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Abstract. We study a nonrelativistic quantum system coupled, via a quadratic
interaction [cf. formula (1.10) below], to a free Boson gas in the Fock state. We
prove that, in the low density limit (z2=fugacity-»0), the matrix elements of the
wave operator of the system at time t/z2 in the collective coherent vectors converge
to the matrix elements, in suitable coherent vectors of the quantum Brownian
motion process, of a unitary Markovian cocycle satisfying a quantum stochastic
differential equation driven by some pure number process (i.e. no quantum
diffusion part and only the quantum analogue of the purely discontinuous, or
jump, processes). This proves that the number (or quantum Poisson) processes,
introduced by Hudson and Parthasarathy and studied by Frigerio and Maassen,
arise effectively as conjectured by the latter two authors as low density limits of
Hamiltonian models.

0. Introduction

The study of the weak coupling (van Hove) or low density limit of quantum
Hamiltonian systems is framed within the wider program of understanding the
origins of irreversible behaviours in quantum phenomena. In this study three
stages of developments can be recognized: (i) a first one, in which the driving scales
of magnitude are individuated and the irreversible equations are deduced on a
phenomenological basis (van Hove scaling, Pauli master equation, Wigner-
Weiskopf approximation); (ii) a second one, in which the various types of master
equations are deduced from Hamiltonian models; (iii) a third one, in which,
starting from the same types of models as in (ii), one tries to derive not only the
master equation, but the full quantum Langevin equation.

The master equation is an ordinary differential equation, describing the reduced
evolution of the system, obtained from the full Heisenberg evolution by taking the
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partial expectation with respect to the vacuum state of the reservoirs degrees of
freedom. The quantum Langevin equation is a quantum stochastic differential
equation driven by some quantum noise (creation, annihilation, number noises). It
describes the full evolution of the coupled (system + reservoir) system. Taking the
partial expectation, with respect to the vacuum, of the quantum Langevin
equation, one obtains the master equation.

From the physical point of view, the passage from step (ii) to step (iii) means that
one wants to study the limiting behaviour not only of the system, but also of the
reservoir degrees of freedom. Since the reservoirs are usually modeled as quantum
fields or Bose or Fermi gases, this means that the basic issue is to understand in what
sense the quantum Brownian motion and the number process are approximations of
usual quantum fields.

From the mathematical point of view, the basic difficulty in the passage from
level (ii) to level (iii) is that, at level (ii), the limit of the reduced evolution is
considered with respect to some standard operator topology (usually the weak, but
sometimes also the trace-norm topology, is used). Nothing similar could be hoped
for level (iii) because even in the analogous classical case one can only prove
convergence in law of the corresponding probabilities.

In a series of papers [3-7] we have solved the problem (iii) in the case of the
weak coupling limit of various kinds of nonrelativistic quantum systems coupled,
via linear or quadratic interactions, to a free Bose or Fermi gas in some quasi-free
state. We have proved, for all these systems, the convergence in the sense of matrix
elements in some appropriate collective vectors of the wave operator at time t/λ2 (λ
being the coupling constant) to a unitary Markovian cocycle satisfying a quantum
stochastic differential equation of diffusion type (i.e. driven only by the creation
and annihilation martingales). We have also proved convergence of the Heisen-
berg evolution of an observable of the system to the solution of a quantum
Langevin equation. A qualitatively new feature of our approach is that the term
collective does not refer to the special degrees of freedom, but to time [cf.
(1.17a)]. This choice is not arbitrary, but suggested by 1st order perturbation
theory.

In the weak coupling limit, only the quantum Brownian motions arise (and
these quantum noises were well known in quantum optics), but we know from
Hudson and Parthasarathy [17] and Frigerio and Maassen [14], that there is
another quantum noise, quite natural and important from the mathematical point
of view: the quantum Poisson (or number) processes. This is defined as follows:

Let Γ(H) denote the Fock space over a Hubert space. Tis a self-adjoint operator
on H and Φ(f) the normalized coherent vector in Γ(H) with test function /. The
generator N(T) of the one-parameter unitary group Γ{eiλτ) characterized by the

property Γ(eiλT)Φ(f) = Φ(eiλTf) λ e R

is called the number operator associated to T and is characterized by the property

<Φ(/), N(τ)Φ(g))=</, τgy -

The definition of N{T) is extended by complex linearity to any bounded operator
T onH. If H is of the form L2(R, dt; Jf) (^L2(R)®Jf) for some Hubert space Jf,
then for any bounded operator T on Jf and for any ί^O, one can define

Nt(T): = N(χ[0,t]®T).

The family {Nt(T); ί^O} is called number process with strength T. Its connection
with the classical Poisson process is explained in [14]. Contrary to the quantum
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Brownian motions, the number processes did not show up in the physical
literature, even at a phe&omenological level. Frigerio and Maassen [14] and later
Frigerio and Alicki [9] conjectured, on the basis of plausible physical consider-
ations, that the number processes should arise naturally in the low density limit, in
analogy to what happens for quantum Brownian ^notion in the weak coupling
limit. More precisely they conjectured that in the low density limit of the
Heisenberg evolution considered by Dϋmcke [11] one should obtain a quantum
stochastic equation driven by the quantum Poisson noise in the sense of [14] and
that this equation determines a dilation in the sense of Kummerer [20] of the
semigroup obtained by Diimcke in [11].

In order to realize this program the first step is to understand the mechanism
through which a quantum stochastic equation, driven by pure number processes can
arise as a limit of usual Hamiltonian equations.

This step has, of course, no analogue in the previous literature, because in the
reduced evolution approach the quantum noises were swept away by the vacuum
expectation and only the semigroup survived. On the contrary here we are mainly
interested in the mechanism giving rise to the quantum noise and the main result of
the present paper is the discovery of this mechanism [cf. Theorem (6.2) below]. In
particular, our result explains why the physical effects of the number process were
discovered almost 30 years after those of the quantum Brownian motion: the point
is that the coefficients of the quantum noises in the stochastic differential equation
depend at most quadratically on the coefficients of the field operators in the
original Hamiltonian model. Thus the quantum Brownian motion is essentially a
second order effect. On the contrary, our main result shows that the coefficients of
the number process receive contributions from the terms of all orders in the
perturbation series. Therefore, to isolate the physical effects of the number
processes, a much more detailed analysis of the perturbation series is required.

Our main strategy, of which the present paper constitutes the first and most
important step, can be described as follows: we start from a quadratic interaction
of the form (1.9), defined on some finite temperature representation of the CCR
with a given fugacity z2 [cf. (1.3), (1.4) below]. Following Palmer [18] we realize the
representation space as the tensor product of a Fock and an anti-Fock
representation. In this realization, the interaction (1.9) splits into 3 pieces: one of
order z2, that we expect to vanish in the limit; one of order z, which has the
structure of a weak coupling limit term, and therefore controllable with the
techniques developed in [3-7] finally, one of order zero, which lives only on the
Fock space. The order zero term is the only qualitatively new feature with respect
to the weak coupling case, hence we expect that, if the number process arises at all
in the limit, it should come from this term. This is plausible from the physical point
of view because also in the classical case the Poisson distribution arises from
interactions which are of finite intensity but very rare (low density). This suggested
the program of concentrating our attention to this piece of the interaction, in the
hope that, by doing so, we could isolate the basic contribution to the appearance of
the number process by means of an adaptation of the techniques developed in
order to deal with the weak coupling limit. It turns out that this is indeed the case.

1. Notations

Following the pattern of [3], we formulate the problem for a general quasi-free
state and we prove the convergence of the kinematical process of the collective
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coherent vectors to quantum Brownian motion in the general case. Starting from
Sect. 3 we restrict our attention to the Fock case.

Let Ho denote the system Hubert space and H^ the one particle reservoir
Hubert space. Let

Pn#i): = { M / ) : / e # i } (1.1)

be the Weyl C*-algebra on Hγ let H be a self-adjoint operator bounded below on
Hί and z, β positive real numbers interpreted respectively as density of the
reservoir particles and inverse temperature. Define

Qz: = {\+z2e-βH)-(\-z2e-βH)-γ (1.2)

and suppose that, for each z in an interval [0, Z], Qz is a self-adjoint operator on a
domain D, independent on z. In the fermion case (1.2) is replaced by

Q^il-z^-^-iί+z^-^y1 (1.3)

which is a bounded operator for each z. Denote φQx the mean zero gauge invariant
quasi-free state on W(H^) with covariance operator gz, i.e.

