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Abstract. In 1982 Belavin and Drinfeld listed all elliptic and trigonometric
solutions X(u,v) of the classical Yang—Baxter equation (CYBE), where X takes
values in a simple complex Lie algebra g, and left the classification problem of
the rational one open. In 1984 Drinfeld conjectured that if a rational solution is
equivalent to a solution of the form X(u,v) = C,/(u—v) + r(u,v), where C, is the
quadratic Casimir element and r is a polynomial in u,v, then deg,r =deg,r < 1.
In another paper I proved this conjecture for g = sl(n) and reduced the problem
of listing “nontrivial” (i.e. nonequivalent to C,/(u—v)) solutions of CYBE to
classification of quasi-Frobenius subalgebras of g. They, in turn, are related with
the so-called maximal orders in the loop algebra of g corresponding to the vertices
of the extended Dynkin diagram D*(g). In this paper I give an algorithm which
enables one to list all solutions and illustrate it with solutions corresponding to
vertices of D°(g) with coefficient 2 or 3. In particular I will find all solutions for
g = 0(5) and some solutions for g = 0(7), 0(10), o(14) and g,.

Introduction

This paper is a continuation of refs. [11-15]. I will recall, however, some of the
notations and the main idea. In this paper I will explain how rational solutions
of the classical Yang—Baxter equation (CYBE) for a simple complex Lie algebra
g correspond to the extended Dynkin diagram D¢(g). An announcement of the
results of this paper had been delivered at the International Algebraic Conference
in Novosibirsk, 1989 [13, 14].

0.1. Formulation of the Problem. We will consider functions X :C? — g ® g such that
(X 2y, up), X2y, u3) 1+ [X 2 (g, ), X23(ug, u3) 1+ [X 31y, us), X23(u,, u3)]=0,
X'%(u,v)= — X*(v,u), (CYBE)

and a solution will be called rational if it is of the form X =C,/(u—v)+r(u,v),
where r(u, v)eg[u] ® g[v], cf. refs. [2,3].
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Solutions X ; and X, will be called gauge equivalent if there exists a(u)eAut g[u]
such that X, = (6 ® 0)X ,, where Aut g[u] is the group of automorphisms of g[u]
considered as an algebra over C[u].

0.2. In [15] I proved the following two main theorems. First of all we need some
notations. Denote by g' = g® C[u !, u] the loop algebra with the nondegenerate
ad-invariant inner product (x, y) = Restr(ad x ad y).

Set ©® = C[[u~']], the ring of formal power series in u~!, K = C((u~')), the
field of quotients of .

Set g(u) =g®@C[u], g[[» ']1=¢®O, (™)) =g ®K.

Theorem 1. There is a natural one-to-one correspondence between rational solutions
of CYBE and subspaces W < g((u™!)), such that

1) W is a subalgebra in g((u™')) such that W > u~Ng[[u~1]];
2) Wnglu]={0} and W@ g[u]=g((u™"));
3) W is Lagrangian with respect to the inner product in g((u™1')), i.e, Wt =W.

A C-subalgebra W < g((u~')) such that u¥g[[u~*]]> Wou Ng[[u"']] for
some K, N is called an order in g((u"!)).

Theorem 2. Let X, and X, be rational solutions of CYBE. W, and W, the cor-
responding ordersing((u™')). Then X, = (6 ® 6)X , > W, = oW, for a(u)eAut g[u].

0.3. Description of Orders in sl(n).
Theorem. Any order in sl(n; K) is contained in g~ *sl(n; ©)g for some ge GL(n; K).

Remark. Thus, any maximal order in sl(n; K) is an order of the form g~ !sl(n; ©)g
for some geGL(n; K).

Sauvage Lemma [1]. The diagonal matrices diag(u™,...,u™), where m;cZ for all
Lbm;<---<m, and m;,, —m; = — 1, represent all the double cosets GL(u; D)\

GL(n; K)/GL(n; C[u]).

Any order is contained in a maximal one. We need orders satisfying certain
conditions. Taking Sauvage Lemma into account we reduce the problem of
classification orders which correspond to rational solutions to the classification
of maximal orders.

Clearly, PGL(n, K) transitively acts on the set of maximal orders. It is easy to
see that

card {PGL(n, K)/(SL(n, K)/center) } = n.

