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Abstract. A new open class of convex 2 dimensional planar billiards with positive
Lyapunov exponent almost everywhere is constructed. We introduce the notion of
a focusing arc and show that such arcs can be used to build billiard systems with
positive Lyapunov exponents. We prove that under small C 6 perturbations,
focusing arcs remain focusing and thereby show that perturbations of the
Bunimovich stadium billiard have positive Lyapunov exponents.

0. Introduction

We study the ergodic properties of billiards inside a planar domain Q for which the
boundary dQ consists of piecewise smooth arcs that are either flat or convex. A
billiard in Q is the dynamical system arising from the uniform motion of a point
mass inside Q with elastic reflections at the boundary: angle of reflection equals
angle of incidence. We introduce a very general class of convex arcs for which the
resulting billiard will have positive Lyapunov exponents almost everywhere and
hence by Pesin [P] will have positive measure-theoretic entropy (chaos). This
class is open in the C 6 topology on curves. Using these results, we prove that C 6

small perturbations of the Bunimovich stadium billiard have positive Lyapunov
exponents. Our examples generalize work of Bunimovich [B3], Wojtkowski
[W3], and Markarian [Mrl, Mr2] who had described various non-open classes
of arcs.

We say a non-closed curve is convex if when we connect the ends of the curve by
a straight line, the resulting closed curve has no self-intersections and bounds a
convex set. Henceforth, the term convex curve will signify aC°° smooth curve that
is non-closed and whose curvature is never zero, i.e. the curve is strictly convex.

Let y be a convex curve. We examine a ray that collides with y a finite number of
times.
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Definition 1. An incoming ray is focused by y if it collides a finite number of times
with y and if the infinitesimal family of rays that is parallel to the incoming ray

(1) focuses (i.e. passes through a focal point) between each pair of collisions with

y9

(2) focuses after hitting γ for the last time.

For such a ray, the time the parallel family takes to focus after hitting y for the last
time is called its focusing time.

(See Fig. 1).
Our principal result is

Theorem 1. For any convex curve γ there exists an angle Θ(y) > 0 such that any ray
that hits y with angle less than Θ will be focused, and the focusing times for these rays
are bounded.

We want boundary curves which do not trap rays: i.e. every (or almost every)
ray starting on the boundary will have a finite number of collisions with the curve
and then leave it. We make the following restriction:

Definition 2. A convex arc y is a convex curve whose curvature ky(s), s e [0, /]
satisfies

Uy (1)
where the arc-length of y is /.

Definition 3. A convex arc y is focusing if all rays collide with y only a finite number
of times and all rays are focused.

Fig. 1. Parallel variation focusing

Note that any sub-arc of a focusing arc is itself a focusing arc. In the special case
that the straight line connecting the endpoints {y(0), y(l)} of the arc is a periodic
billiard trajectory, we modify this definition slightly (see Definition 1.2).

Using that the focusing times for trajectories that hit a focusing arc with small
angles are bounded, we prove that

Theorem 2. Any convex region Q whose boundary consists of focusing arcs
connected by straight lines that are sufficiently long will produce a billiard that has
positive Lyapunov exponents almost everywhere.

Marlies Gerber [G] pointed out to us the following corollary of Theorem 1.

Theorem 3. Let y be any convex curve and q any point on y. Then there exists a
neighborhood U(q)Cy of q such that the convex arc U(q) is focusing.
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The set of focusing arcs form an open set in the space of smooth, convex curves
satisfying (1).

Theorem 4. Let y be a focusing arc. If γ is a convex arc of the same length that is
sufficiently close to y in the C6 topology, then y is also a focusing arc.

lΐγ is chosen to be a half circle, then Theorem 4 implies that perturbations of the
stadium billiard have positive Lyapunov exponents, a result we announced in
[D4]. Fixing the length of the flat sides determines how close to a half circle y must
be. Note that the resulting boundary will be, at best, only C1 smooth. This result on
perturbations of the stadium was first claimed by Bunimovich [B2]. His argument
was of a heuristic nature, and it was not clear what type of perturbations he
allowed.

Fig. 2. Elliptical stadium

By Theorem 4, one can replace the half-circles of the stadium by half-ellipses cut
along their semi-minor axis and with eccentricity close to 1. We show that a half-
ellipse with eccentricity significantly different from one is also a focusing arc
(Sect. 7). This allows us to construct what we call an elliptical stadium (two half-
ellipses joined by straight lines, see Fig. 2) for which the billiard will have positive
Lyapunov exponent almost everywhere. We do not have an explicit estimate on
how long the flat sides of the stadium must be.

x2 y2

Theorem 5. The half-ellipse -^ + jτ =1, * ^ 0 , is a focusing arc if and only if

a/b<]/2.

From the work of Hopf [H], one knew that the divergence of nearby
trajectories, such as happens in the geodesic flow on surface of negative curvature,
produces ergodic behaviour. First Krylov [Kr] and then, in a rigorous way, Sinai
[SI] adapted the ideas of Hopf to show that a billiard with concave boundary (the
Sinai scatterer) displays ergodic behaviour. The underlying reason is that a
divergent family of rays will be made to diverge even more strongly by a collision
with a concave boundary.

Thus one was very surprised by the ergodicity of Bunimovich's stadium
example (two half-circles joined by straight lines) [Bl, B4] since a collision with a
strictly convex boundary component causes a diverging family of rays not to
diverge but rather to converge and eventually to focus. Furthermore, for billiards
inside a smooth, strictly convex domain, Lazutkin [L] had shown that there
always exist caustics, and hence such a system could not be ergodic. A caustic is a
closed curve to which a trajectory is repeatedly tangent. The ergodicity of the
stadium does not contradict the Lazutkin result since the stadium is neither
smooth nor strictly convex.

A heuristic explanation of the chaotic implications of focusing is that after being
focused the rays will then diverge. If the time during which the rays diverges is
longer than the time during which they converge, there will be a net increase in the
divergence. This reasoning is not strictly correct as the cardioid example of
Wojtkowski [W3] and our Theorem 3 show, but it serves as a useful heuristic.



228 V. J. Donnay

Guided by this train of thought, the author [Dl, D2] was able to construct a
smooth metric on the two-sphere with ergodic geodesic flow.

The idea of separating convex arcs by "sufficiently long" straight segments was
advanced by Wojtkowski [W3] and helped clarify the mechanism by which
focusing leads to chaotic dynamics. Bunimovich [B3] formulated versions of
Definition 1 and Theorem 2 but, because he did not have Theorem 1, his versions
required stronger assumptions (see Remark 4.6).

The billiard systems for which we and other authors have proven positive
Lyapunov exponents almost everywhere have boundaries that are at most C1

smooth. For boundaries that are smoother than C1, no such results are known.
The problem is that if the curvature of the boundary goes smoothly to zero, then
the time it takes a family of rays to focus becomes unbounded; present techniques
cannot handle this situation. Recently the author [D3] has found a smooth strictly
convex billiard that exhibits a weaker form of chaotic behaviour: positive
topological entropy.

In this paper, we do not address the question of ergodicity. One should be able
to adapt the proofs of ergodicity for systems with singularities [B4, KSS] to our
examples. The main technical issue is the behaviour of trajectories that hit the
boundary with small angles which can be analyzed with the methods of Sect. 5.

To prove our results, we use Wojtkowski's version [W2] of the cone-field
method Sect. 1. The return map for a billiard inside a convex domain is a twist
map (Sect. 1). For integrable and near integrable twist maps, one can use the
existence of invariant curves to canonically define a cone-field. We illustrate these
ideas by presenting a proof that the stadium billiard has positive Lyapunov
exponents (Sect. 2). By viewing the stadium as a linked twist map involving a
(non-smooth) perturbation of a circle and using the integrable nature of billiards
inside a circle, we are able to give a "one line" proof that does not require any
calculations. We use more quantitative information about focusing gained from
analyzing the Riccati equation (Sect. 3) to prove Theorem 2 (Sect. 4).

In proving the existence of caustics, which in the phase space corresponds to
invariant curves, Lazutkin introduced an especially useful set of coordinates. In
these coordinates, one sees that for trajectories that hit the boundary at small
angles, the billiard map is nearly integrable. Our intuitive ideas about the
relationship between cone-fields and invariant curves for twist maps led us to
examine the Lazutkin coordinates which we use (Sect. 5) to prove Theorems 1 and
3. In (Sect. 6) we combine our small angle results with fairly standard perturbation
arguments to prove Theorem 4. We use that for a focusing arc, a composition of
the billiard map remains a twist map (Proposition 3.6). The results on elliptical
arcs are proven in (Sect. 7) and can be read independently of the other sections.

As we were writing up our results, we learned that Markarian [Mr2] had
recently proven similar results using quadratic forms. He shows that any C4

perturbation of a half-circle is still a focusing arc and he proves Theorem 3. In
Remark 5.8, we comment on the C4 versus C6 smoothness requirement.

1. Background Material

We outline the basic definitions of billiards [W3, C-F-S].
Let Q be a connected domain in the plane with piecewise smooth boundary. By

a billiard in Q we mean the dynamical system arising from the uniform motion of a
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Fig. 3. Billiard map

point mass inside Q with elastic reflections at the boundary: the angle of reflection
equals the angle of incidence. This motion produces a flow Ψ in the space TγQ of
unit tangent vectors of Q with the obvious identifications. Let %γ: TXQ^Q denote
the natural projection.

