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Abstract. We study a nonrelativistic quantum system coupled, via a quadratic
interaction [cf. formula (1.10) below], to a free Boson gas in the Fock state. We
prove that, in the low density limit (z2 =fugacity—0), the matrix elements of the
wave operator of the system at time t/z2 in the collective coherent vectors converge
to the matrix elements, in suitable coherent vectors of the quantum Brownian
motion process, of a unitary Markovian cocycle satisfying a quantum stochastic
differential equation driven by some pure number process (i.e. no quantum
diffusion part and only the quantum analogue of the purely discontinuous, or
jump, processes). This proves that the number (or quantum Poisson) processes,
introduced by Hudson and Parthasarathy and studied by Frigerio and Maassen,
arise effectively as conjectured by the latter two authors as low density limits of
Hamiltonian models.

0. Introduction

The study of the weak coupling (van Hove) or low density limit of quantum
Hamiltonian systems is framed within the wider program of understanding the
origins of irreversible behaviours in quantum phenomena. In this study three
stages of developments can be recognized: (i) a first one, in which the driving scales
of magnitude are individuated and the irreversible equations are deduced on a
phenomenological basis (van Hove scaling, Pauli master equation, Wigner-
Weiskopf approximation); (ii) a second one, in which the various types of master
equations are deduced from Hamiltonian models; (iii) a third one, in which,
starting from the same types of models as in (ii), one tries to derive not only the
master equation, but the full quantum Langevin equation.

The master equation is an ordinary differential equation, describing the reduced
evolution of the system, obtained from the full Heisenberg evolution by taking the
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partial expectation with respect to the vacuum state of the reservoirs degrees of
freedom. The quantum Langevin equation is a quantum stochastic differential
equation driven by some quantum noise (creation, annihilation, number noises). It
describes the full evolution of the coupled (system + reservoir) system. Taking the
partial expectation, with respect to the vacuum, of the quantum Langevin
equation, one obtains the master equation.

From the physical point of view, the passage from step (ii) to step (iii) means that
one wants fo study the limiting behaviour not only of the system, but also of the
reservoir degrees of freedom. Since the reservoirs are usually modeled as quantum
fields or Bose or Fermi gases, this means that the basic issue is to understand in what
sense the quantum Brownian motion and the number process are approximations of
usual quantum fields.

From the mathematical point of view, the basic difficulty in the passage from
level (ii) to level (iii) is that, at level (ii), the limit of the reduced evolution is
considered with respect to some standard operator topology (usually the weak, but
sometimes also the trace-norm topology, is used). Nothing similar could be hoped
for level (iii) because even in the analogous classical case one can only prove
convergence in law of the corresponding probabilities.

In a series of papers [3-7] we have solved the problem (iii) in the case of the
weak coupling limit of various kinds of nonrelativistic quantum systems coupled,
via linear or quadratic interactions, to a free Bose or Fermi gas in some quasi-free
state. We have proved, for all these systems, the convergence in the sense of matrix
elements in some appropriate collective vectors of the wave operator at time t/A2 (A
being the coupling constant) to a unitary Markovian cocycle satisfying a quantum
stochastic differential equation of diffusion type (i.e. driven only by the creation
and annihilation martingales). We have also proved convergence of the Heisen-
berg evolution of an observable of the system to the solution of a quantum
Langevin equation. A qualitatively new feature of our approach is that the term
collective does not refer to the special degrees of freedom, but to time [cf.
(1.17a)]. This choice is not arbitrary, but suggested by 1* order perturbation
theory.

In the weak coupling limit, only the quantum Brownian motions arise (and
these quantum noises were well known in quantum optics), but we know from
Hudson and Parthasarathy [17] and Frigerio and Maassen [14], that there is
another quantum noise, quite natural and important from the mathematical point
of view: the quantum Poisson (or number) processes. This is defined as follows:

Let I'(H) denote the Fock space over a Hilbert space. T is a self-adjoint operator
on H and &(f) the normalized coherent vector in I'(H) with test function f. The
generator N(T) of the one-parameter unitary group I'(¢**T) characterized by the

ropert . .
PPy IE)a(f) = 2e*Tf);  AeR
is called the number operator associated to T and is characterized by the property
<D(f), N(T)®(g)> =< f, Tg) - {P(f), D(8)> -
The definition of N(T)is extended by complex linearity to any bounded operator
T on H.If H is of the form L2(R,dt; ") (= LAR)® ") for some Hilbert space 1",
then for any bounded operator T on " and for any t >0, one can define
N(T):=N(t70,n®T).

The family {N(T); t=0} is called number process with strength T. Its connection
with the classical Poisson process is explained in [14]. Contrary to the quantum
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Brownian motions, the number processes did not show up in the physical
literature, even at a phenomenological level. Frigerio and Maassen [14] and later
Frigerio and Alicki [9] conjectured, on the basis of plausible physical consider-
ations, that the number processes should arise naturally in the low density limit, in
analogy to what happens for quantum Brownian-motion in the weak coupling
limit. More precisely they conjectured that in the low density limit of the
Heisenberg evolution considered by Diimcke [11] one should obtain a quantum
stochastic equation driven by the quantum Poisson noise in the sense of [14] and
that this equation determines a dilation in the sense of Kiimmerer [20] of the
semigroup obtained by Diimcke in [11].

In order to realize this program the first step is to understand the mechanism
through which a quantum stochastic equation, driven by pure number processes can
arise as a limit of usual Hamiltonian equations.

This step has, of course, no analogue in the previous literature, because in the
reduced evolution approach the quantum noises were swept away by the vacuum
expectation and only the semigroup survived. On the contrary here we are mainly
interested in the mechanism giving rise to the quantum noise and the main result of
the present paper is the discovery of this mechanism [cf. Theorem (6.2) below]. In
particular, our result explains why the physical effects of the number process were
discovered almost 30 years after those of the quantum Brownian motion: the point
is that the coefficients of the quantum noises in the stochastic differential equation
depend at most quadratically on the coefficients of the field operators in the
original Hamiltonian model. Thus the quantum Brownian motion is essentially a
second order effect. On the contrary, our main result shows that the coefficients of
the number process receive contributions from the terms of all orders in the
perturbation series. Therefore, to isolate the physical effects of the number
processes, @ much more detailed analysis of the perturbation series is required.

Our main strategy, of which the present paper constitutes the first and most
important step, can be described as follows: we start from a quadratic interaction
of the form (1.9), defined on some finite temperature representation of the CCR
with a given fugacity z2 [cf. (1.3), (1.4) below]. Following Palmer [18] we realize the
representation space as the tensor product of a Fock and an anti-Fock
representation. In this realization, the interaction (1.9) splits into 3 pieces: one of
order z2, that we expect to vanish in the limit; one of order z, which has the
structure of a weak coupling limit term, and therefore controllable with the
techniques developed in [3-7]; finally, one of order zero, which lives only on the
Fock space. The order zero term is the only qualitatively new feature with respect
to the weak coupling case, hence we expect that, if the number process arises at all
in the limit, it should come from this term. This is plausible from the physical point
of view because also in the classical case the Poisson distribution arises from
interactions which are of finite intensity but very rare (low density). This suggested
the program of concentrating our attention to this piece of the interaction, in the
hope that, by doing so, we could isolate the basic contribution to the appearance of
the number process by means of an adaptation of the techniques developed in
order to deal with the weak coupling limit. It turns out that this is indeed the case.

1. Notations

Following the pattern of [3], we formulate the problem for a general quasi-free
state and we prove the convergence of the kinematical process of the collective
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coherent vectors to quantum Brownian motion in the general case. Starting from
Sect. 3 we restrict our attention to the Fock case.

Let H, denote the system Hilbert space and H, the one particle reservoir
Hilbert space. Let

W(H,):={W(f): feH} 1.1

be the Weyl C*-algebra on H,; let H be a self-adjoint operator bounded below on
H, and z, § positive real numbers interpreted respectively as density of the
reservoir particles and inverse temperature. Define

0,:=(1+z%PH).(1—z2eFH)~1 (1.2)

and suppose that, for each z in an interval [0, Z], Q, is a self-adjoint operator on a
domain D, independent on z. In the fermion case (1.2) is replaced by

Q,:=(1—z%#H). (1 422~ FH)~1 1.3)

which is a bounded operator for each z. Denote ¢, _ the mean zero gauge invariant
quasi-free state on W(H,) with covariance operator Q,, i.e.

