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Abstract. In 1982 Belavin and Drinfeld listed all elliptic and trigonometric
solutions X(u9 v) of the classical Yang-Baxter equation (CYBE), where X takes
values in a simple complex Lie algebra g, and left the classification problem of
the rational one open. In 1984 Drinfeld conjectured that if a rational solution is
equivalent to a solution of the form X(u,v) = C2/(u — v) + r(u,v), where C2 is the
quadratic Casimir element and r is a polynomial in u,v, then degM r = degυ r ̂  1.
In another paper I proved this conjecture for g = $I(n) and reduced the problem
of listing "nontriviaΓ (i.e. nonequivalent to C2/(u — v)) solutions of CYBE to
classification of quasi-Frobenius subalgebras of g. They, in turn, are related with
the so-called maximal orders in the loop algebra of g corresponding to the vertices
of the extended Dynkin diagram De(g). In this paper I give an algorithm which
enables one to list all solutions and illustrate it with solutions corresponding to
vertices of De(g) with coefficient 2 or 3. In particular I will find all solutions for
g = o(5) and some solutions for g = o(7), o(10), o(14) and g2.

Introduction

This paper is a continuation of refs. [11-15]. I will recall, however, some of the
notations and the main idea. In this paper I will explain how rational solutions
of the classical Yang-Baxter equation (CYBE) for a simple complex Lie algebra
g correspond to the extended Dynkin diagram De(g). An announcement of the
results of this paper had been delivered at the International Algebraic Conference
in Novosibirsk, 1989 [13,14].

0.1. Formulation of the Problem. We will consider functions X: C2 -»g ® g such that

[A^ίi^λ*1^,^)]^^
*12(w, Ό) = - X21(v, u\ (CYBE)

and a solution will be called rational if it is of the form X = C2/(u — v) + r(u, v\
where r(w,t;)eg[w]®g[ι;], cf. refs. [2,3].
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Solutions X± and X2 will be called gauge equivalent if there exists σ(w)eAut g[w]
such that X± =(σ®σ)X2, where Aut g[w] is the group of automorphisms of g[w]
considered as an algebra over C[M].

0.2. In [15] I proved the following two main theorems. First of all we need some
notations. Denote by g(1) = g ® C[w~ 1

9 u] the loop algebra with the nondegenerate
ad-invariant inner product (x,y) = Restr(adx ady).

Set (D = C[[w~1]], the ring of formal power series in u~1

9K = (C((u~ί))9 the
field of quotients of <D.

Set 9(11) =

Theorem 1. There is a natural one-to-one correspondence between rational solutions
of CYBE and subspaces Wa g^w"1)), such that

1) W is a subalgebra in gWw' 1)) such that
2) WnβM = {0} and W®Q[U] = g^1));
3) W is Lagrangian with respect to the inner product in g((w 1)), i.e., WL = W.

A C-subalgebra WaQ((u~1)) such that i/gHw'1]] => W^tT^gCDT1]] for
some £, W is called an order in gίίw"1)).

Theorem 2. Lei AΓX and X2 be rational solutions of CYBE. W1 and W2 the cor-
responding orders in g((w ~ 1)). Then Xί=(σ® σ)X2 <r+W1=σW2 for σ(w)e Aut g[w].

0.3. Description of Orders in sl(n).

Theorem. Any order in sΙ(n X) is contained in g~l$\(n\<ΰ)g for some geGL(n'9K).

Remark. Thus, any maximal order in sΙ(n K) is an order of the form g~l*\(n\<ΰ)g
for some gεGL(n\K).

Sauvage Lemma [1]. The diagonal matrices diag(wmι, . . . , umn\ where m^Z for all
i,mi^'-^mn and mί+1— m^ — 1, represent all the double cosets GL(w;Θ)\

Any order is contained in a maximal one. We need orders satisfying certain
conditions. Taking Sauvage Lemma into account we reduce the problem of
classification orders which correspond to rational solutions to the classification
of maximal orders.

Clearly, PGL(n, K) transitively acts on the set of maximal orders. It is easy to
see that

card (PGL(n, K)/(SL(n, K)/center)} = n.

