) and 2.12(2) + the spectral
theorem) (D, >, — {E,), for § >0 and the uniform bound of (2.13) holds.
In the following the estimate

1Bl Legry < CU 2wy + 1AM [ 2wy) (2.14)

(valid whenever the right-hand side is finite) is useful.
As for D; we notice that

{D3),= —<[F§, f,(H)1D, A(x) f,(H)JF )..
By Lemma 2.7(1)
no—1

—[F§, f,(H)]= 21 (m!)~* (%) {F(0x)g(x, T)}|x=A(r) adz(z)(fz(H)) + remainder.

This fact together with the bound (valid for any meN)

( : )M{F«sx)a(x, 9)

— SC(—x)2m-12) ¥0<d<l, to<t, x<0, (2.15)
X

Lemma 2.7(3) and (2.14), imply that {(D3),—{E;),+ (E,), for 6 »0. Moreover
the uniform estimate of (2.13) is satisfied for the relevant terms.

As for D, we apply Lemma 2.7, (2.14) and (2.15) similarly to obtain that
(D3> =< Es), + {Eg), for d -0, still with the uniform estimate of (2.13) satisfied
for the terms involved.

Clearly {Ds),=0.

It remains to look at the “m > 1” terms and the last term on the right-hand
side of (2.12). The latter contributes with E, in the limit 6 » 0 (by an analogue of
(2.15)). The others with E, and Eg (by similar arguments as used above). []J

Proof of Theorem 2.4. With the situation of Lemma 2.16 we have (by the
conclusion) for any t' >0 (with 7' =1t' + t,)

(=90, AT), ) D1 = { — g 0.l Alto), o) Do — g dit{E; + -+ Eo),. - (216)

In various cases (to be specified below) we shall estimate the right-hand side of
(2.16) from above. For that we notice that due to Assumption 2.2(5), Lemma 2.11(1)
and (2.14) the following estimates hold for t— oo:

no—1

Ey= Y §™(A(1),)0(D§(A(v), ),

m=1

E4 = O(T “hi2ta2 _no)g(A(T): T)’
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Eq = §(A(t),) z OF™(A(), )
Eq = §(A(z), )0 #2+a2-m0+1)
E,= z In(A(D),7) mf O™ )gm(A(z), 7),
E8 — "oz_l g,,,(A(‘L'), ‘E)O(‘t—ﬂlz +({(@e—m)/2)+ —no+m+ 1/2—(m—a)+),
m=2
Ey= Oz PFa-mo+1/2+xo) 2.17)

We shall prove Theorem 2.4 by showing by induction in neN the statement
p(n) that the theorem holds under the further restriction n— 1 <oy <n.

We start by proving p(1): So suppose the conditions of Theorem 2.4 and in
addition that 0 < ay < 1. For ¢ let () = e "M f(H)B~*/%¢ (as in Lemmas 2.15
and 2.16). It suffices to verify the estimate { —gg, 4, .(4(7), 7)), =C ¢ ? for any
e¢>0. For that we use (2.16) and (2.17): Clearly (by Lemma 2.11(3)) the first term
on the right-hand side of (2.16) satisfies such estimate. The contribution from E,
trivially (since it is non-positive), the one from E, by Assumption 2.2(6), and the
ones from Ej,..., E,, because by (2.17),

ICE3 Dl [<Es Dl [<E7 D) S CT7Pe7 1 | 912,

[CE4 >y S Crormel2=mo| 2,

[{Eg>,| £ Cr~Potmol2=mot | g2,

[{Eg),| S Cr-fotmomot 2|42,

[{Eg),| £ Cr~fotmommotiiztuo| g2, (2.18)
By (2.1) and (2.3) the terms on the right-hand sides of the inequalities of (2.18) are
integrable (to infinity). This proves p(1).

Suppose now that p(n) (with 1 < n < ny, — 1) is true. We shall verify the statement
for n + 1. So suppose the conditions of Theorem 2.4 and that n <ay, <n+ 1. Then
by p(n), (2.2) and (2.4) (all assumed to hold)

(—9as5.ne(A0), ) Pe” ™ f(H)B™">=0(1) for -0
for any ¢ >0 and g4/5, ,€Z 4/5.1,e

In particular (cf. Corollary 2.5)

(—Gon-1.(4@) 1)) ?e ™ f(H)B™™2 =0~ "% for t—0c0. (2.19)

We shall prove that

(—Gon (A(D), )2 ™ f(H)B~">=0(1) for t—o0. (2.20)
For that we use (2.16) and (2.17) (as above), now in conjunction with (2.19). We
obtain the following analogue to (2.18):

IKE3 Db [<Es )l [<E7 > | S CT™F ¢ ]1%,
[KEq )| S Ce27me= 1119 g1,
[CEg | S Ce®10tm27me| ¢ |12,
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[CEg) | < Ct™ 1110 9],
[{Eq) | S Ca"~mot 12 x| g2,
By (2.2) and (2.4) the right-hand sides of these inequalities are integrable. Thus

(2.20) holds.
It remains to prove that

(- gﬁo,ao,s(A(T)’ T))”ze—i'”f(H)B_ao/Z =0(1) for t-oc0. (2.21)

Again we use (2.16) and (2.17), now in conjunction with (2.20). We obtain the
following estimates:

ICE3>:LI<Es )il [KE7 D S Cr7lem ] 812,
[KE4 )| < CrPotmol2=mo| g2,
[<Eg |, |<Eg >, < Cx~Fotel2=mr1)¢|2,
[{Eg),| < Crmhotmmmotiiztuo| g2,

The integrability follows from (2.1) and (2.3). This proves (2.21) and hence
pn+1). O

3. Applications to N-Body Schroedinger Operators
In this section we shall give four examples. In all cases H = — A+ I;on # =I1*(X),

where X is the C. M-configuration space {x =(x',...,x")|x'eR", Y myx'=0; of
i=1
N v-dinleensional particles with masses m;. The inner product in X is given by

x'y= ) 2mx"y'. The operator — A denotes the Laplacian.
i=1
Put for any cluster decomposition a

X,={xeX|x'=x'if i, jeC for some Cea}

and X* = the orthogonal complement in X.