P (W(f)=exp(—3<{f,Q.f>), VfeH, (14)
and let {#},_, 7y , Py } be the GNS-triple of {W(H,), ¢,_}, so that
(Pg. g (W) Pg.) = 0o (W(f)). (1.5)

We shall write W,,_for n,_o W. The Fock representation corresponds to the case
0.=1, ie. f=00. In this case the GNS representation will be simply denoted
{##, m, ®}. Let S, be a unitary group on B(H, ) (the one particle free evolution of the
reservoir) and suppose that

St'Qz=Qz.Sta Vtgoa (16)

where the equality is meant on D. This implies that the second quantization of S,,
denoted I'(S,), leaves ¢, invariant hence it is implemented, in the GNS
representation, by a unitary 1-parameter group V,® whose generator H® =: Hy is
called the free Hamiltonian of the reservoir. As in [3] we assume that there exists a
non-zero subspace K of H, (in all the examples it is a dense subspace) such that

l];Kf, S;goldt<oo, Vf,gek. 1.7

Moreover, we suppose that Q,KC K. For example, for the free Bose gas,
H R= ar ( - A) s

where 4 is the Laplacian on L?(R?) with d > 3. Let be given a self-adjoint operator
Hg on the system space H,, called the system Hamiltonian. The total free
Hamiltonian is defined to be

We define the interaction Hamiltonian V as in [11] and [18] ie., we fix two
functions g,, g, € K and define
V:i(D®A™(go) Alg))—D* ®A™(g1)" A(go))
=i ) }D8®A+(ge)'A(g1—a) 1.9)

¢e{0,1
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with the notations

D,=D, D;=-D%, (1.10)
and where D is a bounded operator on H, satisfying
exp(itHg) - D -exp(—itHg)=D. (1.11)
Moreover, we assume that g, and g, have disjoint energy spectra, i.e.
{g0,S:g1)=0, VteR. (1.12)

More general interactions will be discussed in subsequent papers.

The condition (1.12) is natural because of the condition (2.5) of [13] and has
already been used in the literature on the weak coupling limit (cf. [10, Sect. 3]).
With the condition (1.12), the condition (1.11) is also natural since a typical
example for D in quantum optics is D=|0) (1|, where |1),]0) are eigenvectors of
the system Hamiltonian Hy (rotating wave approximation). This corresponds to
[Hs, D]=(w; —wy)D (w4, w, are the eigenvalues). The condition (1.11) corresponds
to taking w, =w,, but the choice w, # w, results only in a trivial shift in the one
particle reservoir Hamiltonian (cf. Sect. 5 in [21] for the detail).

With these notations, the total Hamiltonian is

Hyp:=H®1+1@Hz+V (1.13)
and the wave operator at time ¢ is defined by
U,:=exp(itH?) - exp(—itH,gy) - (1.14)
Therefore, we have the formal identity
d 1
EU,=?V(t)U,; U0)=1, (1.15)

where,
V(t):=exp(itH )V exp(—itH®)=i ¥ D,®A*(S.g,)A(S.g,-,). (1.16)
}

ee{0,1

Moreover, the solution of (1.15) is given by the iterated series
e} t th-1
U,= ;0(—i)"gdt1 (j) at,v(t,) ... V(t,) 1.17)

which is, under the condition stated in Sect. 5, weakly convergent on the domain of
the vectors of the form

T/z2
u®®dy, <z | Sufdu>,
S/z2
where ue H,, feK, S, TeR and
T/z2 T/z2
Dy, <z [} S,,fdu) =W, <z { S,,fdu) Dy, (1.17a)
S/z2 S/z2

is a collective coherent vector in the sense of [3] and the identitiy (1.15) holds
rigorously in the topology on this domain. From Lemma (3.2) of [ 3], we know that
the assumption (1.7) implies that the sesquilinear form (- |-): K x K—% defined by

(flg):=[<f. Sigodt,  f.gekK, (1.18)
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defines a pre-scalar product on K. We denote {K,(-|-)}, or simply K, the
completion of the quotient of K by the zero (- |- }-norm elements. In the following
we shall also use the quantity

0
(flg)-:= | {f.Sig)dt, f.geK. (1.182)
In [11 and 18] it was proved that, under some conditions, the limit
11m (p®(sz(U,/zz(X ®NU,..2) (1.19)

exists in a small time interval and is equal to
»(T(X)), (1.20)

where {T;},>, is a quantum Markovian semigroup. The analogy with the new
techniques, developed in [3], for the weak coupling limit, suggests to consider the
limit, as z—0 of expressions of the form

U, (R0 ARW()U,,( X1 U, .10 W(,)), (1.21)
where
T/2z2
fi=z | S.fdu, feK. (1.22)
S/z2

In the control of the limit, as z—0 of the expressions (1.21), the basic difference
between the low density and the weak coupling case is that in the low density case
the wave operator U, .. depends on z (the density) only in the rescaling of the time
(t—t/z%), while in the weak coupling case the wave operator U), depends on z (the
coupling constant) in its very structure. On the other hand, the reservoir state is
independent on z in the weak coupling limit, but dependent on it in the low density
limit.

In analogy with the strategy of [3], the first step in our investigation will be to
control the limit of expressions of the form

T/z2 T’/z2
lim <u® W<z { Sufdu> D,U, 2 v® W<z { Suf’du) <D> (1.23)
z=0 §/z2 S'/z2

in the Fock case. This will be done in the present paper. Exactly as in the weak
coupling limit case, the estimates needed to solve this problem will allow, with
minor modifications, to control more general situations (cf. [4]). In order to
formulate our result, let us recall from [3] the definition of Quantum Brownian
Motion:

Definition (1.1). Let A be a Hilbert space, T an interval in R. Let Q=1 be a self-
adjoint operator on A and let

{(Hop g, B} (1.24)

denote the GNS representation of the CCR over LX(T, dt; ) with respect to the
quasi-free state ¢y on W(LX(T, dt; ) characterized by

Po(W(E))=e12¢:1800 Ee [XT, dt; X). (1.26)
The stochastic process
{TA(T, dt; ), AQts, a® ) A" (s,a®f); 5, EET, feX},  (1.27)
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where A(-), A*(-) denote respectively the annihilation and creation fields in the
representation (1.27), is called the Q-Quantum Brownian Motion on LX(T, dt; ).

Our main result in this paper is to prove that the limit (1.23) exists and is equal
to

U Ws, n® )P, U(t) - v® W(X[S',T’]@f’)q’> > (1.28)
where {#, W, ¥} with #:=I(L%(T,dt; K)) is the Fock-Brownian motion on
L*(R, dt; K) and U(t) satisfies a quantum stochastic differential equation driven by
purely discontinuous noises in the sense of [14, 17], whose form is given by (6.1).

2. Convergence of the Collective Process

In this section we show that, at a purely kinematical level, i.e. with t =01in (1.23), the
low density limit coincides with the weak coupling limit and the limiting process is
the Fock-Brownian motion on L(R, dt; K), where K is equipped with the scalar
product (1.18).

First, recall from [3, Lemma (3.2)] that foreach f, f'e Kand S, §', T, T’ e R, one

has
T jz2

T'/z2
lim <z [ S.fdu,z | S,,f’du>
S/z2 S'/z2

z—0

= s, v Xis', TV L2®) l]; Sy Sof Yt

= s, ® S Xis, 1@ f Drawyar; ) - (2.1)
Lemma (2.1). For each neN, {fi}i-,CK, {Sp. Ti}i=1CR, {x;}i=1 CR,
Ty/z2 Tp/z2
li_r'l(l) <‘DQ;’ W(xlz S;LZ S, fldu> W(x,,z s Lz S, f,,du) QQZ>
=¥, W(x 1XS1, T1]®f 1) W(xnl[s,., T,.]®f;t)ql> (2.2

and the convergence is uniform for {x;};- 1, {Si, Ti};=1 in a bounded set of R, where,
¥ is the vacuum of I'(LX(E,dt; K)).

Proof. In the above notations one has

Ty/z2 Tp/z2
<<DQ=, W( | S, fldu> W(x,,z [ S, f,,du) <15Qz>
2 Snlz2 .

S1/z n/Z
Tj/z2 Tyfz?
=exp| —Im Y xpxz* [ [ dudv(S,f,S,fi
1=fksn Siz2 Sijz?
n T;‘/z2
XA\ P W Y x4z | S, kdu) Dy,
k=1 S22
Tj/z2 Ti/z2
=exp < —Im ¥ xpz® [ dudv(S,f; S,,f,‘))
1< j<k=n Sj/z2  Sik/z?
1 n Tx/z2 n T[22
xexp|l —={ X xz | S.fidu, Y x,z | S,0.fidu)}, 2.3)
2\iS1 " s k=1 Siz?

and the only difference with the situation considered in Theorem (3.4) of [3] is the
presence of the term Q, (instead of a z-independent Q). By definition, one has

0= (1422 PH).(1 — 2 PH) "1 —{ 12§ 72ng=bnil 24)
n=1
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and the convergence is in norm since H is bounded below. So, by (2.1), foreach 1 < j
<kZn,

z2<T"§/z2 S, fudu, j S,,Q fdu>

Sk/z2

Ti/z2 Tj/z2
=22<s Iz S, fidu, _f S fdu> -I-ZZO(I)—><X[Sk Tk]®fk, Xis,, T ,]®f1> 2.5)

Hence,
Ty/22 Tp/z2
lim <¢Q=’ W(xlz | S,,fldu> W(x z | ,,f,,du) ¢Q>

z—0 S1/z2 Sn/z2

=e&Xp ( - % Y XX j<X[s,‘, Tk]®ﬁ¢’ Xis;, T,1®fj>)

1<j,k=n

X exp ( —Im Y xx<s,, 1 ® S Xis,, T,]@fj>)

1< j<k=n

=(Y, W(x1X[s‘, T1]®fl) “es W(an[s,., T,.]®fn)'1”> . (2.6)

The uniformity of the convergence is proved as in Theorem (3.4) of [3].