Indeed, K*/(K*)n^Z/nZ. But SL(n,K) does not transitively act on the set of
maximal orders and there are n representatives of this action. They are
dk~

 l$\(n, <ΰ)dk, where dk = diag(l, . . . , 1, w, . . . , u) with fc-many Γs.
The group PGL(n, C[M]) = SL(n, C[w])/center acts on the set of maximal orders

9W c sl(n, K) such that 90Ϊ + sl(n, C[M]) = sl(n, X); there are n orbits with the same
representatives as above.

0.4. To an order contained in dk^s\(n, <ΰ)dk and satisfying conditions of Theorem 1
we assign a pair (L,B), where L + Pk = $l(n) for the parabolic subalgebra Pk

generated by all simple roots except the negative fcth one and B is a 2-cocycle on L
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nondegenerate on LnPk (in other words, Lr\Pk is a quasi-Frobenius subalgebra
ofL).

Making use of Elashvili's classification of Frobenius Lie algebras [5,6] and
Spiz' classification of locally transitive irreducible linear Lie groups [10] I obtained
(in principle) the classification of rational solutions of CYBE for sl(rc), see [15].

0.5. Now, let us pass to an arbitrary finite-dimensional simple Lie algebra g. Let
G be the simply connected Lie group with Lie algebra g. Let G(A) be the set of
its ^-points (the analog of sl(n, A)\ Gad = G/center (in particular Gad(X) is the
analog oϊPGL(n,K)). As is well-known ([17]), Autg[w] = Gad(C[w]) Γ, where Γ
is a group of automorphisms of the Dynkin diagram D(g), and

Gmd(C[ιι]) = G(C[ιι])/oenterG.

1. Maximal Orders in g((u 1))

Let ί) be a Cartan subalgebra in g, R the set of roots of g. Put

Ϊ)R = {/ιeί):α(/ί)elR for any αe#}.

Denote by v:K-+Z the valuation on K, i.e. the function such that

For aeR and /lefjR set

aeR

Clearly, ©Λ is an order for any hefy^ and since MαM/5cιMα+^, the above
representation of <Dh is its Λ-grading.

Obviously,

ΦΛ + 9M = §((u~l)}<*XΛu~Λ(h} + CM = K for any

Hence, α(/z) ̂  1 but since — αe#, we have |α(Λ)| ̂  1 for any aeR.
The hyperplanes

divide ί)R into simplexes. Clearly,

ΦΛ= n <"v
hi is a vertex of

the minimal symplex
containing h

1.1. Define the standard simplex setting

Δst = {/ιeί)R:α(/ι) ̂  0 for all simple roots α and αmax(Λ) ̂  1}.

Proposition. 1) (D/, is maximal oh is a vertex of a simplex.
2) The vertices ofΔst correspond to maximal orders such that <Dh + g[w] = g((w
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The following Proposition 1.2 is borrowed from V. Drinfeld's correspondence
with J.-P. Serre [8], cf. also [9].

1.2. Proposition. Any maximal order © such that © + Q[U] = g^w"1)) is G(<C[w])-
equivalent to a maximal order corresponding to a vertex of Δst.

More explicitly, the vertices of Λst are: 0 and hί9...9hr9 where r = r/cg. To every
order ΘΛ from Theorem 1 assign a vertex of the extended Dynkin diagram De(§)
of g according to the following rule:

where α^Λj) = δ^/kj and the kj are to be
found from the relation £«• = αmax.

1.3. Proposition. Lei H <^Gbe the Carton subgroup, Had its image in Gad, α α vertex
of D(g) suc/ϊ ίJiαί cr(α) = αmax for some automorphism σeAutDe(g). Then
Oα = H^<ΰQHΛ for some HβeHβd(X).

Remarks. 1) If there exists an automorphism of the Dynkin diagram D(g) of g
sending ot1 to α2, then the orders 0αι and <DΛ2 are, clearly, gauge equivalent.

2) Let an order W corresponding to a rational solution C2/(w — v) + r(u9v) be
such that W c 00. Then deg r = 0.

Proposition 1.2 and Theorem 1 from Introduction enable one to prove
Theorem 1.4 just as I have proved Drinfeld's conjecture for sl(n) in [15].

1.4. Theorem. Drinfeld's conjecture is true for any g.

2. Solutions Corresponding to Singular Vertices of />*(g)

A vertex of De(g) will be called singular if there exists an automorphism of De(g)
sending the vertex to the vertex αmax and regular otherwise.