β . (1.4)

and let { % π Q z , Φ Q J be the GNS-triple of {W(H^)9φQ^9 so that

(1-5)

We shall write WQx for πQz © W. The Fock representation corresponds to the case
β z = l, i.e. /?=oo. In this case the GNS representation will be simply denoted
{^, π, Φ). Let St be a unitary group on 5(i/x) (the one particle free evolution of the
reservoir) and suppose that

St QM = Q. St9 Vί^O, (1.6)

where the equality is meant on D. This implies that the second quantization of St,
denoted Γ(St), leaves φQx invariant hence it is implemented, in the GNS
representation, by a unitary 1-parameter group Vt

iz) whose generator Hiz) = : HR is
called the free Hamiltonian of the reservoir. As in [3] we assume that there exists a
non-zero subspace K of H^^ (in all the examples it is a dense subspace) such that

ίl</,S,g>|Λ<oo, V/,geK. (1.7)

Moreover, we suppose that QZKQK. For example, for the free Bose gas,

HR = dΓ(-A),

where A is the Laplacian on L2(Rd) with d^3. Let be given a self-adjoint operatorp () g j p
Hs on the system space Ho, called the system Hamiltonian. The total free
Hamiltonian is defined to be

Hi0): = Hs®ί + l®HR. (1.8)

We define the interaction Hamiltonian V as in [11] and [18] i.e., we fix two
functions gi,8oeK a n < l define

V:i(D®A+(g0) Λ(gl)-D + ®A+(gι) A(g0))

= i Σ Dε®A+(gε)Ά(gί-ε) (1.9)
εe{0,l}
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with the notations

D0 = D, D1 = -D+, (1.10)

and where D is a bounded operator on Ho satisfying

Qxp(itHs) D - Qxp(-itHs) = D. (1.11)

Moreover, we assume that g0 and g1 have disjoint energy spectra, i.e.

<goΛgi> = 0, WeR. (1.12)

More general interactions will be discussed in subsequent papers.
The condition (1.12) is natural because of the condition (2.5) of [13] and has

already been used in the literature on the weak coupling limit (cf. [10, Sect. 3]).
With the condition (1.12), the condition (1.11) is also natural since a typical
example for D in quantum optics is D = |O><1|, where |1>, |0> are eigenvectors of
the system Hamiltonian Hs (rotating wave approximation). This corresponds to
[Hs, D] = (ω1 - ωo)D (ωl9 ω0 are the eigenvalues). The condition (1.11) corresponds
to taking ω1=ω0, but the choice ωγ + ω 0 results only in a trivial shift in the one
particle reservoir Hamiltonian (cf. Sect. 5 in [21] for the detail).

With these notations, the total Hamiltonian is

+ V (1.13)

and the wave operator at time t is defined by

Ut: = exp(iίtf <°>) exp( - ΐίtf t o t a l ) . (1.14)

Therefore, we have the formal identity

αί i
where,

D ε ® ^ + ( S ί g ε μ ( 5 ί g l _ ε ) . (1.16)
£€{0,1}

Moreover, the solution of (1.15) is given by the iterated series

Ut= Σ (-ί)Ίdt1...
tnfdtnV(t1)...V(tn) (1.17)

n = 0 0 0

which is, under the condition stated in Sect. 5, weakly convergent on the domain of
the vectors of the form

u®ΦQ(zT'l SJdu),

where ueH0, feK, S, TeR and

ΦQz [z Y2 Sufdu^j: = WQz (z f2 Sufdu^J ΦQz (1.17a)

is a collective coherent vector in the sense of [3] and the identitiy (1.15) holds
rigorously in the topology on this domain. From Lemma (3.2) of [3], we know that
the assumption (1.7) implies that the sesquilinear form ( | ): K x K^Ή defined by

σig):=ί</,S tg>*, LgeK, (1.18)
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defines a pre-scalar product on K. We denote {K,(-\ )}, or simply K, the
completion of the quotient of K by the zero ( | )-norm elements. In the following
we shall also use the quantity

(/lg)-:= ί <f,Stg)dt, fgeK. (1.18a)

In [11 and 18] it was proved that, under some conditions, the limit

lim φ®φQχ(Ut/AX®l)U+z2) (1.19)

exists in a small time interval and is equal to

φiUX)), (1.20)

where {7^}ί̂ 0 is a quantum Markovian semigroup. The analogy with the new
techniques, developed in [3], for the weak coupling limit, suggests to consider the
limit, as z->Ό of expressions of the form

9 (1.21)

where

fz = zTfsufdu, feK. (1.22)

In the control of the limit, as z-*0 of the expressions (1.21), the basic difference
between the low density and the weak coupling case is that in the low density case
the wave operator Ut/z2 depends on z (the density) only in the rescaling of the time
(t h-• ί/z2), while in the weak coupling case the wave operator U\fz2 depends on z (the
coupling constant) in its very structure. On the other hand, the reservoir state is
independent on z in the weak coupling limit, but dependent on it in the low density
limit.

In analogy with the strategy of [3], the first step in our investigation will be to
control the limit of expressions of the form

/ / τ/z2 \ ( TΊz2 \ \
lim (u®W z f Sufdu\Φ,Utlz2'V®W[z f SJ'du )φ) (1.23)
z-0 \ V S/z2 J \ S7z2 / /

in the Fock case. This will be done in the present paper. Exactly as in the weak
coupling limit case, the estimates needed to solve this problem will allow, with
minor modifications, to control more general situations (cf. [4]). In order to
formulate our result, let us recall from [3] the definition of Quantum Brownian
Motion:

Definition (1.1). Let Jf be a Hubert space, T an interval in R. Let β ^ 1 be a self-
adjoint operator on C/C and let

φπφΦQ} (1.24)

denote the GNS representation of the CCR over L2(T, dt; JΓ) with respect to the
quasi-free state φQ on W(L2(T, dt; Jf)) characterized by

^Q(Mί)) = ̂ 1 / 2 < ^ 1 0 Q O ; ξeL2(T,dt;tf). (1.26)

The stochastic process

{Γ(L2(T, dt; JO), A{χ{Stn®f\A+{χ{Stt]®f); (s, ί] Q Γ, feX}, (1.27)
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where A( ), Λ+( ) denote respectively the annihilation and creation fields in the
representation (1.27), is called the β-Quantum Brownian Motion on L2(T, dt; Jf).

Our main result in this paper is to prove that the limit (1.23) exists and is equal
to

(u®W(χ[S,T]®f)Ψ, U(t)'V®W(χ[S,tTΊ®f')Ψ}, (1.28)

where {J^,W, Ψ} with J^: = Γ(L2(T,dt;K)) is the Fock-Brownian motion on
L2(R, dt; K) and U{t) satisfies a quantum stochastic differential equation driven by
purely discontinuous noises in the sense of [14,17], whose form is given by (6.1).

2. Convergence of the Collective Process

In this section we show that, at a purely kinematical level, i.e. with t — 0 in (1.23), the
low density limit coincides with the weak coupling limit and the limiting process is
the Fock-Brownian motion on L2(R,dt; K), where K is equipped with the scalar
product (1.18).

First, recall from [3, Lemma (3.2)] that for each f,f'eK and S, S', T, T eR, one
has

/ T/z2 T'/z2 \

limίz ] Sufdu,z J SJ'du)
S/z2

= /γ γ \ ' [ ( f S f ^
R

— \X[S, T]®/? X[S', T']®J /L2(R,dt; K) (2.1)

Lemma (2.1). For each neN, {fk}
n

k = 1CK, {Sk, Tk}
n

k=1cR, M = i C R ,

lim (φQm, w(Xlz
 Tf SJxdu) ... w(xnz

 Tf SJJu ) ΦQz

z-0 \ \ Sφ2 J \ Sn/z2 )

and the convergence is uniform for {xk}l = l9 {Sk, Tk}l=ί in a bounded set of R, where,
Ψ is the vacuum of Γ(L2(E,dt; K)).

Proof In the above notations one has

Tf2 SJtduj ... w(xj Tf2 SJJu^j ΦQz

Tj/z2 Tk/z2

= exp( - I m Σ *jxkZ2 ί ί dudv(SufpSυfk}
y ' 'j<kϊn Sj/z2 Sk/z2

n Tk/z2 \

Σ χkz J sufkdu)ΦQ.
, f e = l Sk/z2 J

( Tj/z2 Tk/z2

= exp - I m Σ XjX*2 ί ί dudv(SJpSvfk>
\ ί^j<k^n Sj/z2 Sk/z2

( \ I n Tk/z2 n Tk/z2

- ~ ( Σ x# f SJtdu, Σ x*z ί SuQzfkdu)), (2.3)
2\k=l Sk/z2 k=ί Sk/z2 IJ

and the only difference with the situation considered in Theorem (3.4) of [3] is the
presence of the term Qz (instead of a z-independent β). By definition, one has

oo

Q = ( l -\-z2e~βH)' (1 z2e~βH)~ * = 1 + 2 y z2ne~βnH (2.4)
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and the convergence is in norm since H is bounded below. So, by (2.1), for each 1 ̂  j

Tk/z2 Tj/z*

J SJkdu, J SuQJ34u
Skfz

2 Sj/z2

Tk/z2 Tj/z2

f SJkdu, J SJjdu
Sk/z2 Sj/z2

= z2

Hence,

J Sufndu)φQ
S/2 J

*. τk)®fk, X[Sj, Tj&fj>)

. (2.5)

x exp / - Im X

= <Ψ, W(xa[Sί, Γ ι ]®/i) m ^ p n . rM]®/«)lί/>. (2.6)

The uniformity of the convergence is proved as in Theorem (3.4) of [3].