Let Φ\M-^M be the standard section map, where McTxQ is the two
dimensional manifold consisting of unit vectors attached at the boundary dQ and
pointing inside Q. For zeM, the point Φz is gotten by following the point z under
the billiard flow Ψ until its next collision with the boundary.

On M, we introduce coordinates (5,0), where s is the arc length parameter along
dQ and θ e [0, π] is the angle which the unit vector makes with dQ (Fig. 3).

We denote by {Xs, Xθ} the associated tangent vectors. Φ preserves the measure
μ = c sinθ dsdθ, where c is a normalizing constant.

The points in dQ at which the piecewise smooth boundary components meet
will lead to singularities for Φ. The singularity set of Φ has μ measure zero and the
differential DΦ satisfies [K-S]

J log+\\DΦ(z)\\dμ(z)<oo, where log+x = max{logx,0}. (1.1)

We examine the case that Q is a convex domain whose boundary components
consist of C°° smooth, strictly convex curves and flat pieces (i.e. straight lines). The
cases where one has concave components or a combination of concave, convex
and flat components are discussed in [W3].

To decide whether a given curve γ is a focusing arc and hence can be used to
build up a boundary dQ whose billiard will have positive Lyapunov exponents, we
analyze the billiard restricted to the curve γ. Given a convex curve 7, we denote the
closed convex domain gotten by connecting the endpoints of γ with a line segment
& by Qy, the induced map on Qγ by Φy, and the associated phase space by My. We
denote the subset of My that consists of points with basepoint in γ by

Sy = {z = (s,θ)eMy:πί(z)ey}. (1.2)

We chose the arc-length coordinate so that if zeSy and if 7 has length \v then
se[0,g .

We say a point zeSy is entering (leaving) y if πγ(Φ xz)eS£ (π1(Φz)e^f). We
denote by S~ (Sy) the set of points entering (leaving) γ:

n^-'z)e^},

π1(Φz)e^}. { ' }

We denote by ry(s) and ky(s) = ί/ry(s) the radius of curvature and the curvature of
γ. When it is clear to which curve we are referring, we omit the subscript γ in our
notation.
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In certain cases, such as a half-circle, the points

po = (5 = O,0 = π/2), Pι = (s = lθ = π/2) (1.4)

form a periodic orbit and hence never leave γ.

Lemma 1.1. Let y be a convex arc with
i

(1.5)

Then all points in Sγ9 except {p0, pt} if they are periodic, will leave y.

Proof. We orient γ in the X Y plane so that y(0) is at the origin and y'(0) points along
the negative Y axis.

We examine how the Y component of the direction vector of a trajectory
changes due to a collision with the boundary. If the trajectory collides at a point
where the normal vector to γ (oriented so as to point into Qy) has a positive Y
component, then the Y component of the direction vector will increase after the
collision. Assumption (1.5) implies that the normal vector to y has a positive Y
component everywhere except at s = 0 and possibly at s = l. After successive
collisions, the Y component of the direction vector increases monotonically. Since
there are no periodic orbits inside y, trajectories cannot accumulate and hence they
must all leave y. •

For z e Sγ9 we denote by ny(z) the number of hits z has with the boundary before
it leaves y, i.e. Φw(z)zeS+. If zeSf then n(z) = 0.

We denote by sk(s, θ) and θk(s, θ) the coordinates of Φk(s, θ). We use ~ to denote
quantities associated to a curve y.

For the special case that {p0, pt} form a periodic orbit, we define focusing as
follows:

Definition 1.2. Let {po,Pι} form a periodic orbit for a convex arc y. The ray which
first hits y at pa, α = 0, / is focused by y if

(1) the incoming parallel variation focuses between pa and Φpa and between Φpa

and Φ2pa,
(2) this variation is converging when it leaves Φ2pa.

Hence we consider that n(pa) = 2. We give a quantitative definition of
converging in Definition 3.1. Condition (2) implies that given enough time, the
parallel variation would focus after leaving Φ2pa, although the time required might
be more than the time to go between Φ2pa and Φ3pa.

This definition of focusing was chosen to insure that Theorem 4 held (see
Appendix A2, case (III)). Theorem 2 holds under a weaker condition (n(pa) = l):

(Γ) the incoming parallel variation focuses between pa and Φpa.
(2') this variation is covering when it leaves Φpa.

The reason that in Theorem 4 we only allow perturbations that satisfy
condition (1.5) is to insure that almost all trajectories will leave the perturbed arc.
For example, if we started with the half-circle, an arbitrarily small perturbation
could result in γ being a segment of an ellipse. The billiard motion in an ellipse is
integrable [S2] and the semi-minor axis gives a stable periodic orbit. If we had

J ky{s)ds>n, then a neighborhood of the stable periodic orbit could be included in
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Sr Points in this neighborhood would never leave γ and they would all have zero
Lyapunov exponent. Thus without condition (1.5), Theorem 4 would be false.

Given a convex curve γ, we can scale it so that it will have length /. Scalings do
not effect the focusing behaviour of a curve. We define the Cn topology on the space
of all smooth curves γ of length / as follows. We let γ: [0, Z] -+R2 define the curve as a
function of arc-length with the normalization that y(0) = (0,0) and y'(0) = (0, —1).
Then

| |y-y|lcn= max |y(*>(s)-y<*>(s)|. (1.7)
^k^n, se[0,ί]

Lemma 1.3. The map Φy(DΦy) depends continuously on γ in the C2(C3) topology.

When examining the billiard map on a boundary dQ, we will use an associated
first return map &'. lϊdQ contains smooth strictly convex arcs yί5 / = 1,2,..., JV, then
we set

S= U Syi, (1.8)
i= 1

and define $~:S^>S to be the first return map to the convex part of dQ.

Lyapunov Exponents and Cone-Fields. For our dynamical system (Φ,M,μ), the
Lyapunov exponents λ+, λ_ are given by

Λ + (z)=l im-ln | |DΦ"(z) | | ,

""f00 H (1.9)
λ_{z)=-λ+{z). l }

Since condition (1.1) holds, we can apply Oseledec's Multiplicative Ergodic
Theorem [O] and conclude that the limit sup is actually a limit for μ almost every
zeM.

Pesin theory [P], generalized to systems with singularities [K-S], states that the

measure theoretic entropy hμ is given by hμ= J λ+(z)dμ(z).

Wojtkowski's criterion for showing that λ+ is positive involves cone-fields. A
cone ^ in a two dimensional vector space V is a subset # = {aXx + bX2: ab ^ 0},
where Xί and X2 are linearly independent vectors and a,beR. We call Interior
(^) = {aX1 + bX2: ab > 0 or a = b = 0} the interior of #. A measurable cone-field for
our space M is a family of cones {^(z)} c TZM defined for μ almost every zeM such
that the vectors Xγ{z\ X2(z) vary measurably with z.

Theorem 1.4 [W2]. Let <g(z) be a measurable cone-field such that for almost every z

ΏΦ{c€(z))ς.(€{Φz), (1.10)

and for almost every z there exists k(z) for which

DΦk{zX%{z)) C Interior %(Φk(z)z). (1.11)

Then the Lyapunov exponents λ+(z) are positive for almost every zeM.

Geometry of Tangent Vectors. We find it useful to think of a tangent vector
ξ = s'Xs + Θ'XΘ e TZM geometrically. We associate to ξ the infinitesimal one-
parameter family of points that generates ξ: i.e. the variation ηξ(σ) = (s(σ), θ(σ))

( s', θ + σff), σ e ( - ε , ε ) for which ηξ(0) = z, η'ξ(O) = ξ.
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Definition 1.5. We say the vector ξ focuses if the associated family of rays ηξ(σ)
focuses in linear approximation.

We denote by X~(z)e TZM the infinitesimal family that under the flow Ψ* is
parallel when it reaches z.

Wojtkowski's results [W3] are based on a simple geometric argument,
involving the focusing distance of families of rays, that allows one to compare the
slopes of tangent vectors in the {Xs, Xθ} plane.

Let z0, zί = ΦzoeM have basepoints on convex boundary components. For
ξ0eTZoM, ξ = s'Xs + θ'XθeTZίM, we wish to compare the slope of the vector
ξ = DΦξo = s'Xs + θ'Xθ with the slope of ξ.

Denote by L the length of the line segment connecting U^ZQ) and π^Zy).
Suppose that under the flow Ψ the vector ξ0 focuses at a point on this line segment
a distance do(ξo) from U^ZQ). Also suppose that under the backwards flow Ψ~* the
vector ξ focuses a distance d1(ξ)>0 from π^zj .

Fig. 4. Order of focusing

Focusing Lemma 1.6. //

then

Proof. Let

ff W

(1.12)

(1.13)

nr

Φ) = ί Si + σ, θ(σ) = θί + jσ

be the families corresponding to ξ and ξ.
We interpret (1.12) to mean that under Ψ~\ the family η(σ) focuses further from

πx(zx) than does the family ή(σ). Therefore, for a fixed value of σ, one has that

θ(σ)>ff(σ)9

which proves (1.13) (Fig. 4). •

We denote the slope of a vector ξ by
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Twist Maps. The billiard map Φ for a convex domain is a twist map. If we take the
ds

vertical family η{σ) = (s,θ + σ), then the image Φη(σ) = (^(σ), θ^σ)) satisfies -j1 > 0.
This is the defining characteristic of a twist map [Mtl].

