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Abstract. We announce an isomorphism between a set of generically irrational
affϊne-Virasoro constructions on SO(n) and the unlabelled graphs of order n. On
the one hand, the conformal constructions are classified by the graphs, while,
conversely, a group-theoretic and conformal field-theoretic identification is
obtained for every graph of graph theory. High-level expansion provides a strong
argument that each construction is unitary down to some finite critical level.
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1. Introduction

Affme Lie algebra, or current algebra on Su was discovered independently in
mathematics [1] and physics [2]. The first representations [2] were constructed
with world-sheet fermions [2, 3] to implement the proposal of current-algebraic
spin and internal symmetry on the string [2]. Examples of affme-Sugawara
constructions [2, 4] and coset constructions [2, 4] were also given in the first string
era, as well as the vertex operator construction of fermions and SU(n)ι from
compactified spatial dimensions [5, 6]. The generalization of these constructions
[7-9] and their applications to the heterotic string [10] mark the beginning of the
present era. See [11-14] for further historical remarks on affine-Virasoro
constructions.

The general Virasoro construction on affme g [15-17]

T(L) = L°b*JJhl (1.1)

systematizes the direct approach used by Bardakdi and Halpern [2, 4] to obtain
the original affine-Sugawara and coset constructions. The resulting Virasoro
master equation [15-17] for the inverse inertia tensor Lab = Lba contains the affine-
Sugawara nests1 and many new conformal constructions g* on the currents of
affine g.

In particular, broad classes of exact solutions with unitary irrational central
charge on compact g have recently been announced [18]. The growing list
presently includes the unitary irrational constructions [18, 20-22]

((simply-laced gx)«)£

ί SU(3)*

SU(3)*ASlc= St/(3)*(1),Sl/(3)*(2),St/(3)*(3) (1.2)

1 The afflne-Sugawara nests [18] include the affine-Sugawara constructions [2, 4, 8], the coset
constructions [2, 4, 9] and the nested coset constructions [19]
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which are obtained in the BASIC D Dynkin D Maximal sequence of subansatze,
ordered according to increasing discrete symmetry. The value

= 2 (l - -L) ^c((SU(3)5)*(1)) = 2 (l - - L ) ^1.7439 (1.3)
V 1/61/

is the lowest unitary irrational central charge yet observed [22].
A very large number [18]

N(g) = 2*ω, nig) = dimg(dimg - 1 )/2 (1.4)

of solutions is expected generically on arbitrary level of any g, e. g. N(g)« \ billion
on SU(3\ so the exact constructions in Eq. (1.2) are only the first glimpse into a
generically-irrational affine-Virasoro universe of immense new structure.

A high-level (semi-classical) expansion of the master equation [22] has been
developed which marks a bifurcation in the study of new conformal constructions
on affine g: In one direction, the expansion is capable in principle of seeing all
solutions whose high-level behavior is tf^fe"1), which includes all high-fc smooth
unitary solutions [18]. Following [23], we refer to these Θ(k~ι) constructions as
the class of high-k smooth constructions on g. In another direction, the classical
limit of the master equation is a cornerstone of the generic affine-Virasoro action
[23], which begins the irrational conformal field theory of the generic high-fe
smooth construction.

The purpose of this paper is the detailed study, primarily by high-level
expansion, of a new ansatz

SΌ(n)diag: the diagonal ansatz on SO(ή)

whose set of high-fe smooth constructions is generically irrational. High-level
analysis provides a strong argument that each of these constructions is unitary
down to some finite critical level, in accord with our experience in [18, 20-22] and
the additional exact solutions of this paper.

Our central result is that the physically distinct [20, 22] high-fc smooth
constructions in SΌ(n)diag are in one-to-one correspondence with the unlabelled
graphs of graph theory [24,25]:

each distinct (high-fe smooth) affine-Virasoro construction in SO(n)diag

<->each unlabelled graph of order n. (1.5)

This means, on the one hand, that the high-fe smooth constructions in SO(w)diag are
classified by the set of all graphs. Conversely, a group-theoretic and conformal
field-theoretic identification is obtained for every graph of graph theory, which
may be interesting in mathematics.

The isomorphism begins a cross-fertilization of the subjects:

1. Graph theory -> conformal field theory
Beyond taxonomy, graph theory is important in counting constructions and the
analysis of residual automorphisms [20, 22], symmetries, consistent subansatze
and exact solutions.
For example, the asymptotic results

N(SO(ή)) = &(en4(ln 2 ) / 8 ) , (1.6a)

N(SO(n)diag = graphs of order n) = Θ(en2(ln 2 ) / 2 ) , (1.6b)

N(affine-Sugawara nests in SO(n)diag) ^ Θ{e2n l n 2 ) (1.6c)
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are seen at large n for the total number of constructions on SO(ή), the number of
unlabelled graphs, and the number of affine-Sugawara nests in SO(n)diag. The
asymptotic forms (1.6b, c) show a dramatic dominance of new constructions over
old constructions, so that

the generic graph in SO(nP l)d i a g is a new construction. (1.7)

It also follows from (1.6a, b) that the full space of solutions on SO(ή) is a structure
which is much larger than graph theory.
Graph theory was particularly helpful in finding the new self-K-conjugαte
constructions, which are the self-complementary graphs [24] of graph theory.
These constructions live only on S0(4n) and SO(4n +1) with hαlf-Sugαwαrα central
charge, whose values raise the question of new rational central charges.
Graph symmetry also determines a hierarchy of consistent subansatze in SO(n)diag.
Beginning with the smallest subansatze, we report the following exact unitary
irrational constructions,

SO(2n+l)*[d,6]1, n^3

The names of these constructions include the size of the smallest subansatz in
which their graphs appear, and we remark that the constructions on SO(2n +1) are
the first unitary irrational constructions on non-simply-laced g. The maximal-
symmetric construction SO(2n)^ [18] also occurs as the most symmetric set of
graphs in #

2. Conformal field theory -• graph theory
Translating from conformal field theory, we find a number of equivalent categories
in graph theory,

• affine-Sugawara construction = complete graph
• X-conjugate construction = complement of a graph
• coset construction = complete iV-partite graph

and a number of categories which are apparently new in graph theory,

the affine-Sugawara nested graphs
the graphs G* of the new constructions SO(ή)*iag

the affine-Virasoro nested graphs
the irreducible and new irreducible graphs
the broken N = 2 affine-Sugawara nested graphs.

In general, the names of these graphs are derived from their corresponding
conformal constructions. The irreducible graphs are particularly important
because every graph can be uniquely constructed from the irreducible graphs by
affine-Virasoro nesting [18].
We have also constructed a graph function v(G), the novelty number of G, which
appears to act as an order parameter for the graphs G* of new constructions.
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2. General Virasoro Construction on Affine g

2.1. The Virasoro Master Equation. The general affine-Virasoro construction is
[15,17]

T(L) = Lab*JaJb*, [L<m>,L<">]=(m-n)L<m+">+ ±m(m*-l)δm+n>0 (2.1)

with symmetric normal ordering Tah = %JaJb% = Tba [15] on the currents Ja of affine
g[l,2]

UϊrUPl = itiJΓ+n)+mGabK+n,o, (2-2)
where f*b and Gab are respectively the structure constants and general Killing
metric of g. Analysis of the system (2.1-2) results in the Virasoro master equation
and central charge [15,17]

for the inverse inertia tensor Lab = Lba of the Virasoro operator (2.1). The
construction is completely general since g is not necessarily compact or semi-
simple. In particular, to obtain level Xj = 2kj/ψj of gj in g = (&& with dual Coxeter
number Kj = Qi/ψj, take

Gab=θAώ, facfu = - ΘiQiηL, (2.4)

where r\ι

ab is a Killing metric of g7. The master equation has been identified in [16]
as an Einstein-like system on the group manifold: The central charge of the general
construction is c = dimg — 4R, where R is the curvature scalar.

We remark on some general properties of the master equation which will be
useful in the analysis below:

1. The affine-Sugawara construction [2,4, 8] Lg is

for arbitrary level of any g, and similarly for Lh when hCg.

2. K-conjugation covariance [2,4,9,15]. When Ljs a solution of the master
equation on g, then so is the X-conjugate partner L of L,

Lab = Lf-Lab, c = cg-c, (2.6)

while the corresponding constructions T(L) and T(L) form a commuting pair of
Virasoro operators.

3. Affine-Virasoro nests [18]. Repeated embedding by K-conjugation produces
the affine-Virasoro nests. For example, the nests on gDh'jh are

Lh or Lt'.{h or h*),

Lh,-{Lh or L?):Λ'/(Λ or /**), (2.7)

Lg-Lh, + (Lh or LtYφ'lih or /**),
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where Lh is the affϊne-Sugawara construction on h and L* is any new construction
/z# on h. According to Eq. (2.6), the central charges of these nests are (ch or c*),
ch, — (ch or c*) and cg — ch, + (ch or c*) respectively. The special case of affine-
Sugawara nests is realized by restriction to affme-Sugawara constructions at the
bottom of the nests. Irreducible constructions [18] are reviewed in Sect. 2.2.

4. Counting. The master equation (2.3) is a system of dimg(dimg +1)/2 coupled
quadratic equations on an equal number of unknowns Lab = Lba, so that a very
large number [18]

N(g) = 2"^, n(g) = dimg(dimg -1)/2 (2.8)

of solutions is expected generically on arbitrary level of affme g, after gauge fixing
[22] the inner automorphisms of g. As in general relativity, new solutions of the
master equation have generally been obtained with hierarchies of consistent
ansatze and subansatze [18, 20, 22], beginning with the basic ansatz on simply-
laced g [18].

5. Radial and angular variables. Unitarity on positive integer level of compact
affine g requires [9,18] τnh t

in any Cartesian basis, so all unitary solutions are naturally included in the

eigenbasis [22] L - = Σ Ω ^ A C (2.10)
c

with AΩ = real the radial variables and ΩeS0(dimg) the angular variables. This
eigenbasis is convenient for level x of simple compact g with

Gab-kδab, x = 2k/ψ\ (2.11)

since the master equation takes the form

χ H 2fc/l) = V λ (2λ λ)f2 (2 12a)
cd

0=Σ Kik + λb- λd)fcdjcdb, a<b, (2.12b)
cd

Lc = fa't'CΏ
a'aΩb'bΩc'c, (2.12c)

c = 2k^λa (2.12d)
a

with all Ω dependence in the SO(dimg)-twisted structure constants fabc of g.