3. The Basic Estimates in the Fock Case

As in the weak coupling limit, the gist of our analysis will be a detailed study of
expressions of the form

t/z2
ίw-i

ί dtl\dt2... ί dtn
0 0 0

x (u®w(zT/fsufdu) ΦΛ-i)nV(tί)...V(tn) v®w(zTfsuf'du)φ
\ \ S/z2 J \ S'/z2 J p j

with nGN, S, T, S', TΈR and /,/'eX, which arise from the expansion of Ut/Z2
using the iterated series. Using the explicit form of the interaction V(t\ i.e. (1.16),
this expression can be written as

t/z2

Σ J dt,\dt2... s dtn
e{0, 1}M 0 0 0εe{0, 1}

T/fx [W [z J SJdu )Φ,A+(Stίgε

• A+(Stngεin))A(Stngl _ε(π)) w[z 7 ] SJ'dή Φ

x<u,Dε(ί)...Dε(n)υy. (3.2)

We introduce the notation A*?(z, t) to denote the generic term in the sum (3.2). We
shall need to identify the limit of the matrix elements Δε

n{z, t) for any εe {0,1}W, as
z->0. Unfortunately, the only (essentially) way to achieve this explicit control is to
bring the product of creators and annihilators in (3.2) into normally ordered form
and then let the annihilators act on the coherent vector on the right and the
creators on that on the left. The resulting expression is described in the following
lemmata:
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Lemma (3.1). For each neN and ε e {0,1 }n,

Ate>t)=io < Σ < Σ z2n~2d

\{Ph}h = i l Ξd, ph'<qZΓh= 1, ...,d

tn-i

f ihldt2... J A,
0 0 0

T'l SJdu\Φ,w(zΓ\ SJ'du)φ)

x Π <S,Ph8i - ,(P,» S, gε(qh)> Π d Ύ2 <SJ,
h=l H h αe{l,...,«}\{4h}h=i S/z*

x Π d T <S ί α g l_ ε ( α ),Sw/'>dW (3.3)
αe{l,...,π}\{ph}h=i S'/z2

w/ίΛ the convention that ifd = O, then the sums over qι<...<qd

 and Pu- ,Pd and the
product over h, in (3.3) are equal to 1.

Remark (3.2). In the following we shall frequently meet expressions with the same
qualitative structure of the right-hand side of (3.3). In these expressions four types
of scalar products appear:

(i) Scalar products arising from commutators of annihilators and creators. We call
them (g,g)-terms and say that the corresponding operators have been used to
produce scalar product.
(ii) Scalar products arising from the action of annihilators on coherent vectors:
the (g, /')-terms.
(iii) Scalar products arising from the action of creators on coherent vectors: the
(/, g)-terms.
(iv) The scalar product between the two initial coherent vectors, which remains
after the action of the annihilators and creators.

It will be helpful for the reader to keep in mind a notation used coherently in this
paper (and in fact throughout the whole series of papers [3-7,21,22]): the indices
qh always label the creators and the ph the annihilators, which have been used to
produce scalar products (by commutators).

To keep this in mind will help in giving an intuitive content to the long cues of
summations which shall be found in the following.

Proof. For each neN, εe{0,1}", we want to bring the product

in Wick ordered form, i.e.

(3.4)Σ
where C(g, ε, d) is a product of some scalar products of the gj and d is the number of
scalar products arising from the exchange of a creator with an annihilator at its
left. Notice that, in the left-hand side of (3.4), the operator in the extreme right is an
annihilator and the one on the extreme left a creator. Therefore, n — d^.1, i.e.
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d^n — 1. For each d, we can choose d creators among

A+(St2gεi2)),...,A+(Stngε(n))

which are used to produce scalar products with annihilators. Each choice
determines a unique subset of {2, ...,n}, denoted {qu ...,qd}. Clearly, we can
suppose that

(3.5)

n

Σ
— Cί 9 <— \J Z ^ ι

X

< Σ < <„
3 i < . . . 4d_«

(1 «}\{«h}h =

|{Ph}h =

1

Ph<qn,~h

x)) '
α e ί l ,

= 1 ,d

...,π}\{ph}£

d

Ά

= 1

If the operators A+(Sttxgε(a)) with αe {1,..., n}\{qh}i=ί have been moved to the left
of the annihilation operators, it means that for each fixed qhi there exists a ph < qh

such that the operator A(St g± -ε(Ph)) has been used to produce the scalar product
(st h^i-ε(Ph)^ίg ε̂ί«h))> Therefore, the remaining set of annihilators is
{A(st<χg1 _ ε ( α )); αe (1,...,n}\{ph}

d

h=J. Thus the right-hand side of (3.4) is equal to,
with the same convention as in the statement of the lemma,

8l-ε(ph)>Stq &ε(«h))

ε ( a ) ) . (3.6)

From (3.7), one deduces (3.3) by taking the matrix elements in the collective
coherent vectors.

Notice that, because of the assumption (1.12), for each h = l,...,d, if 1 — ε(ph)
=N(4Λ), then, <Sίphg1_fi(Ph),Sί^gε(βh)> = 0. Therefore, many of the products in (3.3)
are zero.

Now, proceeding as in [3], for each n e N and εe {0,1}", in the quantity Aε

n(z, t\
we separate the terms which will be relevant in the limit z-»0 (type I terms) from
those which will vanish in the limit (type II terms). More precisely, in the summation
(3.3) we call time-consecutive those terms for which ph = qh — 1, i.e. those terms in
which each scalar product arising from a commutator corresponds to a product of
the form A(Stj_ίgε)Ά+(St.gε). With this notation we define

(3.7)

where Iε

n(z, t) corresponds to the term in which the summation is for all time-
consecutive terms in (3.3), i.e.

fcΛ(n-fc) ί/z2 fi tn-i

Ifc,t):= Σ Σ z2"~2m ί dt^dtt... J dtn
m = 0 2^qι< . . . <ήfm^Λ 0 0 0

x (w(zT/fsufdu)φ,w(zT/{ SJ'du]φ
\ \ S/z2 ) \ S'/z2 ) ,

m
X Π (8ε(qh-l)>S(tq -tq -i)8ε(qh)}

h=ί h h

x Π f <^u/9 Stagε{a)}du
αe{l πAίίh^i S/z2

X « . α BL-i,!T , X < S t - 8 l " ε ( 0 t ) ' S u / > < / " (3'8)

and //^(z, t) corresponds to the term in which the summation is for all non-time
consecutive terms in (3.3), i.e. there exists some Λ = l, ...,m, such that ph<qh — ί.

Our first result is that the type // terms tend to zero as z tends to zero.
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Lemma (3.3). For each neN, εe {0,1}Π,

lim//;(z,ί) = 0. (3.9)
z->0

Proof. First of all, for neN,εe{0,1}Π, we majorize with constants all the scalar
products in IIε

n(z, t) which do not come from commutators. Therefore, the modulus
of IΓn(z, ή is majorized by

"Σ Σ Σ' ci-z2"-2m

ro = 0 2^qi< ... <qm^n (qί,pi,...,qm*Pm)

x "f dt, J dt2...'"[' dtn Π \<Stp g, Stq g>|, (3.10)

0 0 0 h=ί h h

where Σ' means the sum for all 1 gjp l5 ...,pm^n with |{pΛ}JΓ=il = m,

/,, h=ί9 ...,m and ph<qh-l, for some h=l,...,m; g = g0 or g t and

CV.=" max f K C S ^ I Λ . (3.11)
F = f,f',G = go,g1 - oo

The idea of the proof is to exploit the type-// hypothesis, i.e. the existence of
some pair (ph,qh) with qh—ph^2, to majorize each term of the sum (3.10) with an
expression of the form

tq -2 (tq -ί-Tp )/z2

* dt^ | " dt'qhΰκg,st,j}\...
- ίpho/z2

T
0

(3-12)

where /i0, ί^ _ x, Γ^ will be defined below, C2 is a constant and ί̂  _ 1 — TPho < 0 for
almost all ^°o-i, C o

 τ h e integrability of ί- |̂<g,S,g>| will then imply that (3.12)
tends to zero° as z->°0.