Let α be a singular vertex of D*(g), Pa the corresponding parabolic subalgebra

fly-
/3<0 / 7>0, y does not contain α in the I

\ decomposition w.r.t. simple roots /

2.1. Theorem. The set of subalgebras Wa(DΛ satisfying conditions l)-3) of
Theorem I is in one-to-one correspondence with the set of pairs (L,J5) such that

1) L c g is a Lie subalgebra and L + Pα = g;
2) £ is a 2-cocycle on L nondegenerate on LnPα.

2.2. Remarks. 1) Condition 1 of Theorem 2.1 is equivalent to the fact that G(L)
acts locally transitively on G(g)/G(Pα) and 1 G(Pα) is a generic point of this action.

2) In order to list subalgebras L in g = o(n) satisfying condition 1) of
Theorem 2.1 we can make use of the list of connected irreducible subgroups
GcSO(n C) locally transitive on the varieties Nk of completely isotropic
/c-dimensional subspaces in <CΠ, cf. [16] and Appendix 1.
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Proof of Theorem 2.1 is absolutely similar to that of Theorem 3.1 [15].
Many of the results of [15] apply to singular vertices of the extended Dynkin

diagram of any simple g.

3. Structure of Maximal Orders for Regular Vertices
of the Extended Dynkin Diagram and the Corresponding Orders

3.1. Let 0α be a maximal order where α is such that

αmax = faχ+ Σ M*;
ΛiΦct

let

Ax = ί) Θ I ® Qβ I where in the expansion of β with respect to simple
\ β / roots the coefficients of α is either 0 or ± k

(in other words, Lα is the semisimple Lie algebra whose Dynkin diagram is obtained
from De($) by discarding the vertex corresponding to α). Let

^)Eβ: either β = (fc —r)α+ £ k^, l^r<k or β=—rot —
V. p α^α, ί

let

Proposition. 0a/0j- ̂ (La + εkLa)Θ

3.1.1. Let

Set

(^1^2)= Σ

Lemma. T/z^ mw^r product in §®K induces the inner product in <Dα/<D^ according
to the formula (*).

3.2. Set

/ \
p ± = I) 0 1 0 ^ J5 where in the expansion of /? with respect to simple

V β / roots the coefficient of α is either 0 or ± k,
respectively (in accordance with the superscript of P* ).

Set
p«~r = Θ Qβ> where β=-ra- Σ ki*i>

β ΛΦΛi

and
ptr = Θ 8* where β = (k ~ r)α + Σ Mi
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3.2.1. Proposition. There is a natural one-to-one correspondence between isotropic
orders W c= 0α such that W®Q[U] = g® K and Lagrangian subalgebras

such that

Xw®(P*

where P~λ denotes the orthogonal complement of P~ inside Lα.

3.2.2. Proposition. Let $ be a simple Lie algebra, α a simple root entering with
coefficient 2 in the decomposition of the maximal root. Let Xw denote the same as
in Proposition 3.2.1. Denote by M the image of Xw in Lα and define VQ ̂  VΛ ί by
V0 = Xw n (BY + e2LJ/(Xw n ε2Lα). Then

1) M is a subalgebra of LΛ such that M + P~ = Lα;
2) V0 is a Lagrangian M-invariant subspace in Fα>1.

Remark. If V0 = P*Λ then the corresponding solution, if any, is a constant one.

4. Calculations

The following two Lemmas accumulate certain well-known facts (deducible for
instance from [7]) in a form needed in the sequel.

4.1. Lemma. Lα is a semisimple Lie algebra whose Dynkin diagram is obtained from
Z)*(g) by a deleting the vertex corresponding to α (and the segments connected with
it); P~ is a parabolic subalgebra ofLΛ.

4.2. Lemma. For the series B, C, D we have:

B) Lα = o(2n +1)0 o(2m), Fα = C2/l+1 ® C2m; m ̂  2;
C) Lα = sp(2n) 0 sp(2m), Va = C2/l ® C2w; n ̂  2; n ̂  2;
D) Lα = o(2n) 0 o(2m), Fα = C2w ® C2w; m ̂  2; n ̂  2;

in all the cases VΛ is an irreducible La-module with an invariant symmetric inner
product induced by the Killing form.