2. The Stadium

We give a geometric proof that the stadium billiard has positive Lyapunov
exponents almost everywhere by considering the stadium as a perturbation of the
circle. This proof is essentially contained in [W3], the difference being that we
describe the cones in phase space while Wojtkowski described them in configur-
ation space.

For billiards inside a circle of radius r, the billiard map Φ(s, θ) = (sx, θ^ is given
by

θ 0! = 0. (2.1)

This system is integrable: the angle θ stays constant along an orbit. The phase
space decomposes into a union of invariant circles given by θ = const.

We define a cone-field {^(z)}, zeM, by

Under the map (2.1), this cone-field is invariant but not strictly invariant [i.e. it

satisfies (1.10) but not (1.11)]:

DΦZ{XΘ) c Interior (<€(Φz)), (2.3a)

DΦZ(XS) = Xse d{%{Φz)). (2.3b)

For any convex billiard, the map Φ is a twist map and hence for such a billiard
(2.3a) will always be true. We interpret (2.3b) as saying that the horizontal vector
Xs stays horizontal. In terms of the invariant circles, the tangent to the invariant
circle gets sent to the tangent to the invariant circle.

Reverting to our geometrical interpretation, let η(σ) = (s + σ,θ),σe( — ε, έ) be the
family that generates Xs. Under Φ this family gets sent to

), (2.4)

Fig. 5. Strict invariance of cones

which corresponds to the horizontal vector at (sl9 ΘJ. The trajectory connecting
(s,0) and (s l50!) has length

L=2rsinθ. (2.5)
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By symmetry, we deduce that the family η(σ) must focus at the midpoint of this
trajectory; hence at a distance

d = r sinθ (2.6)

from (5, θ).
To produce positive Lyapunov exponents, we must find a way to push up the

horizontal edge of the cone. We achieve this by perturbing the circle in a non-
smooth way to produce the stadium: we cut the circle in half, pull the two halves
apart and connect them by straight lines. When a trajectory goes from one half-
circle to the other, the horizontal edge of the cone will get pushed up, so that the
cone-field becomes strictly invariant (Fig. 5). Here we see the linked twist map
phenomena [B-E, Wl].

We now study the induced map $~:S-+S defined in (1.8), where the strictly
convex curves yh i = 1,2, are the half-circles of the stadium.

For z e S, we define the cone-field by (2.2).

Proposition 2.1. Under the map ^:S-+S,the cone-field defined by (2.2) is almost
everywhere eventually strictly invariant (i.e. it satisfies (1.10), (1.11)).

Thus the discussion of (Sect. 1) immediately implies

Corollary 2.2. The Lyapunov exponents for Φ are non-zero almost everywhere.

Proof of Proposition. If both x and 2Γχ are in the same component of S, then 2Γ is
given by (2.1) and the cone-field is still invariant but not strictly invariant.

If x e St and 2Γx e S7 , j φ i, then we must show

D3Γ(XS) C Interior {^{3Γχ)). (2.7)

We first examine the case that z = (s,θ)eSi and zί = ΦzeSjJ+i. By (2.6), the
vector XseTzS (XseTZιS) will focus at a forward (backward) distance d = r sinθ
(dt=r sinθi). Let L be the length of the trajectory connecting z and zv

For the stadium, we claim that

L>d + d1. (2.8)

Note that 2d(2dί) is the length of that part of the trajectory that lies inside the
osculating circle at πx(z) ( π ^ ) . By pulling the two half-circles apart, we insure that
both osculating circles lie completely inside the billiard table. Hence

{}{}
Given (2.8), (2.7) now follows from the Focusing Lemma 1.6 and the twist

property of Φ.
For those z e S for which Φz φ S, i.e. the ray collides with the flat boundary piece,

we again use the Focusing Lemma. Notice that after a family of rays collides with a
flat boundary piece, its behaviour is the same as if it went straight through the flat
piece with no collision. Thus the behaviour of such a family of rays can be
understood by looking at their motion in an expanded table, gotten by unfolding
the original table across the flat sides. In this setting one sees that (2.8) clearly holds,
and hence (2.7). •

The heuristic lesson we have learned from the stadium example is

Remark 2.3. For points that lie on an invariant curve of a twist map, there exists a
canonical cone field that is invariant but not strictly invariant. One edge of the
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cone is given by the vertical vector, the other edge is given by the tangent to the
invariant curve.

In [W3], Wojtkowski produced a large class of convex billiards that had non-
zero Lyapunov exponent almost everywhere. For each point zeM with base point
πx(z) in a convex boundary component, the cone defined by Wojtkowski, when
translated into our language, is given by (2.2).

The convex curve γ need no longer be an arc of a circle. If at a point z = (s, θ) the
radius of curvature of γ is r(s), then the horizontal family at z will focus at a distance

d = r(s) sinθ. (2.9)

This result holds because to first order, the curve γ(s) is approximated in a
neighborhood of the point γ(s) by the osculating circle.

For points (s, θ) and (sl9 0X) both sitting in convex boundary components, the
Focusing Lemma shows that (2.7) holds providing that

L-d-d^O, (2.10)

where now d and d1 are given by (2.9). When equality holds in (2.10), then the
horizontal vector stays horizontal. This relation is the meaning of the statement
that two convex components must be sufficiently far apart.

When both points are in the same convex component γi9 Wojtkowski showed

that the condition . 0 <0, for all seyi9 implies (2.10) (the "convex scattering"
as

condition).

3. Jacobi Fields and Riccati Solutions

We define a local coordinate system {v9Ό
L,φ} on TγQ which will give us more

quantitative information on the evolution of variations. The following results are
well known but are usually phrased in the language of wave fronts [SI, Bl, W3].

Let qe Q be a point inside the domain and v a unit vector at q. We define v to be
the distance from q in the v direction, v1 the distance measured in the direction
perpendicular to v, and φ the angle measured from v.

We associate to a vector ξ = J(0) Xvl -f J'(0)Xφ in the perpendicular subspace of
^,v)(Ti<2), i e. in the span {Xυ±,Xφ}9 the variation η1(σ) = (v(σ) = 0, v\σ\ φ{σ))
which satisfies ( '̂(O) = J(0), φ'(0) = J'(0)). Such a variation is an example of a Jacobi
field [Kl], hence the choice of notation. Under the flow the vector ξ evolves to

DΨξ=±- ψY(σ) = J(t)Xv,+J'(t)Xφ, where
do σ=0

J(t) = J(O) + J'{O)t, J'(ή = J'(0). (3.1)

Definition 3.1. A vector ξ focuses when its associated Jacobi field satisfies J(f) = 0.
We say the vector is converging when J'(ί)/J(ί)^0 and is diverging when

Suppose that W\q,v) hits the boundary at a point z = (s,θ) at which the
curvature is k. The family of rays ηλ(σ) will intersect the boundary, producing a

d
family of rays η(σ) C M with —

dσ
η(σ) = s'Xs + Θ'XΘ. Let (J_, J'_), (J+, J'+) denote
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the values of the Jacobi field immediately before and immediately after collision
with the boundary. Then straightforward calculations give

Lemma 3.2.

(1) J_=s'sin0, J'_ = -

(2) J + = -s'sin0, J'+=

(3) J+ = -J_, J'+

 2

J'it)
If we define u(t) = —— then u satisfies the equation

u'(t)=-u2(t). (3.2)

This is a special case of the Riccati equation of differential geometry: u'{t)= —K(t)
— u2(t) where K(t) is the Gaussian curvature along a geodesic. We identify + oo and
set u(t) = oo when J(t) = 0. Solutions of (3.2) then live on a circle, and they evolve in
a simple way [Mn].

If w(0)<0, then u decreases to — oo in a time , at which point the

corresponding variation has focused. In an additional time τ, the value of u

decreases from + oo to -.
τ

Using Lemma 3.2, we find that the values of u before and after a collision satisfy:
1

u = sin0 B>

sin0
(3.3)

Combining (3.2) and (3.3), we can define u(t) for all time. We call such a function a
Riccati solution based at z and say it focuses when u(ή =—oo. We denote by u(t; ξ)
the Riccati solution that at ί = 0 corresponds to the vector ξ )

Definition 3.3. Focusing Times. We denote by τ+(z;ξ), τ~(z;ξ) the times at
which the Riccati solution u(t; ξ) focuses in forward and backward time,

and by

the kth time at which the Riccati solutions focuses.

The property of uniqueness of solutions to differential equations implies

Ordering Property 3.4. Let ul9 u2, u3 be Riccati solutions based on the same
trajectory. Suppose u2(0) e (M^O), W3(0)), where we take the ordering coming from the
circle that we get by identifying +oo. Then u2{t)s(uι{t\ u3(ή) for all t.
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Fig. 6. Ordering of Riccati solutions ΐj x

Corollary 3.5. Let ub i —1,2 be Riccati solutions based at zeM. Let z collide with
the boundary at times {tl9t2). Suppose that ul{tγ) > u^itγ) ^ 0 and that there exists a
τe(tι,t2] for which uί(τ)=— oo. Then there exists τ*e( ί l 5 τ) for which u2(τ*)
= —oo.

(Fig. 6).
The map Φkz is a composition of twist maps. Such a map is called a tilt map and

is typically not itself a twist map. If γ is a focusing arc however, then Φk

yz will be a
twist map.