Indeed, K*/(K*)" =~ Z/nZ. But SL(n, K) does not transitively act on the set of
maximal orders and there are n representatives of this action. They are
d; 'sl(n, ©)d,, where d, = diag(l,...,1,u,...,u) with k-many s

The group PGL(n, C[u]) = SL(n, C[u])/center acts on the set of maximal orders
M < sl(n, K) such that M + sl(n, C[u]) = sl(n, K); there are n orbits with the same
representatives as above.

0.4. To an order contained in d, 'sl(n, ©)d, and satisfying conditions of Theorem 1
we assign a pair (L,B), where L+ P, =sl(n) for the parabolic subalgebra P,
generated by all simple roots except the negative k' one and B is a 2-cocycle on L



Rational Solutions of Yang—Baxter Equation 535

nondegenerate on LN P, (in other words, LN P, is a quasi-Frobenius subalgebra
of L).

Making use of Elashvili’s classification of Frobenius Lie algebras [5,6] and
Spiz’ classification of locally transitive irreducible linear Lie groups [10] I obtained
(in principle) the classification of rational solutions of CYBE for sl(n), see [15].

0.5. Now, let us pass to an arbitrary finite-dimensional simple Lie algebra g. Let
G be the simply connected Lie group with Lie algebra g. Let G(A4) be the set of
its A-points (the analog of sl(n, A)), G, = G/center (in particular G,4(K) is the
analog of PGL(n, K)). As is well-known ([17]), Aut g[u] = G,4(C[u])- I, where I"
is a group of automorphisms of the Dynkin diagram D(g), and

G,q(C[u]) = G(C[u])/center G.

1. Maximal Orders in g((z~'))

Let h be a Cartan subalgebra in g, R the set of roots of g. Put
br = {heb:a(h)eR for any aeR}.

Denote by v:K —Z the valuation on K, i.e. the function such that

v< Y aku"‘)=N.
k2N
For aeR and hebp set

M,(h)={feK:v(f) 2 a(h)};
O, =h[[u""]] @(@Ma(h)ga)

aeR

Clearly, O, is an order for any hebg and since M,Mz<c M, ,, the above
representation of @, is its R-grading.
Obviously,

O, +glul =g((u™')<>X,u"*®+ C[u] =K forany «eR.

Hence, a(h) < 1 but since —aeR, we have |a(h)| =<1 for any aeR.
The hyperplanes

H,p={hebgr:a(h) =m}
divide by into simplexes. Clearly,
q)h = ﬂ (Dh"

1
h; is a vertex of
the minimal symplex
containing h

1.1. Define the standard simplex setting
A, = {hebg:a(h) 2 0 for all simple roots « and a,,,,(h) < 1}.

Proposition. 1) ©, is maximal <>h is a vertex of a simplex.
2) The vertices of A, correspond to maximal orders such that ©,+ g[u]=g((u™1)).
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The following Proposition 1.2 is borrowed from V. Drinfeld’s correspondence
with J.-P. Serre [8], cf. also [9].

1.2. Proposition. Any maximal order © such that © + g[u] = g((u™')) is G(C[u])-
equivalent to a maximal order corresponding to a vertex of A,.

More explicitly, the vertices of A, are: 0 and hy, ..., h,, where r =rkg. To every
order @, from Theorem 1 assign a vertex of the extended Dynkin diagram D¢(g)
of g according to the following rule:

OH “max

h;yea;, where a;(h;) = J,;/k; and the k; are to be
found from the relation Y kjo; = apqy.

1.3. Proposition. Let H < G be the Cartan subgroup, H,q4 its image in G4, o a vertex
of D(g) such that o(x)=oa,, for some automorphism ceAutD®(g). Then
O,=H_'OyH, for some H,eH 4K).

Remarks. 1) If there exists an automorphism of the Dynkin diagram D(g) of g
sending «, to a,, then the orders ©,, and ©,, are, clearly, gauge equivalent.

2) Let an order W corresponding to a rational solution C,/(u—v)+r(u,v) be
such that W < ©,. Then degr =0.

Proposition 1.2 and Theorem 1 from Introduction enable one to prove
Theorem 1.4 just as I have proved Drinfeld’s conjecture for sl(n) in [15].