The corresponding orthogonal projections are denoted IT, and I1°, respectively.
The cluster decomposition (1)---(i)---(j)---(N)(ij), where " indicates omission is
denoted by (ij).

The momentum operator —iV is denoted by p. We put p, = I1,p and p® = IT’p,
and similarly for any xe X we define x, = I, x and x* = IT°x. For further N-body
notation we refer to [G].

We assume throughout this section and Sect.4 that the potential
V(x) =Y, V;;(x“), where V;;(y) are real-valued and as operators on L2(X ") respec-

@)
tively as functions on X satisfy
Assumption 3.1. (1) V;;(—A+1)"! are compact.
(2) 3R;>031>¢,>0:

V.i(y) are smooth in the regions |y| > R,
and

HViy(y) = O(ly|™'™~%) for |y|—o0, V multiindices a.
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(3) H as well as all sub Hamiltonians H*(defined by —A+ Y, V;;(IT*") on
L?*(X*®)) have no positive eigenvalues. (hee

Remark. (1) Due to [F-H2] Assumption 3.1(3) is a rather weak additional
assumption. For instance it is superfluous for v=3.

(2) As for Assumption 3.1(1) infinitesimal smallness with respect to the
Laplacians (see [R-S, p. 162] for the definition) would suffice as for the theorems
of Sects. 3 and 4.

We shall use various properties of a vector field and a partition of unity
constructed recently by Graf [G]. These are enlisted in the following

Lemma 3.2. Givenk > 1. Then3r,,r, >03weC®(X, X) (a smooth vector field) with
the derivative w, symmetric, 3C®(X)-partition of unity {j,}, indexed by the cluster
decompositions a, such that

(1) 0,(x) 2 ¥ ju)IT,,

@ o) =0if x| <7,

() Jkx)e* () =0,

(4) 'xbl >kr1 on suppja lfb ¢ a’

(5) o(x)=x if |x*| >r, for all a #(1)---(N),

(6) Julkx)jo(x)=0if a &b,

(7) |x*| <r, on supp j,,

(8) For any «3C > 0:|6;fa(x)| <C,

(9) For any a and neN u{0}3C > 0:|(x-V)"%(ew(x) — x)| < C.

The property (2) follows from (3) and (4) (but is also contained explicitly in
[G, Lemma 3.7]). Property (5) will play an important role in Sect. 4, however it
is not used in the discussion below. It follows readily from the definition of w in
[G]. A similar remark is due for (7). The property (8) is contained in [G, Lemma 3.1].
As for (3) the statement follows from an application of [G, Lemma 3.2] (not to
be discussed). Similarly (4) follows easily from [G, Lemma 2.1]. (It is a generalization
of [G, Lemma 2.3]). The statements (1) and (6) are contained in [G, Lemmas 3.7
and 3.4 respectively]. As for the remaining property (9), it will be proved in
Appendix A.

We shall only apply Lemma 3.2 with the input k = 2. Moreover in all examples
Assumption 2.2 can be verified for n,, arbitrary. It is in the following tacitly assumed
that n is chosen large.

Example 1. Fix 0 < E' < E. Choose f and f, as in Assumption 2.2 and supported
in a small neighbourhood of E. Put t,=1, k, =0 and let B,, a, > 0 arbitrarily.

Let for any R > 04(z) = R/RP ; PO/RIR o pree=t+1)and B= (4> (By

an application of Lemma 3.2(9) and [R-S, Theorem X.37] A(r) is essentially
selfadjoint on C(X)). The action of the group e“4* can be expressed explicitly

in terms of the flow associated with the vector field Rw % in X. Using this

expression one verifies readily Assumption 2.2(2). As for Assumption 2.2(1) and
(3)(5) we need to have R large. Then the statements follow by using Remark
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2.3(3), Lemma 3.2(2) and (9). (In computing the commutators in Assumption 2.2(1)

we replace repeatedly Rw(%) by R (m(%) - %) + x and treat the contributions

from the two terms separately.)
As for Assumption 2.2(6) we shall prove in Appendix B that for given large R
and for any f, supported in a small neighbourhood of E, f,(H)DA(z) f,(H) 2 0.
So the conclusions of Theorem 2.4 and Corollary 2.5 hold.
In particular for any s =1 and ¢>0,

<—A(T))1/2x<@< _s)e_itHf(H)<A>—s=0(t—s) for 7- oo. (31)
T

T

We remark that all the above statements hold upon replacing Rw(%) by x,

however with further smoothness assumptions on the potential (by the usual
Mourre estimate cf. [F-H1]).