6. High-level expansion. A high-level (semi-classical) expansion of the system
(2.12) was developed in [22], which is capable in principle of seeing all high-/c
smooth (Θ(k~ *)) solutions of the master equation on any manifold. The results at
leading order are [22]

1 1
Tab ^ _ Tab _ _ γ Qac Qbc τ(0) p ^ p _ y n Πi r̂,\
Lu — (0) — i LJ ̂ ^iOr^iO^c 5 c — c 0 — Lu ua 5 \έ,.± -J<X)

K K c a

λ(

a

0)=-^, θa = 0 or 1, α = l,...,dimg, (2.13b)

0 = Σ θ«(ββ + θfc - θd) / ^ / c S ' , a < b, (2.13c)
Cd

f(0)_ f Qa'aQb'bQc'c sj 1^r\\
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so that, in particular, all high-fc smooth constructions approach integer central
charges c0 at high level. Values of the high-fc twist Ω(0) are determined by the
quantization condition (2.13c) (or higher-order analogues) for each choice {θa} of
the radial variables. The high-level expansion was applied to see all the high-fe
smooth solutions on SU(3) in the basic ansatz, and the expansion also provided
structural clues which were sufficient to obtain the exact form of all the high-fe
smooth unitary irrational constructions SU(3)£ASIC in the ansatz [22,21].

The high-level expansion was simple for SU(3)BASIC because the angular
variable in this case [22],

is a single angle of rotation φ on the Cartan subalgebra, so that the quantization
condition (2.13c) is a one dimensional problem. More generally, the quantization
condition (2.13c) on the angular variables will be progressively more difficult to
solve on larger groups.

One hope for simplification of the master equation and its high-level expansion
is the existence of small consistent ansatze, such as the metric ansatz

Lab = i(λa + λb)ηa\ (2.15)

where ηab is the Killing metric on compact g. The consistency of a metric ansatz is
generally basis dependent, since the form (2.15) is not covariant. We restrict our
discussion here to the case of Cartesian coordinates, where the metric ansatz
becomes a diagonal ansatz

Lab=λaδab,

λa{\-2kλa)=yιiλa-λd)fcl,

c = 2kTλa,

(2.16a)

(2.16b)

(2.16c)

(2.16d)

whose consistency condition (2.16c) guarantees that the off-diagonal master
equation (2.12b) is satisfied identically for Ωab = δab. The consistency condition
means that any two generators of g commute to no more than a single generator,
which is not true for SU(3) in, say, the Gell-Mann basis. As we note in the following
section, however, the consistency condition is satisfied in the physicist's standard
Cartesian basis for SO(ή). Metric ansatze on other manifolds are under
investigation.

2.2. The Diagonal Ansatz on SO(ri). We label the Cartesian generators Jίf of
SO(n ̂  3) by the vector indices 1 ̂  i <j :g n, so that a = (i,j) = 1,..., dimg = n(n —l)/2.
The Cartesian structure constants and Killing metric are

(2.17a)

(2.17b)
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where ψ is the highest root of SO(n) and A[rBs] = ΛrBs - AsBr. The structure
constants in this basis satisfy the consistency condition (2.16c) in the form

fulkif%us = 0> V ( U ) and (M) (2.18)

because (r, s) is uniquely determined for each fixed choice (ij) and (k, I) when fff;kl is
nonvanishing.

It follows that the diagonal ansatz on SO(n\

, ^ ^ , ()4ΣW1, (2.19)
Ψ Ψ ί<J

is a consistent ansatz. The radial variables are λij = Lij/ψ2, and the simplest form of
the ansatz is obtained with the symmetrization convention

L l 7 ^L,, , iΦj; Lu = 0. (2.20)

The master equation for SO(n)diag,

{ 2 2 1 )
c = χ Σ Lij>

follows with Eqs. (2.17) and (2.19-20) from the radial equation (2.16).
The following properties of SO(n)diag will be useful below:

1. Counting. The master equation (2.21) in the diagonal ansatz shows dimS0(n)

= quadratic equations on an equal number of unknowns, so that

g) = 2{"2) (2.22)

solutions are expected generically for any level of SO(n)diag.

2. Unitarity. Unitary solutions on positive integer level of SO(n)diΆg are recognized
when

(2.23)

since the Cartesian currents satisfy J\J)f = J\jm).

3. ^-conjugation covariance. According to Eq. (2.6), the K-conjugate construc-
tion Lip

is obtained when Ltj is a construction in SO(ή)diag.

4. Subgroups, cosets and affine-Sugawara nests. The diagonal ansatz on SO(n)
contains only those subgroups

h(SO(n)diag) = SO(mi) x S0(m2) x ... x S0(mN)
N yl.lj)

Σ m—n,
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whose generators are a subset of the generators Jtj of SO(ή), and not linear
combinations of these generators. Any SO(1) factor in (2.25) is the trivial
construction L(SO(1)) = 0. Moreover, each factor S0{m^ occurs in its own diagonal
subansatz, S0{m^άiΛW> so further subgroup nesting follows the same pattern 2 within
each S0(mi). Note that any factor SO(3) is embedded at level τx = 2x in SO(n ^ 4)x,
while S0(mt^4) is always a regular embedding.

We define the fundamental affine-Sugawara nests Jίn in SO(ή)diag as those
obtained by subgroup nesting with SO(n) at the top. Moreover, we will say that a
fundamental nest JίJ<d) has depth d when it contains d layers of subgroup nesting.
The first three depths are

d = l:SO(ή),

SO(ή)
d = 2:

SO(ή)

SOim,) SO{m2)

Λ ( S O ( m 2 ) d i a g ) "••

SO(ή)

S0(m2) SO(mN)

W MS0(m2)diag) -'
and so on for deeper nests. The bottom of each nest is the collection of
constructions at the bottom of all the nesting columns. The fundamental affine-
Sugawara nests JίJ^d) and their X-conjugate nests Jfn{d) on SO(n)3 form the set of
all affine-Sugawara nests in SO(n)diag, which are all known rational constructions
in the ansatz.

5. Affine-Virasoro nests [18]. The more general fundamental affine-Virasoro nests
on g are those constructed with g at the top, allowing general constructions on
smaller manifolds at the bottom of each nest, including new constructions h*,hCg.
Together, the fundamental affine-Virasoro nests and their K-conjugate nests form
the set of all affine-Virasoro nests, which contains all affine-Virasoro constructions
on g. Examples of fundamental affine-Virasoro nests in SO(n)diaLg include

SO(n) SO(n) SO(n)

S0(m < n)# ' S0(m)*xS0{n-m)' S0(m < n)

S0(p<m)*

and the fundamental affine-Sugawara nests in Eq. (2.26).

2 For example, SO(2ή)/{SO(n) x SO(ή))/SO(ή)v, with SO(n)y the diagonal subgroup of SO(n)
x SO(n), is excluded because this nest requires linear combinations of the generators Jtj

3 The X-conjugate nests of the fundamental affine-Sugawara nests in Eq. (2.26) are obtained by
removing SO(ή) from the top of each construction. More generally, the K-conjugate nests Jfn(d) on
SO(ή) are products of fundamental affine-Sugawara nests on smaller manifolds
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6. Irreducible constructions [18]. The reducible constructions on g are the
fundamental affϊne-Virasoro nests of depth d ̂  2 and their X-conjugates on g, all of
which involve subconstructions on smaller manifolds. The irreducible construc-
tions on g are therefore the affϊne-Sugawara construction on g and any new
irreducible constructions g#, g/g* which contain no subconstructions on smaller
manifolds. Note that the new irreducible constructions are such that both g* and
g/g* are non-trivial irreducible constructions, whereas, the single "old" irreducible
affine-Sugawara construction is K-conjugate to the trivial construction L=0 on g.
The maximal-symmetric constructions [18]

S0(2n)*, SO(2n)/SO(2n)* (2.28)

are examples of known irreducible constructions which are also found in
SO(2n)diag.

Irreducible constructions are important because affme-Virasoro space may be
organized as the set of fundamental affme-Virasoro nests with irreducible
constructions at the bottom of each nest, plus the iC-conjugates of these
constructions. Moreover, since all irreducible constructions nest identically into
larger groups, the irreducible constructions provide a fundamental measure of old
versus new constructions, which, loosely speaking, mods out by the affine-
Virasoro nesting.

7. SO(n) automorphisms and vector-index relabelling. After gauge-fixing the
master equation (or its consistent ansatze), there generally remains a discrete set of
residual level-independent automorphisms [20,22] under which the master
equation transforms covariantly. The residual automorphisms divide the so-
lutions L into physically equivalent sets of solutions called automorphism cycles
whose members have the same central charge and conformal weights. We refer
below to the automorphism class of any solution L as auto L.

In the case of S0(rc)diag, any relabelling of the vector indices {ί} of a solution Ltj is
also a solution, and it is easily checked that the relabellings are inner automorphic
in SO(n). A solution L is said to have a symmetry when one or more inner
automorphisms act trivially on L. It follows that

auto L= {non-trivial relabellings of vector indices in {L^ }} (2.29)

and dim(autoL):gft!, the equality being attained when the solution has no
symmetry. A representative of each automorphism cycle is obtained by choosing a
particular labelling in each auto L.

8. Conformal weights. The Lfl6-broken conformal weights of the integrable
representation Ta are the eigenvalues of A =LabTaTb [12,18]. The result

l (2.30)

is obtained for the n conformal weights A{ of the vector representation (T^u

= i(δiIδjJ-δjIδu)VwΓβ in SO(n)diag.