4.3. Proposition. Let $ be a simple Lie algebra of series B-D, aeD(g) a regular
vertex, M c: La a subalgebra satisfying conditions of Proposition 3.2.2. Then M is
contained in a parabolic subalgebra of the semisimple Lie algebra La.

4.4.1. Proposition. Let g = o(2n+l). // Wd<S)Λn then there exists a gauge trans-
formation σ(w)eAutg[w] such that either σ(u)W<^(D0 or σ(u)VFc=<Daι.

Recall that the Dynkin diagram of o(2n+1) is of the form

O

^O O => O for n>2
Q^ 2 n —1 n
1

O <= O => O for n = 2.
2 1
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4.5. Proposition. Let (X1 be the singular vertex o/D(o(2« +1)). Let (L,B) determine
a solution in <Dαι and there exists an L-invariant r-dimensional isotropic subspace in
C2w+1. Then

1) ifr=l this solution is gauge equivalent to a constant one;
2) ί f r > l this solution is gauge equivalent to a solution from Θαr.

4.6. Corollary. 1) There is a unique nonconstant solution corresponding to the
singular vertex oL1eD(o(5)) and an irreducible Lc=o(5). In this case L=o(3), jB = 0
and o(3) is realized as a subalgebra of o(5) according to the embedding
R(4Λi):o(3)->o(5). (We use notations from [16].)

2) Besides this there are 3 nonconstant solutions. They correspond to <
and to the following subalgebras La o(5):

a)

L =

b)

c)

where geSO(5) is such that g

/ * * * * (
* * * 0 1
0 0 0 * *

0 0 0 * *

V0 0 0 * ι

/* * 0

)\
|c

ί 9

ί

*)

* 0\

* * 0 0 *

r1 o o o o o
0 0 0 * *

v o o o * * y

fa b 0

7'1

/c\
1

0

g o
0

c -a 0

0 0 0

0 0 0

V0 0 0

0

= 72
1

0

0

0
a

— c

\0

0

0

-b

-a]

Remark. Here

*2.Vιι-! + •"+

preserves the following symmetric form on (£":£ =

5. Solutions of GYBE Corresponding to a Simple Root of De(cfr with Coefficient 3

5.1. Lemma. Let a be a simple root whose coefficient in the decomposition of the
maximal root with respect to simple ones is 3. In notations of Sect. 3 the LΛ-module
VΛ is of the form VΛl@Va2, where VΛl and VΛ2 are irreducible LΛ-modules and
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5.2. Let L be an arbitrary Lie algebra; V a vector space and /:L-»gl(F)-a
representation. Denote by (L, V) the Lie algebra whose space is L0 V and bracket
is given by the formula:

We will call (L, V) an aflϊne Lie algebra.

5.2.1. Proposition. Let a be a simple root from Lemma 5.1. Let Xw be a Lagrangian
subalgebra satisfying conditions of Proposition 3.2.1. Then there is a natural 1-1
correspondence between the set of such subalgebras and the set of pairs (S, B\ where:

1) S is a subalgebra of (Lα, VΛΛ) such that

S + (P-,P-l) = (LΛ,VxΛ).

2) B is a skewsymmetrίc 2- form on S, nondegenerate on S n (P~ 9P~tί) and such that

for any x,y,zeS.

Here in the expression ([x,;y],z) we consider x,y,z as elements of
ε^ + ε'L,.

5.2.2. Lemma. There is a 1-1 correspondence between the set of subalgebras of the
affine Lie algebra (L, V) and the set of triples (Lί9 V ί 9 r ) where:

1) L1 is a subalgebra in L;
2) K! is an L^-submodule in V\
3) r is a 1-cocycle on Lί with values in V/V^.

Since there are finitely many roots corresponding to vertices of De(g) satisfying
Lemma 5.1, it is possible to investigate all such cases.

5.3. Corollary. Let g = g2ί there is only one α as in Lemma 5.1 and for it we have
Lβssl(3), Fα>1^<C3, P~=P2 (in notations of [15]), P~!=C2. There exists a
solution in this case with L= o(3) c (sI(3),C3) given by the formula:

L =
r /
(T)

I \:

a

c

0

ft

0

— c .

0 >

-b

-a,

(TΓ1, \
1

f °
-*
-α

where

In the following cases 5.4-5.7 I have only calculated all the data but not the
solutions themselves, if any.