Example 2. Fix 0< E" < E' <E. Let f, f,,t9,Kq, Bo and o, be as in Example 1.
For ¢" >0 let ge#, ., and A(r)=multiplication by g(—1M,7), M = M(x,7) =

/ 2\1/2
(E" —%) . Let A(t) =the A(r) considered in Example 1 (in terms of R large
T

and the given E’) and B = {A(to)' ! ** for some x > 0.
Then (1)—(5) of Assumption 2.2 hold. As for (6) we verify the condition g(B,, %o, 6)
of Corollary 2.6 with § = 1: By using Lemma 3.2(9) we compute (cf. Lemma 2.15)

DA(r)= (%g)(—rM, 1)+ %(gm(— ™, 7)) P M2

.{A(T)' +2(E —E")+0(™ 1)}M“ ‘/z(g(”(—rM, )2,
T

The first term is non-negative, As for the second we observe that

A(z) Aty [ A(z)
£)~+2(E’—E”)gﬂx2(~gi<—a’) with ¢ =E —E".
T T T

Hence it suffices to show that

T

T
S2(H)(), (A@), 7)) 2e ™ f (H)B~2 = O~ (121~ x12),

B.a.e

_A /\ 1/2 A ’

—“(T—)> x(ﬂ< —a’) in front of the last
T T

factors e " f(H)B~*? it follows from (3.1) and the fact that || A(7)| = O(z) for
T — 00, that the indicated estimate holds. It remains to control the commutator.
This can be done by using Lemmas 2.7(2) (or rather an extension cf. Remark
2.8(2)), 2.11(1) and 3.2(9) together with similar arguments.

We conclude that Assumption 2.2(6) holds.

If we commute the first factor <
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Since gg , .(A(1), T) = gp,0,.(— T, 7) for any & > 2¢” (in this case the two operators
are given by multiplication by the same function) and ¢” > 0 is arbitrary, we obtain
for any s =20 and &> 0 the estimate

2

X<2%-E”<-—s>e*meﬂB‘%=OU‘ﬂ. (3.2)

But since x,E” and E' are arbitrary (up to some relations) and since

(A(to))"(H — i)™ "{x> ™" ({(x) = (1+x?)'/?) is bounded for any n (cf. [J-M-P]), a
consequence of (3.2) is the following.

Theorem 3.3 (minimal velocity estimates). Let E,e >0 be given. Then for any
f€CF(R) supported in a small neighbourhood of E and any s' > s> 0,

2

x(%—E<—s>e‘i'Hf(H)(x)_s'=O(t“) for t— + oo.

Remark. By the same method one can obtain similar results for negative non-
threshold energies not eigenvalues (cf. Appendix B).

Example 3. Fix 0<E. Let f, f,,t4, k0, Bo and a, be as in Example 1. For v >0 let
A(t)=vt — {(x) and B=<{A). For v large enough

X X
f2(H)DA(1)f,(H) =f2(H){U ———p—p—}fz(H)zﬁ (3.3)
(x> (x>
For such v Assumption 2.2 holds, and consequently (by Corollary 2.5)

Theorem 3.4 (large velocity estimate). Let E,¢ > 0 be given. Then 3E' =2 E: For any
fe€CZ(R) supported in a small neighbourhood of E and any s 2120,

2

<x>1x<El—%<_B>e—an(H)<x>—s=O(t_”’) for t— + oo.

Remark. As noted by Sigal and Soffer [S—S] one can refine (3.3) as to obtain
Theorem 3.4 with the explicit value E’'=E —info (H) (6.(H) = the continuous
spectrum of H). There exists a different proof along the line of the proof of Theorem
4.5. As before there are similar statements below zero.

Example 4. We shall apply Lemma 3.2 (again with k = 2). Let
B - - -1/4
j,,(X) = ja(x)<z jb(x)4> .
b

Then Y j(x)*=1.
Let v,t, > 0 be given such that (with R, given in Assumption 3.1(2) and r, in
accordance with Lemma 3.2)
vtory > R,. 3.4)

Let ko > 0 be given. We shall verify the condition of Corollary 2.6 with E > 0,
f,f2,Bo and o, given as in Example 1, ¢, and k, above, é =min{ey,2x,},
B={x)'**_ and A(t) given as follows:
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With t =t +t,and E" = E' + 4, E' 2 E large enough (cf. (3.28)), (and with some
abuse of notation) let j,(t) and x(z) be the operators given by multiplication by

(2 z
j.:(“)f) and x(I—z— E" < — 1}, respectively.
T

o)+ (-]

L) =120 +(p)*) ™!, Bo(1) = ju(0)1o(1) Jo(0),
A(®) = ¥ 1(0)B,(0) 1) A(%) x(1) B(2)x(x). (-5

Put

The operator A(t) should be thought of as a regularisation of A(r). We claim
that (when properly interpreted) A(r) is bounded and that the conditions of
Corollary 2.6 are fulfilled.

The boundedness holds since by Lemma 3.2(3),

pw(i)faa):paw(i)ia(r), (3.6)
T T

and similarly for the adjoint expression.
Since p,I,(t) = O(z*°) for T — oo we also have that

A(T)=0(t**) for 1 00. (3.7
We compute (using (3.6) again)
i[H, A1 =Y. [(p.)* + (1" + Qo 1D B, ¥ A@x(D)B,)x(D)],  (3.8)

where Q,= Y V;(x*). Notice that if (ij) = a then p, and V;(x*?) commutes.
@) ¢a
On the other hand if (ij) ¢ a we have by Lemma 3.2(4) that |x®| > ytr, on

o2 .
the support of V;(x*) j,,<—x). So for any ¢ >0 we can write
vt

Vu(x“f’)fa(i—f)( 1— x((m)z —e— (x:f)z <- %)) =0. (3.9)

By choosing ¢ > 0 small enough we have (remember (3.4)) by Assumption 3.1(2)
and with y(") as on the left-hand side of (3.9), that x() V;;(x*”) is smooth and satisfies
the uniform estimates