This majorization is achieved through a sequence of changes of variables and of
majorizations, according to the scheme described below, which heavily uses the
specific form of the interaction (and, of course, the type // assumption). Let

ho: = min{h: qh-ph^2, h = l, ...,m}

and let Λε

n{z,t,{qh,p^=1) denote the generic term of the sum (3.10). Then,

ί ίi ίn-i m

^ C\ • Z- 2m J dtt J dί2 ... I Λ, Π Kg, S<r, -,, )/,«>!
0 0 0 f z = l h h

ί tl tq -2 (tq1-\~tp )/Z2

0 0 0 l - ^ / z 2 1 9 l

1 iίΛ Π |<g,S(t -t )/Z2g>|, (3.13)

where, if for some /ι = 2, ...,m, ph = ql9 then ίPh means t^ + z 2 ^ . Since
^eC-ίpyz^ί ί^. i- ί^Vz 2 )), one has t^ + zh^elO,^^^, thus, replacing
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tPί + z2tf

qι by ί g i - i , we majorize the integral, i.e.:

ί,,-2

δ δ

x 9) 1 Λ ί l + 1 . . . n\ dtn Π |<g,S ( ί q h- ί p h ) / z 2g>|. (3.14)
0 0 h=2 h h

Put t'q2 = (tq2-tP2)/z2, then,

< g . - 2

0 € l X ~ίP l/z2 ^ ' ^

x Ύ ' Λ 1 1 + 1 . . .
 (1'2"' j t P 2 > / z 2 rfί;2ι<g, s (, g >ι

0 -tp /i

x "2 J "2dtq2+ι... "fdt, Π l<g,S(/f -,p)/z2g>l, (3-15)
0 0 /ι=3 h h

where

€ 2 - 1 l ί β 2 _ 2 , if ^2 = 9i + l

Since ^ e [ - ίP2/z2, (ί,2 _ x - tP2)/z% one has tP2 + z\2 e [0, tq2 _ J . So by the same
argument as after (3.13), it can be obtained that

t2... J rfi4l_, J
0 -ίpx

ί β l - l (ίq2-l-fp2)/22

x ϊ Λ , 1 + i - ί dfί2Kg,St.2g>\

x 'Tdtq2+1... Y* % Π 3 K&V-v/ tf

Iterating the procedure, we obtain

q ί t p )

μ ί \ 2 j , , ,
0 0 0 -h

tq.-l tq - 2 (tq2-l-tp)/

j0

X

q

* β l + 1 . . . j
0

- l ί q m -

ί < + l - ί
0 0 pm/

T'Λ^I. .TΛ. (3.18)
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with
r

;,_,_!, if ί» = ft-! + l (3.19)

" iί ΛίSijΓi (3-2o)

Notice that there exists always an αeN, such that tqho_1 = ίgho_α_1. Moreover, by
the definition of /ιo> it follows that pho<qho — oc—l. In fact, if α = 0, this follows from
the definition of ho; if α >0, then (3.19) and the definition of h0 imply that, for any
O^jS^α, qho-β-ί=qho_β-l=pho-β. Therefore, it must be that pho<pho-β

= qho-β — l, since at each time there is only one annihilator. Summing up: we have
proved that Tqho-1— ΐPho<0 almost everywhere. Now we majorize all the
d£^h-integrals in (3.18), with the exception of the dt'qho-one, by integrating over the
whole line. This leads to an expression of the form (3.12) and therefore, the proof is
concluded.

Having proved that the type // terms tend to zero, we shall now compute the
limit of the type / terms. The resulting lengthy expression does not give, by itself,
particular insight. However, it will play a crucial role in the deduction of the
equation satisfied by the limit. After the statement of Lemma (3.4) we shall
introduce some comments in order to clarify the meaning and the origin of the
various pieces.

Lemma (3.4). For each neN, εe {0,1}W,

k/\{n-k) m
7£(f\ 1ΐτn l^ίv t\ =̂ \ ' \Λ 1 Γ in I Q , 1

ιi\ / * 11.11.1 Λpj^Zi, vj /1 / Λ Y Y Voε(ή[fι— 1) I oε(ή[^)/

z->0 m = 0 2^qι< ... <qmύn h=l

dt1...dt^qi...dt^m...dtn

t

X Π (f\gε(a))'X[S,T](Q

X (gl -ε(qn) I / ' ) ' X[S\ Γ'lί^! - l) ' Π (gl -ε(α) I / ' ) * X[S\ 1

X (g l-ε(^ 2 ) I / )'X[S',Γ'](^i + l - l ) ' Π (gl-ε(α)l/ )'X[S',Ί

X (gl -ε(qrχ) I/Γ) * X[S', TΊK-i - l) * Π (gl -ε(α) I / > X[S>,
<xe{qrχ-1 + l,...,qrχ-ί + i-2}

x Π (gi -«.) IΓ)' Xιs',n W

w/ierg t means that the t is absent, x (i.e. the total number of chains), and the numbers
{rh}h=i (i-e- the lengths of the single chain) are uniquely determined by the
prescription

te}*m=+r' = {^K'=iutoK 2

= r i + 1 u . . . u{fc}ί«=r,_1 + 1 (3.22)
and

y

(3.23a)
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with

y = O, l , . . . ,x- l , r o = 0. (3.23b)

Remark. The conditions (3.22), (3.23 a), (3.23 b) mean that we split the ordered
sequence {4/,}™= i into ordered subsequences which are maximal with respect to the
property that qh+1 = qh + 1 for all elements in the subsequence (a subsequence may
contain a single element). The role of these ordered subsequences comes from the
change of variables (3.25) below and will be explained during the proof.

Proof. With the above notations the term Pn(z, ί), defined by (3.8), can be written as
a sum whose indices are the same as in the right-hand side of (3.21) and whose
generic term is the product of

W\zJ2 SJduj Φ,W[z J SJ'du ) Φ

times
Φ2 ίi tn-i m

Z2"-21" J dtι\dt2... J dtn Π <ge{qh- !„ S ( (, _( . i ) g ε i q J >
0 0 0 Λ = l h h

x Π T'f<sj,stMa)}du- π Tf<stjg1-4#sj'>
(3.24)

With the change of variable z2tj c» t for each 7 = 1, ...,w, the expression (3.24)
becomes

Tn ft g ^ D ^ , )0 0 0 h — 1

x Π . / <s«f> Stχlz2gm>du
«6{l,...,B}\{βh)8 = , S/Z2

x Π T\\κlz^-m,Sundu. (3.24a)
«e{l «}\{4h-l}Γ=i S'/z2

In order to compute (3.24a), it is natural to make the change of variables:

K-tqh-dlz\ if «e{qh}Z+r'
which will affect only those times tj corresponding to the creation operators which
have produced a scalar product by commutation with an annihilator consecu-
tively later.

By this change of variables, in (3.24a) the product
m m

J Ί <8β(βfc-i)ίS(tβh-tβfc.1)/,2gβ(ίl0> b e c o m e s ^ <««(«*-DΛ* gε(ίϊh)>. Of the product, in

(3.24a), coming from the action on the coherent vectors, the first one (the one with
the /-test function) does not change. Moreover, a simple computation (put
v: = u — tjz2) shows that this term tends to

Π (f\gε(a))'X[S,T](Q
αe{l,...,n}\{gh}hι=i

which is the (/|g)-type product in (3.21).



Number Process as Low Density Limit of Hamiltonian Models 23

The basic idea to explain the remaining products in (3.21) is that one should
know how the change of variables (3.25) influences the integrals corresponding to
the intervals [<S"/z2, T'/z2~\. To clarify the situation we begin to consider the first
chain, i.e.

(notice the last strict inequality!). The integrals corresponding to this chain are:
1 tQ1 - 1 ΐQ1

 tQ2 tqn-l tqri

z 2 "μ t l . . . J Λ4 lJΛβ 2JΛ ί s... j Λ^JΛ,π + 1...
i i

••• Π <£β(βh-l)>^<ί, h -f β h -i)&(βh)>
h — 1

x ' h 2 7 <Sthgi-ε{h),Suf'>du
h=l S'/z2

T'jz2

* J <St%i,.2gl -Eiqri), Suf'}du. (3.26)

The change of variables (3.25) brings the variable tqrjz
2 into

By the change of variable v = u—(t'qι_ Jz2 + t?qi + ... + fq J, the last integral in
(3.26) becomes

(T'-t'q ί)/z2-(tqι+...+t'qi -!)

( S ' - ί ^ - i ) / z 2 - ( ί ^ + . . . +f^ -i) J

which, as z^O, converges to

(g i-^^/O Zis ' .nίς-i). (3.27a)

On the other hand, in the last second integral in (3.21), one has h^qί — 2.
Therefore, the change of variables (3.25) does not affect these variables th. It is to
see, by the change of variable v = u — tf

h/z2, that for each h = l,...,q1 — 2 the last
second integral tends, as z->Ό, to

{gi-m\Γ) Xur.τtfύ. (3.27b)

Similar arguments apply to all the other chains qry+1, ...,qry+ί

(y=0,1, ...,x — 1), and this justifies all the remaining products in (3.21).
m

It remains to justify the f] (gι-ε(qh-i)\gε^qh)) factor in (3.21) and the (sub-
h = 1

sequent) omission of the tqh-variables {h = 1,..., m) from the integration in the same
formula. That is, we have to prove that for each y = 0,l,...,x — l,

tiry-2 tq -J. tqry+ι

z-*>"-*»... J dtq^ J dtqry... J Λ W 1 . . .
r y + l

••• Π <gl-ε(qh-l)^(t -t )/z2gε(qh)} (3.28)
h-ry h h

converges, as z->0, to

•••'V^-i'V<,.,+ ! -Ή'Cgi-eto-Dlg^,)- (3.28a)
0 0 h = rv
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In fact, the change of variables (3.25) implies that tqh = z2t'qh + tqh_ι,h = ί,...,m,so
that the expression (3.28) becomes

j2 ' l )
• Π ' <Sι -a(4h-1)> St-hgs(4h)> (3.29)

Λ — fy

Notice that the z2-dependent terms in (3.29) are of two types:
t'cc + zH...) 0

ί , or f . (3.30)
o -tyz* -(...)

t'oc + zH...) t'a

In the limit z-^0 the integrals of the form J converge to J and the integrals of
o 0 0

the form f give rise to the factor (g|g')_ (where g, g' denote either g0 or gx),
-ίi/z2-(...)

and the corresponding integration variable disappears. The limiting is justified by
dominated convergence and the following, easily verified, fact: for each
jk/aeLHR), ί > 0 and TeRu{ + oo},

ί l/i(*i)l<fei ϊ \fi(Si)Wi-+ ] l/i(^i)l^i ί 1/2(̂ 2)1*2. (3.31)
— tjz —t/z — si —00 —00

4. The Uniform Estimate

In Sect. 3, for each n e N, we have computed the limit, as z->0, of the nth term of the
iterated series. In this section, we shall prove some uniform estimates on these
terms, which will allow to take the limit of the series term by term. Due to the
particular form of the interaction (1.9), the bounds will be strongly dependent on
the test functions go,gι [cf. (4.4) below], contrary to what happens in [3].