1.4. Theorem. Drinfeld’s conjecture is true for any g.

2. Solutions Corresponding to Singular Vertices of D°(g)

A vertex of D*(g) will be called singular if there exists an automorphism of D*(g)
sending the vertex to the vertex a,,, and regular otherwise.
Let a be a singular vertex of D*(g), P, the corresponding parabolic subalgebra

ofg=b®<€ﬂ—)gp>:
Pu=b@<@gﬂ>@( D g, |.

p<0 >0, y does not contain « in the
decomposition w.r.t. simple roots

2.1. Theorem. The set of subalgebras W < ©, satisfying conditions 1)-3) of
Theorem 1 is in one-to-one correspondence with the set of pairs (L, B) such that

1) L= g is a Lie subalgebra and L+ P, = g;
2) B is a 2-cocycle on L nondegenerate on LN P,.

2.2. Remarks. 1) Condition 1 of Theorem 2.1 is equivalent to the fact that G(L)
acts locally transitively on G(g)/G(P,) and 1-G(P,)is a generic point of this action.

2) In order to list subalgebras L in g=o(n) satisfying condition 1) of
Theorem 2.1 we can make use of the list of connected irreducible subgroups
G <= SO(n; €) locally transitive on the varieties N, of completely isotropic
k-dimensional subspaces in C", cf. [16] and Appendix 1.
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Proof of Theorem 2.1 is absolutely similar to that of Theorem 3.1 [15].
Many of the results of [15] apply to singular vertices of the extended Dynkin
diagram of any simple g.

3. Structure of Maximal Orders for Regular Vertices
of the Extended Dynkin Diagram and the Corresponding Orders

3.1. Let O, be a maximal order where a is such that
Ummax = kot + Y, ko

aiFa

let
L,= b@(@g,,), where in the expansion of § with respect to simple
] roots the coefficients of « is either 0 or +k

(in other words, L, is the semisimple Lie algebra whose Dynkin diagram is obtained
from D*(g) by discarding the vertex corresponding to «). Let

Va,,={(—ﬁBE,,: either B=(k—nra+ Y, ki, 1Sr<kor f=—ra—~ Y, k,.oc,};

aF*ai aFai

let

V,=@V,,.

Proposition. ©,/0O; =~ (L, + ¢L,)® ( Pe Va,,>, where ¢+ 1=0.

3.1.1. Let
Fie)e(L, + s“La)G)(@e'V,,,) for i=1,2.
Set
(Fl’F2)= Z (AisAj)s A,-Gg. (*)
jti=k

Lemma. The inner product in g® K induces the inner product in ©,/©; according
to the formula (*).

3.2 Set

Pt = b@(@gﬁ>, where in the expansion of § with respect to simple
roots the coefficient of « is either 0 or +k,
respectively (in accordance with the superscript of P).

Set
P, =@ag; where f=—ra— Y ka,
B

aFai

and
P! =@gs where B=(k—ra+ Y k.
B

aiFa
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3.2.1. Proposition. There is a natural one-to-one correspondence between isotropic
orders W = ©, such that W @ g[u] = g® K and Lagrangian subalgebras

Xy (L,+¢L)® <@ 4 V,,,,)
such that ’

Xy ®(P, +&P; L)@(@S'P;r>=(La+£kL¢)@<®8'Va,,>,

where P_ 1 denotes the orthogonal complement of P inside L,.

3.2.2. Proposition. Let g be a simple Lie algebra, a a simple root entering with
coefficient 2 in the decomposition of the maximal root. Let Xy, denote the same as
in Proposition 3.2.1. Denote by M the image of Xy in L, and define Vo<V, by
Vo= Xwn(eV +&*L,)/(Xwne*L,). Then

1) M is a subalgebra of L, such that M + P, = L;
2) V, is a Lagrangian M-invariant subspace in V.

Remark. If Vo, = P, then the corresponding solution, if any, is a constant one.

4. Calculations

The following two Lemmas accumulate certain well-known facts (deducible for
instance from [7]) in a form needed in the sequel.

4.1. Lemma. L, is a semisimple Lie algebra whose Dynkin diagram is obtained from
D¢(g) by a deleting the vertex corresponding to o (and the segments connected with
it); P, is a parabolic subalgebra of L,.

4.2. Lemma. For the series B,C,D we have:

B) L,=0oQ2n+1)@o(2m), V,=C’*"'Q@C*™ mz2
C) L,=sp2n)@®spm), V,=C*Q@C>™, n22 n22
D) L, = o(2n)® o(2m), V,=C"®C*™ m22 n22

and in all the cases V, is an irreducible L,-module with an invariant symmetric inner
product induced by the Killing form.