5.4. Corollary, g = f4; there is only one α as in Lemma 5.1 and for it we have

La = sl(3)0sl(3); Ka = C3(χ)<C6 (=

P;=P2θ*l(3); P~, = ̂ 2.
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5.5. Corollary, g = e8. There are two roots satisfying Lemma 5.1, let us denote them
by OLI and α2:

Θ - Θ - Θ - Θ - Θ - Θ - Θ - Θ
I «2 «maχ

Θ«ι
1) α = α x . Then

2) α = α2. Then

5.6. Corollary, g = e6. T/iere is one root satisfying Lemma 5. 1, let us denote it by ΛI

Q - O - O - O
I
O

O

Then LΛ = βl(3)θβl(3)θ*l(3), Kα = C27(= R(Λ,} x R^J x

5.7. Corollary. g = e7. There are ίwo roots satisfying Lemma 5.1. Let us denote
them by oq and α2,

Θ Θ Θ Θ Θ Θ Θ
/« Λf I Λ,OC OC ι OC Λ
^max 1 I 2

Θ
Then in both cases Lα = sl(3)θsl(6), Va = J x R(Λ2)).

Appendix 1
List of Connected Subgroups G c= SO(n) Locally Transitive
on the Grassman Manifold G\ of Isotropic A-Dimensional Subspaces

Table 1

G

S0(n), n > 3
Sp(2s) x SL(2), s>4
Sp(6) x SL(2)
Sp(4) x SL(2)
G2

Spin (7)
Spin (9)
5L(3)
5p(4)

G2
S0(3)
5p(6)

Sp(2s) x Sp(4), s ̂  2

Embedding /

id
Λ! ®Λι
Λ j (HJΛj
Λ j (HJΛj
ΛI
/13

Λ4

Ad
2Λi
Λ2

4Λ,

Λ2

Λ!®ΛI

c

I 2 [n/2](2)

!2i3,2s(1)

,2,3,5,6(2)

,2,3,4(2>
,2,3
,2,3,4(2)

,2, 3, 8(1)

,4(2)

,5(2)

,2
j?(2)
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Sign'2' means that G acts locally transitively on the both connected components
of G2π.

Sign(1) means that G acts locally transitively only on one connected component
ofG2".

The list given by Table 1 is borrowed from [16].

A.I.I. Lemma

1) Let

be the extended Dynkin diagram ofo(2n + 1). To find solutions corresponding to <Dαι

we have to take k = 1 in Table 1.

2) Let O^max Θα"-ι

o — o^

be the extended Dynkin diagram ofo(2n). To find solutions corresponding to <Dαι we
have to take k = 1 in Table 1.

Since the orders <DΛn_1 and <DΛn are gauge equivalent, we have to take k = n in
order to find the corresponding solutions.

A.1.2. Examples of Solutions. The following 3 cases from Table 1 are the only ones
with the trivial stationary subgroup of a generic point and to each of them there
corresponds exactly one solution.

9

o(5)
o(10)
o(14)

L

βl(2)
βp(4)
sp(5)

k

1
5
7

Embedding

4Λ,
2Λ,
Λ2

A.2. Example g = o(7).
Recall that De(g) is

o => Θ
2 3

1

Proposition. 1) There are no solutions corresponding to Θx such that the
corresponding subalgebra L a o(7) is irreducible.

2) If a solution corresponds to <DX and a subalgebra L c= o(7) is such that there
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exists an L-invariant 1-dimensional isotropic subspace, then the solution is gauge
equivalent to a constant one.

3) There exists a solution corresponding to <Di given by the following subalgebra
preserving a 2-dimensional isotropic subspace:

L =

Remark. Here o(n) preserves the following symmetric form on <CΠ:

Ίa + t

C

0

0

0

0

A o

b ,
-a + t

0

0

0

0

0

*

#

a

c

0

0

0

*

*

b
0

— c

0

0

*
*

0

-b
—a

0

0

*

0

*

*

*

a~t

— c

0
*

*
*

*

-b

— a —

\

t) .

6. Proofs

6.0. Proof of Proposition 1.3. Consider the automorphism φ of g®K = gUw"1))
such that φ = id on ί) and for every root β the restriction of cp to g^ equals wfc(^,
where k(β) is the coefficient of α in the decomposition of β with respect to simple
roots. Then <Dα = φ~ 1(Φ0) (

to prove this notice that according to [4] the coefficient
of α in the decomposition of αmax equals 1). Clearly, φ corresponds to some
HαeHad(K). Then 0α = H~^0Ha.