As in the weak coupling limit case, the uniform estimate is based on the
following Pule type inequality which has been proved in [21, 22]:

Theorem (4.1). Let /:R->R+ be a positive integrable symmetric function, for each
neN,lSmSn-l,2Sqί<...<qm<^n,ί<^p1<...<pm^n-l,ph<qh,h==l,...,m,
one has

ί - l m ff f \ f~m Γ 0 Ίm

K 4 H (4l)

where m: = \{ph,qh}"=ί\, ¥m denote the group of permutations on m elements and

^ : = {σe^m:Pσih)<qh;h = U...,m}. (4.2)

In the following, we shall use the notation

llgJ 2-:= ί \<ge,Sugεy\du, 8 = 0,1. (4.3)
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Theorem (4.2) (The Uniform Estimate). For each neN, the matrix element (3.1),
corresponding to the nth term of the iterated series is majorized, in modulus, by

fn-m Γ oo ~]2(«-m)

16" max rr'dlgoll-v | | g l | | - ) 2 m max J \F,StG)\dt\
oϊmzn-i (n — m)\ \_F=f,f';G=go,gi -oo J (4

Proof From (3.3) it follows that the modulus of the expression (3.1) is majorized by

n - l Γ oo ~|2(«-m)

2" Σ Σ Σ Σ max J |<F,S,G>|Λ
m = 0 2ύ<H<-<qrn^» 1 ^Pi < ••• < Pm ^m ~ 1 σe^°m \_F = /, / ' ; G = go,gι - oo J

ί/z2 ίi ίn-i m

xz2""2-" f &, J A 2 . . . J dtn Π ί ( ί Λ - t J . ( 4 5>
0 0 0 h=ί

where 2"-factor comes from summation over all εe{0,1}" and

F(u):= max|<g ε ,S ί g ε >|. (4.6)

εe{O,l}

By Theorem (4.1), the expression (4.5) is majorized by

n n-l ( n \ 2 Γ oo ~|2(«-m)

Σ Σ Σ J max j \<F,S,G>\dt\
k = 0 i£ii<...<ik^n m = θ\m/ \_F = f,f';G = go,gi - oo J

x m a x

max (-^-.( | | g o | |_ v
0 g m ^ n l \ (W m)\

Γ oo Π2(«-m)\

x max J |<F,SfG>|A , (4.7)
l_F = f,f';G = go,gi - oo J /

which easily implies (4.4).

Corollary (4.3). For eαc/z DeB(H0) if

^ (4.8)

then the series obtained replacing, in the matrix element (1.23), Ut/Z2 by its iterated
series expansion converges absolutely and uniformly for z > 0.

Proof It is enough to notice that this series is nothing but the sum, over all natural
integers n and over all εe{0,1}" of the terms Λε

n(z,t), defined by (3.3).

5. The Low Density Limit and Its Derivative

In this section, using the results of Sects. 3 and 4 we derive the existence of the low
density limit (1.23) and its explicit form. Using the latter, we deduce an integral
equation for this limit.

Theorem(5.1). For each u,veH0 and DeB(H0) satisfying (1.11) and for each
g0, giSK satisfying (1.12) and (4.8), the low density limit (1.23) exists and is equal to

Σ Σ <u,Dεil)...Dε{n)v>'Pn(t), (5.1)
n = 0 εe{0,l}n

where Γn{t) is defined by (3.21).
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Proof. Expanding Ut/z2 in (1.23) by the iterated series, we obtain

Σ Σ <u,DεW...Dε(n)v>-(Fn(z,t)+IPn(z,t)). (5.2)
n = 0 εe{O,l}n

Because of the uniform estimate one has

lim (u®W[z f Sufdu)Φ,Ut/z2v®W[z f Suf'du)Φ
z-0 \ V S/z2 / V S'lz* J I

= Jo Jo ^ <^A.(^ - , W (5.3)

and the result follows from Lemma (3.3) and Lemma (3.4).
In order to find an integral equation satisfied by the limit (5.1), we proceed in

analogy with the similar problem dealt with in [3].
The basic idea of the procedure goes in several steps:

(i) One writes the matrix element (3.1) as the integral of its derivative (in t).
(ii) From the step (i) a term V(s)Ua/xi arises and, using the form (1.16) of the
interaction, one lets the creators act on the coherent vectors,
(iii) In order to obtain an (ordinary) differential equation for the original matrix
element, one has to make the annihilators act on the coherent vectors. This
introduces a commutator between the annihilators in the interaction and Us/z2.
(iv) In order to control the behavior of this commutator, one has to expand Us/z2

using the iterated series. This control is achieved by using the uniform estimate and
variations of the arguments introduced to control the limit itself,
(v) The result of the limiting procedure of point (iv) is not yet the equation looked
for, but an auxiliary one, by solving which [cf. Lemmata (5.8), (5.9)] the explicit
form of the equation is eventually deduced.

In the following we discuss in more detail the various steps of procedure
outlined above. However, we do not reproduce the length conculations because
they are based on essentially the same ideas and techniques already introduced in
the first part of the paper.

If, after step (i) above one expands Us/z2 using the iterated series, the nth term of
this expansion [by using the explicit form (1.16) of V(t)~] will be:

\ _ t tφ2 t2 ί n - l

-^(-Ψ~l\dt1 J dt2$dt3... J dtn
Z 0 0 0 0

SJdu) Φ,(D®A+(Stllz2go)A(Stιlz2gl)

*2Suf'du)φ). (5.4){
S'/z2

Now we write (5.4) as the sum of four terms

/π(l,z,ί) + /π(2,z,ί) + //π(O,z,ί) + //M(l,z,ί) (5.5)

in two of which (7Π(1, z, t\ In(2, z, ή) the A, A + have acted on the coherent vectors
giving rise to scalar products; while the remaining two (IIn(O,z,t),IIn(l,z,ή)
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contain the commutators needed to produce these scalar products. Explicitly,

h(U,t)

= U i 7 <Suf,Snlz2go>du T'f <Stιlt2guSJ'>du
0 S/z2 S'/Z2

tl/z2 t2 ί n - l

χ(-0"- χ j dt2μt3... j dtn
0 0 0

/ / τ/z2 \ ( τ'iz2

x{D+u®W[z f Sufdu)φ'V{t2)...V(tn)v®W[z J SJ'du
\ V S/z2 J \ S'/z2

njto,z,t)= \dt,7 <sj,s^goydu-i-iγ-1-
0 S/z2 Z

tl/z2 t2 fn-l / / T/Z2

x J dt2$dt3... J Λ π ( D + w ( x ) ^ z J Sufdu)Φ
0 0 0 \ \ S/z2 /

I, V(t2). . V{Q~\v® W\ z f SJ'du )Φ) ,
\ S'/z2 ) I

and In(2,z,t) [respectively //w(l,z, ί)] is obtained from In(l,z,t) [respectively
//„((), z, ί)] by: (i) changing the sign; (ii) changing D to D + (iii) exchanging the role
of the g0 and gί which appear at time ίx. Now we investigate separately the
contributions of the four types of terms (5.5) to the limit (5.1). From Sect. 4.4, we
know that

7 dt2

t\dt3...
tn]ιdtn

0 0 0
/ T/z2 \ ( T'/z2 \ '

D+u®W\z J SJdu)φ'V(t2)...V(tn)v®W[z J SJ'du)Φ
\ S/z2 J \ S'/z2 J ,

max —^—rrdlgoll- v\\gA-)2m (5 6)
ozmzn-ι (n — my.