108, o IXC)Vi(x)} < Cpr 1ol e, (3.10)
The similar bounds, obtained by replacing ¢, on the right-hand side by 0 (cf. (3.12))
and x()V;(x*’) on the left-hand side by j,(1)x(x), fa(r)x(r)w<i> or by
vt
fa(r)x(r)w(1>i, hold.
vt/ 2t
Using (3.9), (3.10) and the statements above we conclude that the right-hand
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side of (3.8) is given as a finite sum of terms of the form
{hlla(r)hZ "'}Ol(pa)la(t)hmol(p)’ (311)

where 0,(p,) and O,(p) are first order polynomials in components of p, and p,
respectively, and with constant coefficients, and h; = hj(x, 7) are smooth and satisfy

|02 h(x,7)| < C 7”14l (3.12)

(z,x)

The form of A(z) is a finite sum of terms of the form
thy 1,(t)h,0,(p,)1,(7)h;, With h; and O,(p,) as above. (3.13)
As for the time derivative of A(z), it is a finite sum of terms of the form

{hy L (@)hy -0, (p)L(t)hm, b (x, ) as above. (3.14)

In order to verify Assumption 2.2(1)—(5) (the other part g(f,,«q, ) of Corol-
lary 2.6 will be discussed afterwards) we must examine the commutators of
operators of the form (3.13) with some of the form (3.11) and (3.14). For that it is
convenient to take a more general point of view by introducing operators B, of
the form

B, = (Cot™+ 01(po)t™ + 02(p)) (7> + (p)*) '

with O,(p,) as above and O,(p,) second order polynomials similarly defined. Given
such operator B, and h(x, 7) smooth and obeying (3.12), we get by an elementary
computation the following (convenient) identity:

[B,, h] = finite sum of terms of form r’(1+"°’§a71§a,
with B,, B, and h given similarly. (3.15)

By the statements associated with (3.11),(3.13) and (3.14) A(z) is a finite sum
of terms of the form

11 *%h, B, h,B,h;, (3.16)
[H, A(7)] of terms of the form
T°hyB hy---B,,_ 1h,,0,(p), (3.17)
and d_A(7) of terms of the form
T°hy B hy -+ B,,_ 1 h,,. (3.18)

In all cases each B; is given by some B, as above. Moreover among these factors
there will always exist at least one of the specific form

Bj=0,(p)*°(t** + (po)*) . (3.19)

Now using (3.15) and the statement associated with (3.16) repeatedly together
with the ones associated with (3.17)—(3.19) we obtain that for any n,ad} (H) is
given by terms either of the form (3.17) and with one B; of the form (3.19), or of
the form t2*°h, B, --- B,, _ , h,, and with two of the B s of the form (3.19). In particular

ad’y ,(H) =Zh131 “+* B — 1hs0,(p)- (3.20)
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Similarly ad’, ,(d.A()) is given by terms of the form (3.18) and with one B; of
the form (3.19). Hence

ad’ }(d.A(t)) =7y h,B,--B,_,h,, (3.21)
and also
ad’ ' (d,A(c)) =) h;B;---B,_h,0(p). (3.22)

It follows from (3.20)—(3.22) that Assumption 2.2(1)—(5) hold.
For future applications (in particular some in Sect. 4) we state some estimates:
With h(x, 1) smooth and satisfying (3.12), and for any m,n, eN,

adl (h(x D))= Y OE*)@R(x1)+O0E ™I+ for tsc0. (323)

la|Sny+m—1

In particular

ad’y,,(h(x, 7)) = O(1). (3.24)
For any heCJ(R") and neN
ad?, (h(p)) = O(1). (3.29)

It is remarked that (3.23) follows by a closer examination of the right-hand
side of (3.15), while (3.25) follows by an application of the calculus (for example) of
the Ps.D.Op.s. introduced in Sect. 4. The details are omitted.

We are left with verifying q(Bo, ®o,d), d = min{ey, 2k, }:

Formally <with D=i[H, ]+ %>,

~ 2 X X X
DA(”?("‘Z)‘“*(Q(”‘Z)
x 1 X
—1 (% cu(;)‘VVU — 2—v(vt)2 (AV‘G))(E)

By Lemma 3.5(1) and (2) the first term is non-negative and the (ij)-indexed term
in the summation is supported in the region where |x“?| > r vt (> R, by (3.4)).

< Cr""‘w(—)‘ holds (by

Here V;; is smooth and the estimate ’rw( ) Vv
vt vt

Assumption 3.1(2)).
Thus

Y. f2(H)x()B,(0)x(t)(DA()) (1) B(t)x(1) f>(H) Z O(x ™). (3:26)
As for the factor y(t):

Dy(r)= x()—p+p—x()—x()2 3

To treat the contributions to f,(H)DA(z) f,(H) from terms containing such factors
2

we note that x'(*) = x;(")*x'(-), where xl(~)=x<E’—:—2< — 1>, E'=E"—4 We
T

, d
X (')u,= 4 A0 < = Dyyezjary -



Propagation Estimates for N-Body Schroedinger Operators 87

pull one factor x,(-) to the left and the other factor to the right, and obtain (using
Lemma 2.11(1)) that the form of such terms is

211()0(x () + 0@ ™). (3.27)

Clearly the latter satisfies (2.5). The former (2.6) since cf. Lemma 2.7(1) we can write

n—1

1(§AR Y= Y §™(A), )(m!) " ad%, (x:())

m=0
+ remainder, §=(g'V)!/2

For n large enough the right-hand side is of the form
2

1
O(r@= V/2(1 +x0) E,_x_< __>+0 -1
( )x( 273 ™)

by an application of (3.23) with A=y, (). (We use that ||§™(A(t), )| < Ct@~ /21 *+x0)
which in turn follows by (3.7).) But by Theorem 3.4 (with B as introduced in the
beginning of Example 4, for E’ large enough and f supported in a small neigh-
bourhood of E)

x2

= D2a +xo)X<E1 — < _%>e—itﬂf(H)B‘¢/2 = 0(r~ WA+ (328)
T

This completes the discussion of terms of the form (3.27).
It remains to consider