3. The Basic Estimates in the Fock Case

As in the weak coupling limit, the gist of our analysis will be a detailed study of
expressions of the form

t/z2

i dtljdtz j‘dt”

T/z2 T'/z2
X <u®W< j Sufdu> D, (—i)'V(ty)... V(t,,)-v®W<z i , S,,f’du) <15>
ol (3.1)
with neN, S, T, ', T'eR and f, f' € K, which arise from the expansion of U,,.
using the iterated series. Using the explicit form of the interaction V(¢), i.e. (1.16),
this expression can be written as

t/z2 th-1

Y §dt [dtz (j) dt,

ee{0, 13" O

T/z2
x < ( f Sufd”>¢ AY(S:,8e1)A(S: .81 - ec1y) ---

A +(St,.ge(n))A(Stng1 -z(n)) * W<Z S’)‘. N Suf,du> d)>
X U, Dygyy ..o Dy - (3.2)

We introduce the notation 4%(z, t) to denote the generic term in the sum (3.2). We
shall need to identify the limit of the matrix elements 4%(z, t) for any € {0,1}", as
z—0. Unfortunately, the only (essentially) way to achieve this explicit control is to
bring the product of creators and annihilators in (3.2) into normally ordered form
and then let the annihilators act on the coherent vector on the right and the
creators on that on the left. The resulting expression is described in the following
lemmata:
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Lemma (3.1). For each neN and e€{0,1}",

n
Hz=y ¥ )
d=0 25q1<..<gq=<n P1s...,PaSn
|(Ph)h 1| d Ph<qn,h=1,....d
t/z2

x jdtljdtz 5 dt,

x < ( szs,, fdu)¢ W( f:s,,f'du) q>>

T/z2
X H <Stp gl —~&(pn) Stq ge(q;.)> n _‘. <Suf St,gs(a)>du
h=1 " " ae(l, ..., m\(gnti=1 S/z2
T'/22
x H j <St,g1 —&(a)’ Sufl>du (33)

ae{l,....m\(prif=y S22

with the convention that if d =0, then the sums over g, <...<quand py, ..., p,and the
product over h, in (3.3) are equal to 1.

Remark (3.2). In the following we shall frequently meet expressions with the same
qualitative structure of the right-hand side of (3.3). In these expressions four types
of scalar products appear:

(i) Scalar products arising from commutators of annihilators and creators. We call
them (g, g)-terms and say that the corresponding operators have been used to
produce scalar product.

(i) Scalar products arising from the action of annihilators on coherent vectors:
the (g, f')-terms.

(iii) Scalar products arising from the action of creators on coherent vectors: the
(f, g)-terms.

(iv) The scalar product between the two initial coherent vectors, which remains
after the action of the annihilators and creators.

It will be helpful for the reader to keep in mind a notation used coherently in this
paper (and in fact throughout the whole series of papers [3-7, 21, 22]): the indices
g, always label the creators and the p, the annihilators, which have been used to
produce scalar products (by commutators).

To keep this in mind will help in giving an intuitive content to the long cues of
summations which shall be found in the following.

Proof. For each neN, ¢e{0,1}", we want to bring the product
A +(S,lg5(1))A(S,lg1 —e(l)) A +(St,.ga(n))A(St,,gl —e(n))
in Wick ordered form, i.e.

A +(St,ga(1))A(St,g1 —e(l)) .. A +(St,,gs(n))A(St,,gl —e(n))
= ¥ Clgadd® .y (4., (34

where C(g, ¢, d) is a product of some scalar products of the g; and d is the number of
scalar products arising from the exchange of a creator with an annihilator at its
left. Notice that, in the left-hand side of (3.4), the operator in the extreme right is an
annihilator and the one on the extreme left a creator. Therefore, n—d=1, ie.
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d<n—1. For each d, we can choose d creators among

A +(Stzg8(2)), At (St,.gs(n))

which are used to produce scalar products with annihilators. Each choice
determines a unique subset of {2,...,n}, denoted {q;,...,q,}. Clearly, we can
suppose that

41 < ...<4qq- (3.5)

If the operators A (S, g,) With ae {1, ...,n}\{g,}4-, have been moved to the left
of the annihilation operators, it means that for each fixed g,, there exists a p,<gq,
such that the operator A(S, 81— — (o) has been used to produce the scalar product
<S.,.81—eony Sty Be@m)?- T crefore, the remaining set of annihilators is
{A(S, 81— o) a"ei n}\{ph}h 1} Thus the right-hand side of (3.4) is equal to,
with the same conventlon as in the statement of the lemma,

n d
S _ S
dz'o 2<q1<...<qas<n ! pa<n hl;]l < tp 81 —e(pry Oty gb’(llh)>
I{Ph)h 1| d Ph <q;. h=1,...,d
X T, A7S.8w)- I] . A8 (3.6)
ae{l,....n\{gn}h=1 ae{l,...n\{Pn}h=1

From (3.7), one deduces (3.3) by taking the matrix elements in the collective
coherent vectors.

Notice that, because of the assumption (1.12), for each h=1,...,d, if 1—¢&(p,)
+¢&(q,), then, (S,p 81 —e(ony qu,,ge(q;.>> =0. Therefore, many of the products in (3.3)
are zero.

Now, proceeding as in [3], for each ne N and ¢ € {0, 1}", in the quantity 4%(z, 1),
we separate the terms which will be relevant in the limit z—0 (type I terms) from
those which will vanish in the limit (type II terms). More precisely, in the summation
(3.3) we call time-consecutive those terms for which p,=gq,—1, i.c. those terms in
which each scalar product arising from a commutator corresponds to a product of
the form A(S,,_,g,)- 4*(S,,g.). With this notation we define

Az, 0)=: (2, ) + I3z, 1), (3.7)

where I%(z,t) corresponds to the term in which the summation is for all time-
consecutive terms in (3.3), i.e.
k/\(n k) t/z2 trh-1

I(z,1):= y z2n—2m j dt, jdt2 (j) dt,

2<q1<...<qm=n

<= (- saon(=Tf s,,f,d,,) N
x 11 <¢

8egn—1y S(rq ~tq - 08etan)?

T/z2

x [I [ <8uf, St.8e))du
ae{l,...nj\{gn}i=1 S/z2
T’/22
X [1 | <881 sy Sufddu (3.8)

ae{l,...,ni\{gn~ 1}=1 S§'/z2

and II(z, t) corresponds to the term in which the summation is for all non-time
consecutive terms in (3.3), i.e. there exists some h=1,...,m, such that p,<q,—1.
Our first result is that the type II terms tend to zero as z tends to zero.
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Lemma (3.3). For each neN, ¢€{0,1}",
lim I13(z, )=0. (3.9)

Proof. First of all, for neN, ¢€{0,1}", we majorize with constants all the scalar
products in IT;(z, t) which do not come from commutators. Therefore, the modulus
of II%(z,t) is majorized by
not cr 2n—2m
2 "z
m=0 25q1<...<gm=n (41,P1,-+»qm> Pm) !
t/z2 ty

tn-1 m
x [ dty[dty... [ dt, I] [KS,, &S, 8|, (3.10)
0 0 0 h=1 h h

means the sum for all 1<p,,...,p,,<n with [{p,}r-|=m,
(G1,P15 s ms> Pm)
Pp<du h=1,...,m and p,<q,—1, for some h=1,...,m; g=g, or g, and

C,:=  max [ I<G,S,F)ldt. (3.11)
F=f,f'G=go,91 —o

The idea of the proof is to exploit the type-II hypothesis, i.e. the existence of
some pair (p, q,) With q, — p, =2, to majorize each term of the sum (3.10) with an
expression of the form

t ty tg -2 2
Ch-Jdty Jdty... ] dtyyy f dtyay

tqh -2 (t‘qho-; t,,hn )/z2 y
: o!) dtqho—l — { ) q;.0|<g’ St;,hog>|
Phy/z
tgm—2 tgm~1 th-1
({ dt, 4 (j) dty +1.. (f) dt,, (3.12)
where hy, I, g~ 19 _21. will be defined below, C, is a constant and t , <0 for

almost all ¢, _,, t,, . The integrability of t—|<{g, S,g>| will then 1mp1y that 3.12)
tends to zero as z—>0