w i t h a c o n s t a n t C. S o , if ( | | g o | | - v l l g i l l - ) 2 < i A I I Π I I ? o n e h a s , b y d o m i n a t e d
c o n v e r g e n c e , 16II ̂ 11

lim £ IJίUziή
z->0 n= 1

= Σ lim jdίi f* <Stt/,Sίl/z2g0>rfw / <Stί/z2gl,SJ')du
« = 1 z->0 0 S/z2 S'/z2

t2 ί n - ll/ 2 n

O"" 1 ί dt2ldt3... I
0 0 0

/ / / /
x(D+u®W z J Stt/rfM)Φ F(ί2)...F(ί>(χ)^ z J S J ' ώ Φ

\ V S/z2 V S'/z2 )
Σ fΛi l im I <SHf,Stlfg2g0>du- { <Stι/X2gl9SJ'}du

n=ί 0 z-»0 S/z2 S'/z2

ίl/z2 ί2 ίn-l

x(-i)"-1 J Λ 2JΛ 3 . . ί dtn
0 0 0

\ SJdu)φ V(t2)... V{tn)υ®w(z\ SJ'du] )
s/z2 ) \ s'/z2 J I (5 j
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Now, if (||go|| _ v \\g11| _) 2 < . . [ l n [ l , then the limit (5.1) is continuous for u, veH0.
16\\D\\

So we can write this limit as
(5.8a)

with G(t)eH0 for each ί^O. With this notation (5.7) becomes

lim Σ A,( l>V)=Ui(/ lgo) ;^ (5.8)
z->0 n=ί 0

Similarly, we obtain

lim Σ ^(2?z,0=ίΛ1(/|g1)χ[S,Γ/ίO (go |/0z [5',r ](ίi)<-^G(ί1)>. (5.9)
2-»0 «=1 0

Now, we investigate //w(0, z, ί). By definition for n ̂  2,

//n(0,z,ί) = JΛ, T<*»/, S ί l / z 2 g 0 >^ ' ( - iΓ ' -
o s/z2 # z

J dt2$dt3... j dtn(D+u®W[z J Sufdu)Φ
0 0 0 \ \ S/z2 /

T'/z2

) Φ ) , (5.10)

and we want to consider the limit

l im/J n + 1 (0 ) Z , ί). (5.11)
z->0

Putting s = tu s1 = ί25 5 sn = tn+u one finds that

0 (5-s)/z2 Z

s/z2 si sn-i / / Γ/z2

( +

/ i n i / /

x J dsxlds2... J ds n (D + w(x)^ z J Sjai i
0 0 0 \ \ S/z2

Sl)... V{sn)-]v®w(z T'{ SJ'du) Φ) .
V s'*2 J I (5.12)

By Lemma (3.2) and in the notations of formula (3.11), one has

[1 ® A(Ss/z2gl), V(Sl)... V(sj] = Σ [ί <S>A(Ss/z2gl), Dε(1)... Dm®(Γn + 1Q~] •
ε e ί 0 ' 1 ! " (5.13)

The main idea of the estimates which follow is that the matrix elements of type //
(cf. Sect. 3) will vanish in the limit z->0. In order to control the limit of the
remaining ones, we reduce the commutator (5.13) to the normal ordered form in
which one can separate the contributions of the type / terms from those of the
(irrelevant in the limit) type // terms. More precisely, one can write

J/B + 1(O,z,t):= Σ (A1(n9z,ε,t) + A2(n9z9ε,t)) (5.14)
£€{0,1}"
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with

A Λtt, z, ε, t) = <tt, Dε(1)... Dε{n)v}
fcΛ(w-fc) fcΛ(n-fc) t (T-s)/z2

x Σ Σ' Σ Σ' f* J <Suf,g0>du
m = 0 (ίo,. .,4m) m' = 0 («Ί,...,«'m) 0 (5-s)/z2

«o=l

1 S/Z2 Si Sn-ι

z o o o

xlw(zTlfsufdu)φ Π ,m, ^+(Ss«gε(a))

Π ^(S s.g 1_ ε ( t t ))wfzΓf 2 S J ' d u ) ^

and (5.15a)

A2{n, z, ε, t) = <u, D ε ( 1 ) . . . Dφ)v)
« - l t (Γ-s)/z2

x Σ Σ Σ' I * I <Suf,g0}du
m = 0 l=qo<qι< ... <qm^n (qo,po,...,qm,Pm) 0 (S~s)/z2

qo=l,p = O
^ s/z2 si sn-i m

x ( - 0 " - ί dSϊ\ds2... J ώ Π <S g l _ ^ S g^>
• • 0 0 0 h — 0

χ(w(z 7 sja«) Φ π A+(sSttgε(α))
\ \ 5/z2 / αe{l,...,fi}\{βh}Γ=o

x Π A(SSagl_m))w(zTfsuf'du)φ). (5.15b)
αe{l,...,n}\{ph}Γ=i / \ S'/z2 ) /

Applying the same arguments used in the proofs of the results in Sects. 3 and 4 to
(5.15a) and (5.15b), we obtain the following estimates:

Lemma (5.2). There exists a constant Cγ such that for each neN, ε = 0,l,
+n + 1 — m

|J/π + 1(ε,z,ί)|^(16||D||)lu|| \\v\\C1 • max — -( | |g o | | - v llgj-)2"1.
o^m^n (n + 1 — m)\ Γ5 16)

Proof. (5.16) is an immediate consequence of the uniform estimate of
Theorem (4.2).

Lemma (5.3). For each neN,

UmA2(n,z,ε,t) = 0. (5.17)
z->0

Proof The proof is the same as the proof that the terms of type // tend to zero as
z-»0.

Lemma (5.4). For each neN, the limit

]im A ̂ n, z9ε,t) (5.18)
exists. z~*°
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Proof. The proof is the same as that used to prove that the terms of type / tend to a
limit as z->0.

Corollary (5.5). For each neN, ε = 0,1 the limit

limJ/π+1(ε,z,ί) (5.19)
z->0

exists.

Proof. Clear from (5.14) and Lemmata (5.2), (5.3).
Now, for each neN, consider the commutator

ll®A(Ss/z2g1),V(s1)...V(sn)-]

= [1 ® A(Ss(z2gί\ F(Sl)] V(s2)... V(sn)

+ Σ V(Sl)... V(sj-!)[1®A(Ss/z2gίl V(sjf]V(sJ+1)... V(sn). (5.20)
j 2

The following lemma proves that the matrix elements of the second term of the
right-hand side of (5.20) tend to zero rapidly as z->0.

Lemma (5.6). The limit

t (T-s)/z2 \ s(z2 si sn-1

lim jds J <Sufgoydw(-ίγ- f dSl\ds2... J dsn

z-^0 0 (S-s)/z2 Z O O 0

x (D+U®W(ZT\Z SJdu)φ' Σ
\ \ S/z* J j=2

[1 ®A(S s / z 2 g l l F(5 j)]V(s j +,)... V{sn)υ®w[zJ SJ'du)Φj (5.21)

exists and is equal to zero.

Proof.

t (T-s)/z2 I s/z* Sί sn-ι

ids J <Sufg0>du.(-iγ- J dsY\ds2... J dsn

0 (S-s)/z2 Z O O 0

Sufdu)φ- Σ VisJ.^Visj-J
2 / j=2

B / ) Φ
/

= zTds'V<SJ, go>du • (-0"ί dSl ϊds2 . . ."[ ' ds
0 S/z2-s 0

Sufdu)sufdu)φ
/ /

), F( 5 i )]F( S i + 1 ). . .F(5>®P7z J SJ'dujΦ). (5.22)

Notice that each term of the right-hand side of (5.22) is in A2(n, z, ε, t\ so, by (5.17),
one gets (5.21).

Similarly, we get the following
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Lemma (5.7). For each n e N , the limit

lim IJM + I(β,z,ί) (5.23)
z-*0

exists and is equal to

t/Z2 T/Z2~S S Si Sn-ί

lim J ds f <SJ,gεydu-(-i)nμs1ίds2... J dsπ
z-0 0 S/z2-s 0 0 0

x (D;U® W(Z 7 2 SJdu) Φ [1 ®A(Ssgl _ε), F(Sl)]

x F(s2)... F ( s > ® p W / f SJ'dujΦ). (5.24)

Let us introduce, for simplicity the notation

Φz(f, S,T): = w(zTf SJdu) Φ. (5.25)
\ S/z2 J

Then, using Lemma (5.6) and the uniform estimate of Lemma (5.2) we obtain that
the limit

lim Σ
z->0 n = 0

exists and is equal to

ί/z2 T/Z2-S 00 S Si. Sn-i

limz ί ds ! <SJ,gε)du- Σ (-irfdsifώa . ί dsn
z-»0 0 Sfz2-s «=1 0 0 0

x (D;U®Φz(f, S, T), [1 ®Λ(Ssgί _ε), V(st)... V(sn)-]v® Φz{f\ S\ Γ')>. (5.26)

Summing the iterated series inside the commutator and with the change of
variables sz2 = r, we find that the limit (5.26) exists and is equal to

ί

lim Sdrχ[S,T](r)(f\gε)du
z->0 0

x < D:u®Φz(f, S9 T)~[l®Λ(Sr/z2gl_ε), Ur/z2-]v®Φz(f\S', Γ')> . (5.27)

Clearly, this limit is continuous in u (and in D^u\ hence it will have the form

<D>,K ε(ί)> = <W,DεJKε(ί)> (5.28)

for some Kε(t)eH0. Our next step shall be to deduce an equation for DεKε(t).