Proposition 3.6. Let y be a focusing arc. For fc = O, 1, ...,n(z), suppose that
Φkz Glnterior(Sy), and let U(z) a neighborhood of z such that if we£7(z), then
ΦyWeInterior(Sy). Then Φ%{z) is a twist map for fc = O, 1,...,n(z): i.e., for w = (s, θ)

and sk(s, θ) the arc-length coordinate of Φk

y{s, θ), we have -^ > 0.

Proof. If z is focused by y then we claim that

satisfies

s'k>0,

(3.4)

(3.5)

which implies the result.
Let up be the Riccati solution corresponding to the parallel variation X~ so that

w-(0) = 0 and M + ( 0 ) < 0 . Between the points Φkz=Ψtkz and Φk+ίz = Φtk+1z,
/c = 0,l,...,n(z), the variation must focus; i.e., there exists a τk+1e(tk,tk+ί) such
that up(τk+1)=-co.

Let uθ be the Riccati solution corresponding to Xθ, so that wβ

+(0)= + oo, and
hence 0<Mβ"(ί1)<w~(ί1). By Corollary 3.5, uθ must also focus between (tk-utk),
k = 2,3,..., n(z). If we look at the basepoints of the curve Φη{σ\ where η(σ) is the
curve that generates Xθ, then we see immediately that s\>0. If 5^>0 and the
variation uθ focuses between tk and tk+l9 then by looking at π1(Φ fe+1^(σ)), we see

0. •

4. Cone of Focusing Variations

In [L], Lazutkin used K.A.M. theory to show that any smooth, strictly convex
billiard has caustics and hence that the billiard flow cannot be ergodic. In phase
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space, these caustics correspond to invariant circles. These invariant circles fill up a
set of positive measure and they accumulate at θ = 0 and θ = π.

We wish to use these invariant circles to control the cones (Remark 2.3) in each
convex boundary component. Then, when a trajectory goes from one convex
component to another, the cones which have been invariant will become strictly
invariant. Actually, for a non-closed convex arc, it does not makes sense to talk
about an invariant circle for the billiard map: the trajectories leave the arc and
hence are not recurrent. However, as with the half-circle in the stadium, one can
image a "ghost" of the invariant circle existing: this is a subset of the invariant
circle that would have existed if the arc were part of a closed convex curve. For our
purposes, we do not really need an invariant curve; just the possibility that such a
curve could exist.

Birkhoff [Bi] showed that an invariant curve for a twist map is given as the
graph of a function. Using this fact, Mather [Mtl, Mt2] developed criteria for the
non-existence of invariant curves which were used in [P-M, Hu]. We apply these
results to our situation.

Let Xθ e TZM be the vertical vector at the point z and DΦkXθ = (s'k, θ'k), k = 1,2,...
its image. If sf

k<0, then any curve through z will, under iteration by Φ, stop being
the graph of a function, and hence could not be an invariant curve. In applying this
criteria to the standard map, Percival and MacKay [M-P] defined a cone-field
3f(z) = {(s',θ')e TzM:s'^0}, and showed that if after n iterations, one had

fc=l,...,n, (4.1)

then a tangent vector to an invariant curve through z would have to lie inside

Π Dφ-\jf{Φkz)). (4.2)
fc = 0

If this intersection becomes empty, then there could not exist an invariant curve
through z. (Stark [St] developed a converse to this result. He showed that if sk > 0
for all k> 0, and some auxiliary conditions were also met, then there would exist an
invariant curve through z.)

For a focusing arc γ, (4.1) holds as long as a z continues to collide with y. Thus
through every point z e Sy9 there could exist an invariant curve: the intersection of
cones in (4.2) is not empty. This non-empty intersection will allow us to construct
the cones ^(z) that we need to prove positive Lyapunov exponents.

We define a cone %(z) that consists of all variations ξ that

are diverging (u ~ ;> 0) when they reach Φkz, k = 0,1,..., rc(z). (4.3a)

are converging (u+ ^0) when they leave Φkz, fc = 0,1, ...,n(z). (4.3b)

Note that a variation satisfying (4.3) will have to focus between each pair of
collisions with the boundary γ.

We set

Jf+(z) = {(s', θ') eTzS:- k(z) ̂  θ'/s' ^ + k(z)}. (4.4)

Then, by (3.3), the set of variations satisfying (4.3) is given by

f(z)= Π DΦ~k(jf+(Φkz)). (4.5)
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Proposition 4.1. // z is focused by y then the cone #(z) defined by (4.5) has non-empty
interior and is given by

V(z) = j(s', ff) e TZS: m(Xp

+) £ψύ+ k(z)\. (4.6)

Proof If z is focused (Definition 1) then the parallel variation X ~ e 7^5 satisfies
Z)Φz(X~)eInteriorpΓ+(Φ fcz)), k = ί,2, ...,n(z). Hence there is an open neighbor-
hood around X~ with this property. Since X~ forms one edge of the cone X + (z),
#(z) has non-empty interior.

Let Xp eTz£f be the variation^ that is parallel when it leaves Φn{z)z:
u+(tn{z); X+) = 0. We claim that Xf e <%(z). This follows by noting that the incoming
parallel variation at the point z* = (s(Φn(z)z), π — 0(Φw(z)z)) is gotten by time
reversing the variation DΦn{z)Xp, and that the point z* is focused by γ.

The variation Xp is the limiting case of variations that are converging after
leaving Φn(z)z and τf(z)(z; Xp) = + oo. If the incoming parallel variation X~ e Tz£f is
focused by γ, then τ^z)(z; X~) is finite. The Ordering Property 3.4 and (3.3) imply
that the slopes of the vectors satisfy m(X^)<m(Z~) = fc(z). •

For any mι>m(Xp) we choose a cone C(z,mz)C^(z) such that

«(z, m,) = L', θ') eT^im^j^ k(z)\. (4.7)

We denote by ξι the variation satisfying m(£z) = mv

Given such a cone C(z, m?), we define the forward focusing time of z with respect
to C using Definition 3.3

τ<t(z)= sup τ+z)(z,£),
SeC(z,mz)

and the backward focusing time of z with respect to C by

τc"(z)= inf τ"(z,ξ). (4.8)
ξeC(z,mι)

The ordering property implies

Lemma 4.2. 77ze forward and backward focusing times of z with respect to the cone
C are finite and are given by

Once we have τ^(z) finite, we can make the cones go strictly inside one another.
Let yγ and y2 be two convex arcs. Let zί e £fy~ and z2 e^~2 be points focused by
their respective arcs. We make a choice of cones C{zb m^z^)C Q(z), i = l,2.

Proposition 4.3. Let yι,y2be pieces of a convex billiard table dQ. Suppose that after
leaving y^z^ next returns to the strictly convex part of Q after a time L at the point z2,
i.e.,

ΨtniZί)+Lzί=z2.

Then if

L>τ c

+

1(z 1) + τc-(z2), (4.9)
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we have that

/ ) ^ « ( z 1 ) + i ( C i ( Z i ) ) C I n t e r i o r ( C 2 ( z 2 ) ) ( 4 1 0 )

Proof. Using (1.8) we show that for every ξeC^z), m(D&'n{Zί)+1ξ)e(m{ξι(z2)),
+ fc(z2)). Applying the Focusing Lemma 1.6 to (4.9) implies that m(D^~n(zl)+ίξ)
>m(ξι(z2)). On the other hand, since X~ e C2(z2) never focuses in backward time,
(i.e., τ~(z2;X;)= oo)), then we have that m(D3Tn(zι)+1ξ)<k(z2). \J

As we let the value of mt decrease, we get a bigger cone #(z) and hence it is easier
for variations to enter the cone (τ#(z) decreases). Making the cone bigger has a
trade-off: it is now more difficult for all the vectors in ^(z) to enter the next cone
(τ<£ (z) increases). For a general focusing arc, it is not clear what the optimal choice
of {m^z)} would be.

To define a cone-field for all weSγ, we push forward the cones defined for
zeS~:

<#(Φkz) = DΦk(<#(z)), k = 1,2,..., n(z). (4.11)

Theorem 4.4. Given a focusing arc γ9 there exists a choice of cone-field {C(z)}9

z e ίf~\ defined as in (4.7,4.11), such that the forward and backward focusing time of
the arc

τ+c= sup τc

+(z), τ ~ c = sup τ<:(z)

are both finite. These focusing times vary continuously with the curve y.

We define the focusing time of y with respect to a cone-field {C(z)}, by

τ y > c = max{τ+ c,τ~ c}.

Combining Proposition 4.3 and Theorem 4.4 gives

Corollary 4.5. Let dQ be a convex table with strictly convex arcs {yJfL i all of which
are focusing joined by straight lines. The straight lines do not intersect one
another. If there exists a choice of cone fields

such that
distance^, γj) > τyuC. + τyjfCj, i φ j , (4.12)

then the billiard map has positive Lyapunov exponents almost everywhere.

Theorem 2 follows by making a choice of cones and then making the distance
(7P77) large enough that (4.12) holds.

Proof of Corollary. Almost every point zeM will enter S infinitely often. If the
Lyapunov exponents of 2Γ are positive almost everywhere, the same is true for the
exponents of Φ. Applying Theorem 1.4 to the map 2Γ proves the result. •

Proof of Theorem 4.4. Given ε>0, Lemma 5.9 shows that there exists Θ > 0 such
that for any ze£f~ with 0(z)e{(O, <9]u[π — <9,π)}, there exists a choice of cone-
field {C(z,mx(z))} for which
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Suppose {po,Pι} are not periodic. Let z satisfy 0(z)e[<9,π — <9] and make a
choice of m^z). For all neighboring points w, we will use the same bottom edge of
the cone: i.e., mι(w) = mι(z).