This majorization is achieved through a sequence of changes of variables and of
majorizations, according to the scheme described below, which heavily uses the
specific form of the interaction (and, of course, the type II assumption). Let

ho:=min{h: q,—p,=2, h=1,...,m}
and let 4¥(z,t,{qy, py}i-) denote the generic term of the sum (3.10). Then,
IA:(Za t, {qhs ph}l’xn= 1),
t 1y th-1 m
§C’{ * Z_zmj'dtl _‘. dtz j dtn l—[ |<g, S(tq —tp )/22g>|
0 0 0 h=1 i h

(tg, -1~ tp, )22

t ty "11“2
=cq-z‘2<'"‘”(f)dt1(j)dt2... | dt, [} dty, 1<8,S;, &1

0 —tp, 122
tp, +zzt,’,, th-1 m !
X g dtg, 1. (f) dt, hl:[z <8, e, 15,2871 > (3.13)

where, if for some h=2,...,m, p,=q,, then t, means ¢, +zzt Since
th, €[ —t,/2%(ty -1 —1t,)/2%), one has t, +z%t e[O tai—1)s thus, replacing



20 L. Accardi and Y. G. Lu

t,, +2z%t, by t, _;, we majorize the integral, i.e.:

IA;(Za ta {qh, ph}}rln= l)l

" —2m—1) t t1 tg—2 (tqy -1~ tpy)/22 ,
=Ci-z fdt, [dty... [ dtg, -, ] dt,,1<g, S, 8>l
o 0 0 —tp /22

tg1-1

tho1 m
X T gy | dty 1K Segy e8] (3.14)
0 0 h=2

Put ¢, =(t,,—t,,)/z%, then,

lAf,(Z, t’ {qh’ ph};l”": l)l

2m—2 t t1 tq“z (tq‘>l_tp‘)/22
SCz72 DAL (dty ... | dt, 4 dt, [<g, S, &)l
0 0 0 ~tp, /22 1
tq -1 Fap-1-to)l2?
X f[) dtq1+l"' -t dtq2|<g:St§,2g>|
1p, +zzr;1z th-1 m
X [ dtgeq. [ dty I l<g$S(tq ~t, 2285 (3.15)
0 0 K=3 h P
where
_ t,,—1, if > 1;
tq2_1={‘“ o o d>d (3.16)
tqz-—Za lf q2=ql-|-1

Since £, € [ —t,,/.2 (f,,~ 1 —t,,)/z%)), one has t, +22t; €[0,,,_,). So by the same
argument as after (3.13), it can be obtained that

IA:(Z’ ta {qh’ ph};‘n___ l)l
—m—2 t ty tg,~2 (tq, - 1—1tp,)/22
sSCrze A far, Jdty. [ drg oy [ de K, S, @)l

—tpl/._,z
tg, -1 (tq,~1=1p,)/z2
X I dtql +1 - j dt:lng, St;hg>|
0 ~Ipy/z?
qu -1 th—1 m
X (_‘; dtqz+1 veo (_‘; dtn h];[3 I<g, S(tqh'tph)/22g>| . (3-17)

Iterating the procedure, we obtain

|Ai(Z, t7 {qh’ ph}T: 1)'

, t t tg, -2 (r,,l_l—t,,l)/z2
SCH-Cy-fdty fdty... [ dty,_, [} dtg,[<8, S, 8l
0 0 0 —tpy/2?
tg, -1 tg, -2 (?qz—l"—pz)/z2 ,
X [ Aty | Aoy f A8, S, )
0 0 —t,,z,,z

@gm— 1= Tp,)/22

qu—l lam-2 ’
x !)dtqurl... (j) dt, . | dt, I<g, S, g

“lpiz

Tgm—1 th—1
x " dty sy | dt, (3.18)
0] 0
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with
= _ | la-1s if g>gqy-1+1;
ol lgy—a—1> if gy=gn-,+1 (3.19)
=qp-2+2= ... =qu_ 4, +0>G_g+1)+(@+1),
- teer i Pr=4,;
t, =< =7 o (3.20
o {tpn’ lf phé{qh}h=1' )

Notice that there exists always an «€ N, such thatt,, _,= Lan,—a— 1- MoTEOVET, DY
the definition of h,, it follows that p, < g,, —a— 1. In fact, if =0, this follows from
the definition of hg; if « >0, then (3.19) and the definition of h, imply that, for any
0<B=o, g,—B—1=ay,—p—1=py,—p- Therefore, it must be that p, <pu,-;s
=4y, p— 1, since at each time there is only one annihilator. Summlng up: we have
proved that t,, _,—t,, <O almost everywhere. Now we majorize all the
dt;,-integrals in (3.18), with the exception of the dt,, -one, by integrating over the
whole line. This leads to an expression of the form (3.12) and therefore, the proof is
concluded.

Having proved that the type II terms tend to zero, we shall now compute the
limit of the type I terms. The resulting lengthy expression does not give, by itself,
particular insight. However, it will play a crucial role in the deduction of the
equation satisfied by the limit. After the statement of Lemma (3.4) we shall
introduce some comments in order to clarify the meaning and the origin of the
various pieces.

Lemma (3.4). For each neN, ¢e{0,1}",

] kA(n—k) m
I(t):=lim I}(z,t)= ) IT (8etan—1) | Betan)—
z—0 m=0 2<q1<..<gmsn h=1
x f dt, ...dt, ..dt, ...dt,

A~ A~
0Sty< .. Stq S .. Sfg S ... SH1 St

X [1 (f 1 8e@) " Xis, i(ta)

ae{l,...,n}\{gn}i'=1

x (g1 —&(gr) [ f): Xis', T’](tq1 -1 I1 (81 —&(a) [ f)- Ais, T’](ta)
ae{l q1—2}

X (81 -etary | I tisriltyy+1-1) I (81-e | f1) Xisr, 7t
ae{gr +1, v lr+17 2}

X (gl—s(qrx) Lf1) X[S’,T'](th_l—l)' I1 (81 —e(@) | ) X[s',T'](ta)

a€{gre_+1,..., Are 1 +1—

X rela l+—11 (81 e(a)lf) Xis', T](ta) <W(X[s T]®f)lp W(X[S: T]®f )7%521)

where t means that the t is absent, x (i.e. the total number of chains ), and the numbers
{ri}i=1 (ie. the lengths of the single chain) are uniquely determined by the
prescription

{qh}hm:lml={qh};nl=lu{qh};2=r1+1u U{‘]h}f:’;rx_ln (3.22)
and

‘Iry+1=41ry+2—1=‘1ry+3_2= =qry+1_(ry+1_ry_1)<qry+1+l_(ry+1—ry)’
(3.23a)
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with
y=0,1,...,x—1, ry=0. (3.23b)

Remark. The conditions (3.22), (3.23a), (3.23b) mean that we split the ordered
sequence {g,}1- ; into ordered subsequences which are maximal with respect to the
property that g, . =g, + 1 for all elements in the subsequence (a subsequence may
contain a single element). The role of these ordered subsequences comes from the
change of variables (3.25) below and will be explained during the proof.

Proof. With the above notations the term I3(z, t), defined by (3.8), can be written as
a sum whose indices are the same as in the right-hand side of (3.21) and whose
generic term is the product of

< ( szs,, fdu>q> W< fzzsuf'du) ¢>
S/z2 z2

2 5 dt, 5dt2 I dt, H 8etan— 10 Sttq, ~tq, - 8et@n)?

times

T/: zz T'|z2
X ]._[ I <Suf Stugs(a)>du H m .‘ <St¢g1 —&(a) Suf, >
ae{l,...n\an)i=1 S/z2 ae{l,....m\{gn—1}n'=1 S§'/2z2 (3 24)

With the change of variable z%¢; ¢, ¢; for each j=1,...,n, the expression (3.24)
becomes

t ty th-1 m
-2
z m.gdtl (f)dtz j dt, 1—[ {8etan—1y S(tqh—tqh_l)/Zng(q;.)>

T/z2
X H I <Suf’ ta/zzge(az)>du
ae{l,...m\gnif=1 S/z2
T'/22
X H j 5 <St¢/22g1 —e(a)> Suf’ >du . (3243)

ae{l,..., n\gn—1}i'=1 S'/z

In order to compute (3.24a), it is natural to make the change of variables:
t R f 1 s m+m
t;= { « ) 1 OCG{ m+’:'}\{Qh} (3.25)
(ty—ta-1)/2%, i ae{q i’

which will affect only those times ¢; corresponding to the creation operators which
have produced a scalar product by commutation with an annihilator consecu-
tively later.