R:=f,(H ){Z (@) (DB,(2))1(x) A(0)1(%) B,(0)x(x)

+3 X(I)Ba(f)x(f)ﬁ(t)x(r)(DB..(I))x(r)}f 2(H).
We use (3.9) and (3.10) in computing
R = f,(H) Y, x(@R@)1() A(@)x(x)*f2(H) + O(x~*),

Ry(®) = L(2Dj,(0)* + J,(0)* 21% L

- - - d
= Dja(1)4 - {I - Ia(T)z}Dja(T)4 + ja(T)4 E {Ia(T)z - I} (329)
Terms of the first type do not contribute to the summation on the right-hand side
of (3.29), since
Y. Dj(0)* =D} ju(v)* =0.
Because I — I,(t)> = {I + I,(¢)}(p.)*(t**°+(p,)*) ! the remaining terms contribute
with an operator which is O(z ~2*°). Putting together
R=0(t"2*) + O(t ™). (3.30)
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By (3.26), (3.30) and the statements following (3.27) g(B,, %, 8), & = min{eg, 2k, },
holds.

We conclude that the conclusion of Theorem 2.4 holds.

In particular (to be used in Sect. 4) for any E’= E sufficiently large and f
supported in a small neighbourhood of E (so that (3.28) holds), and for any s =0
and ¢ >0,

<—A(‘t)>1/2x<@<—8>e'i‘Hf(H)(x>‘s(l+“°’=0(1."5) for t—o00. (3.31)
T

T

4. Free Channel Propagation Estimates

In this section we shall apply the results of Sect. 3 to obtain two propagation
estimates (stated as Theorems 4.4 and 4.5) for the free channel, by which we mean
certain estimates involving decoupling operators y,, defined as follows:

Consider C®(X)-functions x,(-), homogeneous of degree zero outside the
unitsphere in X and satisfying the support condition

supp x5, ()N U X, #0. (4.1)

W
Clearly (with dist = distance)

8= dist{supp 10, U Xa} > 0. 4.2
W

With R, given in Assumption 3.1(2) and x,(') and é as above, x, and f, are
the operators given by multiplication by y . (x) respectively

Zf,(X)=x<—IXI+%9< - 1>Xfr(x)' 4.3)

We notice that (by Assumption 3.1(2)) V(x)%,,(x) is smooth and satisfies
V()T 0} = O0(1x|7117%), Va. (4.4)

We introduce the following class of pseudodifferential operators (Ps.D.Op.s):
Let ST be the symbol class of C*(X x X)-functions p(x, £) with

10208p(x, &) £ C, g {x)!19ICED™, Vx,EeX Va,f;m,leR.
The corresponding class of Ps.D.Op.s defined by
(P(X, D)Y)(x) = (2m) >N~ [[ == p(x, E(y)dy dS

will be denoted by S}

If p(x,&)eSy is supported away from an interval AcR* in the sense that
p(x,&)=0 if ézeA then by convention p(x,&)eS™(AY) and P(X,D)eSM(A°).
Moreover S2(4°):= U U Sm4°).

As for the calculus of the above Ps.D.Op.s we refer to [H-S1] and [K]. It will
be used without further references in the following.
We will need the following extension of [H-S1, Lemma 3.3].
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Lemma 4.1. Let AcR* a compact interval, f eC°°(A) (A—the interior of A),
seR, P(X, D)eS°°(A‘) and ¥ ;,(x) of the form (4.3) be given.
Then

P(X, D), f(H){x)*€ B(KH).

Idea of proof. We will only sketch the proof since it goes like the one of [H-S1,

Lemma 3.3].
For a suitable closed curve I'in C around supp f and intersecting R in A we

write

1
P(X, D)y f(H) = ; dzP(X, D){Ro(2)s, — ¥;+R(2)} f(H),

where H, = p?, Ry(z2)=(Ho—2)" ! and R(z)=(H —z)" ..
But
Ro(2)¥ s — X7+R(2) = Ro(2){T ;s H — Ho 1} R(2)
= Ro(@){i(p*(VZ7)() + (VEs)() D) + Vs JR(2).

Using the above facts, the calculus and (4.4) we obtain that

P(X,D)j,,f(H)= J dz{G,(X,D,z) + G,(X,D,2)} ¥, R(z) f(H),

where f, ,(x)=1 on suppf,() and given with only slightly larger support,
G,(X,D, z)eS™  for some m and G,(X, D, z)eS®(A°) with the x-decay of the symbol
improved by a “factor {x)~%,
Now we iterate the arguments to obtain the total x-decay to the power —s. [

Lemma 4.2. With the conditions of Lemma 4.1 and for any 0 <s<s/,

P(X,D)je ™Mf(H){x)"=0("") for t— + 0.

This result is a consequence of Lemma 4.1 and the following lemma, which in
turn follows from Theorem 3.3 and a covering argument.

Lemma 4.3. With f as above and for any 0 <s<s,
(x)fe T Hf(H)(x)"" =0("%) for t— + .

Theorem 4.4. Suppose P_(X,D)eSS and that suppp_ < {(x,&)|x-& < (1 —&,)|x| ||}
for some ¢, > 0. Then for any decoupling operator y,, feCT(R*) and 0 <s <,

P_(X, D)y e  "If(H){x)"¥=0("%) for t— + 0.

Proof. Let &, >0, y,,,0 <s <5, 0<E and {,eX with |€0|% = E be given.

By covering arguments it suffices to find neighbourhoods N of E and N, of
&, respectively, such that the estimate holds for any feCP(R*) and P_(X, D)eS0
with the properties: supp f = Ng,suppp- < {(x,¢)|x- & <(1 —¢&)|x||€|} and
p-(x,£)=0 for {¢N,,. Here we use Lemmas 4.2 and 4.3.