Since τ~(z,ξί(z)) and τk

+(z, ξι(z))9 fc = l,2, ...,rc(z) are finite, these functions vary
continuously with the variable z. Thus for ε > 0 sufficiently small, there exists a
<5(z) > 0 such that for all w e 5(z, <5(z)) = {w e Sγ: |w - z\ < δ(z)}9

where n(w) g n(z). Covering the compact set {z e «$̂ ~ : 0(z) e [<9, π — 0 ] } by a finite

union (J B(zf, (5(zf)) gives the result.
i=ί

If {Po>P/} a r e periodic then pa, α = 0, /, do not leave γ. However, the twist
ds

condition -j£->0 (Proposition 3.6) implies the existence of a neighborhood
dβ

B(pa, δ(pj) such that all w e B\pa will have n(w) g 1. For such w and k = 0, w(w), we
have that

+ +

which by Definition 1.2' is finite. •

Remark 4.6. Bunimovich [B3, Eq. (4)] gave a condition which implies that an arc is
focusing and that its focusing times τ ^ , τ~<# are finite. Apriori, his condition is
stronger than our focusing condition. For an arc could be focusing, and yet as
#-•0, the focusing times τ^z)(z,X~) could become unbounded. Lemma 5.9 shows
however that this is not the case: as 0-»O, the focusing times remain bounded and
in fact go to zero.

5. Lazutkin Coordinates

We use the coordinates introduced by Lazutkin [L] to analyze the motion along a
convex curve y for θ near zero. For θ near π, the analysis is analogous. In (s, θ)
coordinates, Lazutkin showed that the transformation

can be written as

θ)θ\

1 = θ + β2(s)θ2 + β3(s)θ3 + G(5, θ)θ4 ( * ]

The functions αf and βt are given by

β2(s) = - M s ) > βs(s) = -ir(s)f(s) + %r'2(s). (5.2)

Lazutkin then made the following change of coordinates:

x(s,θ) = C1]r-2^(s)ds,
o

y(s,θ) = C2r
1i3(s)sin(θ/2),
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where

Cx = ( j r-2/3(s)ds) , Z = length of y,

In these new coordinates, the transformation Φ is given by

(χ,y),

>).

The choice of Cγ normalizes the x variables so that xe [0,1]. C2 is chosen to
make the coefficient for y in the first line of (5.4) equal to one.

We develop some lemmas describing how Φ and DΦ behave under iteration (see
Appendix Al for the proofs).

Define

c 1 =max/, c2 = maxg. (5.5)

Lemma 5.1. For y sufficiently small, we have that

\yk-y\<ϊy (5.6)

for k = l,2,...,N, where N grows like constantly*.

We estimate how many successive collisions a trajectory can have with a fixed
convex arc y.

Lemma 5.2. There exists a constant c3 such that for y sufficiently small, all points
(x,y) with xE[0,1] will have xn>ί for some n^c3/y.

Corollary 5.3. Let ybea convex curve. There exists Y > 0 and a constant c3 such that
all trajectories (x, y) that hit y with y^Y will move monotonically along y and will
have at most c3/y collisions before leaving.

Proof. For y sufficiently small, the condition xn > 1 implies that Φn(x, y) φ Sr If y is
large, it is possible that the trajectory would bounce to the other side of γ and hence
not leave. •

For Φ given by (5.4), the differential DΦ at the point (xk, yk) is given by the matrix

ytgx i+4yh+ytgy/'

If we assume that \yk—y\< y/2 < 1/2 then we can bound the entries of the matrix
by

Ί±c4y
3
 1 ± C 4 J Λ

+ c 4/ l±c4W
 ( °

where the constant c4 satisfies

Λ , } (5.8)

and
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Remark 5.4. The functions fx, fy, gx, gy are smooth functions of (x, y) and have a
limit as j;->0. Hence c4 is finite. The value of c4 depends in a C 6 way upon the curve
y. The value of gx(x,0) = lim gx(x,y) for example is a function of the radius of

curvature and its derivatives up to the fourth order:

If n(x, y) is the number of iterations of Φ between entering and leaving y, then we
are interested in

Lemma 5.5. For all (x,y) with y sufficiently small and for fc = l,2, ...,n(x9y\

and therefore there exits a constant c 5 > 0 so that

Theorem 5.6. 1. There exists a Y(y)>0 such that all z = (x,y) with y^Y will be
focused by γ.

2. The value Y(γ) depends C6 on γ.

( Y \Setting 0 = 2sin 11——ΓTT ), where rm— min φ ) , proves the first part of
\^2rm ) se[O,l]

Theorem 1. The second part follows from Lemma 5.9.

Proof of Theorem 5.6. 1. We show that the variation Xx satisfies (4.3). Hence since
u~(Xx)>u~(X~\ the ordering property implies that X~ also satisfies (4.3), and
hence z is focused by γ. In our definition of C(z; m^z)), we could then choose mx(z)
= m(Xx(z)).

We wish to show that u (th Xx) > 0 and u+(tk, Xx) < 0, k = 0,1,..., n(z) which in
terms of (s\ θ') variables becomes

-k(zk)<m(DΦkXx)<k(zk), fc = 0,1, ...,n(z). (5.9)

From Lemma 5.5 we have that

To change from (x,y) to (s, θ) coordinates, we differentiate (5.3) to get

x' = Clr
 2'3(s)s', ( 5 i o )

y = ^ r-2/3r'(s) sin(θ/2)s' + ^ r1 / 3 cos(θ/2)θ'.
•D Z*

Inverting, we get
θ' 1 y' 2r'(s)

s 2r(s)cos(θ/2) x 3r(s)
(5.1



244 V. J. Donnay

We can get uniform estimates for the maximum and minimum of r(s), r'(s), and
hence there exist consistents c6, cΊ such that

θ'
z cos(0/2) x'

For y sufficiently small, we have j^eEij'jfyL a n d since 0fc = 2sin~1

(——1/

fe

3 I, there exists a constant c8 such that — y ^ -£ ^c8y. Hence
^2r \Sk)J C8 ^

6 ^ + c 7 t a n ( c 8 ) ; ) .

cos —

Using Lemma 5.5, we conclude that given ε>0, there exists a 7 > 0 such that if

θί
^ε for fc = 0,l,2,.. .,φ).

Choosing ε < min k(s) will prove (5.9).
se[O,l]

2. The constants {cjf= x that were used in determining Y(y) depended on at most
the sixth derivative of y. •

Theorem 5.7 (Theorem 3). Let y be any convex curve and q any point on y. Then
there exists a neighborhood U(q)Cy of q such that the convex arc U(q) is focusing.

Proof. We define SU9 Sϋ, and S£ as in (1.3). If zeS^nS^, then z hits U only once
and hence is trivially focused by U.

To handle the trajectories that hit U more than once, we define

Av = {weU:w = Φkz for some ke[0,n(z)], where zeS~ with y(z)^ Y(y)},

(5.12)

where Y(y) is chosen by Theorem 5.6. Such a z is focused by y, i.e. X~ e TZM is
focused, and hence by the Ordering Property 3.4 we have that X~ e TWM is also
focused. Hence w is focused by U.

Let / be the length of the arc Ut. The main observation is that as / decreases, the
set S^nSΰt increases. More precisely, if lx<l2 and seUhnUl2, then

{θ: (S, θ)e Sϊl2nS+l2} C {θ: (s, θ) e S^nS+J .

As / decreases, the θ component of AVl stays fixed: for seUlίnUl2,

Thus for / sufficiently small,

at which point all points in SVι are focused by Ut. •

For Uι a focusing curve, one choice of cone-field is the following. For z e Sΰ
nSy, we set (&(z) = {aXs + bXθ:ab^0}, and then τ^^(z) = τ^^(z) = r(s)sinθ. For
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w G AVχ9 we set ^(w) = {aXh(w) + bXθ: ab ^ 0}, where the bottom edge of the cone Xh

is gotten by pushing forward the vector XxeTSy,

Xh(w) = DΦ\Xx).

Remark 5.8. Markarian uses the language of quadratic forms. Translating into our
language, he shows [Mrl ] that if an arc satisfies

ds2

then any sufficiently short piece of the arc will be focusing. Our Theorem 5.7
generalizes this result. In [Mr2], he finds a change of coordinates whose tangent
vectors give the edges of the cones. He constructs this change of variables in an ad-
hoc fashion, and the remainder terms he gets depend only on values of rU) for
7 = 0,1,2. Hence he can prove his results for C 4 perturbations. Effectively, the
Lazutkin coordinates (5.3) are too much of a good thing: by eliminating so many
lower order terms, they force the remainder to depend on r(4). The O(y3) estimate of
Lemma 5.5 is indicative of this overkill.

Lemma 5.9. Let ybea convex curve. Given ε > 0, there exists aθ>0 such that for all
z6S~ with θ(z)S Θ when we define C(z9 m^z)) by mt(z) = m{Xx(z)\ then

The value of Θ varies continuously with the curve.

Proof. We need to examine τ^(z)(z,Xx) = τ+(Φn{z)z,DΦniz)Xx) and τ"(z9Xx). By (3.3),

, sin0

τ~(ω,ξ)=
ύnθ

k-m(ξ)

l f m{ξ)>-k>

if m(ξ)<k.