By this  change of varlables in (324a) the product

H {8e(gn—1y S(,qh_,qh_l)/zzgs(th becomes 1'[ 8e(an— 1) St; egn- OF the product, in
(3 24a), coming from the action on the coherent vectors, the first one (the one with
the f-test function) does not change. Moreover, a simple computation (put
v:=u—t,/z%) shows that this term tends to

(f 18w * Xis, ()

ae{l,...,n\{gnh=1

which is the (f|g)-type product in (3.21).
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The basic idea to explain the remaining products in (3.21) is that one should
know how the change of variables (3.25) influences the integrals corresponding to
the intervals [S'/z2, T'/z?]. To clarify the situation we begin to consider the first
chain, i.e. :

:1<q1+1=q,<q,+1=¢3< ... <q,,—1=¢, -1 <q,,<q;,+,—1
(notice the last strict inequality!). The integrals corresponding to this chain are:

g —1

2 t L tq, g, tgri-1 tg,,
r
z 1£dt1... (j) dtqigdtqz(j)dtqa... g dt,, (j) dtg, 1.

ri
3 hDI 8etan- 1 Stq, ~ta, - 18e(an)?

q1—2 T'[z2

X H I <St;.g1—e(h)3 Suf’>du
h=1 §'z2
T'/22
X S'7[ N <Stqr./22g1 —&(qn) Suf,>du' (326)
The change of variables (3.25) brings the variable tq”/z2 into
to—1/22 g+ ol

By the change of variable v=u—(t,,_ /2> + 1, +... +1g, - 1), the last integral in
(3.26) becomes

(T’—t;,l_l)/zz—(t;,l+ wo Flg ~1) ,
) <g1 —&4r, ) Svf >dl)

S’ ‘ifll - 1)/22—(t;1l +.. +t:11 -1

which, as z—0, converges to

(81-carpl/ ) 1isr, (ta, - 1) - (3:27a)

On the other hand, in the last second integral in (3.21), one has h=<gq,—2.
Therefore, the change of variables (3.25) does not affect these variables t,. It is to
see, by the change of variable v=u—1,/z?, that for each h=1,...,q, —2 the last
second integral tends, as z—0, to

(81-emlf") " Xis, 71(th) - (3.27b)

Similar arguments apply to all the other chains ¢, ,4,....4,,,,
(y=0,1,...,x—1), and this justifies all the remaining products in (3.21).

It remains to justify the [T (g;—¢@qu—1)8:q factor in (3.21) and the (sub-
h=1

sequent) omission of the ¢, -variables (h=1, ..., m) from the integration in the same
formula. That is, we have to prove that for each y=0,1,...,x—1,

20 r) tq,,— gy, -1 tgrye
T4y +1 7Ty,
Z coe g dtq'»__l (I) dtqry“' g) dtqry+l+l o
ry+1
v hl—[ <g1 —e(gn— 1) ‘S(tqh —1tq, - 1)/22g8(‘1h)> (328)
=ry

converges, as z—0, to

lar, -2 tar, -

(J; dtg, -y g dtg, 41 hl;] (81 - c(an - 1)|8e(an) - - (3.28a)
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In fact, the change of variables (3.25) implies that t,, = zzt;h +tg-1,h=1,...,m,s0
that the expression (3.28) becomes

th -2 0 0
’ ! !
[lde, o ] df, [ df
0 —lg,y-1/Z ~ton—1/z2~th,
0 ) oy -1+ 22yt e +zq,w)d ’
t
. , , Iry4q ary gt 1
—tqr’-,/zz—t,,,y—...—tqryﬂ_l y 0 v
Fy+1
;,H <81 -ean-1) Sty Betan? - (3.29)
=r

Notice that the z2-dependent terms in (3.29) are of two types:

to+22(...) 0
or .
0 ’ —t&/zj;—(...)
) th+22(...) ty .
In the limit z—0 the integrals of theform |  converge to | and the integrals of
0 0

(3.30)

0

theform | give rise to the factor (glg’) - (where g, g’ denote either g, or g,),
—te/z2—(...)
and the corresponding integration variable disappears. The limiting is justified by

dominated convergence and the following, easily verified, fact: for each
fi, e L}R), t>0 and TeRU{+ o0},

TG ] Utsaldsi T 10l § IAsMss. (30

t/z

4. The Uniform Estimate

In Sect. 3, for each ne N, we have computed the limit, as z—0, of the n™ term of the
iterated series. In this section, we shall prove some uniform estimates on these
terms, which will allow to take the limit of the series term by term. Due to the
particular form of the interaction (1.9), the bounds will be strongly dependent on
the test functions g,, g, [cf. (4.4) below], contrary to what happens in [3].

As in the weak coupling limit case, the uniform estimate is based on the
following Pulé type inequality which has been proved in [21, 22]:

Theorem (4.1). Let f:R—R be a positive integrable symmetric function, for each
neN,1Zmsn—1,25¢,<...<@u=<nm15p;<...<p,=n—1,p,<q,,h=1,...m,
one has

th—1

“om | " T o Logtn g e ? "
yl ngdtl... (,; dt, ¥ nf< P ">< [_wa(t)dt] , (4.1)

gesm h=1 =(n—rﬁ)!(rﬁ—m)!

where .= {p,, qu}h=1l, S, denote the group of permutations on m elements and
LR :={06€ L Doy <dn; h=1,...,m}. 4.2

In the following, we shall use the notation

0
lgol2:= | IKg»Sugeoldu, e=0,1. (4.3)
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Theorem (4.2) (The Uniform Estimate). For each neN, the matrix element (3.1),
corresponding to the n'® term of the iterated series is majorized, in modulus, by

n—m

t @ 2(n—m)
16" max ——'(||go||-V||g1!|—)2m[ max IIF,StG>|dt]
(44)

osmsn—1 (n—m)! F=f,f';G=g0,g1 —®

Proof. From (3.3)it follows that the modulus of the expression (3.1) is majorized by

n—1 © 2(n—m)
»y Y [ max | KF, S,G)Idt]

m=0 2541<..<gmsn 12p1<..<pmSm-1 ceS | F=f,f';G=go,g1 —
t/z2 ty th-1 m
x 2" [ dty [dt, ... | dt, T] Flt,,—tp,), “3)
0 0 0 h=1

where 2"-factor comes from summation over all ¢€{0,1}" and
F(u):= max [<g,, Sig.)l- (4.6)

By Theorem (4.1), the expression (4.5) is majorized by
n n—1/p\2 o 2(n—m)
Y Y Y ( ) [ max [ IKF, S,G)ldt:l

k=0 1si1<..<ixsn m=0\M F=f,f;G=g0,91 —©
n—m

¢ 2m

<16 max (ol v g P
x [ max | [<F, StG>|dt]2(n_M)>, @)
F=f,f';G=g0,91 — o
which easily implies (4.4).
Corollary (4.3). For each De B(H,) if
(Igol- v x| < 75 @8)

then the series obtained replacing, in the matrix element (1.23), U, ,» by its iterated
series expansion converges absolutely and uniformly for z>0.

Proof. Itis enough to notice that this series is nothing but the sum, over all natural
integers n and over all € {0,1}" of the terms 4%(z, ), defined by (3.3).

5. The Low Density Limit and Its Derivative

In this section, using the results of Sects. 3 and 4 we derive the existence of the low
density limit (1.23) and its explicit form. Using the latter, we deduce an integral
equation for this limit.

Theorem (5.1). For each u,ve H, and D e B(H,) satisfying (1.11) and for each
20, &1 € K satisfying (1.12) and (4.8), the low density limit (1.23) exists and is equal to

[e)

Uy Dyyy ... Dyyvy - I(t), (5.1)

n=0 ¢e{0,1}"

where I:(t) is defined by (3.21).
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Proof. Expanding U, in (1.23) by the iterated series, we obtain
{u,Dyqy ... Dy - (Iifz, ) + 113z, 1)) . (5:2)
n=0 £€{0,1}"

Because of the uniform estimate one has

T/z2 T'/z2
lim <u® W(z S,,fdu) o, U,,,zv®W<z ) S,,f’du) d5>
z—0 S/z2 S'/z2

M8

|

i Y u, Dyiy, ... iu) liné Iz, )+ 11z, 1), (5.3)

n=0 k=0 1si;j<..<ixSn

and the result follows from Lemma (3.3) and Lemma (3.4).

In order to find an integral equation satisfied by the limit (5.1), we proceed in
analogy with the similar problem dealt with in [3].

The basic idea of the procedure goes in several steps:

(i) One writes the matrix element (3.1) as the integral of its derivative (in ).

(ii) From the step (i) a term V(s)U,,. arises and, using the form (1.16) of the
interaction, one lets the creators act on the coherent vectors.

(iii) In order to obtain an (ordinary) differential equation for the original matrix
element, one has to make the annihilators act on the coherent vectors. This
introduces a commutator between the annihilators in the interaction and Ug,..
(iv) In order to control the behavior of this commutator, one has to expand U,,.
using the iterated series. This control is achieved by using the uniform estimate and
variations of the arguments introduced to control the limit itself.

(v) The result of the limiting procedure of point (iv) is not yet the equation looked
for, but an auxiliary one, by solving which [cf. Lemmata (5.8), (5.9)] the explicit
form of the equation is eventually deduced.

In the following we discuss in more detail the various steps of procedure
outlined above. However, we do not reproduce the length conculations because
they are based on essentially the same ideas and techniques already introduced in
the first part of the paper.