For that it is sufficient (by the calculus and Lemma 4.3) to prove the estimate
for P_(X, D) having a certain product form to be specified below.
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Let x; = x,(X) be a decoupling operator as y ;, but with the additional property
€
SUPPX1(')C{x,x'€O<<1-El>|x||€0|}a 4.5)

and let 6 be the corresponding positive number given by (4.2).
Weintroducer;,r, >0, wand {j,} in accordance with Lemma 3.2 with k = 2.
Put v = (2r,) " '6E"?, and let ¢, be chosen in accordance with (3.4), and xo >0

with s(1 +x,)=7s".

Corresponding to the inputs E given above and & =% in Theorem 3.4 we can
find a neighbourhood N} of E and E’' 2 E, such that the estimates of the theorem
hold for E’ and for any f with supp f < N}.

_ With this E’ (and the other quantities introduced above) we define A(r) and

A(7) by (3.5). Clearly (3.28) and (3.31) hold for any f with supp f = N}.

We choose 8 " 1E > ¢ > 0 so small that with d = (4v) 'Eg, [ 1 —%1 ,

8—1E<(E—6s)<1 —ﬂ)—(E—68)1/2<1 —8—1>E”2, 4.6)
8 4 2
and
d
sup |w(x)|3e < —. 4.7
|x| <20~ YE"+2)1/2 6

Corresponding to the inputs E and ¢ (above) in Theorem 3.3 we can find a
neighbourhood N3 of E, such that the estimates of the theorem hold for any f
with supp f < N2. Put Ny = NLANZ.

Withs, s, X, X1, & o and N as above we shall prove the estimate of Theorem 4.4
with P_(X, D) = x,(X)x2(D), where x,(&) is any smooth function with

supp 12() = B(&o) = {¢1 €= &ol < ¢},

and for any f with supp f = Ng.-
Explicitly we shall prove for ¢ges# and with y(t) = e " f(H){x)> % ¢, 1, = x,(D)
and ¥ (t) = x1 X2 X ¥(2) that

Y@ sCt™| |l 4.8)
For that let

B(t)=(1—x(§2——E< —3£>>(I—X<E’—Zx;< _1>>.

We claim that
@) I12 < 21 BEW, @)1 + Ct= > o2 4.9)

This estimate is verified by writing (I — B(t))x, as a sum of three terms. The
contributions from two of these can be handled by using the identity

x2 x2
——E< —3¢ = —~—-E< -3¢
X<4t2 )Xz XzX(4t2 )
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e e
R ()

As for the ones from the first two terms on the right-hand side we use our

assumptions (cf. Theorem 3.3), and as for the contribution from the last term we

notice that the operator is O(t ~°) (by the calculus of Ps.D.Op.s). A similar argument
2

works for the third term x(E’ - ‘—ft—z < - 1))(2.
In order to estimate the first term on the right-hand side of (4.9) it is noticed

2 2
that on the support of (1 — X(:? —E<— 38))x1(x),% — E = —6¢, and hence

‘):|>2(E 6¢)'/2 > E'/2, Thus on this support, for any t > E~*/2 and a # (1)---(N),
|x|>1 and

x" _ |x| E1/2

vt |x| vt v

In particular by our choice of v for all x and a as above and ¢ > max{E~/2,t,}
(and with =1t +¢t,)

a

t

ll P P (4.10)
vt| Tt

By Lemma 3.2(5) and (4.10) we obtain that for ¢ > max{E~'/? .}

<w<1> - 1) 2,(0B(t) =0. @.11)
vt) ot

Due to (4.5), (4.6), (4.9) and (4.11) the following estimate holds for all

t > max {E‘”z, toi 1 —%1— (and with d as defined above)
&1

01 =~ <B(t)¢ (t),—w< )(60——>B(t)¢ (t)>+Ct‘2‘|I¢I|2- (4.12)

. . L 12
(Notlce that the constraint on ¢ implies that ->1- Zl
T

The next step is to replace £, on the right-hand side of (4.12) by p. For that
pick x3(8)eC*(X) such that supp x5 = B;,(£,) and x3(¢) =1 on B,,(¢,). Then

(I — x3(D)BOx1x2 = Ot~ ). (4.13)
By applying (4.13) twice

L)1 < ——<B(r)w 0, L’B(z)w (t)>

H B(t)w< ) (p — Co)x3(D)B(1)

[y, @ 12+ Ct= =] p[2.  (4.14)
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But by (4.7)

d
“B(t)w< )(p Co)x3(D)B(1) w(%)'ll(P—fo)xs(D)lléa (4.15)

< sup
x?/412<E'+2

As for the first term on the right-hand side of (4.14), we notice that (by using
(4.13) again)

<B./, 0 @Bw (z)> <B~// 0"y, (t)>

+ Cyt 72| @I + Cot ™oy, ()12 (4.16)
We choose t' > 0 such that
d

Cz(t/) —min{2xo,1} < g (417)

We obtain by (4.14)—(4.17) and a subtraction that for

4
t>max{E'”2,to—<1 —8—1>,t’}
£ 4

—||l// m*= ——<B(t)¢ (t),ﬁB(t)l// (t)> +Ct™ 2|2 (4.18)

d
Putting ¢’ = 4 we get from (4.18) and another subtraction, that for all ¢ > 0,

SIS - <B(t)¢ 0,20 ( 2o

8’>B(t)l//1(t)> +Ct™ %)% (4.19)
Next we decompose

2
42

By, (t) = B(t)Xﬂ(zX( —E<— 3)Xfr¢(t)

2
+ B(t)x1x2(1 - (415 —E< —£>>xfrt//(t).