2.3. High-Level Expansion and Unitarity. We discuss the high-level expansion
[22]

L y = i Σ Itf*-", c= Σ cpx~" (2.31)
X p=0 p=0



Graph Theory 73

of the master equation (2.21) in the diagonal ansatz. The zeroth order solution is

tiV = θi}, 0y = O or 1, ί^iφj^n (2.32)

and the moments of order p ̂  1 are unambiguously computed from the recursion
relation

(.4=1

+ * Σ \PΣ{L(?>{Lγι-
q-ί) + L%-"-^)-LfLγj-''-^ (2.33a)

cp= Σ Ifl (2.33b)

The results
Ω Γ(l) I

U,= f + φ +&(*-% c= Σ θtJ+ - Σ

=-τ Σ
l*i,j

are obtained through order p = l.
Important features of the high-level expansion in this case are:

1. Each high-k smooth solution in SO(n)diag may be unambiguously labelled by the
values {0O } of its zeroth order radial variables,

^ { β y } M 0 y } . (2.35)
(")This distinguishes 2 2 high-/c smooth constructions in <SΌ(n)diag, in agreement with

the generic counting in (2.22). <SΌ(n)diag may also contain sporadic solutions at
particular levels, which are inaccessible to high-level analysis (see Appendix B).

2. The moments L^ are real to all orders, so that, according to Eq. (2.23) each
high-fe smooth construction in SO(n)diag is "unitary to all orders." More precisely,
the reality of L^ guarantees unitarity within the radius of convergence of the high-
level expansion. Since there is no reason to suspect a zero radius of convergence
[18, 20-22], we conjecture that all the high-fc smooth solutions in S0(n)diag are
unitary down to some finite critical level. The conjecture is true for the exact new
constructions in Sect. 7, whose critical levels, in accord with [18, 21,22], are quite
low.

3. Graph Theory and SO(n)diΛg

3.1. Graph Rules. According to Eq. (2.35), it is natural to represent each high-fc
smooth construction L({0fj }) in SΌ(n)diag by a labelled graph 4 G,

each high-A; smooth solution in SO(«)diag<->each labelled graph Gn of order n

~Gn (3.1)

4 A labelled graph of order n is a collection of n labelled points (vertices) and a set of undirected
lines (edges) which connect distinct points such that no more than one line connects any two

points. The number T2' of (high-/c smooth) solutions in SO(w)diag is equal to the number of labelled
graphs of order n [25]
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whose set of points V(G) = {ί} and (undirected) lines E(G) = {(ij)} is obtained by the
graph rules:

SO(ή) vector indices i<-+ points / in graph G

# l 7 = I n l i n e between points / and j in G. (3.2)

An immediate consequence is the high-level form

T(L(G))~-^ Σ W ί (3.3)
Xψ (ij)eE(G)

of the Virasoro operator of each high-/c smooth construction L(G) in SO(ή)diag.
In our discussion of graph theory below, the qualifier "high-fc smooth" is

implicitly assumed when we refer to constructions in SO(n)diag.

3.2. Affine-Virαsoro Constructions as Graph Functions. Each affine-Virasoro
construction Lab in SO(n)diag is computable in principle, through the master
equation, as a graph function Lαb(G) on its graph G. As an example, we have
computed the first two moments of the central charge c(G\

W (3.4a)

0 (3.4b)

for any graph G, using Eqs. (2.31) and (2.34). Here dt(G) is the degree5 of point i in G,
and f 3 is the number of triangles in G. The inequality in (3.4b) follows from the
general result that the asymptotic value c 0 of the central charge is approached from
below [22]. Similarly, the high-level Lflb(G)-broken conformal weights of the vector
representation

^ ψ *=!,..,» (3.5)

are identified with (2.30) as proportional to the degrees of G.
The leading terms of the inverse inertia tensor are

T (n=ίx+xτ((di(G) + dj(G)2) + l(iJ)) + Θ(χ-3), G has a line (ij)
ijK } \θ-χ-2d(ij) + Θ(x~3), G has no line (ij)'

(3.6)

where l(ij) is the number of points l + ij in G which are connected to both of the
points / and j . More generally, the exact result

Lij(G) = 0 when G has no path of any length from i to j (3.7)

is obtained to all orders from the recursion relation (2.33a).
The result (3.7) implies a physical characterization of the disconnected graphs:

A graph is connected if each distinct pair of points is connected by some path of
lines, and disconnected otherwise. Examples are given in Fig. 1. Each disconnected
graph is the union G 1 u G 2 u . . . u G J V (see Fig. 1) of some set of connected graphs
{GJ. It follows from the result (3.7) that the disconnected graphs are reducible
constructions (see Sect. 2.2) with commuting Virasoro operators T(L(Gi)).

5 The degree d^G) = £ θik of point i is the number of lines attached to the point [25]
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• •
a

trivial graph
(L=0on SO(1)) b ,

"I .
•

Fig. 1. a Connected graphs; b Disconnected graphs

3.3. Automorphisms and Isomorphisms. The automorphism cycles of S0(n)diag are
easily understood in graph theory. Two graphs are isomorphic when they differ by
a relabelling of their points. The particular relabellings of a graph G which preserve
the same set of lines {9tj=i} form a group auto G of (graph) automorphisms (or
trivial isomorphisms) of the graph. Physically, auto G is the symmetry group of the
graph G. It follows from our discussion in Sect. 2.2 that

SO(ri) automorphisms = graph isomorphisms, (3.8a)

auto L(G) = {non-trivial isomorphisms of G}, (3.8b)

1 representative of auto L(G)<->1 unlabelled graph G, (3.8c)

and, more physically, that

each physically distinct affine-Virasoro construction in S0(n)diag

<->each unlabelled graph of order n. (3.9)

This one-to-one correspondence describes an immense structure in SO(n)diag,
which is itself much smaller than the space of all solutions on SO(ή).

It also follows from (3.8b) that the dimension of the SO(ή) automorphism cycle
of a construction L(Gn) in S0(n)diag is equal to the number of non-trivial
isomorphisms of Gπ, so that

(3.10)

where S(G) = dim(autoG) is the symmetry factor6 of the graph. The related, but
somewhat more technical conclusion

symmetry group of L(G) = auto G (3.11)

will be established in Sect. 6.
We employ only unlabelled graphs below, unless stated otherwise, as represen-

tatives of the physically distinct conformal field theories.

3.4. Affine-Sugawara Nested Graphs. In this section, we identify the graphs of the
affine-Sugawara nests in SO(n)diag.

1. Affine-Sugawara graphs. These are the graphs of order w^l with all possible
lines

Kn = complete graph on n points

= affine-Sugawara construction on SO(ή) (3.12)

6 The basic composition law for symmetry factors is S ^ uG 2) = ζ5(G1)S(G2), where ζ = 2 when
G1 = G2 and ζ = 1 otherwise
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K2=SO(2) K3!=SO(3) K4=SO(4) K5=SO(5) K6=SO(6)

Fig. 2. Complete graphs = affine-Sugawara constructions = fundamental affine-Sugawara nests of
depth 1

shown for 1 ̂  n ̂  6 in Fig. 2. The affine-Sugawara graphs are the most symmetric
connected graphs, with auto Kn = Sn, dim(autoXJ = tt! and dim (auto L(Kn))=l.
The composition law for affine-Sugawara graphs

G(SO(n)) = Kn, G(SO(m) x SO(n)) = KmuKn (3.13)

will be useful below.

2. X-conjugate graphs. The high-level form of X-conjugation in SO(n)diag

-co (3.14)

is obtained from (2.24). For each graph Gn of order n, the map (3.14) defines a
X-conjugate graph 7 Gn on SO(n\

Gn: V(Gn) = V(Gn), E(Gn) = E(Kn) - E(Gn), (3.15)

which represents the X-conjugate theory

j / P^ \__7 ' ((~* \ T ( Ίf \ T ((^ \ C\ \ fΛ

of the theory L(Gn). The degrees of Gn satisfy ^(GJ = n -1 -dt{Gn).
As illustrated in Fig. 3, the X-conjugate graph Gn is obtained on the points of Gn

by removing the lines of Gn from the affine-Sugawara graph Kn. It follows that Kn is
the totally disconnected graph of order n, such that L(Kn) = L(Kn) = 0 is the trivial
construction on SO(n), and Kx =K1 is the trivial graph. It is also clear that

auto G = auto G,

dim (auto L(G)) = dim (auto L(G))

since X-conjugation is a 1-1 map.

7 The X-conjugate graph G of a graph G is called G = G, the complement of G, in the literature of
graph theory

G4 =

Fig. 3. K-conjugate graphs on SO(3) and SO(4)
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3. Subgroup and fundamental coset graphs. The subgroup graphs in SO(n)diag

(3.18)
i=ί

are obtained from h(SO(n)diag) in (2.25) with the composition law (3.13). The
subgroup graphs are disconnected graphs of order n because of the range
restrictions on {mj.

The fundamental coset graphs of the fundamental coset constructions
SO(n)/h(SO(ή)diag) are obtained by ^-conjugation of the subgroup graphs in (3.18).
A useful identity is

(3.19)

where the join Gx + G2 of two graphs is defined by connecting every point in Gx to
every point in G2. It follows that the fundamental coset graphs of SΌ(n)diag are the
connected graphs

G(SO(n)/h(SO(ή)diag)) = G(h(SO(n)diag)) = Km + Km2 + . . . + KmN. (3.20)

In graph theory, the complete N-partite graphs are obtained in this way as the join
of N ̂  2 totally disconnected graphs. It follows that the affine-Sugawara graphs Kn

are the complete iV-partite graphs of order n = N, and that

fundamental coset graphs in SO(w)diag

= complete iV-partite graphs of order n>N. (3.21)

Figure 4 contains a representation of general complete bipartite (2-partite) and
3-partite graphs. In these representations, each circle, called a lacuna of the graph,
contains one of the totally disconnected graphs Km. in (3.20). The lines of the
graphs connect all points in distinct lacunae.

4. Affine-Sugawara nested graphs. The fundamental affine-Sugawara nested
graphs G(J^n(d)) of depth d are the graphs of the fundamental affine-Sugawara
nests Jίn(d). The affine-Sugawara graphs in Fig. 2 and the fundamental coset
graphs in Fig. 4 are the fundamental affine-Sugawara nested graphs of depth 1 and
2 respectively.