4.3. Proposition. Let g be a simple Lie algebra of series B-D, aeD(g) a regular
vertex, M c L, a subalgebra satisfying conditions of Proposition 3.2.2. Then M is
contained in a parabolic subalgebra of the semisimple Lie algebra L,.

44.1. Proposition. Let g =o0(2n+1). If W < O, then there exists a gauge trans-
Sormation o(u)e Aut g[u] such that either a(u)W < ©, or c(WW < Q,,.

Recall that the Dynkin diagram of o(2n+ 1) is of the form

O]
\@——-~~—®=>®forn>2

o 2 n—1 n

1

O <=0 =0 for n=2
2 1
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4.5. Proposition. Let a, be the singular vertex of D(o(2n+1)). Let (L, B) determine

a solution in ©,, and there exists an L-invariant r-dimensional isotropic subspace in
C?**!, Then

1) if r=1 this solution is gauge equivalent to a constant one;
2) if r>1 this solution is gauge equivalent to a solution from O, .

4.6. Corollary. 1) There is a unique nonconstant solution corresponding to the
singular vertex o, €D(0(5)) and an irreducible L < o(5). In this case L=10(3), B=0
and o(3) is realized as a subalgebra of o(5) according to the embedding
R(4A,):0(3) - o(5). (We use notations from [16].)

2) Besides this there are 3 nonconstant solutions. They correspond to a, €D(o(5))
and to the following subalgebras L < o(5):

a)
* % x x 0
* x *x 0 =*
L=10 0 0 % =x|,
0 0 0 * =
0 0 0 = =
b)
* *x 0 % 0
* *x 0 0 =*
L=g {0 0 0 0 Ofg,
0 0 0 = =
0 0 0 = =
0)
a b 0 O 0
c —a 0 0 0
L=g 'O 0 0 0 0 |g
0O 0 0 a -—-b
0 0 0 —¢c —a
0 1
0 0
where geSO(5) is such that g| 0 |= \/5 .
0 1
1 —1

Remark. Here o(n) preserves the following symmetric form on €:B=x,y,+
X2Yn—1 F 0 XpYye

5. Solutions of CYBE Corresponding to a Simple Root of D¢(g) with Coefficient 3

5.1. Lemma. Let o be a simple root whose coefficient in the decomposition of the
maximal root with respect to simple ones is 3. In notations of Sect. 3 the L,-module
V, is of the form V, @V, ,, where V,, and V, , are irreducible L, -modules and
[Va,l’ Va,l] < Va,Z'
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5.2. Let L be an arbitrary Lie algebra; V a vector space and f:L—gl(V)-a
representation. Denote by (L, V) the Lie algebra whose space is L@ V and bracket
is given by the formula:

(1,010, (15, 02)1oe = ([11, 5], f(ly)va — f(2)0,).
We will call (L, V) an affine Lie algebra.

5.2.1. Proposition. Let o be a simple root from Lemma 5.1. Let X, be a Lagrangian
subalgebra satisfying conditions of Proposition 3.2.1. Then there is a natural 1-1
correspondence between the set of such subalgebras and the set of pairs (S, B), where:

1) S is a subalgebra of (L,,V,,,) such that
S+ (P, P, )=(LyV,1)

2) Bis a skewsymmetric 2-form on S, nondegenerate on S (P, P, ) and such that

B([x, y]afa Z) + B([Z, x]afa y) + B([,V, Z]af’x) = ([X, Y],Z)
for any x,y,z€S.

Here in the expression ([x,y],z) we consider x,y,z as elements of L,+ ¢V, ; +
eV, , + &L,

5.2.2. Lemma. There is a 1-1 correspondence between the set of subalgebras of the
affine Lie algebra (L, V) and the set of triples (L, V,,r) where:

1) L, is a subalgebra in L;

2) V, is an L,-submodule in V;

3) ris a I-cocycle on L, with values in V/V,.

Since there are finitely many roots corresponding to vertices of D¢(g) satisfying
Lemma 5.1, it is possible to investigate all such cases.