Lemma (5.8). Let Kε(t) and G(t) be defined respectively by Eqs. (5.27), (5.28), and
(5.8 a). Then Kε(t) satisfies the equation

KD ε

+u,K e( S)>(/|g ε)χ [ S,Γ ]( S)d S

= ί ds(f\gε)χιs, r ] (s)( g l _,
0

• (5-29)
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Proof. The left-hand side of (5.29) can be written, using dominated convergence,
(5.27) and Lemma (5.4), as:

l im ίds(f\gε)χιStT1(s)dS Σ ('if J dst... J dsn
z->0 0 n = l 0 0

x / D+u®Φz(f, S, T),^ [1 ®AίS^gi_ε), F ^ ) ]

(5.30)
χ T ( s 2 ) . . . κ ( s > 0 Φ ! ( / ' , s ' , η ) .

Now notice that

[l®Λ(S s / z 2 g l_ε),F(S l)] = i(

therefore, bringing A(SSlgε) to the right of the product V(s2) ... V(sn), we obtain a
commutator term plus a term coming from the action of A(SSlgε) on the coherent
vector Φz(f, S', T). Thus the limit (5.30) is equal to

lim ]ds{f\gε)χιStT](s) Σ (-»T~1 I ds1jds2... "f dsH
z->0 0 π = l 0 0 0

(I -u l
x (DΪ_εD+u®Φz(f S, T),- [1 ®,4(SSlgε), F(s2)]

xV{s3)...V(sn)v®Φz(f',S',T')

x<S s / z 2g 1_ ε,SS lg 1_ ε>

f, S, T), V(s2)... V(sn)v®Φz(f, S',

x f du(Slgε,SuΓ}du) (5.31)

with the change of variable in the first term:

sίz
2 = rί (5.32)

we see that the limit (5.31) is equal to

lim μ S ( / | g ε ) χ [ S , T ] ( 5 ) Σ ( - i Γ ι ] d r i

r f d S l S Ί >

z->0 0 n = l 0 0

X- [1 ®A(Sri/z>gε), F(s2)]V(s3)... V(sn) • v®Φz(f, S', Γ)

+<Dΐ_εD;u®Φz(f, s, n v(s2)... v(sn

x -2 < g l _β Siri _s)/z2gl _ e > < T I ' ' ' ' 2 d K g £ , Sβ/'>) (5.33)

The limit (5.33) is the sum of two terms. Concerning the first one, we notice that,
because of uniform convergence we can exchange the series with the άrγ integral
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and, with the change of variables we obtain the integral
t o

ί ds{f\gε)χ[S, τ](s) Jsz2 dsί{g1 _ε, SSίg1 _ε>

x £ (-O"-1'1 /* ds2

S$ds3...
Snfdsn

n=l 0 0 0

/ j. 1

x (D^εDε

+n®Φz(f, S, T),-[1 ®Λ(SSί+s/z2gε), F(s2)]z
x V(s3)... V{S2)Ό®ΦJU",S\ T')\. (5.34)

From Lemma (6.3) of [3] one immediately deduces that, as z->0, the limit of the
expression (5.34) is the same as

t

lim J ds(f\gε)χ[Sfτp)(gi -ε\gi - J -
z-*0 0

00 S/Z2 Si S n - 2

x Σ (-0""1 ί dSl$ds2... f rfSn_!
« = 1 0 0 0

z(/5S,T)Λl®^(Ss/z2gε),n5i)]

x V(s2)... V(sn_1)υ®Φz(f\S\ T)\ . (5.35)

By Lemma (5.6), the limit (5.35) is equal to

lim J ds(f\gε)χ[SfT](s)(g1_ε\gί_ε)_
z-»0 0

00 S/Z2 Si Sn-2

x Σ (-0""1 ί dSl\ds2... f &._!

« = 1 0 0 0

<; S, Γ), 1 [1 ®^l(Ss/z2ge), F(S l)K(s 2)... F(sπ_!)]»

®Φ2(f',S',T')). (5.36)
Thus we can resume the iterated series inside the commutator obtaining that the
limit of the expression (5.36) is equal to

x lim lDt_flΐu®ΦJJ, S, T),-ll®A(Ss/z2gε), [/s/z2>(g)Φz(/',S', 7")
z->0 \ Z

= I ds(f\gε)χ[S, T](s)(gl. J g l _ ε )_ < D f - A + u, Kx _ε(s)>. (5.37)

Concerning the second term we notice that, with the same change of variable (5.32)
and again using uniform convergence, it can be written in the form:

t o

$ds(f\gε)χ[S>T](s) f <*Si<gi-ε,SSlgi-ε>
0 -s/z2

00 Si+S/Z2 S2 Sn-ι

x Σ (-0""1 ί ds2lds3... j dsn
n=ί 0 0 0

f, S, T), V(s2)... V{sn)v®ΦJJ\S',
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Again by Lemma (6.3) of [3], the limit of the above expression is equal to

oo s/z2 si sn-i

x Σ ( - 0 " - 1 ί dSι$ds2... f dsnχ[S,,r](s)(gε\f')
n=l 0 0 0

x (Dt-fltuQΦJJ, S, T), V(Sl)... V(sn)υ®Φz(f',S', Γ)>
t

= lim f ds(f\gε)χ[Sin(s)(gi -ε |gi -*)- XlS;r-](s)(gel/')
z->0 0

x (DLfituQΦJJ, S, T), υslzlv®Φz{f', S', Γ)> (5.38)

and, because of the definition (5.8 a) of G(t) and of dominated convergence, this
limit is equal to

ί ^(/Igεkts, r](s)(g! -Jgi - ε ) - 4 Z[S',rΊ(s) (gε\Γ)' < D f - A + ^ G(s)>. (5.39)

In conclusion from (5.33), (5.37), and (5.39), we obtain Eq. (5.29).
Now, by solving Eq. (5.29), we find the explicit form of DεKε(t).

Lemma (5.9). In the above notations, denoting for each εe {0,1},

jyβ^ίi-fejgj-fei-jgi-j-β.Di-.r1

= Σ (g,lgε)-(gi-£lgi-e)"-Φ££>i-£)% (5.40)
n = 0

one has

DeKJ,t) = χp-.r/Ofei - J/ΉgJgJ-fei - Jgi -d-DjfiV>fiι -J>M)

+ Xvr. nίOfeJ/Ofei -.Igi -d-^iβfix -fifiit) • (5.41)

Proof. First notice that, since /, S, Γ,« are arbitrary, then Eq. (5.29) is equivalent to

DtKe(t)=(gi _e\gί -ε)-DεD1 _ εK t _8(t)

+(gi -Jgi - J-feJ/OZp-. τΊ(ί)Deβi -,G(ί) (5-42)

Replacing /C^^ί) by its expression (5.27) and with the notation

α c:=(gjg£)-, (5.43)

we obtain

(5.44)

Thus DεKe(t) satisfies the operator equation

(l-ΓE)DεKe(ί)=Gε(ί), (5.45)

where Ge(t) is the term in braces in (5.44) and

(5-46)
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Notice that

which is less than (not equal to) 1 because of our assumption (4.8). This implies that

DεKε(ή= ΣJε

nGε(t). (5.47)

From this and (5.46), (5.41) immediately follows.
Summing up, one can get the following

Theorem (5.10). The low density limit (1.23), i.e. the quantity (5.8 a) satisfies the
integral equation

<W, G(t)Xu, G(0)> + ]ds Σ ( Σ (flgehis, T](s) (gε\f')χ[S>, τΊ(s)
0 εe{0, l}\n=l

X (gl -εlgl -ε)- * (gεlgε)-" ̂ PΓ-ε^εTw, G(s)}
oo

_i_ y ί f\o \y c (V) (o I 'f'Λy , , (s)

x (gi -εlgi -/-" ' ' (gε\gE)n-\D:{Dt-ED:γ-^ G(s)yj. (5.48)

In the following, we shall use the notations

D1{ε): = Dg{έ)Dε (5.49)

and

Then, (5.48) can be written as

<W,G(ί)> = <",G(0)>+ί</s Σ ((/lgεk[S,
0 εe{0,l}

x (gi - J/OZp-.TiίsX^ίίβK G(s)>) (5.51)

6. The Quantum Stochastic Differential Equation

In this section we identify the integral equation (5.51), satisfied by the low density
limit (1.23), with the weak form of the quantum stochastic differential equation

{ Σ ίD1(ε)®dNs(gε,g1^HD2(ε)®dNs(gε,gε)-]U(s) (6.1)
εe{0,l}

on Ho®Γ(L2(R)(χ)(K, ( | ))), where JV is number process and for each g, g' E K,

ΛΓs(g,gO: = ΛΓ(χ[0,s]®|g><gΊ). (6.2)

Throughout the section we shall use freely the notations, definitions, and results of
the Hudson-Parthasarathy paper [17], with the only exception that we call



36 L. Accardi and Y. G. Lu

"number process" the process called "gauge" in [17] and we denote it N rather
than A.