Physically, the fundamental coset graphs in Fig. 4 are formed by removal (θ) of
subgroup graphs from the complete affine-Sugawara graph. More generally, the
fundamental nested graphs at depth d are formed by removal of fundamental

ί T/
Φ

V i\ j

7 \• 1

•

1 " /

Fig. 4. Complete iV-partite graphs=fundamental coset constructions=fundamental affine-
Sugawara nests of depth 2
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nested graphs of depth d — 1 on smaller manifolds from the affine-Sugawara graph:

Sugawara
G(nest of depth d) =

nest of depth d — 1 /

= G(Sugawara)ΘG(nest of depth d-\). (3.22)

Alternately, we may think of the nested graphs at depth d as formed by insertion
( θ θ ) of fundamental nested graphs of depth ά — 2 into the fundamental coset
graphs

G(nest of depth d) = G

Sugawara

subgroups

nest of depth d — 2 j

= G(cosets)ΘΘG(nest of depth d-2)

since the nest of depth d — 2 is itself removed from the subgroups.
A precise definition of this recursive structure is

(3.23)

fundamental affine-Sugawara nested graphs of depth d ̂  3

= fundamental coset graphs with insertion of depth d — 2

graphs built by insertion of at least one fundamental affine-

Sugawara nested graph of depth d — 2, and any number

of affine-Sugawara nested graphs of depth ^d — 2,

in the lacunae of complete N-partite graphs. (3.24)

Fig. 5. a) Fundamental coset graphs with depth 1 insertion = fundamental affine-Sugawara nests of
depth 3 b) Fundamental coset graphs with depth 2 insertion = fundamental affine-Sugawara nests
of depth 4; c) Fundamental coset graphs with depth d — 2 insertion = fundamental affine-
Sugawara nests of depth d
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d«1 d*2 d-3

Fig. 6. Complementary representation of fundamental afϊine-Sugawara nested graphs

Insertion of a nested graph in a lacuna of the same order is not allowed. Figure 5a
shows two fundamental afϊϊne-Sugawara nested graphs of depth 3, obtained from
the coset graphs of Fig. 4 by insertion of depth one affine-Sugawara graphs in their
lacunae. Figure 5b is a fundamental nested graph of depth 4, obtained from a coset
graph by inserting another depth 2 coset graph in one of its lacunae8. The
graphical form of the recursive definition (3.24) is given in Fig. 5c.

The last form of the definition (3.24) and the schematic representation of the
fundamental affine-Sugawara nested graphs in Figs. 4 and 5 are designed to exhibit
the JV-partite structure of the nests, since we will see below that the N = 2 nests play
a special role. The complementary representation in Fig. 6 shows the nested
graphs as an alternating subtraction (open areas) or addition (shaded areas) of the
lines of affine-Sugawara graphs. The bottom of each nest is the set of innermost
open and shaded areas. For example, the bottom of the depth-two nest consists of
two open areas, which records that two smaller affine-Sugawara graphs have been
removed. The open spaces of this representation are not the lacunae of complete
iV-partite graphs, however, since the spaces do not contain all the points of the
graphs.

The fundamental affine-Sugawara nested graphs G(Λ (̂d)) jure always connec-
ted graphs of order n, while the K-conjugate nested graphs G(jVn(d)) are always
disconnected 9 graphs of order n. Together, they form the set of affine-Sugawara
nested graphs, which contains all known rational constructions in SΌ(n)diag.

3.5. Affine-Virasoro Nested Graphs. The more general fundamental affine-
Virasoro nested graphs are the graphs of the fundamental affine-Virasoro nests,
defined in Sect. 2.2. These graphs retain the subgroup nesting structure in Fig. 6 of
the fundamental affine-Sugawara nested graphs, now allowing general graphs at
the bottom of the nest. Together, the fundamental affine-Virasoro nested graphs
and their K-conjugate graphs form the set of all affine-Virasoro nested graphs,
which includes all graphs.

3.6. Irreducible Graphs. A graph G is called (ir)reducible if L(G) is an (ir)reducible
construction in SO(ή)diag (see Sect. 2.2). (Ir)reducible graphs are characterized as
follows.

Disconnected graphs are always the unions of graphs on smaller manifolds, so
it follows from our discussion in Sect. 2.2 that disconnected graphs are always
reducible graphs, and hence that irreducible graphs are always connected. We also
know from Sect. 2.2 that a) the affine-Sugawara graph is the only irreducible affine-

8 Algebraically, the first four nest depths show the alternating pattern: G(Jr

n{\)) = Kw G(JVJ2))
= { + ft}, G(Λφ)) = {+ uK} and G(JTn(A)) = { + u + £}, where the^order of the K's and £'s may
vary from 1 to n — 1. More generally, the d-+d +1 operations K^> + K(d odd) and K^> u K (d even)
generate the algebraic form of the fundamental nests at arbitrary depth
9 The K-conjugate graphs G(jVn(d)) = G( Jfn(d)) of the fundamental affine-Sugawara nested graphs
G(jVn(d)) are unions of fundamental affine-Sugawara nested graphs of lower order
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irreducible^: ;κ
c i b l e ^

n< irreducίble<

'--.^

reducible ^- ^ - ^ ^
all graphs ^ **»J; *|κ

reducible * Kn ^---*:

disconnected = reducible

Fig. 7. Irreducible and reducible graphs in graph space. The dashed lines indicate the action of
X-conjugation on the graphs of each category

Sugawara nested graph on each manifold and b) the new irreducible graphs G are
those for which both G and G are irreducible, and hence connected.

This establishes the characterization

G is a new irreducible graph iff G and G are both non-trivial connected graphs

(3.25)

since K1 is the only irreducible graph on SO{\). The characterization (3.25) is a
useful tool in the identification of new constructions below. Figure 7 displays a
more complete map of irreducible and reducible graphs in graph space.

Irreducible graphs are important because graph space may be organized as
the set of fundamental affine-Virasoro nested graphs with irreducible graphs at
the bottom of each nest, plus the X-conjugates of these graphs (see Sect. 2.2).

3.7. Counting Old and New Constructions. We consider the following basic
numbers

gn = number of all graphs of order n

Cn = number of connected graphs of order n

— ί n u m ber of connected (fundamental)
" ~ {affine-Sugawara nested graphs of order n.

The first two numbers are known in graph theory [24], and the recursion relation

Π n )> c(AS)2 =
i = 2 \ P(l) J

P(i)*θ

{p(i)^0} are the partitions of n= £ ip(i) (3.27)
i = 2

is derived in Appendix A. Other numbers of interest10

Dn = number of disconnected graphs of order n

g(ΛS)n = number of affine-Sugawara nested graphs of order n

= 2C(ΛS)n,

1 0 The connected (fundamental) affine-Sugawara nested graphs G(JΓn(d)) are in 1-1 corre-
spondence with the disconnected affine-Sugawara nested graphs G(jVn{d)) by X-conjugation (see
Sect. 3.4)
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Table 1. Connected constructions

Manifold

SO(n)diag

SO(1)
50(2)
50(3)
50(4)
50(5)
50(6)
50(7)
50(8)
50(9)
50(10)

All
constructions

gn

1
2
4

11
34

156
1,044

12,346
274,668

12,005,168

in 50(w)diag

Connected
constructions

cn

1
1
2
6

21
112
853

11,117
261,080

11,716,571

Fundamental
affine-Sugawara
nests
C(AS)n

1
1
2
5

12
33
90

261
766

2,312

81

New
connected
constructions

cΐ
0
0
0
1
9

79
763

10,856
260,314

11,714,259

D(AS)n = number of disconnected affine-Sugawara nested graphs of order n

= C(AS)n,

C* = number of new connected constructions of order n

= Cn-C(AS)n (3.28)

are expressed in terms of the basic numbers (3.26). The values of gn, Cn, C(AS)n,
and C* are given for 1 ̂ n ^ 10 in Table 1.

The results of Table 1 show a dramatic dominance of connected new
constructions over connected known constructions as n increases. Similar
behavior is observed for g* =gn — g(AS)n and g(AS)n when disconnected graphs
are included. The asymptotic results* x

(3.29a)

(3.29b)

n 2 ) / 2 ) , SO(n>ί)

C(AS)n = g(AS)J2 ^ Θ(e2nl"2), S0(n > 1)

are a quantitative statement of the dominance of new over old constructions in
S0(rc)diag. The asymptotic bound (3.29b) on the number of fundamental affine-
Sugawara nests in <SΌ(n)diag is obtained in Appendix A. The corresponding
characterization

the generic graph in SO(n$>l)diag is a new connected construction (3.30)

follows immediately from (3.29).
A fundamental measure of new and old constructions is provided by the

irreducible graphs, whose definition, loosely speaking, mods out by the affine-
Virasoro nesting (see Sects. 2.2 and 3.6). These graphs are counted as follows. At
order n, define irπ, ir (AS)n9 and ir* as the total number of irreducible graphs and
the number of old and new irreducible graphs respectively. Then we know that

ir (AS)n = (3.31)

1 1 It is known in graph theory that the generic large-order graph is connected, and the asymptotic
estimate Cn~g in (3.29a) is given in [24]; The exponential order of gn is the exponential order of

the number 2 ' of solutions in 5O(n)diag, since auto L(G) is combinatoric and hence factorial
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Table 2. Irreducible constructions in SO(n)dk

M. B. Halpern and N. A. Obers

Manifold

SO(n)diag

SO(1)
S0(2)
S0(3)
S0(4)
S0(5)
S0{6)
S0(7)
S0(8)
S0(9)
50(10)

Total
irreducible
constructions
K

1
1
1
2
9

69
663

9,889
247,493

11,427,975

Irreducible
affine-Sugawara
nests
ir(AS)n

1
1
1
1
1
1
1
1
1
1

New
irreducible
constructions
irί

0
0
0
1
8

68
662

9,888
247,492

11,427,974

since the affine-Sugawara graph Kn is the only irreducible affine-Sugawara nested
graph on SO(n). It follows from Fig. 7 that

irB = C n -C(red) n , (3.32a)

C(red)n = Dn-ί=gn-Cn-l, (3.32b)

where C(red)π is the number of connected reducible graphs in SO(n)diag. The last
form in (3.32b) follows with Dn = gn — Cn. The result for new irreducible graphs 1 2

(3.33)iiϊ=2Cn-

is then obtained from Eqs. (3.31) and (3.32).
Numerical values of irn, ir(AS)n, and ir* are given for 1 ̂ rc^ lO in Table 2,

which shows that the dominance of new over old constructions in SO(n)diag is
even more dramatic after moding out the nests. The asymptotic behavior of the
irreducible graphs

ir* ~iτn~Cn~gn = U{enHx«2)i2) (3.34)

is obtained from Eqs. (3.29a) and (3.33), and, finally, the characterization

the generic graph in SO(n^> l ) d i a g is a new irreducible construction (3.35)

follows from this behavior.