5.3. Corollary. Let g = g,; there is only one o as in Lemma 5.1 and for it we have
=sl(3), V,, =€ P; =P, (in notations of [15]), P, = C?. There exists a
solutlon in this case wzth L=0(3) = (sI(3), C3) given by the “formula:

a b 0 0
L= {(T)(c 0 —b)(T)'l, —bj};
0 —c. —a —a

100
(m=|o 1 0o
111
571

In the following cases 5.4—
solutions themselves, if any.

where

have only calculated all the data but not the

5.4. Corollary. g =f{,; there is only one a as in Lemma 5.1 and for it we have

L =sl3)@sl3); V,=C>®C° (=R(A)®R(24,)),
P, =P, ®sl(3); P_,=C"
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5.5. Corollary. g = eg. There are two roots satisfying Lemma 5.1, let us denote them
by a; and a,:
(O] O] © O) O] O O] O
l

o, o

max

Oy
1) a=o0y. Then

L,=sl(9); V,=C**(=R(Aj)); P;'=Pg P, =C>
2) a=ay. Then
L,=¢,@sl(3); V,=C"Q@C(=R(A)®R(A,));, P, =ec@®P, P =C*
5.6. Corollary. g = e. Thereisoneroot satisfying Lemma 5.1, let us denote it by o,
31

Then L,=sI(3)®sl(3)®sl(3), V,=C*"(=R(A,) x R(A,) x R(A})),
P, =P, ®sl(3)®sl(3). P, =C'®
5.7. Corollary. g=e,. There are two roots satisfying Lemma 5.1. Let us denote
them by o, and a,,
©) O] O] ’IQ O—0O0—O0

® %)

amax

O]

Then in both cases L, =sl(3)@sl(6), V, = C**(R(A;) x R(A,)).

Appendix 1
List of Connected Subgroups G = SO(n) Locally Transitive
on the Grassman Manifold G}, of Isotropic k-Dimensional Subspaces

Table 1

G Embedding k
SO(n),n=3 id 1,2,...,[n/2]®
Sp(2s) x SL(2), s= 4 A, ®A, 1,2,3,2s
Sp(6) x SL(2) AL ®A 1,2,3,5,6
Sp(4) x SL(2) A®A 1,2,3,4@
G, 1 1,2,3

Spin (7) A, 1,2,3,4®
Spin (9) Ay 1,2,3,80
SL(3) Ad 1,42

Sp(4) 2A, 1,5®

G, A, 1

SO(3) 4A, 1,2

Sp(6) A, 1,7®

F, Ay 1

Sp(2s) x Sp(4), s=2 AL®A 1
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Sign'® means that G acts locally transitively on the both connected components
of G2n.

Sign") means that G acts locally transitively only on one connected component
of G2".

The list given by Table 1 is borrowed from [16].

A.1l.1. Lemma

1)Let%g
. . —_ . . Q:@

e
O,

be the extended Dynkin diagram of o(2n + 1). To find solutions corresponding to ©,,
we have to take k=1 in Table 1.

2) Let Oamax Qan—l
e L o
/ AN
Ou, O,

be the extended Dynkin diagram of o(2n). To find solutions corresponding to ©,, we
have to take k=1 in Table 1.

Since the orders @, _, and @, are gauge equivalent, we have to take k=n in
order to find the corresponding solutions.

A.1.2. Examples of Solutions. The following 3 cases from Table 1 are the only ones
with the trivial stationary subgroup of a generic point and to each of them there
corresponds exactly one solution.

g L k Embedding
o(5) sl(2) 1 44,

0(10) sp(4) 5 24,

o(14) sp(5) 7 A,

A.2. Example g = o(7).
Recall that D4(g) is

O=a

Q max
AN

@/

1

O]

= 0O
3

(5]

Proposition. 1) There are no solutions corresponding to ®©, such that the
corresponding subalgebra L < o(7) is irreducible.
2) If a solution corresponds to ©, and a subalgebra L < o(7) is such that there
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exists an L-invariant 1-dimensional isotropic subspace, then the solution is gauge
equivalent to a constant one.