If, after step (i) above one expands Uy, using the iterated series, the n* term of
this expansion [by using the explicit form (1.16) of V(t)] will be:

t1/22 n-1

1 t / t2 t,
2—2(—1‘)"‘1jdt1 [ dtyfdty... | dt,
0 0 0 0

T/z2
X <u® W<z j2 S“fdu) D,(DRA™(S,,:280)A(S,,/2281)

S/z
T'/22
—-D*®A +(S,!/zzg1)A(St1/zzg0)) V() ... Tt v® W(z S’M/“ , Suf’du> <D> . (54

Now we write (5.4) as the sum of four terms
I,(1,2,0)+ 12,2, 0)+ I1,(0, 2, 1) + I1,(1, 1) (5.5)

in two of which (I,(1,z,1),1,(2,z,t)) the A4, A" have acted on the coherent vectors
giving rise to scalar products; while the remaining two (II,(0,z,t),I1,(1, z,t))
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contain the commutators needed to produce these scalar products. Explicitly,
I,{1,z,1)

t T/z2

T'/z2
= jdtl .[ <Suf9 St;/22g0>du ' S’./‘. ) <St1/22g1aSuf,>du

ty/. 22

x(—irt ] dtzjdts "',
0

X <D+u®W( sz S, fdu)(b Vit,).. V(tn)v®W<z T'}z Suffdu> d5> ,
S’'/z2
T/z2

11,0,z t)—}dtl TS S (—i” =

t1/22 t2 th-1 T/z2
X j' dtzfdt3 { dt, <D+u®W(z | S,,fdu)di
0

S/z2

x [1®A(S:,/:281)s V(tz)---V(tn)]v®W< TIZZSaf ’du> >

and I,2,z1t) [respectively II,(1,z¢)] is obtained from I,,(l,z, t) [respectively
11,(0, z,t)] by: (i) changing the sign; (ii) changing D to D*; (iii) exchanging the role
of the g, and g; which appear at time ¢,. Now we investigate separately the
contributions of the four types of terms (5.5) to the limit (5.1). From Sect. 4.4, we
know that

t1/22 th-1

f dtzf dty... [ dt,
0

x < D+u®W< sz S, fdu) & V(ty) ... V(t,)v® W<z :f S, f’du) q>> ’
IR

tn—m
< CA6[IDI)" - flull - flv]l - o max n— ),(llgoll-vllglll )P (5:6)
1 .

with a constant C. So, if (||goll- v |gl-)* < T , one has, by dominated
convergence, 1Dl

lim Y I,1,z1)

z=0 n=1

t T/z2 T'/22 ,
- § lim far, L O Supoddus ] (8,81, 5, i

tl/zz th-1

x (=i ! j dtzjdt3 § dt,

x <D+u®w< szz S, fdu)® V(t,) ... V(t,)o® W<z s, f’du) <1>>
57722

w t T/z2 22
= Zl .gd hn(l) .‘. <Suf Stl/z2g0>du 5 ) <St1/22g1$ Suf,>du
ty/z2 =1

—ip! f dtzjdt3 f dt,
0

x<D+u®W< TfS,,fdu)(D Vity).. V(t,,)v®W< [ s,,fdu> > )
(5.7
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then the limit (5.1) is continuous for u,ve H,,.

1
Now, if Vv )< ,
(lgoll = v g1l -) 16/D]

So we can write this limit as
{u, G(t)) (5.8a)
with G(t)e H, for each t=0. With this notation (5.7) becomes
lim Z I,(1,z,6)= fdtl(f,go)X[s m(t) - (1l f s, T](t1)<D+u G(t)y. (5.8)

z—>0 n=1

Similarly, we obtain

lim Z 1,2,z,t)= fdtl(fl&)X[s i(t1) - (ol f Vs, (¢ 1) — Du, G(t,)> . (5.9)

z—0 n=

Now, we investigate 11,(0, z, t). By definition for n>2,

T/z2 1

110,2,0= [dt, | o F Sy

t1/z2

i dtz(j)dt3... _(;) ‘ar, <D+u®w< T S,,fdu)

S/z2
T[22

x [1® A(S,, .81, V(tz)...V(t,,)]v®W<z | S,,f’du><15>, (5.10)
S'/z2

and we want to consider the limit
liné I1,,,0,z1). (5.11)

Putting s=t,, s, =t5,..., S,=t,+, one finds that

t (T —5)/z
IIn+1(03Za t)= gds S—j)/ <Suf g0>du (_l)n—
s/z2 s1 Sn-1 T/z2
X | ds;[dsy... | ds, <D+u®W<z | S,,fdu><15
0 0 0 S/z2

X (1@ A(Syg1) Vsy) .. V(s To® W( sz Suf" du) >
(5.12)

By Lemma (3.2) and in the notations of formula (3.11), one has

[1 ®A(Ss/22g1)’ Vis)...Vs)l= Y [1 ®A(Ss/22g1)’ D,y... Ds(n)®(lfn+ I5)].
sl (5.13)

The main idea of the estimates which follow is that the matrix elements of type 11
(cf. Sect. 3) will vanish in the limit z—0. In order to control the limit of the
remaining ones, we reduce the commutator (5.13) to the normal ordered form in
which one can separate the contributions of the type I terms from those of the
(irrelevant in the limit) type II terms. More precisely, one can write

IIn+1(0’Z’ t):= Z (Al(n,Z,S, t)+A2(n,Z,8, t)) (514)
eef{0,1}n
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with
A44(n,z,6,t)=<u, D,yy... Da(n)v>
kA(n—k) , kA(n—k) , t (T —s)/z2
x X ) ) Y fds [ <KS.f 8ordu
m=0  (4o,..»gm) M =0 (q1,....q4,m) O  (S—s)/z2
qo=1
S/zz Sn—-1
x(——z)"— j dsljd52 | ds,
0
m
X hl—:IO <gl’ S(sqh—sqh—ﬂgl) ' hl;II <g0’ S(Sqlh‘s.,lh— 1)g0>
T/z2 +
x(Wlz [ S,fdu|®- I A%(S8w)
§/z2 ae{2, ..., B\({gr}L 1U{ghi= 1)
T’ /22
!
X H m A(Ssagl—s(a))W z ,f Sufdu ¢
ae{l,....,n\({gn— 1}7%t 10{gh — Lr=1) §'/z2
and (5.15a)
A,(n,z,6,t)=<u, Dy ... Dy
n—1 t (T —s)/z2
!
x X ) ) fds | <S,.f, gordu
m=0 1=¢0<q1<..<gmSn (qo,Po,I-,qm,Opm) 0 (5—y)/z2
q0=1,p=

s/z2

1 ot om
X (_l)n_ I dsl jds2 E“) dsn hl;lO <Ssphg1—e(p;,)a Ssqhga(q;.)>

T/z2
X <W<z | S, fdu>d5~ I1 A7 (S,,84)
§/z2 ae{l,....n}\{gn}=0

T'/z2
X [1 A(Ss,gl_e(a))) ( j S, f’du) > (5.15b)
aef{l,..., n\{pr}iE 1

Applying the same arguments used in the proofs of the results in Sects. 3 and 4 to
(5.15a) and (5.15b), we obtain the following estimates:

Lemma (5.2). There exists a constant C, such that for each neN, ¢=0,1,

n+1-m

T, 1 16,2, DI < (A6 DY ] - 0] C, - max. (ntH—)!(llgoll - vigl _)2"‘(-5

Proof. (5.16) is an immediate consequence of the uniform estimate of
Theorem (4.2).
Lemma (5.3). For each neN,

liné Ay(n,z,6,t)=0. (5.17)
Proof. The proof is the same as the proof that the terms of type I1 tend to zero as
z—0,
Lemma (5.4). For each neN, the limit

lim 4,(n, z, ¢, 1) (5.18)
exists. z=0
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Proof. The proof is the same as that used to prove that the terms of type I tend to a
limit as z—0.

Corollary (5.5). For each neN, ¢=0,1 the limit
liné 11, (e 2,1) (5.19)

exists.

Proof. Clear from (5.14) and Lemmata (5.2), (5.3).
Now, for each ne N, consider the commutator

[(1®A(Syz281), V(s1) --- V(s,)]
= [1 ®A(Ss/22g1)a V(Sl)] V(SZ) cee V(S")
T V1) Vs @A), VIV (ss1) - Vs (520)
f=
The following lemma proves that the matrix elements of the second term of the
right-hand side of (5.20) tend to zero rapidly as z—0.
Lemma (5.6). The limit

t (T —s)/z2 s12 s1 Sn—1

lim [ds [ <. goddu: (2 [ asi s, ] s,

z—0

X <D+u®W< szs,,fdu> z Visy)... Vis;-1)

(1@ A(Sy 5281 V(s)IV(s;4 1) ... Vs)o® W<z :/f s, f'du> q>> (5.21)

exists and is equal to zero.