The values of \m(DΦkXx)\ and θ(Φkz), fc = 0,1, ...,n(z) can be made uniformly
close to zero by suitable choice of Θ, which implies the result. •

6. Large Angle Behaviour

Trajectories that hit the boundary with an angle larger than Θ will have only a
bounded number of hits before leaving y. Under a small perturbation of the
boundary, these trajectories will still have a bounded number of hits with the new
arc y. Up to a bounded time iV, we can make the difference || DΦN(X~) — DΦN(X~) ||
uniformly small by making ||y — y|| small. This implies that if trajectories focus for
y, they will focus for the perturbed arc y.

The one technical issue is that we might not be able to compare DΦn{z)z and
DΦn(z)z directly because z might have more hits with y than with γ: n(z) > n(z). We
use the Twist Property (Proposition 3.6) to circumvent this problem.

Let y be a convex focusing arc with J kγ(s)ds ^ π. Chose Θ > 0 small enough that
o

all the results of Sect. 5 will hold. Let

(6.1)
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Proposition 6.1. 1. There exists N(Θ)>0 such that any zeA^p^p^ will leave y
in less than N hits: n(z)<N.
2. There exists a δ>0 such that for all smooth convex arcs γ of length I with

J k~γ(s)ds<^% if \\y-y\\C2<δ and if zeA^p^p^ then n(z)< rc(z) + l.
o
3. Given ε > 0 there exists δ>0 such that if \\y—y\\c2<δ, then to any ze AΘ\{p0,pt}
we can associate a z* = (s*, θ*) so that

n(z)^n(z*), and \z-z*\<ε. (6.2)

See Appendix A2 for the proof. Our main result is
i

Theorem 6.2 (Theorem 4). Let ybea smooth convex focusing arc with J kγ(s)ds ^ π.
o

Then all smooth convex arcs y of length I satisfying J ky(s)ds^ π for which \\y — y | | c 6

is sufficiently small will also be focusing arcs.
Proof Choose <9>0 so small that the results of Sect. 5 will hold for Θ^2Θ. Use
Proposition 6.1 (1) to choose N(Θ).

By Theorem 5.6, all z e S\AΘ will be focused by y. The value at which the small
angle analysis becomes valid depends on γ in a C 6 way. Thus there exists a δλ > 0
such that if ||y — y| |C6<5 1 then all zeS\AΘ will be focused by y.

We now show that given Θ as above there exists a δ2 such that if || y — y || c 3 < δ2,
then any zeAΘ\{p0,pι} will be focused by y. The theorem then follows by taking
| | | | i { δ δ }{}

By (3.3), z will be focused by γ if

)<K(sk(z)), fc = 0,1,2, ...,n(z)<N, (6.3)

where £is the curvature of y. Since γ is a focusing curve, we know that z*, given by
Proposition 6.1(3), is focused:

-k(sk(z*))<m(DΦkΛX;))<k(sk(z*)), fc = 0,1,2, ...,n(z*)<iV. (6.4)

Given ε > 0 there exists <53>O such that if \\y — y||c2<<53, then

|fc(sfe(z*))- £(5fe(z))| < s, z G AΘ, k = 0,1,2,..., n(z) ί n(z*) < N. (6.5)

The norm ||Z)Φ*(X~)|| is uniformly bounded away from zero for sΛlzeAΘ and
fc = 0,l,2,...,n(z)<iV. Therefore if we show that \\DΦk

z*{X;)-DΦk

z{χ-)\\ can be
made uniformly small for all zeAΘ, fc = 0,1,2, ...,n(z)<iV, then \m(DΦk*(X~))
—m(DΦk(X~))\ can be made uniformly small and hence (6.3) will hold.

The triangle inequality gives that

which by Proposition 6.1(3), Lemma 1.3 can be made uniformly small if ||y—y\\c3

is sufficiently small. •
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7. Ellipses

We describe new types of focusing arcs that are pieces of ellipses. Since scaling does
not effect the focusing property, we parameterize the ellipse E(t) = {x(t) = acost,
y(t) = sin t}, a ̂  1, t e [ — π, π), and let E[tat tb] denote the arc of the ellipse for which
te\tφ tb~\. The focal points of the ellipse occur at x= ±c= ±]/a2 — 1, y = 0.

Theorem 7.1. The half-ellipse E t_π / 2 π / 2 ] is a focusing arc if and only if a<γϊ.

Note that as mentioned in Sect. 1, the arc E t_π / 2_ ε π / 2 + ε] for ε>0, cannot be
included in a billiard that has positive Lyapunov exponent almost everywhere.

Billiard motion in an ellipse is integrable [S2]. The phase space decomposes
into invariant circles of two types corresponding to trajectories that cross the x
axis with —c<x<c(Jf trajectories)and to trajectories that cross thexaxis with
\x\>c (β trajectories). J f trajectories are tangent to caustics that are confocal
hyperbolas; $ trajectories have caustics that are confocal ellipses. In [D3] we use
the integrable behaviour of billiards in an ellipse to construct a smooth convex
billiard with positive topological entropy.

Proposition7.2. The elliptical arc E[taftb], ta^0<tb^π, is focusing if the line
connecting E(ta) and E(tb) crosses the x axis at x^.c or if ta = 0 and tb = π.

Proof Our assumption implies that only $ trajectories can hit £ [ ί α, ί b ] more than
once. For such a trajectory, let ξ τ be the variation consisting of trajectories that are
tangent to the same confocal ellipse. In phase space, ξτ is the tangent vector to the
invariant circle. This variation focuses in linear approximation at the caustic. The
ordering property implies that the parallel variation X~ will focus before the
variation ξτ. Since ξτ is focused between each pair of collisions, so is X~. •

The previous results on elliptical arcs implied that E[Of1l] was a focusing arc
[W3] and that any sufficiently short sub-arc of E{_π/4 π / 4 ] was a focusing arc
[Mrl].

The proof of Proposition 7.2 implies that any S trajectory will be focused by
£ [ π / 2 _π/2]. Thus to prove Theorem 7.1 we need only show that all ^f trajectories
are focused.

Lemma 7.3. (1) If \ <a<γΐ, then any 3tf trajectory other than the periodic orbit
{Po'Pi} has at most 2 successive collisions with the arc E[π/2>_π/2].
(2) // a>]/l, there exist 2tf trajectories that have at least 3 collisions with
E[π(2,-π/2]'

Proof (1) The normal line through a point (x(t\ y(t)), ίe[0,π/2) intersects the y
axis at y = (1 — a2) sin t. For a < j/2, an ^f trajectory z that starts in E[π/2t _π / 2 ] and
for which Φz is also in E[π/2, -π/2] will have θ(Φz) < π/2. Since a ̂ f trajectory crosses
the x axis at some xe( —c,c), Φz will leave £ [ π / 2 > _π/2].
(2) If a > γl, there exists a t! such that the normal line through (x(t\ y(t\ t e (t\ π/2),
intersects the y axis at y < — 1. If z = (s = 0, θ) = Φ " ι (x(t), y(ή) is the pre-image of
such a point, then θ(Φz)>π/2 and Φ2z is still in E[π/2 _π/2]. •

In what follows we will use an angle coordinate φ (see Fig. 3) defined at the
point E(t\

ffl, if ίe[-π/2,0)
ψ \π-θ, if £e[0,π/2].
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Let zx = (tl9 φ±)e E[π/2f - π / 2 ] be an Jf trajectory and z2 = (t2, φ2) be its image. We
denote by φo(t) the angle at E(t) whose ray connects the points E(t) and E( — t).

Lemma 7.4. Let\<a<]/Ϊ and t2e(0,π/2]. // φ2e(0,φ0(t2))9 then

r2 sinφ2<L<2r2 sinφ2, (7.1)

where r2 is the radius of curvature at E(t2) and L is the distance between E(t2) and

Proof. We denote by Dx and D2 the circles tangent to the ellipse at E(t2) with radius
of curvature r2 and r2β respectively. These are the osculating and half-osculating
circles (Fig. 7). Equation (7.1) is equivalent to the following relation: for x^

InteriorD2 C Interior^ C Inter ior . (7.2)

E(t2)

Fig. 7. Half ellipse and osculating circles

Denoting by (Xl9 Y^) and (X2, Y2) the centers of the circles D1 and D2, we have
that

Since r(t)=-(a2 sin21 +cos21)3/2 and sinφo(t) = a sin\t\/]/a2 sin21 + cos21, we get
a y

for ί2e(0,π/2] and ae(l,]/2) that
7 1 < 0 < y 2 . (7.3)

The relation r(t) ̂  r(t2) for t e [0, ί2] implies that in the region x ^ x(t2) and 3; ̂  0
we have

Interior £ c Interior D1. (7.4)

Now the symmetry of the ellipse and the relation Yί ^ 0 implies that (7.4) also holds
ϊory^O.