3) There exists a solution corresponding to O, given by the following subalgebra
preserving a 2-dimensional isotropic subspace:

a+t b % * * * 0

c —a+t * * * 0 *

0 0 a b 0 * *
L= 0 0 ¢c 0 —-b * *

0 0 0 —¢c —a * *

0 0 0 0 0 a-—t —b

0 0 0 0 0 —c —a-—t

Remark. Here o(n) preserves the following symmetric form on €":

B=X1Yy+ X3Yp-1+ - +X,)1-

6. Proofs

6.0. Proof of Proposition 1.3. Consider the automorphism ¢ of g® K = g((u~1))
such that ¢ =id on }) and for every root B the restriction of ¢ to g, equals u*®,
where k(p) is the coefficient of « in the decomposition of  with respect to simple
roots. Then @, = ¢ ~ (M) (to prove this notice that according to [4] the coefficient
of « in the decomposition of a,,, equals 1). Clearly, ¢ corresponds to some
HaeHad(K). Then (Da = Hd_ lq)oHa.
6.1. Proof of Theorem 2.1. By Proposition 1.3 there exists H,e H,4(K) such that
W < H, '©OyH,= 0,. Therefore W- =W > H_ '(u™20Q)H, = u™*0,.

Similarly to [15] we can prove the following lemma and the Proposition 6.1.2
it implies.
6.1.1. Lemma

0,/u™*0, = g® (TLel/(e*).

6.1.2. Proposition. There is a natural one-to-one correspondence between orders

W < O, satisfying the conditions of Theorem 2.1 and Lagrangian subalgebras
Xy < o(C[e]) such that X 5 ® (P, + eP}) = o(C[E]).

Now it is absolutely evident that the proof of Theorem 2.1 is absolutely similar
to that of Theorem 3.1 from [15].

6.2. For maximal orders corresponding to singular vertices a lot of results from
[15] are generalized practically literally.

6.2.1. Lemma. Let (L,,B,) and (L,,B,) determine solutions from ©,. Let
(Ad X)(L,) = L, and B,(Ad X(a,), Ad X(a,)) = B,(a,, a,) for any a,,a,eL and some
XeAd G(P,). Then the corresponding solutions are gauge equivalent.

6.2.2. Proposition. Let (L, B,) and (L, B,) determine solutions corresponding to ©,.
Let B, be cohomologic to B,. Then these solutions are gauge equivalent.
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6.2.3. Lemma. Let LNP, be a Frobenius Lie algebra. Then every class of H*(L)
contains a representative nondegenerate on LN P,

6.2.4. Proposition. Let L satisfy the conditions of Lemma 6.2.3 and H*(L) = 0. Then
there is only one solution corresponding to ©, with given L.

Thanks to Lemma 6.1.1 and Proposition 6.1.2 all proofs are identical to the
corresponding ones for g = sl(n).

7. Proof of Statements from Section 3
7.1. Proof of Proposition 3.1. Let R be the set of all roots. Set

Rr={ﬂeR:ﬂ=rcx+ z kiai}; 90=b® Z Qe 8= Z (LD

aita aeRo aeR,

The statement of the proposition follows from equalities:
k 0
O,=) u'Og, + Og, + uDg_,;
r=1 r=1-k
1 k-1
Of= ) u'Og + Y u *Og,+u >Og,.
r=—k r=0
7.1.1. Proof of Lemma 3.1.1. Consider the form (a,b) = Trab on g < sl(k).
Clearly, V,, is orthogonal to V,  if r +7,#k and the pairing is
nondegenerate if r, + r, = k. This implies the statement of the lemma.

7.2.1. Proof of Proposition 3.2.1. The statement follows from the fact that the
projection of ©, to (L,+&L)®Y ¢V,, maps g[u]n®, precisely onto

(P, +&P)®Y ¢P,,.

7.2.2. Proof of Proposition 3.2.2.
1) Let X satisfy the conditions of the proposition. Let M be the image of
Xy under the projection

L,+¢eV,, +&L,—~L,.

From Proposition 3.2.1, it is clear that M + P, = L,.

2) Let V be a linear vector space over € with a nondegenerate inner product.
Let S be an isotropic subspace. Thus, S* > S and B determines a nondegenerate
inner product on S*/8S.

Lemma 1. Let V and S be as above and X — a Lagrangian subspace in V. Then
(X NSY)/(X NS) is a Lagrangian subspace in S*/8.

Proof. Clearly, (X nS*1)/(X nS)is an isotropic subspace in S*/S. Then dimensional
considerations show that (X nS1)/(X nS)is a Lagrangian subspace. The lemma is
proved.