6.1. Proof of Theorem 2.1. By Proposition 1.3 there exists #αe#ad(K) such that
WczH~ 1Θ0Hα = 0α. Therefore WL = W^H~\u~~2^)HΛ = w~20α.

Similarly to [15] we can prove the following lemma and the Proposition 6.1.2
it implies.

6.1.1. Lemma

6.1.2. Proposition. There is a natural one-to-one correspondence between orders
Wc0α satisfying the conditions of Theorem 2.1 and Lagrangian subalgebras
Xw c g(C[ε]) such that XW®(PΛ + εP^-) = g(<C[ε]).

Now it is absolutely evident that the proof of Theorem 2.1 is absolutely similar
to that of Theorem 3.1 from [15].

6.2. For maximal orders corresponding to singular vertices a lot of results from
[15] are generalized practically literally.

6.2.1. Lemma. Let (Ll9B^) and (L2,B2) determine solutions from <DΛ. Let
(Ad X)(L!) = L2 and B2(ΔdX(al), Ad AT(α2)) = 51(α1,α2)/or any al9a2eL and some
XeA.dG(PΛ). Then the corresponding solutions are gauge equivalent.

6.2.2. Proposition. Let (L,B^ and (L,B2) determine solutions corresponding to <Dα.
Let BI be cohomologic to B2. Then these solutions are gauge equivalent.
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6.2.3. Lemma. Let LnPα be a Frobenius Lie algebra. Then every class of H2(L)
contains a representative nondegenerate on LnPα.

6.2.4. Proposition. Let L satisfy the conditions of Lemma 6.2.3 and H2(L) = 0. Then
there is only one solution corresponding to <Dα with given L.

Thanks to Lemma 6.1.1 and Proposition 6.1.2 all proofs are identical to the
corresponding ones for g = sl(n).

7. Proof of Statements from Section 3

7.1. Proof of Proposition 3.1. Let R be the set of all roots. Set

βo = &® Σ β ί flr = Σ β«
aeRo αe-RΓ

The statement of the proposition follows from equalities:
k 0

α>. = Σ «~ lΦ8r + Σ Φ&
r = l r = l - k

r = - k r = 0

7. J.I. Proof of Lemma 3.1.1. Consider the form (α,h) = Tr ab on g c sl(fe).

Clearly, Fα rι is orthogonal to Fα Γ2 if ri-}-r2^k and the pairing is
nondegenerate if r^ + r2 = k. This implies the statement of the lemma.

7.2.1. Proof of Proposition 3.2.1. The statement follows from the fact that the
projection of <Dα to (Lα + εkLα)φ]ΓεrKα>r maps g[ιι]nΘα precisely onto

7.2.2. Proof of Proposition 3.2.2.
1) Let Xw satisfy the conditions of the proposition. Let M be the image of

Xw under the projection

From Proposition 3.2.1, it is clear that M + P~ = Lα.
2) Let K be a linear vector space over C with a nondegenerate inner product.

Let S be an isotropic subspace. Thus, S1 ID S and J5 determines a nondegenerate
inner product on Sλ/S.

Lemma 1. Let V and S be as above and X -a Lagrangian subspace in V. Then
is a Lagrangian subspace in S^/S.

Proof. Clearly, (X n S L)/(X n S) is an isotropic subspace in S 1/S. Then dimensional
considerations show that (X nS1)/(ArnS) is a Lagrangian subspace. The lemma is
proved.

The following lemma highlights the structure of Lagrangian subspaces in a
direct sum of modules.
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Lemma 2. Let V=VίφV2 be a linear vector space with a nondegenerate inner
product and V± = V2. Then there exists a one-to-one correspondence {Lagrangian
subspace in K}<-^{(S1,S2,Φ):SI is an isotropic subspace in ViιΦ:S^/S1-^S2/S2 is
an isomorphism such that (x,y) = — (Φ(x)9 Φ(y))}

Remark. We denoted by S.1 c= Vi the set {xeF^x,^.) = 0}.