Proof.
t  (T-s)/z2 1 s/z2 n-1
fds | <S.f, 8ordu- (—l)"— f ds, fdsz f ds,
0 (S—s)/z2 (1]

x <D+u®W<szzS fdu>¢ 3 V6 Visyo)

T'[z2
X [1 ®A(Ss/zzg1), V(S])] VSj+ 1) .o V(s,,)u@ W(Z S,‘/‘. , S“f'du> ¢>

t/z2 T/z2-s Sn-1

=z ; ds I <S,,f goydu- (—z)”jdsljdsz (j) ds,

ji=2

X <D+u®W< szzSufdu> ,,fdu)cb Z V(sy) ... V(sj-1)

x [1®A(S.g,), V(sj)]V(st)...V(s,,)v®W<zs | s,,f'du>q>>. (5.22)
Ao

Notice that each term of the right-hand side of (5.22) is in 4,(n, z, ¢, t), so, by (5.17),
one gets (5.21).
Similarly, we get the following
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Lemma (5.7). For each neN, the limit

lin(lJ II,. (& z,1) (5.23)
exists and is equal to
tjz2  Tlz2-s Sn—1
lim | ds £ {S,f, g.odu- (—-l)"jds1 jdsz (j) ds,
z=>0 0

x <D:u®W< szsufdu>d> [1®A(S,g:-). Visy)]

xV(sy) ... V(s,)v® W(z | S.f ’du) cb> . (5.24)
S'/z2
Let us introduce, for simplicity the notation
T/z2
D1, S, T):= W(z | S, fdu> . (5:25)
S/z2

Then, using Lemma (5.6) and the uniform estimate of Lemma (5.2) we obtain that
the limit

lim Z II,, (¢ z2,1)

z—=0 n=0

exists and is equal to

tjz2  Tjz2-s

limz [ ds [ (S, godu 3 (—ip ds, ;dsz "1 ds,
z-0 0

X <D§' u® d’z(f, S, T),[1®A(Sg1-c) V(sy) ... Vs)Iv®PAS", S, T')) . (5.26)
Summing the iterated series inside the commutator and with the change of
variables sz2=r, we find that the limit (5.26) exists and is equal to

t
li_{% !) er[s, () (f |g)du
1
x<{ DYu®dLf, S, T)E [1®A(S, ;281 o), U, 2 o@D,(f', S, T')> . (5.27)

Clearly, this limit is continuous in u (and in D; u), hence it will have the form
{D}u,K(t)y=<u, D ,Kt)) (5.28)
for some K,(t)e Hy. Our next step shall be to deduce an equation for D,K(z).
Lemma (5.8). Let K,(t) and G(t) be defined respectively by Egs. (5.27), (5.28), and
(5.8a). Then K (1) satisfies the equation
J <D K>S M

— 15 1g s o) (@1 g -9 <DI-DJ 0 Ky 9

t

+ g ds(f18)%s, Ti(8)(81 - el81 - &) - Xis', 716)(&el f ) <D 1-DSu,Gs)y. (5.29)
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Proof. The left-hand side of (5.29) can be written, using dominated convergence,
(5.27) and Lemma (5.4), as:

Sn—1

t © s/z2
lim [ds(flg)xs, ri(s)ds Y. (—=0)" | ds;... [ ds,
z—=0 O n=1 0 0

1
< ( Dr UL, S, T), 1@ AS, o1, Visy)]
(5.30)
X V(sy)... V(s o@D (f", S, T’)> .
Now notice that
[1 ®A(Ss/z2g1 —a): V(Sl)] = l(Dl —£® 1) <Ss/22g1 -8 Ss1g1 —s>A(Sslga) s

therefore, bringing A(S;, g,) to the right of the product V(s,)- ... - V(s,), we obtain a
commutator term plus a term coming from the action of A(S;,g,) on the coherent
vector @,(f',S’, T'). Thus the limit (5.30) is equal to

s/z2

t © s .
lim [ds(flg)us, ) 3 (="' | dsy [ds,... | ds,
220 0 n=1 0 0 0

Sn—

x ( <Dr_£D:u® 81,8, T, 1@ A, 8, Vis2)]

X V(SE)) s V(sn)v®¢z(f,: Sla T,)>
X <Ss/22g1 —& Sslgl —s>
+{D{_D}u@DLf, S, T), V(sy)... V(s v@®P,f", S, T')>

T'[z2
x [ dulSi8,S.f '>du> (5.31)
S'/z
with the change of variable in the first term:
s122=r (5.32)

we see that the limit (5.31) is equal to

t @ s ry/z2 Ss Sn-1
im [ds(flg)us,m(s) ¥ (="' [dry [ dsy[dss... [ ds,
z—=0 0 n=1 0 0 0 0

1
X (z—z <g1—ei S(r;—s)/zlgl—s> : <Df—st+u®¢z(ﬁ S, T)a

1
LIS, 8. VIV . Vis) 0@ 5. )
+(DF_DIUOBLY, 5, T), Vis) . Viso® LTS, T))
1 (T =ry)/z
X ?<g1—57 S(rl—s)/22g1—5> f 5 dU<g£, Svf/>) . (533)

(' —r1)/z

The limit (5.33) is the sum of two terms. Concerning the first one, we notice that,
because of uniform convergence we can exchange the series with the dr, integral
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and, with the change of variables we obtain the integral

t 0
(j) ds(f|ge))([s, T](S) I d31<81 —» 5,81 —e)

s1 +s/z2

x ¥ (=it dszjds3 i ds,
n=1 0
X <D:’—£D:—n®¢z(f7 S: T)’; [1 ®A(Ssl +s/22ge)’ V(SZ)]
X V(s3) ... V(s o@BLf", S, T’)>. (5.34)

From Lemma (6.3) of [3] one immediately deduces that, as z—O0, the limit of the
expression (5.34) is the same as

lim }ds(flgg)x[s,n(s)(gl_elgl-g)_

s/z2

x 3 (=it sy fdss ] dsye

x (DI DU 5, T) L 1@ AS, 8 V()]

X V(s3) ... V(- Jv®@P,(f", S, T’)> . (5.35)
By Lemma (5.6), the limit (5.35) is equal to
lim j ds(f18xis, Ti(8)(81 - ol&1 o) -

s/z2

x z( iyt jdslfdsz " ds,_,
0

x <D;—5Ds+u® ¢z(f; S! T)’ _Z- [1 ®A(Ss/zzga)’ V(SI)V(S2) V(sn— 1)]0
DS, S, T')>' (5.36)

Thus we can resume the iterated series inside the commutator obtaining that the
limit of the expression (5.36) is equal to

IdS(f 12115, 71(8) (81 -l81-) -
X hm <Dl aD+u®¢z(f S T) [1®A(Ss/22gs) Us/zl:lv®¢z(f S, T,)>

= (.E ds(ﬂge))([s, 71(5)(81 - |81 - ) -<D7 T-:DSu, Ky _ (s)). (5.37)

Concerning the second term we notice that, with the same change of variable (5.32)
and again using uniform convergence, it can be written in the form:

t 0
gds(f|ga)X[S, T](S) f dsl<g1 —o 95,812

s1 +s/zz

x 3 (< ds, fdss T ds,
n=1 0
< (DY DI URDS, S, T) Visy) .. Vs o@BLS, S, T

(T’ —z2s1 —5)/22

X [ g S,
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Again by Lemma (6.3) of [3], the limit of the above expression is equal to

lim (})ds(flgs)xls, (@1 dlg1—0) -

s/z2

x 3 =iy [ ds, {ds, . T dsits, 98
x{DY_ DS u@®.(f, S, T), V(sy) ... Vs @D, S, T')>

= lim §ds(Ig s, &1 -lgs ) o a1
x{D{_.Du®®,(f, S, T), Uy, 0®P(f", S, T')) (5.38)

and, because of the definition (5.8a) of G(t) and of dominated convergence, this
limit is equal to

(}) ds(f18 s, 1(8) (81 -olg1-o) - * Xisr, 148) - (8ol f) - <DT_D; u, G(s)>.  (5.39)

In conclusion from (5.33), (5.37), and (5.39), we obtain Eq. (5.29).
Now, by solving Eq. (5.29), we find the explicit form of D.K,(t).