The norm of the first term is bounded by Ct~*|| ¢ ||, as is the case when multiplied
by p.
Using these facts together with (4.19) we obtain the estimate

11 ()12 < Ci g A@POYD 1 + Cot™ > [ 1%, (4.20)

Az /.
where g,(-)=(——) x<~< —s’) and P(t)=h,y,h, with h; and h, smooth
T T

functions in x and t and satisfying (3.12).
By an extension of Lemma 2.7(2) for any neN,

n—1
HADPO= T adgy(PO)

m=0

g‘""(A(‘r)) + remainder. 4.21)



Propagation Estimates for N-Body Schroedinger Operators 93

Since by (3.24) and (3.25) ad’; ,(P(t)) = O(1) for t— oo (for any m), we finally
conclude from (3.31), (4.20) and (4.21) that (4.8) holds.

Theorem 4.5 (maximal velocity estimate). Let E,e>0. Then for any feCg(R)
supported in a small neighbourhood of E, decoupling operator y s, and s’ >s 2120,

2
(x)’x(E - :? < —s)xf,e'””f(HKx)'s' =0(t™**Y for t— + .
Idea of proof. We will only give a brief outline of the proof since it is very similar
to the one of Theorem 4.4.

By Theorem 3.4 it can be assumed that [ =0.

As in the proof of Theorem 4.4 we define k, by s(1 + k,) =, and introduce
cutoff functions y,(x) and y,(£) with similar properties except for (4.5), and the
operator A(r) of Example 4 in Sect. 3. Then we derive an estimate of the type
(4.18) but with

2 2
B(t)=(1—x<E’—:7<—1>> and t/fl(t)=x<E—:7<—8>x1(X)x2(D)xf,t//(t),

and apply it together with (3.31) (as in the proof of Theorem 4.4). [

Appendix A

We shall prove Lemma 3.2(9).
By the construction of w(x) in [G],
o) =x)=) [ (@)(x—y)y*dy,

a pa

nef

i=0
where YyeCZ(X), for some positive numbers ¢, c$,...,cs. and orthogonal pro-
jections P,..., P4, Q6 ={y||IT°y| <c}} and Q¢,1<i<m" are given by either
{ylIP{yl =i} or {yl|P{y|>ci}.

We are thus led to proving
Lemma A. Let ¢eC3(X), FeC®(X, X), Py,...,P, be orthogonal projections on
X, €o::+5Cm be positive numbers, ,={y||P;y|<c;} for i=0,...,m, and
Q= () Q. Then for any neNuU{0},
i=0

sup
xeX

< 00.

!) F(Poy)(x-V,)"¢(x — y)dy

Proof. Let P=P, v --- v P, the orthogonal projection onto the span of vectors
in the ranges of P;, and P* =1 — P. Then since 2 is invariant with respect to
translation with vectors in the ranges of P1, a change of variables shows that

[ FPo)(=xV,F (s iy = { (%)"{F(Po(u’ix )P0+ tPx — 3)}poody.

The norm of the right-hand side is uniformly bounded since PP+ =0 and the
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integral is zero for Px outside a bounded set. The latter statement follows from
the fact that PQ is bounded, which in turn follows by a repeated application of
a formula in [H] (expressing for instance P, v P, analytically in terms of P, and

P). O

Appendix B

Rw(x/R)p + pw(x/R)R
2

where w is given by setting k =2 in Lemma 3.2 and R > 0 is large (cf. Example 1
in Sect. 3).

We shall prove Mourre-type estimates for the operator Az:=

b

Lemma B1. For any cluster decomposition b # (1)---(N) there exist ry,r, >0 and
C*(X®)-partition of unity {J} },, c» such that

(1) x| >2r, on suppjy, if by &b,

() |x"|<ryonsuppj,

(3) For any «3C >0:/0%j; (x)| < C.

Proof. If b=(1---N) the result is obtained from Lemma 3.2 by putting jgl =f,,‘.
Otherwise we copy the proof (i.e. we introduce certain characteristic functions as
in [G] however now involving only cluster decompositions contained in b, and

then we smooth out by convolution). 5
Corresponding to the partition of unity {j,} of Lemma 3.2 let (cf. [G])

" . -1/2
=i(zi)
b
For any cluster decompositions a and b,b < a and a # (1)---(N), let
Hi=—A4A+ Y V1) on L*X°).
)b
We abbreviate H{! "™ = H, and H?= H". By convention for a =(1)---(N) H*=0
on L*(X*)=C.
Clearly for any a,
H,=(p)*®@I+I®H* on L*X)=L*X,)® L*X").
As is well-known the continuous spectrum of H is given by

o(H)= [ min o(H®), © )

a#(1--N)
The set of thresholds is defined by

F= |J ({eigenvaluesof H}.
a¥#(1---N)

It is known that & U {eigenvalues of H} is closed and countable, see [F-H1] (a
fact which also follows directly and quite easy from the proof given below).

Theorem B2. Let Eco (H)\F U {eigenvalues of H} and d(E) be the distance from
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Eto{E'eZ |E' < E}. Then for any given ¢ > 0 and (sufficiently) large R, the following
estimate holds for any feCZ(R) supported in a small neighbourhood of E:

S(H)i[H, Ag]f(H) z (2d(E) — &) f (H)*.