Proof. Given a triple {Sl5S2, Φ}. We see that X = {s± + s^ + Φ(sl) + S£:s±$S±;
SieSi} is a Lagrangian subspace.

Conversely, given X. We see that Si — XnVi is an isotropic subspace in Vt.
Then S.1 c Vt is the image of X in Kf under the projection V -> V{ and one has two
exact sequences Q-+S2->X-+Sι-*Q and Q-tS^-tX-tS^-tQ. Thus, there exists
an isomorphism Φ:S^/S1^S2/S2. Obviously, (Φ(x), Φ(y)) = —(x,y). The lemma
is proved.

Let Xw be a Lagrangian subalgebra in Lα + ε2Lα + εK Xwrι(εV+ e2LΛ)/
(Xwr\ε2La) is a Lagrangian subspace in (εV + ε2LΛ)/ε2LΛ = εV by Lemma 1.

We have recovered from AV a subalgebra in Lα + ε2Lα and a Lagrangian
submodule F0 in εV. Since Xwnε2La and Jf^n^F" + ε2Lα) are ideals in X, then,
clearly, F0 is an M-module.

The proposition is proved.

8.1. Proof of Proposition 4.3. For definiteness sake consider the case o(fc)φo(2n).
Suppose M c= Lα cannot be embedded into any parabolic subalgebra of Lα. Let us
prove that M is semisimple. If M acts irreducibly on <C* ® C2fl, then M is semisimple
(it cannot be reductive since the scalar matrices do not preserve the inner product).

Suppose that V is an M-invariant subspace in Cfe®(C2w. Clearly, the inner
product on V must be nondegenerate (if there exists VQ c V such that (K0, V) — 0,
then choosing a maximal V0 we get (MV09 V) + (V0,MV) = Q9 hence MF0 c K0

and K0 is isotropic, i.e. M is embedded into a parabolic subalgebra).
Then K1 is M-invariant and F0K1 = Ck®C2π. This implies that M is

reductive. Having considered irreducible components on which the inner product
is nondegenerate we see that M is centerless, since the matrices acting by
multiplication by a scalar do not preserve the inner product.

Thus, M is semisimple. Let us consider the projection of M into o(fc). The
representation of M in C* can be decomposed into the direct sum of irreducible
components, the latter being distinct, otherwise M can be embedded in a parabolic
subalgebra.

First, let us consider a particular case when the representations of M in <Ck

and in C2w are irreducible.
Let λ and μ respectively be their highest weights. Since in Ck there exists a

nondegenerate invariant inner product, then ω0(A)= -A, cf. ref. [4] (8.7.5.).
Analogously, ω0(/l) = — λ.
There exists an M-submodule X in <C* ® C2" having λ + μ as its highest weight

and irreducible.
Since ω0(λ + μ) = —λ — μ, then the inner product in X is nondegenerate.
In this case the decomposition of C* ® C2n in irreducible components cannot

contain more than one component isomorphic to X, because λ and μ are unique.
Thus, Cfc ® C2w cannot contain a Lagrangian M-module by Lemma 2 (cf. item 7.2.1).

"The case of M reducibly acting in Cfc and C2w is immediately reduced to an
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irreducible case since we can choose the greatest of the highest weights in Cfc and
C2π, respectively.

The case of sp(2fe)φsp(2π) is analogous.
Thus, the statement is proved.

8.2. Proof of Proposition 4.4.1. Proposition 3.2.2 and Lemmas 4.1 and 4.2 imply
that a solution of CYBE corresponding to the order W c (DΛn induces a subalgebra
L c o(2n), such that L + P~ = o(2n) and an L-invariant Lagrangian subspace in

^ι=<C2"
It is well-known that the set of Lagrangian subspaces in C2n is a manifold

with two connected components and S0(2n) acts transitively on each component.
One of them is generated by P*19 and the other one is generated by the following
Lagrangian subspace in C2w having a 1-dimensional intersection with P^:

Let K0 belongs to the component generated by P^. Then there exists XεSO(2ri)
such that X'1 V0X = P+1. Hence, Jlf "1LXcPβ

+,L+Pβ" =o(2π) and Pα

+ +Pα~ =o(2n)
Lemma 4.2 from [15] shows that we can choose X from G(P~).

The statement of proposition follows from the Remark to Proposition 3.2.2.
Similarly, in the second case Wc<Dβ l.