In the case that r2(t2)/2^r(t) for all te[0,ί2], the previous argument implies
that

InteriorD2 C Interior £ . (7.5)
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Now suppose that for some ί*e(0,ί 2), we have that r(t2)/2 = r(ί*). Let X2,maχ
denote the maximum x value obtained by D2. Then for t2 e(0,π/2] and α<2, we
have that

X2, max = X(h) + ̂  (1 ~ COS 0o(ί2)) < fl . (7.6)

It is conceivable that as t decreases from t* to 0, E(t\ which was originally
outside D 2 , would cross D2. Past this crossing point, E would remain inside D2

since r(t) < r(ί2)/2. But this would imply that α < X 2 m a x , contradicting (7.6).
Hence (7.5) holds for x ^ x(ί2) and y ̂  0. Symmetry and the relation 72 ^ 0 then

implies the result for y^O. Π

Proof of Theorem 7.i. Let α<j/2 . We examine <# trajectories starting at
zx = ( ί l 5 0!), ίx G [ — π/2,0] and for which the image point z2 is still in E. We must
show that the variation X~, which is parallel when reaching zl9 focuses between zx

and z2 and is converging after leaving z2. By (3.3), this variation focuses at a
d i s t a n c e ^ ! sin0i from zv The variation that is parallel when leaving z2 focuses at
a distance \r2 s in0 2 before z2.

We define

where L is the distance between EitJ and E{t2) and ri = r(ti) is the radius of
curvature at E(t^. If Δ > 0, then Lemma 1.6 and Property 3.4 imply that the desired
focusing behaviour occurs.

We fix ίi 6 [ — π/2,0) and examine A(tl9φλ) for 0 ! e ^ o t a X Φf{tJ] The angle
0 ^ ) gives the ray connecting E(ίx) and E(π/2). We claim that

(7.8)

For 0 i = 0o(ίi) we have by Lemma 7.4 that

Δ(tuφ0(t1)) = L—r2sin02>O. (7.9)

We consider L, r2 and 0 2 all as functions of φv Differentiating (7.7) gives

d _ 1 dL 1 1 δL \ dr2 1 δ0 2

30! 2 501 2 2 30! 2 30! 2 30!

Integrating -^- sin02 by parts, we get
30!

1*1

Calculations give that

and ^ = - 1 + — £ - . (7.10)
001 r 2 s m 0 2
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Fig. 8. One parameter family of rays

Since L(φ)<L2r2sinφ2 by Lemma (7.4), we have that ψ*\ψι) <L\ for all

and hence cosφ2(φι)^:cosφ1.
Therefore

d L

7

sin(p2

cosφί

sinφo
(L- ^0. (7.11)

Using that Δ(φo) = L(φo) — rί sinφ0, we get that

i

(7.12)

by Lemma 7.4 and Eqs. (7.9, 7.10, 7.11). Thus we have proved (7.8).
If a ̂  ]/2, then A ̂  0 for the periodic orbit connecting p0 and pb since r(s0)

= a2 ^ 2. Hence these trajectories do not focus. For a > j/2, there are orbits starting
at (s = 0, φ\ φ < π/2, for which Δ > 0. •

For the Bunimovich stadium, the length of the flat sides can be arbitrarily short.
In the elliptical stadium, the length of the flat sides must grow as a increases to j/2.
One could try to calculate bounds on these lengths.

In the a = ]/ϊ case, all trajectories except the periodic orbit {po,Pι} are focused
by £[-π/2,π/2] However the time it takes for the parallel variation that starts at
(t1 = —π/2,φ1) to focus after leaving the half-ellipse goes to infinity as φ1

approaches π/2.
The methods of this section could be used to determine conditions under which

the elliptical arc £[- M ] , £e(0,π/2) is a focusing arc.
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Appendix Al

We prove the Lemmas of Sect. 5.

Proof of Lemma 5.1. By induction. For k = ί9

for y sufficiently small.
If we assume (5.6) is true for k — 1, then

By induction, \yk-γ —yo\^\y so that yk_ 1 ^ f y. Hence,

Iterating this estimate gives

I
providing that

2 4

k-2c~^' D ( A U )

Proof of Lemma 5.2. By (5.4),

If we assume that

iy^yk^±y> (Ai.2)
then

for y sufficiently small. If (A1.2) holds for fc = 0,l,2, . . . , n - l , then

3
Σ o \ k ι k \ \ ^ y y J c

_ ny Λ
"TV

again for y sufficiently small.
4

Hence providing that (Al .2) holds for k = 1,2,..., n, then |xn — x| > 1, when n > -.

But for y sufficiently small, (A1.2) holds for n = const/j;3 by Lemma 5.1. •

Proof of Lemma 5.5. For k = 1, using the bounds on the entries of DΦ given by (5.7),
one has

y'
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Assume the result holds for k — 1. We prove the upper estimate for k.

Since from Corollary 5.3 we have that

— (A1.4)

we can estimate the terms of order 5 and above. For y sufficiently small,

Hence

F o r y'k we get,

' ' 3f

k -i + c4y
4xk

For y sufficiently small the terms of order seven and higher can be estimated by

y5{y22c2(k- lHy3(Uk- l) + cl{k-1)2)} ^y 5 . (A1.7)

This gives that

The estimates for the lower bounds are obtained similarly. •

Typel Type II

Type III Type IVFig. 9. Types of arcs

Appendix A2

We split our proof of Proposition 6.1 into cases depending on how the normals at
y(0) and at y(l) are oriented. By reversing orientation, we can suppose that any
convex arc is of one of the following types (Fig. 9):

I. Both normals lie outside the domain Qγ.
II. The normal at y(0) coincides with the line j£?y, the normal at y(l) lies outside Qr

III. Both normals coincide with J5?r

IV. The normal at y(0) lies inside Qγ, the normal at y(l) lies outside Qr
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First we discuss case (I). When there are similar arguments to deal with the
^π/2 and the θ^π/2 cases, we discuss only the former.

Phase Diagram. We construct a phase (space) diagram that describes the behaviour
of the function n(z) (Fig. 10).

For se(0,/), the monotone twist property (Proposition 3.6) implies the
existence of a monotone sequence of angles

0 < . . . < Θ2R(S) < θ1R(s) < θ1L(s) < Θ2L(S) < < π, (All)

with the property that
sk(s, θkR(s)) = I, sk(s, θkL(s)) = 0 . (A2.2)

The indices R and L indicate whether the iterates of a point lie to the right or left
of the original point.

n = 2

Π = 1

Π = 1

n = 2

Fig. 10. Phase diagram case (I)

If s = 0(5 = Z), the situation degenerates in an obvious way: θkL(0) = n(θkR(l) = 0),
fc = l,2,....

We can construct the curve θ = θkR(s\ s=e[0,/] using time reversal of the
billiard. Examine the curve Φ\s = l,θ\ θe[θkL{ΐ),π). By the twist property, this
curve is the graph of a function θ = θι

kL(s), se [0, Z]. We have the relation

θkR(s) = π-θι

kL(s). (A2.3)

If (s,0) satisfies θe(θ(k+1)R(s), θkR(sy]\j(θkL(s\ 0 ( f e + 1 ) L(s)], then we claim that

Φ\s,θ)eSγ 7 = 0,1,2,...,*,

so that Φk+\s,θ)ΦSγ

n(s,θ) = k.

Our assumption on the normals imply that

θk(s,θkR(s))ύπ/2, θk(s,θkL(s))>πβ,

and therefore that

The monotone property implies that for θe(θ(k+ί)R(s),θkR(s)'],

and hence (A2.4a) holds.

(A2.4a)

(A2.4b)

(A2.5)

(A2.6)

(A2.7)

(A2.8)
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A slight generalization implies (A2.4b). Imagine that y is contained in a closed,
convex curve dQ (possibly non-smooth) such that for all z = (s, θ) e (θik+ί)R, θkR] the
vertical variation XθeTzSγ has time to focus between Φkz and Φk+1z. Since the
times it takes these variations to focus are bounded (Lemma 4.2), such a curve dQ
can always be constructed: just use some long, straight pieces. Then on this
extended billiard, the monotonicity still holds:

/ = sk + x(s, θih + 1 ) Λ ) <sk+^s, θ) S sk + i(s, θkR). (A2.9)

Since Φk+i(s, θkR) is outside* of y, the same must be true for Φk+i(s,θ).
Using out phase diagram, we give the

Proof of Proposition 6.1. 1. Choose N so large that

θNR(s) <θ9 π- θNL(s) < Θ, s e [0, / ] . (A2.10)

Since θNR(s) is given by (A2.3), the analysis of Sect. 5 implies that once Θ is
sufficiently small, such a choice of AT is always possible. Then for θ e (θNR(s), θNL(s))
D[<9,π-Θ], we have that n(s,θ)^N-ί<N.
2. If the perturbed curve γ is close enough to y, then it is also of type (I), and we can
apply the previous analysis to construct the curves {dkR(s\ 8kL(s)}, se[0, /],
k = 1,2,..., N. For a fixed N, we can make \Φk(s, θ) — Φk{s, θ)\ uniformly small for all
k = 0,1,..., N by making |y — y\c2 sufficiently small. Thus by (A2.3), given ε > 0 there
exists <5>0 such that if \y—y\cz<δ

\θkL(s)-dkL(s)\<s, (A2.ll)

Choosing ε< min {Θ-θNR(s),θNL{s)-(π-Θ)} gives the result.
se[0,ί]

3. If n(z)^n(z), then we set z* = z. If n(z)>n(z) and #e(0 ( Π ( z ) + 1 ) κ(s), θΠ(Z)Λ(s)), then
we set s* = s and 0* = θn(z)R(s). Thus n(z) = n(z*) and by (A2.11), \z - z*\ < ε. Π

We now outline how the argument goes for the other cases.
Case (II):
The argument proceeds as in case (I) except that the point (s = l,θ = θ1L(s) = π/2)

has n = 2; first sί(l,θίL(l)) = 0, then s2(l,θ1L(l)) = l, and then it leaves y.