4. Application to SO(n ^ 6) d i a g

Table 3 lists the unlabelled graphs of order 6, which are the physically distinct
constructions in S0(6)d i a g. The table can be used for SO(n<6) as well, since the
constructions with m trivial subgraphs appear first, without the trivial subgraphs,
as constructions in SO(6 — m)d i a g. The following data are given:

1. The graphs G of the high-level sector numbers O^c o =

1 2 Cn ̂  Dn is a consequence of the result (3.33), since the number of new irreducible graphs is non-
negative
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2. The automorphism group autoG of each graph, e.g. Z2xS3 for
SO(6)/SO(5)/SO(2) in sector 6.

3. The dimension of the 50(6) automorphism cycle dim (auto L(G)), computed
from Eq. (3.10).

4. The conformal field-theoretic name of each construction. The affine-Sugawara
nested graphs are identified from their JV-partite characterization in Sect. 3.4.
Figures 8a and 8b show examples of the translation from the symmetrically-
drawn graphs of the table to the iV-partite forms. The remaining new construc-

Table 3. The graphs of S0(6)diag

auto G
dim
auto
L(G)

conformal construction L(G)

•• 1 L-0 (0,0,0,0,0,0)

15 SO(2) (0,0,0,0,1,1)

Z2XS3 60 SO(3)/SO(2) (0,0,0,1,1,2)

45 (SO(2))Z (0,0,1.1,1,1)

A \ S3XS3 20 SO(3) (0,0,0,2,2,2)

S3XZ2 60 SO(4)/SO(3) (0,0,1.1,1,3)

180 SO(4)#[d,4] (0,0,1,1,2,2)

180 (SO(3)/SO(2)lxSO(2) (0,1,1,1,1,2)

7/XS3 15 (SO(2))3 (1.1,1,1,1,1)

π: D4xZ2 45 SO(4)/(SO(2))Z (0,0,2,2,2,2)

180 SO(4)/SO(3)/SO(2) (0,0,1,2,2,3)

30 SO(5)/SO(4) (0,1,1,1,1,4)

360 SO(5)#[d,6]2 (0,1,1.2,2,2)

360 (0,1,1,1,2,3)

A. S3XZ2 60 SO(3)xSO(2) (0,1,1,2,2,2)

S3xZ2 60 (SO(4)/SO(3))xSO(2) (1.1.1,1.1.3)

(Z2)3 90 (SO(3)/SO(2))Z
(1.1,1.1,2,2)

180 SO(4)#[d,4]xSO(2) (1,1,1.1,2,2)
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Table 3 (continued)

auto G
dim
auto
L(G)

conformal construction L(G)

(Z 2 ) 3 90 SO(4)/SO(2) (0,0,2,2,3,3)

IX 180 SO(5)/SO(4)/SO(2) (0,1,1,2,2,4)

SO(6)/SO(5) (1.1,1.1.1,5)

72 SO(5j*[d.2] (0,2,2,2,2,2)

360 so(5j*[d,6], (0,1,1,2,3,3)

360 SO(5j»[d.7]2
(0,1,2,2,2,3)

360 SO(5)/SO(5)#[d,7]2 (0,1,2,2,2,3)

(Z2)3 90 (1.1.1.1.3,3)

120 SO(6)#[d,7]1 (1,1,1.1,2,4)

. 1 . . 360 (1,1,1,2,2,3)

360 (1,1,2,2,2,2)

360 SO(6)#[d,11]1 (1,1,1,2,2,3)

Π 45 (SO(4)/(SO(2))2)xSO(2) (1,1,2,2,2,2)

Δ S3xZ2 60 (SO(3)/SO(2))xSO(3) (1,1,2,2,2,2)

180 (SO(4)/SO(3)/SO(2))xSO(2) (1,1,1,2,2,3)

S4xZ2 15 SO(4) (0,0,3,3,3.3)

ΣZ3 60 SO(5)/(SO(3)xSO(2)) (0,2,2,2,3,3)

(Z2)3 90 SO(5)/SO(4)/(SO(2))Z (0,2,2,2,2,4)

360 SO(5)/SO(4)/SO(3)/(SO(2)) (0,1,2,2,3,4)

60 SO(6)/SO(5)/SO(2) (1,1,1,2,2,5)
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Table 3 (continued)

85

Co

6

7

G

o
JL
-<^
X
«

. Λ . .

Δ Δ

K~
<^»
ψ—
&>

auto G

z2

z2

°6

S3

%<4

2&

Z.XZ,

z2

z2

z2

z2

z2

z2

1

(sA

(Z2)

2^XSQ

S3

( Z 2 ) 3

dim
auto
L(G)

360

360

60

120

180

180

180

360

360

360

360

360

360

720

10

90

60

120

180

90

conformal construction L(G)

SO(5)/SO(5)#[d,6)2

SO(5)/SO(5)#[d,7]1

SO(6)#-ESO(6rtd,3J

80(6^,4]

scxeΛdj ],

8 0 ( 6 ^ . 8 ] !

SO(6)*[d.8]2

8O(βΛdf9h

SOiβf[6&]2

SO(6)#[d.11]2

SO(6)#[d,11]3

80(6^,11)4

8 0 ( 6 ^ , 1 1 ) 5

8 0 ( 6 ^ , 1 5 ) ,

(SO(3))2

(SO(4)/SO(2))xSO(2)

SO(5)/SO(3)

SO(5)/SO(4)/SO(3)

SO(5)/((SO(3)/SO(2))x(SO(2))

SO(6)/SO(5)/(SO(2))2

{ 2 Δ ^

(0,2,2,2,3,3)

(0,1,2,3,3.3)

(2,2,2,2,2,2)

(1,1,1,3.3,3)

(1,1,2,2,3,3)

(1,1,2,2,3,3)

(1,1,2,2,2,4)

(1,2,2,2,2,3)

(1,1,2,2,3,3)

(1,2,2.2.2,3)

(1,1,1,2.3,4)

(1,2,2.2,2,3)

(1,1,2,2,2,4)

(1,1,2,2,3.3)

(2,2,2,2,2,2)

(1,1,2,2.3,3)

(0,2,2,2,4,4)

(0,1,3,3.3.4)

(0,2,3,3.3,3)

(1,2,2,2,2,5)

G

132

<

id

<S*

c

X •
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Table 3 (continued)

Co

7

G

<x
S>
X

«

O
r>-

<I>——
^ ^

π>

auto G

ζ,xZ2

z2

(ZJ 3

2^xZ 2

s3

^ x Z 2

^ x Z 2

Z2XZ2

Zs>xZ2

Z 2 X Z 2

22XZ2

z2

z2

z2

z2

z2

1

1

1

S 4 xZ 2

dim
auto
L(G)

180

360

90

180

120

180

180

180

180

180

180

360

360

360

360

360

720

720

720

15

conformal construction L(G)

SO(6)/SO(5)/SO(3)/SO(2)

SO(5)/SO(4)#[d,4]

SO(6)#[d.5]2

SO(6j*[df6]

SO(6^[d.7]2

SO(Sf[d,7']2

SO(6f[d,7']3

SO(Sf[ό,7']4

SOίδ^Id.δla

SO(6)*[d.8]4

SO(Sf[ό,S]5

SO(6)?[d,9]3

SO(6)#[d,9]4

8 0 ( 6 ^ , 1 1 1 6

SO(6f[d,11]7
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Fig. 8. a) The complete bipartite graph SO(6)/(SO(5) x SO(1)) = SO(6)/SO(5); b) The fundamental
affine-Sugawara nested graph SO(6)/((SO(3)/SO(2))x(SO(l))3) = SO(6)/SO(3)/SO(2)

tions are assigned an SO(ή}* name which also indicates the size of the subansatz
in which the construction is found (see Sect. 6).

5. The Lflft(G)-broken conformal weights 2:x,d i(G)~2^O) = di(G) of the vector
representation at high level.

6. The X-conjugate graph G of each G. These graphs fill the remaining high-level
sectors 8 S c0 = dim E(G) = 15 — c0 ^ 15, with auto G = auto G, dim (auto L(G))
= dim(autoL(G)) and 2J[O ) d(G) 5 d ( G )

In agreement with Table 1, Table 3 shows g 6 = 156 distinct constructions in
SO(6)diag, of which gn = 1, 2, 4, 11, and 34 constructions appear first in <SΌ(n)diag,
n = 1, 2, 3, 4, and 5. The remaining numbers of Table 1 may also be verified for
n = l,...,6 from Table 3, and, in particular, there are 90 new constructions in
SO(6)diag, of which 79 are connected.

The new irreducible constructions on SO(n) are easily recognized by their
name, SO(ή)* or SO(π)/SO(n)#, so that e.g. SO(4)#[d,4] xSO(2) in Sect. 4 is
reducible on SO(6) while SO(4)# [d,4] in sector 3 is irreducible on SO(4).