The following lemma highlights the structure of Lagrangian subspaces in a
direct sum of modules.
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Lemma 2. Let V=V, @V, be a linear vector space with a nondegenerate inner
product and Vi =V,. Then there exists a one-to-one correspondence {Lagrangian
subspace in V}«<>{(S,,S,, @):S; is an isotropic subspace in V;; @:S+/S, —»S1/S, is
an isomorphism such that (x,y) = — (@(x), P(y))}.

Remark. We denoted by S; < V; the set {xeV;:(x, S;) = 0}.

Proof. Given a triple {S,,S,, ®}. We see that X = {s;" + s, + @(s,) + Si:s;€S};
s;€S8,} is a Lagrangian subspace.

Conversely, given X. We see that S;= XNV, is an isotropic subspace in V;.
Then S} = V; is the image of X in V; under the projection V — V; and one has two
exact sequences 0—»S, > X —»S; -0 and 0-S; > X - S, —0. Thus, there exists
an isomorphism @:5;/S; - S1/S,. Obviously, (®(x), @(y)) = —(x, y). The lemma
is proved.

Let X, be a Lagrangian subalgebra in L,+¢&’L,+¢eV. Xypn(eV +¢€%L,)/
(Xwne®L,) is a Lagrangian subspace in (¢V + ¢2L,)/e*’L, = ¢V by Lemma 1.

We have recovered from Xy a subalgebra in L, +¢’L, and a Lagrangian
submodule V, in &V. Since Xy ne*L, and Xy N (eV + &%L,) are ideals in X, then,
clearly, V, is an M-module.

The proposition is proved.

8.1. Proof of Proposition 4.3. For definiteness sake consider the case o(k) ® o(2n).
Suppose M < L, cannot be embedded into any parabolic subalgebra of L,. Let us
prove that M is semisimple. If M acts irreducibly on C*® €*", then M is semisimple
(it cannot be reductive since the scalar matrices do not preserve the inner product).

Suppose that V is an M-invariant subspace in C*® C?". Clearly, the inner
product on ¥V must be nondegenerate (if there exists V, < V such that (V,, V) =0,
then choosing a maximal V, we get (MV,,V)+(V,, MV)=0, hence MV, <V,
and V,, is isotropic, i.e. M is embedded into a parabolic subalgebra).

Then V+ is M-invariant and V@ V+ = C*® C?". This implies that M is
reductive. Having considered irreducible components on which the inner product
is nondegenerate we see that M is centerless, since the matrices acting by
multiplication by a scalar do not preserve the inner product.

Thus, M is semisimple. Let us consider the projection of M into o(k). The
representation of M in €* can be decomposed into the direct sum of irreducible
components, the latter being distinct, otherwise M can be embedded in a parabolic
subalgebra.

First, let us consider a particular case when the representations of M in C*
and in €*" are irreducible.

Let A and yu respectively be their highest weights. Since in C* there exists a
nondegenerate invariant inner product, then wy(4) = — 4, cf. ref. [4] (8.7.5.).

Analogously, wy(4) = — 4.

There exists an M-submodule X in C*® C€>" having A + p as its highest weight
and irreducible.

Since wq(4 + p) = —A — p, then the inner product in X is nondegenerate.

In this case the decomposition of C*® €2" in irreducible components cannot
contain more than one component isomorphic to X, because 4 and p are unique.
Thus, €* ® €3 cannot contain a Lagrangian M-module by Lemma 2 (cf. item 7.2.1).

“The case of M reducibly acting in €* and €>" is immediately reduced to an
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irreducible case since we can choose the greatest of the highest weights in C* and
C?", respectively.

The case of sp(2k) @ sp(2n) is analogous.

Thus, the statement is proved.

8.2. Proof of Proposition 4.4.1. Proposition 3.2.2 and Lemmas 4.1 and 4.2 imply
that a solution of CYBE corresponding to the order W < ©,, induces a subalgebra
Lc o(2n), such that L + P, =o0(2n) and an L-invariant Lagrangian subspace in
cZn

It is well-known that the set of Lagrangian subspaces in €*>" is a manifold
with two connected components and SO(2n) acts transmvely on each component.
One of them is generated by Pu 1» and the other one is generated by the followmg
Lagrangian subspace in €*" havmg a 1-dimensional intersection with P,

*

0

Let ¥, belongs to the component generated by P, . Then there exists X €SO(2n)
such that X "'V, X =P/ . Hence, X 'LX <P/, L+P =o(2n) and P +P_ =o(2n)
Lemma 4.2 from [15] shows that we can choose X from G(P;).