Since D is bounded, it follows that the q.s.d.e. (6.1) has a unique solution U(t)
which is given by the iterated series (cf. [17]). Moreover, we have the following

Theorem (6.1). The solution of q.s.d.e. (6.1) is unitary.

Proof. Using the Ito table for the number process (cf. [17]), one knows that the
unitarity condition is equivalent to the conditions

(6.3a)

(6 3b)

(6.3c)

(6.3d)

[coming from d(U+(t)U(t))=(ί] together with the analogous conditions coming
from d(U(t)U+(i))=0. We shall prove the above conclusions and this will imply the
unitarity.

First of all notice that (5.40), (5.49), and (5.50) implies the following algebraic
identities:

D1(0)Dt(0)=Dt(i)D1(ί) D2(0)D+(0) = Dt (0)0,(0),

we prove only the first identity, the others are similar.

)=D 9 (0)D O DO

+D;(0)

= Σ (gilgO- teolgor- teilgirϊ teolgo)"?
m,« = 0

x(D0Dίγ(-D0D1)[_(D0D1)
+r

= - Σ feilgiΓ- (golgo)"- feilgitt (golgoJT Do (D0Dίγ
+m • Dί

m,n = 0

= Σ (gilgiJ - (golgo)"- -(gilgi)T -(goteoK Φ i ) + •(D0Diy
+m-Dί

m,n

l) (6-5)
Therefore, if we prove (6.3 a, b, c, d) then their analogues follows from (6.4). Now let
us show (6.3 a). Recall [form (5.43)] that (gε\gε) = : aε hence by (5.40) and (5.50), one
has

aεD2(ε) = Dg(ε)-l. (6.6)

If (golgo)- =0> the left-hand side of (6.3a) is equal to

fei|g,)+DίDί+fei|gi)-Doί>i+feilgi)DίJ>i. (6.7)
Since Do=D, Dt = - D + ; Z)ε

+ = -D^,,, (6.7) becomes

(gi\gi)+DoD1+(g1\g1)-DoD1-(gl\g1)DoD1=0. (6.8)
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If (golgo)- +0> the left-hand side of (6.3 a) is equal to

' l « o l 2 v β v '
so it is equal to zero if and only if

a0

1) (6.9)

O. (6.10)

Again using (5.40) we have the identity

= Σ *{(&DιDorDι= Σ αΐα"0D1(O0D1)«=D1D9(0) (6.11)
w=O π = 0

which gives

DtD^\)Dβ(\)Ό, = D9

+(0)θΓί)1D9(0)= - Z V P D O D ^ O )

. (6.12)

Moreover, (5.40) implies that

o Λ ( 0 ) + α Λ * ( 0 ) = ^ ^ ^ +

aί +άi)\a0\
2DD+ +ao + άo). (6.13)

From (6.12), (6.13) one immediately obtains (6.10). Similarly, one can prove
(6.3 b, c, d), so U is unitary.

We sum up our results in the following theorem

Theorem(6.2). For each fJ',go,gleK, u,veH0, DeB(H0) satisfying (1.11),

S, T, S', TeR, ί^O, if ||goll-v | | g l | |_ < — [ — and <go,S f g l> = 0, Vί^O, ίftβπ the
IΌ\\D\\

low density limit

I ( τ/z2 \ ( T'z2 \ \
Mm (u®W(z J SJdu)φ,Utfg2Ό®W[z J SJfdu)φ) (6.14)
z-0 \ \ S/z* ) \ S'/z* J I

exists, where

jtUt=-iV{t)Ut

and

V(t) = i(D® A+(Stgo)Λ(Stgl) - D + ®A+(Stgl)A(Stgo))

Moreover, the low density limit (6.14) is equal to

<u® W(χ[St T]®f)Ψ, U(t)v® W(χ[S,,TΊ®f')Ψ>, (6.15)
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where U{t) is the solution of q.s.d.e. (6.1) on H0®Γ(L2(R)®(K,(-1 •))), where

(i) Ψ is the vacuum of Γ(L2(R)®(K, ( | )));
(ii) for each g, g' e K, Ns(g, g') is the number process

(iii) D1(ε),D2(ε) are given by (5.49), (5.50), respectively.

Proof Theorem (5.1) has shown that the low density limit (6.14) exists. Now, we
shall prove that it is equal to (6.15). Clearly, (6.15) is continuous in u, v e HQ, so, one
can write (6.15) into

where F(t)eH0. Hence we have

<α, F(0)> = (u® W(χ[S, T]®f)Ψ, v® W{χ^9 TΊ®f')ψ> = <«, G(0)>. (6.16)

Moreover,

= <w, F(0)> + }} Σ p. n
0 £6(0,1}

ίD1(s)®dNs(gε, g l _ε) + D2(ε)®dNs(gε, gj]υ

®W(χ[S..TΊ®f)Ψ>U(s). (6.17)

Apply Theorem (4.3) of [17] to (6.17), one obtains

<M, F(φ = <M, F(0)> + ]ds Σ (f\ge)Xιs, As)' (g£\f')X[S>, τΊ(s)
0 £€{0,1}

x<D2

+(ε)u,F(s)>+(/|gε)χ[S)T](S)

x (gi-Jif')Xvr.risKDt(eyu,W>)- (6-18)

Since (6.1) has unique solution, one knows that (6.18) has a unique solution.
Therefore,

Acknowledgements. It is our pleasure to thank Robert Alicki and Alberto Frigerio for several
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References

1. Accardi, L.: On the quantum Feynman-Kac formula. Rendiconti Mat. Fisico, Milano 48,
135-180(1978)

2. Accardi, L.: Noise and dissipation in quantum theory, to appear in Rev. Modern Phys. (1991)
3. Accardi, L., Frigerio, A., Lu, Y.G.: The weak coupling limit as a quantum functional central

limit. Commun. Math. Phys. 131, 537-570 (1990)
4. Accardi, L., Frigerio, A., Lu, Y.G.: On the weak coupling limit (II): Langevin equation and

finite temperature case, submitted to R.I.M.S.
5. Accardi, L., Frigerio, A., Lu, Y.G.: The weak coupling for Fermion case. J. Math. Phys. 32,

1567-1581 (1991)
6. Accardi, L., Lu, Y.G.: On the weak coupling limit for nonlinear interactions. Ascona

Stochastic Processes, Physics and Geometry, 1-26



Number Process as Low Density Limit of Hamiltonian Models 39

7. Accardi, L., Lu, Y.G.: On the weak coupling limit without rotating wave approximation.
Anna. Ins. J. Poincare-Theo. Phys. 54(4), pp. 1-24 (1991)

8. Accardi, L., Bach, A.: The harmonic oscillator as quantum central limit of Bernoulli
processes. Prob. Theoret. Rel. Fields (to appear)

9. Alicki, R., Frigerio, A.: Quantum Poisson noise and linear Boltzmann equation. Preprint,
March 1989

10. Davies, E.B.: Markovian master equation. Commun. Math. Phys. 39, 91-110 (1974)
11. Dύmcke, R.: The low density limit for an N-level system interacting with a free Bose or Fermi

gas. Commun. Math. Phys. 97, 331-359 (1985)
12. Fagnola, F.: A martingale characterization of quantum Poisson process. Preprint February,

1989
13. Frigerio, A.: Quantum Poisson processes: physical motivations and applications. Lecture

Notes in Mathematics, vol. 1303, pp. 107-127. Berlin, Heidelberg, New York: Springer 1988
14. Frigerio, A., Maassen, H.: Quantum Poisson processes and dilations of dynamical

semigroups. Prob. Theoret. Rel. Fields 83, 489-508 (1989)
15. Grad, H.: Principles of the kinetic theory of gases. Handbuch der Physik, vol. 12. Berlin,

Heidelberg, New York: Springer 1958
16. Hudson, R.L., Lindsay, M.: Uses of non-Fock quantum Brownian motion and a quantum

martingale representation theorem. Lect. Notes in Math., vol. 1136, pp. 276-305. Berlin,
Heidelberg, New York: Springer

17. Hudson, R.L., Parthasarathy, K.R.: Quantum Ito's formula and stochastic evolutions.
Commun. Math. Phys. 93, 301-323 (1984)

18. Palmer, P.F.: Ph.D. Thesis, Oxford University
19. Pule, J.V.: The Bloch equations. Commun. Math. Phys. 38, 241-256 (1974)
20. Kummerer, B.: Markov Dilation on W*-Algebras. J. Funct. Anal. 63, 139-177 (1985)
21. Accardi, L., Alicki, R., Frigerio, A., Lu, Y.G.: An invitation to the weak coupling and low

density limits, to appear in: Quantum probability and Application VI
22. Accardi, L., Lu, Y.G.: The low density limit and the quantum Poisson process, to appear in:

Proc. 5th Vilnus Conf. Prob. Th.

Communicated by J.L. Lebowitz