In agreement with Table 2, Table 3 identifies 9 new irreducible constructions
inSO(4) d i a g andSO(5) d i a g

1 3

c 0 = 4,5:SO(5)#[<f,7]1>2; c 0 = 6,5:SO(5)/5O(5)#[d,7]1 ) 2. (4.1)

The first five constructions of this list are obtained exactly in Sect. 7. Among the
68 new irreducible constructions in S0(6)d i a g, the maximal-symmetric construe-

(4 2)
c 0 = 9:SO(6)/SO(6)*=SO(6)/SO(6)*[d,3] v ' }

were identified from the high-level behavior of the known solutions. The exact
forms of the next most symmetric constructions

c 0 = 6: SO(6) * [d, 4] c0 = 9: SO(6)/SO(6)# [d, 4] (4.3)

are also obtained in Sect. 7.

1 3 The first three irreducible constructions in the list (4.1) are examples of self-K-conjugate
constructions (see Sect. 5.5)
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5. The Graphs G* of SO(n)£iΛg

5.1. Identity Graphs. Intuitively, new constructions are less symmetric than old
constructions, which are exceptional points with special inertia tensors, commut-
ing currents and so on. Graph theory provides a more quantitative statement of
this expectation.

The affine-Sugawara graphs Kn and their iC-conjugate graphs Kn are the most
symmetric graphs, with symmetry factors S(Kn) = S(Kn) — n\. In fact, the affine-
Sugawara nested graphs always have at least a Z 2 symmetry, so that their
symmetry factors satisfy

S(G(jrn(d))) = S(G(^n(d))) ^ 2. (5.1)

This argument goes as follows: By repeated application of autoG = autoG and
N

5(G 1 uG 2 . . .uG J V )^ γ\ S(Gj), the symmetry factor of any affine-Sugawara nest is

greater than or equal to the product of symmetry factors of the subgroups at the
bottom of the nest, as illustrated in Fig. 10. It follows that, among the affine-
Sugawara nests, the chain nest SO(n)/SO(n-l)/SO(n-2)/...SO(3)/SO(2) with
S = S(G(SO(2))) = 2 has the smallest possible symmetry factor.

In contrast, the identity graphs I are completely asymmetric with S(I)
= dim (auto /) = 1, and they are ubiquitous since the generic large-order graph is
an identity graph [24]. It follows that

the generic new construction in SO(n^>l)*iag is an identity graph, (5.2a)

the generic large-order identity graph is a new construction, (5.2b)

since the generic large-order graph is also a new construction (see Sect. 3.7). It
also follows that constructions with a symmetry are exceptional cases, including
those new constructions with S7^2.

We have already encountered the first 8 non-trivial identity graphs, collected
in Fig. 9, which are identified in Table 3 as new constructions in SO(6)^iag.
Moreover, the characterization

all identity graphs are new constructions (5.3)

follows because the affine-Sugawara nested graphs always have a symmetry.

5.2. Connected Incomplete Bipartite Graphs. Connected incomplete bipartite
graphs are complete bipartite graphs with one or more lines removed such that the

• Λ.. T > Π>

Fig. 9. The first eight identity graphs are new constructions in S0(6)diag

SO(5)
SO(4)

SO(3) λxSOd)]
O(2)xS0(1)/

- 3~
Fig. 10. The symmetry factor of this nests is S(G{SO(2) x 50(1))) S(G(SO(1)) S{G(SO(1)) =
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Fig. 11. a Connected incomplete bipartite graphs, or broken N = 2 coset graphs, are new
irreducible constructions, b The broken N = 2 coset graph SO(6)/SO(6)* [d,5]2

incomplete graph remains connected. Two examples of these graphs are given in
Fig. lla. The K-conjugate graph G of a connected incomplete bipartite graph G is
formed by connecting two affine-Sugawara graphs with one or more lines. It
follows from the characterization (3.25) that

connected incomplete bipartite graphs are new irreducible constructions,

(5.4)

since G and G are both connected in this case.
Physically, the connected incomplete bipartite graphs are the broken N = 2

coset graphs obtained by removing lines from the graphs of the fundamental N = 2
cosets SO(n)/(SO(p) xSO(n—p)). The example in Fig. 11 b is identified in Table 3 as
a new construction in S0(6)diag.

An equivalent statement of the result (5.4),

connected incomplete graphs with χ(G) = 2 are new irreducible constructions

(5.5)

is obtained in terms of the chromatic number14 χ(G) of a graph, since a graph is
bipartite iff χ(G) = 2. As examples, the cycle and path graphs

C2n = cycle of length 2n, n ̂  3,

Pπ = path of length n — 1,
(5.6)

are new irreducible constructions, as illustrated with the colors r and w in Fig. 12.
The cycle C6 and the paths P 4, P 5, and P6 are identified as new irreducible
constructions in Table 3.
1 4 A coloring of a graph G is an assignment of a color to every point in G. The chromatic number
χ(G) is the smallest number of colors such that no two points of the same color are connected by a
line [25]

w r r w

r w r w r w r w r

Fig. 12. The cycles C2π, n ̂  3 and paths Pn, n ̂  4 are broken N=2 coset graphs and hence new
irreducible constructions
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= k
Fig. 13. a Broken N = 2 afϊϊne-Sugawara nested graphs are new irreducible constructions, b The
broken N = 2 affine-Sugawara nested graph SO(6)* [d,4]

5.3. Broken N = 2 Affine-Sugawara Nested Graphs. In this section, we introduce
the broken N = 2 affine-Sugawara nested graphs, which generalize the broken
N = 2 coset graphs and which may provide a process which generates all new
irreducible graphs from the graphs of the old constructions.

We define the broken N = 2 affine-Sugawara nested graphs as the connected
graphs, shown in Figs. 11 and 13, which are obtained by removing lacunae-
connecting lines from the fundamental N = 2 affine-Sugawara nested graphs. The
X-conjugate graph G of any broken N = 2 nest G is also connected since at least
one lacunae-connecting line has been removed from G. It follows from the
characterization (3.25) t h a t 1 5

broken N = 2 affine-Sugawara nested graphs are new irreducible constructions.
(5.7)

An example of this result is given in Fig. 13b, which is identified as a new
construction in Table 3.

We have also compiled a list of all broken N = 2 affine-Sugawara nests of
order n ̂  6. Comparison of this list with the data of Table 3 supports the
complementary conjecture,

conjecture 1: At order n, the set of broken N = 2 affine-Sugawara nested

graphs contains all new irreducible constructions in the lower

half 1 ^ c 0 ^ - ί of the high-level sectors of SO(n)diag. (5.8)

An implication of this conjecture is that all new irreducible constructions in the
upper half of the high-level sectors can be obtained by K-conjugation of the
broken nests.

5.4. An Edge Theorem for SO(n)diag. It has been observed empirically for the new
constructions (1.2) that [22]

rankg <co< dimg — rankg

when g* is a new irreducible construction on compact g, (5.9)

1 5 Broken affine-Sugawara nested graphs are not always new constructions when iV^3. For
example, breaking all the lines between two lacunae of a complete tripartite graph (coset
construction) gives a complete bipartite graph (coset construction)
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where c0 is the high-level central charge of g*. The inequalities (5.9) are true in
SO(n)*iag as well, since they follow with co = dim£ from the (stronger) edge
theorem

SO(n)*ag :n-ί£ dimE(G *(irr)) £ ±(n -1) (w - 2), (5.10)

where G*(irr) is any new irreducible graph of order n. The proof of the edge
theorem is as follows: We know from (3.25) that G*(irr) and G*(irr) are both
connected, and, moreover, that at least n — ί lines are necessary to connect n
points. It follows that co = dimE(G*(irr)) and co = dim£(G*(irr)) are both greater
than or equal to n — ί. The edge theorem (5.10) follows since co + co = n(n —1)/2
on SO(ri).

5.5. Self-K-Conjugate Constructions. An unlabelled graph G is self-K-conjugate
(or self-complementary [24]) when G = G. At the level of labelled graghs, G and G
are isomorphic, and the corresponding constructions L(G) and L(G) = L(G) are
SO(n) automorphically equivalent, so that c = c = cg/2 for self-K-conjugate con-
structions. It follows that a) self-K-conjugate constructions exist only on SO(4ή)
and SO(4n +1), since co = co = dimg/2 requires that dimg is even, and b) the half-
Sugawara central charges

(5.11)

are determined for self-K-conjugate constructions before obtaining the exact
solutions.

The first six self-K-conjugate constructions are given in Fig. 14, and the first
three of these were encountered as new irreducible constructions in SO(4) *iag and
SO(5)*iag. More generally, the number sn of self-K-conjugate constructions in
SO(n)d*iag

n 4 5 8 9 12 13 16 17

sn 1 2 10 36 720 5600 703,760 11,220,000 ( * '

and the asymptotic behavior of sn

are known in graph theory [24].
Although all the self-K-conjugate constructions on a given manifold have the

same central charge, each construction is physically distinct (not SO(ή) automor-

Fig. 14. The first six self-K-conjugate constructions
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phically equivalent to any other), with distinct conformal weights, since each
construction is a distinct unlabelled graph. Distinct high-level conformal weights
on each manifold are easily verified for the graphs of Fig. 14, and are recorded
explicitly in Table 3 for the two self-K-conjugate graphs on SO(5).

The exact form of the first three self-X-conjugate constructions is obtained in
Sect. 7. The constructions are generically unitary with generically irrational
conformal weights, both of which are expected for generic self-X-conjugate
constructions. In this circumstance, it is possible to imagine that all the self-K-
conjugate solutions in a given SO(n)diag are connected by a continuous ofixed
quadratic deformation which is a solution of the full master equation on SO(n).

Except in special cases, we have been unable to construct the half-Sugawara
central charges (5.11) by affme-Sugawara nesting on any compact g. These
central charges, and the values c = 13/10, 20/11, and 31/11 reported on SU(3)
[21, 22], should be investigated carefully since the question of new rational
central charges is conceptually important.