Lemma (5.9). In the above notations, denoting for each ¢€ {0,1},
Dg(s) : =(1 _(gelgs)—(gl —e|g1 —s)—Dle —a)" !
= ”go (gs'ga)n—(gl —algl —e)n—(DeDl —e)n s (5'40)

one has

DeKa(t) = X[S’, T'](t)(gl —e'f/)(gelge) —(gl - algl —e) - Dg(s)DeDl —eDsG(t)
+ s, 7(0)@el f )81 —clg1 - ) - Dy(e)D, Dy _ D, G(2). (5.41)
Proof. First notice that, since f, S, T, u are arbitrary, then Eq. (5.29) is equivalent to

DeKs(t)=(g1 —e‘gl —a)—DaDl —eKl —tz(t)

+(81-l81 -2 - (&l Nxs, (DD _ .G(t). (5.42)
Replacing K, _,(¢) by its expression (5.27) and with the notation
a,:=(g:lg) -, (543)
we obtain
D.K(t)=(a,a,_,D.,D, _,)D,K(t)
+{(81 - s, 7(8)(@.a; -.D.D; _,)D,G(1)
+ (8l s, r+(S)ay - .D.D; - )D,G(t)} . (5.44)
Thus DK (¢) satisfies the operator equation
(1—-T)D.K (t)=G 1), (5.45)

where G,(t) is the term in braces in (5.44) and
T.:=aa,_,D.D, _,. (5.46)
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Notice that

ITI<lgol2 - llgsI2 - [DI?
which is less than (not equal to) 1 because of our assumption (4.8). This implies that

DK ()= 3 T'G0). (5.47)

n=0

From this and (5.46), (5.41) immediately follows.
Summing up, one can get the following

Theorem (5.10). The low density limit (1.23), i.e. the quantity (5.8a) satisfies the
integral equation

<u, G(t)><u, G(0)) + 5; ds EE{%: N <n§l (f18)t1s, Ti(8) - (el f sy, 71(8)
X (81-.1g1-2)" " (glg) (DY _.D;")'u, G(s))

+ 3 (18t nl®) @1 - Vs O

X(81-clg1-o" ' (&lg)™ <KD (DD )" u, G(S)>> - (549)
In the following, we shall use the notations
D,(e):=D,(e)D, (5.49)
and
Dy(e):=(81-l81-0)- * D;D1 - .Dyfe). (5.50)
Then, (5.48) can be written as
u, G(t)) = <u, G(0)) + 5) ds EE(ZO’ 5 (f18xs, 71(8)  (&el S Nes, 11(S)
<D; (e)u, G(s)> + (S Igxzs, 71(s)
X (81-ol/ s, 7()<DS (e)u, G(S)>> : (5.51)

6. The Quantum Stochastic Differential Equation

In this section we identify the integral equation (5.51), satisfied by the low density
limit (1.23), with the weak form of the quantum stochastic differential equation

U@=1+ f (% Y [D,(e)®dN (g, 81-)+ Dy(e)®@dN (g, g)JU(s)  (6.1)

0 z€{0,

on H,QI'(LA(R)®(K, (- |*))), where N is number process and for each g,g’' €K,

N(g,8):=N(x0,2®Ig><g. (6.2)

Throughout the section we shall use freely the notations, definitions, and results of
the Hudson-Parthasarathy paper [17], with the only exception that we call
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“number process” the process called “gauge” in [17] and we denote it N rather
than 4.

Since D is bounded, it follows that the q.s.d.e. (6.1) has a unique solution U(¢)
which is given by the iterated series (cf. [17]). Moreover, we have the following

Theorem (6.1). The solution of q.s.d.e. (6.1) is unitary.

Proof. Using the Ito table for the number process (cf. [17]), one knows that the
unitarity condition is equivalent to the conditions

D3 (0)+D(0)+(g4lg)Dy (1)D;(1) +(golgo)P5 (0)D(0), (6.32)
D3 (1)+D(1)+(811g)D5 (1)D2(1) +(2olgo)P1 (0)D4(0), (6.3b)
DY (1)+D;(0)+(g:1g)Dy (1)D2(1) +(2olgo)D3 (0)D4(0), (6.3¢)
DY (0)+D;(1)+(g:1g)D5 (1)D;(1) +(golgo)D1 (0)D(0) (6.3d)

[coming from d(U *(f)U(t))=0] together with the analogous conditions coming
from d(U(t)U * (t)) = 0. We shall prove the above conclusions and this will imply the
unitarity.

First of all notice that (5.40), (5.49), and (5.50) implies the following algebraic
identities:

D,(0)Df(0)=D{ (1)Dy(1);  D,(0)D3(0)=D;(0)D,(0),

D,(1)D{(1)=D{ (0)D4(0);  D,(1)D;(1)=D7(1)D,(1),

D,(0)D;(1)=D{(1)D5(1);  D,(0)D{(1)=D5(0)D,(0),

D,(1)D;(0)=D1(0)D,(0);  D,(1)D{(0)=D3(1)D,(1),
we prove only the first identity, the others are similar.

D,(0)D{ (0)=D,(0)D, - Dg D, (0)

(6.4)

[« o)

) 0(81|81)”— “(8olgo)™ - (81181)% - (80l80)+

X(DoD,)"- (—DoD;) - [(DoD{) "1™

B Z:o(gllgl)”— *(80l80)™ * (81121)% - (80l80)% - Do (DoDy)" "™ D,

":f‘,n(gllgl)”_ “(80l80)™ * (81181)% * (80l80)% * (D1) ™ (DoD)"* ™ Dy

=Dy (1)D,(1). (6.5)

Therefore, if we prove (6.3a, b, c, d) then their analogues follows from (6.4). Now let
us show (6.3a). Recall [form (5.43)] that (g,|g,)=: a, hence by (5.40) and (5.50), one
has

a.D,(e)=D,e)—1. (6.6)
If (golgo)- =0, the left-hand side of (6.3a) is equal to
(81lg1)+D1 Dg +(g4lg1)-DoDy +(g4/g:1)D1 D; . (6.7)

Since Dy=D, D,=—D"; D} = —D, _,, (6.7) becomes
(81lg1)+DoD; +(g1lg1)-DoD; —(g11g1)DoD; =0. (6.8)
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If (golg0)- *+0, the left-hand side of (6.3a) is equal to
1 + 1 = +n+
—(DF () 1)+ - (D,(0)— 1) +(a, +a)D; D (D,1)D,
0 0

ao+ay
lao|2

+ (D, (0)—1)(D,0)—1) (6.9)

so it is equal to zero if and only if
(@o+ao)Dy (0)D,(0) —(aoDy(0) + do Dy (0)) + (a, +ay)lao|?
xD{D;S(1)D,(1)D;=0. (6.10)
Again using (5.40) we have the identity

D1)D,= ¥ diagDiDof'Dy= % a1aoDy(DoD:f'=D1Dy0)  (6.11)

which gives
D{DS(1)D,(1)D,=D;(0)D{ D,D,0)= —D, (0)D,D,D 0)
=—D;(0)D,(0)D,D; =D, (0)D,(0)DD* . (6.12)
Moreover, (5.40) implies that
do + ay

1+aqa,;DD* ~ 1+ay,a,DD*
_ (ap+ap)+ lao|*(a, +4a,)DD*

(1+aea;DD*)(1+3doa,DD™)
=D, (0)D,(0)(a, +a,)|ao|*DD* +ay+dy). (6.13)

aoD,(0)+a,D,; (0)=

From (6.12), (6.13) one immediately obtains (6.10). Similarly, one can prove
(6.3b, c,d), so U is unitary.
We sum up our results in the following theorem

Theorem (6.2). For each f,f',g80,8:€K, u,veH,, DeB(H,) satisfying (1.11),
1

Sa T; S,’ TlER, tgo’ if ”gO” -V ”gl ” -< W and <g03Stg1>=O’ Vtgos then the

low density limit

T/z2 T'/22
lim <u® W(z ) S,,fdu) ?, U,/,20®W<z ) S,,f’du) ¢> (6.14)
z=0 S/z2 S’/z2
exists, where

d ,

n U,=—iV()U,
and ‘

V(t)=i(D®A™(Sg0)A(Sig1)— D" ®A™(S:81)A(S:80))-
Moreover, the low density limit (6.14) is equal to
U@ W(ys, n®NY, U@ W(ys, m®f) ¥, (6.15)
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where U(t) is the solution of q.s.d.e. (6.1) on H,Q'(LAR)®(K,(-|-))), where

(i) ¥ is the vacuum of T'(LAR)®(K,(-|-)));

(ii) for each g,g'€e K, N((g,g') is the number process
N((g,8):=N(xp0,«®Ig><g);

(iii) D,(¢), D,(¢) are given by (5.49), (5.50), respectively.

Proof. Theorem (5.1) has shown that the low density limit (6.14) exists. Now, we

shall prove that it is equal to (6.15). Clearly, (6.15) is continuous in u, v € H, so, one
can write (6.15) into

<u, F@R)),
where F(t)e H,. Hence we have
Cu, F(0)) = Cu@ Wixgs, n® ), v@ Wiks,, 1@ f > =<u, G(0)>.  (6.16)

Moreover,

u FO)y = Cu, FO)) + ;) T Wl n® )Y,

[D1(8)®st(ge’ 81 —e) + D2(8)®st(gs’ ga)]v
Ws,, r®@f)PHOU(s). 6.17)
Apply Theorem (4.3) of [17] to (6.17), one obtains

Cu, F(t)y =<u, FO)) + i"ie > (et ) @S Vs 1o

x D3 (), F(s)) +(f 8:)%;s, 1(S)
X (81— of s, () <DT (), F(s))). (6.18)

Since (6.1) has unique solution, one knows that (6.18) has a unique solution.
Therefore,

<u’ F(t)> = <ua G(t)> ) t20.
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