8.3. Proof of Proposition 4.5. As in the proof of Proposition 4.4.1 we can as-
sume that the r-dimensional L-invariant subspace in C2w+1 is generated by
ene2n>e2n-ι>- >e2n+2-r> where {ej is the standard basis of <C2π+1. Then the
isotropic order W c (D1 corresponding to L is contained in <D0 if r = 1 and in Θr

if r>l.

8.3.1. Corollary. If L is solvable the corresponding solution is gauge equivalent to
a constant one.

8.4. Proof of Corollary 4.6. Proposition 4.4.1 shows that we have to consider only
the solutions corresponding to α l 5 where o^el^o^)) is the singular vertex.
Dimensional considerations show that the dimension of L c o(5) must be odd. Let
us consider two cases.

1) First suppose there are no nontrivial isotropic L-invariant subspaces. The case
when L is irreducible is analyzed by means of Table 1 from Appendix 1. If L is
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reducible and V a C5 is L-invariant then the inner product on V is nondegenerate
and C5 = V® K1 (cf. proof of Proposition 4.3). Moreover dim V φ 2 (otherwise V
would contain two isotropic L-invariant 1 -dimensional subspaces). Thus, we may
assume that dim V = 4 and L is an irreducible subalgebra of o(4). Then L = o(4)
and it is impossible because dim L must be odd.
2) Now suppose C5 contains nontrivial isotropic L-invariant subspaces. If the
solution is nonconstant then these subspaces cannot be 1 -dimensional by Propo-
sition 4.4.1. Then we proceed just as in [15].

9.7.1. Proof of Proposition 5.2.1. Notice that Lα + εKα>1 + ε2Kα>2 + ε3Lα = T 4- T*,
where T = Lα + εFβj l. Now let S be the projection of Xw to Lα + εFα4. Clearly, S
is closed with respect to the bracket in the afϊine algebra (Lα, Kβ t l) and
S + (P~,P~ί) = (LΛ9Vatί). Let S1c=T* be the annihilator of S. Then XW=>S\
since Xw is a Lagrangian subspace in Lα -I- εFα>1 + ε2 Kα 2 + ε3Lα and Xw c 5 4- Γ*.
Hence, JXV is uniquely recovered from X^cS+T*/Sλ = S + S*. Clearly, the
image of X w under the projection S + 5* -> S is S and X^r is uniquely recovered
from a skewsymmetric form B, as follows:

Xw = {x + /(x):xES; /(x)eS*; /(x)(y) = B(x, y)}.

Then .XV = {x + /(x) + f : ίeS1}. It remains to find conditions under which Xw

is a subalgebra. Clearly, Xwr\(ε2 Kα>2 + ε3Lα) = S1, and S1 is an ideal in Xw. Since
ε2Kα>2 + ε3Lα is a commutative Lie algebra, S1 is S-module. Let x,yeS. Define
[x, j;]Kα 2 setting [x, 3;] = [x, y]af + [x, >;]Kα 2. Then [x + /(x), y + /(y)] = [x, j;]̂  +
[^/(yΛ + C/ίxλΛ + C^ΛF^modS1. For any zeS we have (/[x, y]rf), z) =
([^> /(>>)]> z) + ([/M» Λ» z) "*• ([^> );]κα,2»

 z) Clearly, this is equivalent to the desired
statement. Since our arguments are easily invertible, we have proved that any
Lagrangian subalgebra in Lα + εVΛΛ + ε2Fα>2 + ε3Lα is of the form (S9B).

Let us prove that the condition

XWΓ^(P- + ε3(P;)1 + εPM + ε2P;2) = 0

is equivalent to the nondegeneracy of B on Sn(P~9P~1). Indeed, P~ -hε3(P~)1 +

tP^ + ̂ P^Pϊ'P+J + Pϊ'P^ Let s + /(5) + 51 = P + P1, where 565;
/(5)eS*; s^S^9 pe(p-9p-ά P

Le(P^P~^. Then

and

which means that /(s)(x) = #(s, x) = 0 for any xeS. Our statement is completely
proved.

10. Proof of Proposition A.2.

1) Analysis of Table 1.
2) It follows from Propositions 4.4 and 4.5.
3) We must check that Lr^P1 is a Frobenius algebra (by Theorem 2.1). It follows
by methods of [15].
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