Proof. For purely notational convenience we assume that E > 0. Let ¢ > 0 be given.
By combining Lemma 3.2(1) and (6) we obtain (cf. [G])

o (3) 272 ()

Using this estimate together with Lemma 3.2(2) and (9) and a straightforward
computation leads to
x

2R)+ O(R'E")}f(H),

J(H)I[H, Ag]f(H) 2 f(H){Zja (%)2(1&)2]}(

valid for any feCZ(R).
Introducing the abbreviation

B.x =J'a<-2%>F<(Pa)2 <E- §); (%)

where the second operator on the right-hand side is the spectral operator associated

with (p,)? and the characteristic function of the interval < — 0, E— g), we conclude
that for R large enough

S(H)I[H, Ag]f(H) 2 QE — ) f(H)* + Zf(H)2 —2E} f(H)B, x f(H).

Hence the theorem follows if for any given C > 0, cluster decomposition a and
large R we can prove that for any feCg(R) supported in a small neighbourhood
of E

C™'f(H)* z f(H)B, r f(H)- (B.1)
So let a cluster decomposition a and C >0 be given. Then there exists a

geCZ(R) supported in the region x>§ such that for all b>a and f,eCJ(R)

supported in the interval B, (E) we have that

f1(H,)B, r f(H) = f1(H,){g(H")B, r + O(R™")} f(H), (B.2)

where we suppress a tensor symbol on the right-hand side (as also will be done
in the following). Notice that (by the Fourier transform) for suitable g as above
f 1(Hb)1(1 —g(H")F((p,)* <E—5¢)=0 and that (I —F((p,)* <E —%¢))B,r=
OR™).

We also remark (for another future application) that (suppressing the Fourier
transform)

f1(Hy)g(H?) = f@débfl((éb)z + H")g(H"). (B.3)
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We will prove (B.1) by first expanding the right-hand side into a sum of terms
indexed by decreasing strings of cluster decompositions: (1---N)=b,2b, 2 --- 2 a.
In doing so we go through a finite number of very similar steps (to be explained).

The expansion involves families of C (R)-functions { f,} indexed by b > a and
with the following properties:

€
Iful =1, 30<81<82<'“<8#a<§, Se;_q <egj

supp fb = Bagb(E)a fb(x) =1on Bl/Ze#b(E)-

With this order of scale in mind we perform the first step in expanding the
right-hand side of (B.1):Pick 0 <6 < 1. Then for any f supported in B, ,,,(E),

f(H)B, r f(H) = f(H) fy(E)K f(H)
+ f(H) fyH) Y fn,( = )fbx(Hbl)Ba,Rf(H)a (B.4)

bo 2b1 >a ]xl's

where K is compact and independent of f, . Here we use that j, <|_xT';> j,(%) is
X

compactly supported if either b =b, or b # a (by Lemma B1), and the fact that
for a suitable curve I" independent of f,, (but not of f,,)

. X
fbo(H)Jln <|_x_|‘;

)(I_fbl(Hbl))

= o [dafu D)0 = fo ()
nlr

with {.--} = {(H —2)" 'y, (%) — by <i6)(Hbl -2 } (B.5)
x| x|

The form is (by Lemma B1 and a computation similar to the one in the proof of
Lemma 4.1) f, (H)K, where K is as above.
By combining (B.2) and (B.4) we arrive at the statement

SH)B, x f(H) = f(H){ foo(H)K + O(R™ ")} f (H)
+fH) Y By, fi(Hy)g(H")B, r f(H),

bo 2b1oa

with B,, bounded, uniformly with respect to f,, b > a, K compact and independent
of f,,, and finally the estimate O(R ') uniform with respect to f,, b > a.

Now we repeat this procedure by letting f, (H,, )g(H"*) play the role of f,,(H)
in writing as the first part of the second step,

Joi(Hy)g(H") B, & f(H) = f,,(H, )g(H*)K,, By, f(H)
by
+ fp,(Hy,)g(H"") , Zb: ]72; (,;Cb—.lo) fo,(Hy,)By g f(H),
1 2b2>a

with B,, bounded uniformly with respect to { f,|#b < #b, },and K,, = I14,,® K",
where the second factor on the right-hand side is compact on L?*(X”') and
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independent of { f,|#b < #b,}. (This is true with K* = G(H""){x"' ) ~%°, GeC¥(R)
and gg =g.) Here we use Lemma B1 and an analogue to (B.5). The second part
consists in invoking (B.2) (as before).

By continuing in this way (or rather by a simple induction) we obtain the
following expansion valid for any f supported in B, ,,, (E):

f(H)B, & f(H)
= f(H){fy(H)K + O(R™)} f(H)
+fH) Y ¥ By, fo,(Hy)g(H)Ky, . By, f(H),

1<js#a-1 bogln ;'"gbjDa

(B.6)

where B, ., and E,,hm,,, , are bounded, the former uniformly with respect to
J»» b > a, and the latter uniformly with respect to { f,|#b < #bj}, Ky,p;=1120x,)®
K?Pv-bi where the second factor on the right-hand side is compact on L?(X%/) and
independent of {f,|#b <#b;}, K is compact and independent of f, , and finally
the estimate O(R™!) is uniform with respect to f,,b > a.

When multiplied (from the right) by a compact operator on L2(X®) each fiber
on the right-hand side of (B.3) goes to zero (in uniform topology) when the support
of the function f, shrinks. This convergence is uniform with respect to &,, which
means that the integral goes to zero. (See [M1, p. 295] for a similar argument.)
Hence the statement (B.1) follows from (B.6) by first choosing R large, then f, with
&y, small, then f, with #b=#a—1 and ey, <&y, and so on, at last f,  with
g K& O

Remark. One can also prove Theorem B2 along the lines of the proof of the usual
Mourre estimate as given in [F-H1]. This was communicated to us by G. M.
Graf. The crucial point of that proof is (as in the proof of the usual estimate) a
formula relating the vector field to vector fields of subsystems, so that an induction
argument applies. As for the proof of the usual estimate an analysis at thresholds
is required. This was not the case for the proof given above.
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