The statement of proposition follows from the Remark to Proposition 3.2.2.

Similarly, in the second case W < ©,,.

8.3. Proof of Proposition 4.5. As in the proof of Proposition 4.4.1 we can as-
sume that the r-dimensional L-invariant subspace in €*"*! is generated by
€1,€30,€am—15-+-»€m+ 2y Where {e;} is the standard basis of C*"*!. Then the
isotropic order W < @O, corresponding to L is contained in @, if r=1 and in O,
ifr>1.

8.3.1. Corollary. If L is solvable the corresponding solution is gauge equivalent to
a constant one.

8.4. Proof of Corollary 4.6. Proposition 4.4.1 shows that we have to consider only
the solutions corresponding to «,, where «,eD(o(5)) is the singular vertex.
Dimensional considerations show that the dimension of L = o(5) must be odd. Let
us consider two cases.

1) First suppose there are no nontrivial isotropic L-invariant subspaces. The case
when L is irreducible is analyzed by means of Table 1 from Appendix 1. If L is
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reducible and V < €’ is L-invariant then the inner product on V is nondegenerate
and C° = V@V (cf. proof of Proposition 4.3). Moreover dim V # 2 (otherwise V
would contain two isotropic L-invariant 1-dimensional subspaces). Thus, we may
assume that dim V=4 and L is an irreducible subalgebra of 0(4). Then L= 0(4)
and it is impossible because dim L must be odd.

2) Now suppose C* contains nontrivial isotropic L-invariant subspaces. If the
solution is nonconstant then these subspaces cannot be 1-dimensional by Propo-
sition 4.4.1. Then we proceed just as in [15].

9.1.1. Proof of Proposition 5.2.1. Notice that L, + ¢V, , + &2V, , +e3L,=T + T*,
where T=L,+ ¢V, ;. Now let S be the projection of X w to L + ¢V, Clearly,
is closed w1th respect to the bracket in the affine algebra (L 1) and
S+(P,, P, ) =(LyV,,). Let St < T* be the anmhllator of S. Then XW:S
since Xy is a Lagranglan subspace in L, + &V, ; +&°V, , + &L, and X, = S + T*.
Hence, Xy is uniquely recovered from X weS+ T*/S 1= S + S*. Clearly, the
image of X, under the projection S + S* —SisSand X w is uniquely recovered
from a skewsymmetric form B, as follows:

Xy = {x+ f(x):x€S; f(x)eS*; f(x)() = B(x,y)}.

Then Xy = {x + f(x) +¢: teS*}. It remains to find conditions under which X
is a subalgebra. Clearly, Xy N (e*V, , + ¢*L,) = S*, and S* is an ideal in X . Since
e*V,,+ &L, is a commutative Lie algebra, S* is S-module. Let x,yeS. Define
[x,y1y,, setting [x,y] = [x,yl. + [x, y]ya .- Then [x + f(x),y + f(y)] =[x, y]ae +
[x, f»)]1+[f(x), y1+ [x, 1y, ,mod S*. For any zeS we have (f[x,yli)2)=
([x, 3], 2) + (Lf (%), 1, 2) + ([, V1v. ,» 2)- Clearly, this is equivalent to the desired
statement. Since our arguments are easily invertible, we have proved that any
Lagrangian subalgebra in L, + ¢V, ; + &%V, , + €’ L, is of the form (S, B).
Let us prove that the condition

Xwn (P, +&(P;) +eP, +62P,,)=0

is equlvalent to the nondegeneracy of B on Sn(P,, P, ,). Indeed, P +&3(P)t +
eP,, +&*P_,=(P; ,Pa1)+(P,, ,Pal)i. Let s+f(s)+s =p+pt, where seS;
f(s)eS*, s eSl, pe(P;,P;,); pte(P;,P;,)* Then

s=peSn(P_,P,,)
and
f()eSt +(P; P ) =(Sn(P;, P )Y

which means that f(s)(x) = B(s,x) =0 for any xeS. Our statement is completely
proved.

10. Proof of Proposition A.2.

1) Analysis of Table 1.

2) It follows from Propositions 4.4 and 4.5.

3) We must check that Ln P, is a Frobenius algebra (by Theorem 2.1). It follows
by methods of [15].
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