Fig. 11. Case (II) bifurcation

If the perturbed curve y is type (I) or (II), then the phase diagram remains the
same from which Proposition 6.1 follows. If y is type (IV), then there is a
bifurcation between the phase diagrams of Sy and Sγ (Fig. 11). The point



Using Integrability to Produce Chaos 255

(l,θίL(l))eSγ turns into a whole curve θ = S1LtlR(s)CS7, se[σl9I]9 where
σi=s1(s = 09 θ = π/2). The points (s,S1LΛR(s)) have the property that

We let Θ = 31IR,1L(S), se[σuΐ] be the function whose graph gives the curve
\s = I, θ), θ e [£1L(0, Θ1L, 2*(0] τ h e n

31L lR(s) = π-&1R 1 L(s). (A2.12)
We denote by

1R == {(5, θ): s e [σ1? /], (All3)

Any zeS)LΛR will first go left, then right and then leave γ after n(s,θ) = 2 hits.
We associate to z e SlLΛR the point z* -(s* = /, 0* = 0iL(ί)). By choosing δ small

enough, we can make |(s, # 1 L 1Λ(s) - (5 = /, 01L(/))| < β proving (3) of the Proposition.
Case (III):
We get the same phase diagram as in case (II) except that the points {p0, pt}

never leave S. For our purposes, we consider that these points have n = 2. Then if
the perturbed arc 7 is type (II) or (IV), we compare points z e SjL ' 1 R with z* = (s = /,
0 = π/2). Here is where Definition 1.2 of focusing gets used.

Fig. 12. Phase diagram case (IV)

Case (IV):
Here the phase diagram gets more complicated (see Fig. 12 for an example).

Branching off of the curves θkL(s) are curves θkLJR(s) that satisfy

Φ> θkLjR(s))>sί- lfe θkLJR(s)), i = k + 1 , . . . , k +j,

sk+M>βkLjM = l. (A2.14)

The twist property implies the following.
The branchings will occur for fe = 1,2,..., Kt9 where Kt is determined as follows.

The point {s = l,θiL(l}) will first hit at s = 0 and then monotonically move to the
right until it leaves γ. We set

Kί=n{l,θίL(l))-l. (All 5)

For a fixed k^Kx the branchings 0kL,jK
 a r e defined for ; = l,2,..., Jfc. To

determine Jk, take the point (Z, θkL{ΐ)) and set

Jk = n{l,θkL{l))-k. (A2.16)
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Typically we have that sn(ltθkL(l))(l,θkL(l))<l, so that θkLJR(s)>θkL(s). In the

degenerate case that sn(l θkL(i))(l θkL(t)) = I, the curve θ = θkL jR(s) reduces to a point

( / A ( 0 ) (JA(0)
The curve θkLJR(s) is defined for s e [_σkp π] . The value s — σkj for which θkLJR(s)

is first defined satisfies

and hence θkLJR(σkj) = θkL(σkj).
The curves {θkL(s% θkLjR(s)} bound domains SkLJR with the property that if

z G SkL' jR then z goes to the left fc times, goes to the right; times and then leaves γ.
Hence n(z) = k+j.

For points in SkL'jR,j φO, the total number of collisions with γ is bounded. The
results of Sect. 5 imply that for θ sufficiently small, a trajectory (s, θ) will move
monotonically in one direction and then leave γ. Hence given Θ sufficiently small,
there exists an Nx such that

l - Θ , Vse[0,L], and K^N,. (A2.17)

For zeSkLtjR, we have

Note that the boundaries {dSkLf jR} of the domains are all determined by iterates
of the curves s = 0 or s = /: Φk(s = θ/θ\ Φk(s = l,θ) for k<2N1 and θ in a suitable
domain. Thus for |y—y|c2 sufficiently small, we can make dist(dSkLJR, dSkLJR)<ε.
This proves Proposition 6.1 for case (IV).
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stadium and for stimulating discussions. I also benefited from discussions with V. Bangert, P.
Doyle, M. Gerber, A. Hubacher, C. Liverani, R. Markarian, J. Mather, and A. Uribe.

References

[Bi] Birkhoff, G.D.: Surface transformations and their dynamical applications. Acta Math.
43,1-119 (1922). Reprinted in Collected Mathematical Papers, Vol. II. New York: Am.
Math. Soc, 111-229(1950)

[Bl] Bunimovich, L.A.: On the ergodic properties of nowhere dispersing billiards. Commun.
Math. Phys. 65, 295-312 (1979)

[B2] Bunimovich, L.A.: The stochastic dynamics of rays in resonators. Izv. Vyssh. Uchebn.
Zaved. Radiofizika 28 (12), 1601-1602 (1985)

[B3] Bunimovich, L.A.: Many dimensional nowhere dispersing billiards with chaotic
behavior. Physica D33, 58-64 (1988)

[B4] Bunimovich, L.A.: A theorem on ergodicity of two-dimensional hyperbolic billiards.
Commun. Math. Phys. 130, 599-621 (1990)

[B5] Bunimovich, L.A.: On absolutely focusing mirrors. Preprint
[B-E] Burton, R., Easton, R.W.: Ergodicity of linked twist maps. Lecture Notes in Math., Vol.

819, pp. 35-49. Berlin, Heidelberg, New York: Springer 1980
[C-F-S] Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory. Berlin, Heidelberg, New York:

Springer 1982
[Dl] Donnay, V.J.: Geodesic flow on the two-sphere. Parti. Positive measure entropy.

Ergod. Th. Dynam. Sys. 8, 531-553 (1988)
[D2] Donnay, V.J.: Geodesic flow on the two-sphere. Part II. Ergodicity. Lecture Notes in

Math, Vol. 1342, pp. 112-153. Berlin, Heidelberg, New York: Springer 1988



Using Integrability to Produce Chaos 257

[D3] Donnay, V.J.: A smooth, strictly convex billiard with positive topological entropy (in
preparation)

[D4] Donnay, V.J.: Billiards with positive entropy. London Mathematical Society Sym-
posium on Dynamical Systems (1988), University of Durham, Abstracts of Lectures

[G] Gerber, M.: Personal communication
[H] Hopf, E.: Statistik der geodatischen Linien in Mannigfaltigkeiten negativer Krύmmung.

Leipziger Berichte 91, 261-304 (1939)
[Hu] Hubacher, A.: Instability of the boundary in the billiard ball problem. Commun. Math.

Phys. 108, 483-488 (1987)
[K-S] Katok, A. and Strelcyn, J.-M., with the collaboration of Ledrappier, F. and Przytycki, F.:

Invariant manifolds, entropy and billiards; smooth maps with singularities. Lecture
Notes in Math., Vol. 1222. Berlin, Heidelberg, New York: Springer 1986

[Kl] Klingenberg, W.: Riemannian geometry, de Gruyter Studies in Mathematics, 1982
[Kr] Krylov, N.S.: Works on the foundations of statistical physics. Princeton, NJ: Princeton

University Press 1979
[KSS] Kramli, A., Simanyi, N., Szasz, D.: A transversal theorem for semi-dispersing billiards.

Commun. Math. Phys. 129, 535-560 (1990)
[L] Lazutkin, V.F.: On the existence of caustics for the billiard ball problem in a convex

domain. Math. USSR Izv. 7, 185-215 (1973)
[Mn] Manning, A.: Curvature bounds for the entropy of the geodesic flow on a surface. J.

London Math. Soc. 24, 351-357 (1981)
[Mrl] Markarian, R.: Billiards with Pesin region of measure one. Commun. Math. Phys. 118,

87-97 (1988)
[Mr2] Markarian, R.: Non-μniform hyperbolicity, quadratic forms and billiards. Preprint
[Mtl] Mather, J.: Glancing billiards. Ergod. Th. Dynam. Sys. 2, 397-403 (1982)
[Mt2] Mather, J.: Non-existence of invariant circles. Ergod. Th. Dynam. Sys. 4,301-309 (1984)
[M-P] MacKay, R.S., Percival, I.C.: Converse KAM: theory and practice. Commun. Math.

Phys. 98, 469-512 (1985)
[O] Oseledec, V.I.: The multiplicative ergodic theorem. The Lyapunov characteristic

numbers of dynamical systems. Trans. Mosc. Math. Soc. 19, 197-231 (1968)
[P] Pesin, Ya.B.: Lyapunov characteristic exponents and smooth ergodic theory. Russ.

Math. Surv. 32, 55-114 (1977)
[SI] Sinai, Ya.G.: Dynamical systems with elastic reflections. Ergodic properties of

dispersing billiards. Russ. Math. Surv. 25, 137-189 (1970)
[S2] Sinai, Ya.G.: Introduction to ergodic theory. Princeton, NJ: Princeton University Press

1976
[St] Stark, J.: An exhaustive criterion for the non-existence of invariant circles for area

preserving twist maps. Commun. Math. Phys. 117, 177-189 (1988)
[Wl] Wojtkowski, M.: Linked twist mappings have the X-property. Annals of the New York

Academy of Sciences, Vol. 357, pp. 65-76. Nonlinear Dynamics 1980
[W2] Wojtkowski, M.: Invariant families of cones and Lyapunov exponents. Ergod. Th.

Dynam. Sys. 5, 145-161 (1985)
[W3] Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov

exponent. Commun. Math. Phys. 105, 319^14 (1986)

Communicated by J. N. Mather
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holds under C 4 perturbations. He also has an independent, simplier proof of Theorem 5.