5.6. Cartesian Product Graphs. Cartesian product graphs [25] may be defined
analytically with our original variables {θij9 θH = 0}, where 9^=1 is a line from
point i to pointy. When {0.^ = 1} and {θhJ2 = l} are the lines of two graphs GΠl

and Gn2, then the Cartesian product graph Gniri2 = Gnι x Gn2 is defined on the
product points [iu ι2] or [/1?j2], with lines

This operation is a direct construction of the high-level inertia tensor L(/?} = θtj of
the product graph in terms of the high-level inertia tensors of the component
graphs. Pictorially, G = G1 x G2 is constructed as shown in Fig. 15: Replace each
point in (say) G2 by copies G'u G'ί,... of the graph G l 9 and each line in G2 by a set
of lines which connect only copied points i\ i",... in the copies of Gv Since the
order n1n2 of a product graph GΠll l2 is multiplicative, it is clear that these graphs
are a relatively small subset of all graphs.

It is our intuition that

conjecture 2: Cartesian product graphs are new constructions

(except K2 x K2 and Kλ x G), (5.15)

since the product operation is foreign to the affme-Sugawara nesting operations.
It suffices to verify conjecture 2 for products Gx x G2 of two graphs, and in fact
only for products of two connected graphs since the identity

(G x uG 2 ) x G3 =(Gi x G 3)u(G 2 x G3) (5.16)

implies that products of disconnected graphs are new when the products of their
connected components are new.

Fig. 15. The Cartesian product graph G^ x (K2 x K2)
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S0(2n)ί,

S0(2n)&

n=2 n=3 n-4

- O :
- I :

I 1

Pi

n

Fig. 16. The maximal-symmetric construction S0(2ή}^

/

γ

G(S0(2)) x G(SO(4)/(SO(2)f)

Fig. 17. The n-cubes Qn = K2xQn-ι, n ^ 3 are broken N = 2 coset graphs and hence new
irreducible constructions

With the characterization (3.25) we have checked that conjecture 2 is true for
the product graphs through order 8. The conjecture is also true for the maximal-
symmetric construction [18]

whose graphs, given in Fig. 16, were identified from the high-level behavior of the
known solutions. More generally, the theorem

(connected bipartite graph) x (connected bipartite graph)

= new irreducible construction (except K2 x K2) (5.18)

is established pictorially as follows. When Gt and G2 are connected graphs with
chromatic number two, then χ(Gx x G2) = 2 as well since the two-color scheme of
Gx can be consistently reversed for nearest neighbor copies of Gx (see Fig. 15).
These χ = 2 product graphs are connected and, except for K2xK2, they are
incomplete, so (5.18) follows from the theorem in (5.5). K2xK2 is the complete
bipartite graph SO(4)/(SO(2))2. An example of this theorem is the set of n-cubes Qn

= Qn.1xK2, Qi=K2 for n^3, shown for n = 3 in Fig. 17.

6. Graph Symmetry and Consistent Subansatze

In this section, we discuss the hierarchy of consistent subansatze in 5Ό(n)diag,
which may be determined in principle by studying the symmetry groups auto Gn

of the graphs of order n. The subansatze provide the names of the new
constructions (see Table 3) and the strategy for exact solutions in the following
section.

As a first step, we study the symmetry of the exact solution L(G). Recall from
Sect. 3.3 that the lines {0O =1} of G satisfy

θij=θπ(ί)πU) (6.1)
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when πeautoG is a relabelling in the symmetry group of G. The result (6.1) is a
high-level symmetry of the construction L(G\ expressed as a relation among the
high-level components of its inertia tensor L{ij) = θij. In fact, the high-level
symmetry (6.1) persists to all orders in the high-level expansion, so that the same
symmetry ^ ^ = L ^ ^ ( G ) ? V π 6 a u t 0 Q ( 6 2 )

is obtained for the exact solution L(G). To see this, one needs the iterative lemma

l}$XG) = L%πU)(G) when Uf'\G) = L%<£{j)(G), (6.3)

which is not difficult to check from the recursion relation (2.33a). The statement
previewed in Sect. 3

symmetry group of L(G) = symmetry group of G = auto G (6.4)

follows immediately from the result (6.2).
The exact symmetry of L(G) in (6.2) determines the smallest consistent

subansatz in which the construction is found. As an exercise, we will determine
the smallest subansatze of all the new irreducible constructions in SO(5)*iag,
whose graphs (up to K-conjugation) are given in Fig. 18: The two graphs of
Fig. 18a have auto G = Z2, the non-trivial element being a simultaneous 1 <->2 and
3<->4 interchange. It follows from (6.2) that both graphs occur first in the six-
parameter consistent SO(5) subansatz

£0(5) [d, 6] : L12, L34, L 1 3 = L24, L 1 4 = L23, L 1 5 = L25, L 3 5 = L 4 5 . (6.5)

The two graphs of Fig. 18b occur first in the seven-parameter consistent
subansatz

] :L 1 2 ,L 3 4 ,L 4 5 ,L 3 5 ,L 1 3 = L 2 3 ,L 1 4 = L 2 4 , L 1 5 - L 2 5 (6.6)

because auto G — Z 2 with non-trivial element π = (12). Finally, the self-
K-conjugate graph of Fig. 18c occurs first in the two-parameter consistent
subansatz

SO(5)[d,2]:L12 = L 1 3 = L 2 4 = L35 = L45,L34 = L 1 4 = L23 = L 1 5 = L 2 5 (6.7)

with autoG = D5 in this case. The hierarchy of subansatze (6.5-7) is complete for
S0(5)*iag since each subansatz is ^-conjugation covariant.

Note also that SO(5)[d,2]cS0(5)[d,6], so the solutions of S0(5) [d, 2] will
appear as a factorization sector [18,20,22] of higher symmetry in the larger
subansatz SO(5) [d, 6]. More generally, these factorizations are best studied in
sum and difference variables, since, according to (6.2), the appearance of any
smaller subansatz is characterized by the vanishing of a set of difference variables

We are now in a position to define our labelling scheme for new constructions,
which was employed explicitly in Table 3. The general subansatz in SO(n)diΆg is

Λ-t1 3 4 2 1 3 5 4 2
c

80(5)^0,6] 1 SOtsΛd.βfe SO(5)fyj,7] 1 SO(5)^d,7]2 80(5)^,2]

Fig. 18a-c. The labelling is used to obtain the subansatz of the graph
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named

SO(n)[d,s], (6.8)

where d denotes the diagonal ansatz and 5 is the size of the subansatz. For
example, Table 3 records that all new irreducible constructions in S0(6)*iag are
contained in consistent subansatze of size

SO(6)£,g:5 = 3,4,5,6,7,7',8,9,9',ll, and 15, (6.9)

where 5 = 15 is 5Ό(6)diag itself. Distinct subansatze of the same size are distin-
guished by primes. The new irreducible solutions are named in their smallest
subansatz and numbered according to

SO(n)*[d,s]i9 i = l,2,... (6.10)

when they fall in the lower half of the high-level sectors of the subansatz. This is a
complete labelling of solutions in SO(n)*iag, since the higher sectors are completed
by SO(n)/SO(ή)*[d,s]t.

An obvious strategy for new exact solutions is to begin with the smaller
subansatze, which contain the graphs of higher symmetry. This is a program
which we begin in the following section, but which we cannot finish without
further insight: The graphs of lower symmetry occur in larger subansatze, and, in
particular, the ubiquitous totally-asymmetric identity graphs occur in no sub-
ansatz smaller than SO(ή)diag itself.

7. Exact Solutions in

7.1. SO(2n)£ = SO(2n)*[<f,3] and SO(2n)*[d,4]. The graphs of the maximal-
symmetric construction on SO(2ή) [18], shown in Fig. 16, are the most symmetric
new irreducible graphs in SO(ή)diag. The maximal-symmetric construction has
auto G = Z2xSn when n ̂  3 (and Z 2 x D4 at n = 2) and appears first in the three-
parameter subansatz

(7.1)

L U n + j =[ Un+j t, ^ j ^
which is the maximal-symmetric subansatz [18] in Cartesian coordinates16. The
identification

2n)£ = SO(2ή) * [d, 3] (7.2)

follows for the maximal-symmetric construction in the present taxonomy.
The next most symmetric new irreducible graphs in SO(2n)diag, shown in

Fig. 19, have autoG = SΛ, n^2. These constructions appear first in the four-
parameter subansatz

The Cartan-Weyl basis of [18] is λ = Lc/(2n-2) and L ± =(Lt + Lh)/2
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SO(2nf[d,4]

S0ί2n)
SO(2n)#[d,4]

n»2 n=3 n=4 n

• ^ •K
r

G 2 n =

G2

Fig. 19. SO(2n)*ld,41

which contains the maximal-symmetric subansatz (7.1) when Lh = L'h. In sum and
difference variables L* = Lc ± Lt, L^ =Lh± Lh, the explicit form of S0(2n) [d, 4] is

-nLh

+) = 0, (7.4a)

+2(n-2)L; -

(7.4c)

(7.4d)

(7.4e)

which shows the maximal-symmetric subansatz as the factorization sector L^ = 0
in (7.4c).

The subansatz (7.4) contains 12 known solutions and the following four new
solutions: 1

x + 2n-2

nx

'^ = L+H = Z^Z-^ (1 + Φ - 2)R), (7.5a)

(7.5b)

c=χτ— -(2n-l-tf(n-2)(x-l)K), (7.5c)

which are labelled by η =±l, σ=±ί. The values of η correspond to
^-conjugation and the values of σ are S0(2n) automorphically equivalent. For
either value of σ, these solutions are identified as

x + rc-6

x+n-29

{2n-ί-η(n-2){x-l)R),

SO(2n)* Id, 4]: η = +1 (c0 = n(n +1)/2)

SO(2n)/SO(2n) * [d, 4]: η = - 1 (c0 = 3n(n -1 )/2)
(7.6)

by matching the high-level form of the central charge in (7.5c) to the number of
lines in the graphs of Fig. 19. This family of solutions includes the self-K-
conjugate construction17 SO(4)*[d,4] and the K-conjugate pair of construc-
tions S0{6)* [d,4] and SO(6)/SO(6)* [d,4], all of which appear in Table 3.

1 7 The self-iC-conjugate construction 50(4)* [d,4], whose graph is the first in Fig. 19, has the
expected central charge 3x/(x + 2) of SU(2) and irrational conformal weights. Despite the
coincidence of central charges, this construction is not a point in the quadratic deformation (SU(2)
x 5(7(2))* [18]. 50(4)* \_d, 4] should be compared to points in known linear deformations of
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For xeN, these constructions are unitary down to very low level, as expected:
A complete list of nonunitary points is x = 1,2,3 for SO(4), x = 1,2 for SO(6) and
x = l for SΌ(8) and 50(10). The constructions are generically irrational, with
rational subconstructions only for n = 2 and levels 1 and 2 of any n18.

A special point is the level 3 construction S0(6)f [d, 4] which is identical to the
maximal-symmetric construction (5Ό(6)*)M at this level. This phenomenon is an
isolated equivalence19 or accidental crossing of solutions at particular finite
levels, since the graphs of the constructions are distinct. The value c(SO(6)* [d, 4])
= c((SO(6)*)M)- 2.9597 is also the lowest unitary irrational central charge in this
family of constructions.

7.2. The Subansatz SO(2n +1) [d, 6]. The most symmetric new irreducible graphs
in SΌ(2n + l)d i a g, n ^ 2 are the four graph families shown in Fig. 20. All these
constructions reside in the six-parameter subansatz

, n + ί = Lc, ίZiίn; LUn+j=Lt, ίSi+j^n (7.7)

with auto G = Sn when n ̂  3 2 0 . The form of SO(2n +1) [d, 6] in sum and difference
variables is

-(x + 2n-2)Lc

++2(n-2)Lc--2L r

+)-(x-2)(Lc-)- ) 2

XVI

c=Ύ(nL: -(n-2)L; +(n-l)LΛ

+ +2Lr

+), (7.8)

where L*, L^ are defined in the previous section and L*=Lr±L'r. This subansatz
contains SO(2n) [d, 4] when L r~=L r

+=0, and it also contains the subansatz
SO(5)[d,2] when LΛ

+ =LC

+ =L r

+, LΛ" =LC" = -L r " at n = 2.
The exact constructions in Sects. 7.3-5 are solutions of the system (7.8). Before

the details, here is an overview of the situation.

1 8 The central charges at levels 1 and 2 are half integer (^3/2) and integer, with irrational
conformal weights, so these levels should be compared to particular points of known deformations
1 9 Some of these equivalences are well known. For example, the Sugawara construction SO(2ή)1

at level 1 is equivalent to the construction on the maximal torus of SO(2ή), although the graphs of
these constructions are distinct. The equivalence phenomenon also occurs in irrational
constructions at rational points which are affine-Sugawara nests
2 0 The first column of Fig. 20 shows that the case of SO(5) is special: The graphs at the bottom of
the first two graph families are the self-X-conjugate constructions on 50(5), while the third and
fourth graph families coincide at order 5. Moreover, the pentagon graph SO(5)#[d,2] has the
higher symmetry auto G = D5i and occurs first in 50(5) [d, 2]
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S0(5)# n=3

. Λ .
SO(5)#td,6],

. Λ .

SO(2n+1)#[dl6l1

SO(2n+1i
SO(2n+1)#[dl6]1

o
S0(5)#[d,2]

O

SO(2n+1)#[d,6]2

SO(2n+1)
SO(2n+1)#[d,6]2

A G2n+1=

G
2 n + 1

SO(5)#[d,6]2
SO(2n+1)#[d,6]3

S0(5)
SO(5)#[d,6]2

SO(2n+1^[d,6]3

G
2n+1=

G
2 n + 1

SO(5)
SO(5)*[d,6]2

SO(5)#[d,6]2

SO(2n+1)#[d,6]4

SO(2n+1)#[d,6]4

^ > κ n

G
2 n + 1

SO(2n+l)[d,6] contains 48 solutions which are known or were obtained in
the previous section, and 64 solutions generically. The generic count of 16 new
solutions is accurate except at level 2, where the only new solutions, given in
Appendix B, are the new quadratic deformations S0(2n+l)*[d,6] with c = n.

Among the 16 new solutions for xφ2, we will obtain the following 8 solutions
across all n,

SO(5) * Id, 6]! and SO(5)# [d, 2] (4 copies each), (7.9a)

SO(2rc+l)#[d,6] l52 and (n ̂  3, 2 copies each).

These constructions are the first two graph families in Fig. 20. We obtain the
remaining 8 solutions only for n = 2,

#[rf,6]2 and (4 copies each), (7.10)

which are the lowest graphs of the third and fourth graph family in Fig. 20.
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73. The Self-K-Conjugate Constructions on SO{5). The 8 solutions in Eq. (7.9a)
are the self-K-conjugate constructions

(7.11a)

(7.11b)SO(5)*ld,Z]

Lc —Lh —Lr — , x Φ 2

L;=σL; = -σLΛ" =

where σ = + l are SO(5) automorphically equivalent and η=±l is
K-conjugation, which is also an SO(5) automorphism in these cases. Both
constructions have the half-Sugawara central charge

^ (7.12)

which is characteristic of self-K-conjugate constructions (see Sect. 5.5).
The self-K-conjugate constructions are unitary for integer x ^ 3 . The con-

formal weights of the vector representation are irrational for S0(5)#[d,6] and
rational for S0(5)* [d,2], but irrational conformal weights must be expected for
higher representations in both cases.

2 1
7.4. SO(2n + l)#[rf,6]1>2, n ^ 3 . The 8 solutions in Eq.(7.9b)

τ- c j - (lε(x + n-3))S
Lc =ηS, Lh =-ησy-

MV

c =

are distinguished by η= ±ί,σ= ±ί, and e= ± 1 . The values of η correspond to
X-conjugation, the values of σ are S0(2n + l) automorphically equivalent, and
the values of ε label physically distinct solutions with the same central charge but
different conformal weights.

For n ̂  3, and either value of σ, these solutions are identified as

S0(2n + ί)/SO(2n +1) # [d, 6] 2 : ε = η = -1 (c0 = n(3n -1)/2). (7.14)

2 1 The self-X-conjugate constructions on SO(5) are included in the solutions (7.13) when n = 2.
The identification is SO(5)# [d,6]i when ε = 1 and SO(5)# [d,2] when ε= - 1
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In this case, the identification requires matching L^\G) = θtj for the appropriate
graphs against the high level form of the solutions (7.13).

These constructions are unitary for all positive integer level (except x = 2).
They are also generically irrational, with rational subconstructions only at level
1 2 2 . The value

^ ( ^ j (7.15)

is the lowest unitary irrational central charge in this family.

7.5. SO(5)* [d,6]2. The 8 solutions on SO(5) in Eq. (7.10)

X
+ 2)(x2-4x-2)

x5-x4-8x3-4x2-32x-l6'

are distinguished by //= +1, σ= +1, and ε= +1, where η is X-conjugation, and
σ, ε label SO(5) automorphically equivalent solutions. By comparison of graphs
and solutions, the identification

SO(5)/SO(5)*[d,6]2:ι/=-l(c0 = 6)

is established for each fixed choice of σ and ε.
These constructions are unitary and irrational for all integer x^5. The value

c((SO(5)*)[d,6]2)= ̂  (1 - - 4 = ) ^2.6963 (7.18)

is the lowest unitary central charge of the family, and this value is also the lowest
unitary central charge yet observed on non-simply-laced g.

8. The Novelty Number v

We have constructed a graph function v(G) which we call the novelty number of G
because it appears to distinguish between the graphs G(ΛS) of the known rational
constructions and the graphs G* of the new constructions,

conjecture 3: v(G(AS)) = 0, v(G#)>0. (8.1)

2 2 The central charges at level one are half integer (^ 3/2) and integer, with irrational conformal
weights, so they should be compared to particular points of known deformations
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The novelty number is

1

2 i ι ι («/) m )

 ι

 ( 8 ^ 2 )

where

ί3 = number of triangles in G, ί4 = number of squares in G,

ί4 = number of squares with one diagonal in G, (8.3)

ί4 = number of X4-subgraphs in G,

and the sums in (8.2) are over the lines (ij) of G and the points (ijk) of each triangle in
G.

It is sufficient to verify conjecture 3 on connected graphs, since the novelty
number is additive v(G1uG2) = v(G1) + v(G2) on disconnected graphs. The conjec-
ture has been verified for

1. the graphs in the first ten sectors of Table 3,

2. the affine-Sugawara construction Kn and the graphs Kp + Kn-P of the
fundamental coset constructions SO(n)/(SO(p) x SO(n—p)\

3. the cycle graphs C2n with

v(C4) = 0; v(C2n) = 2n, n^3, (8.4)

where C4 is the graph of SO(4)/(SO(2) x SO(2)),

4. the path graphs Pn with

v(P2) = 0; v(Pn) = n-3, n ^ 3 , (8.5)

where P2 and P3 are the graphs of SO(2) and SO(3)/SO(2),

5. the exact constructions of [18] and Sect. 7 with

v(SO(2n)/SO(2n) *) = n(n -1) (n - 2),

v(SO(5)*[d,2]) = 5,

v(SO(5)*[d,6]1) = l , (8.6)

In cases 3, 4, and 5, we emphasize that the novelty number vanishes precisely for
those low n members of the graph family which are affine-Sugawara nested graphs.

Appendix A: Counting Affine-Sugawara Nested Graphs

We first obtain the recursion relation (3.27) for C(AS)n, the number of connected
(fundamental) affine-Sugawara nested graphs. The basic idea is to start from the
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and express the number of disconnected graphs in terms of C(AS)m<n. It is
convenient to divide the disconnected graphs into two types I and II,

D(AS)n = D£AS)n + DMS)n (A.2a)

— ί n u m b e r of disconnected affine-Sugawara nested graphs
1 " I of order n with at least one trivial subgraph

Jnumber of disconnected affine-Sugawara nested graphs
L)τAAS)n = "\ r Λ i 1 1 1 (A.-ZC)

( of order n with no trivial subgraphs
which are counted separately below23.

I. The disconnected graphs of type I have the form K x u (general affine-Sugawara
nested graph of order n — \\ so that

(A.3)

follows with Eq. (A.I).

II. The disconnected graphs of type II may be written as

/SO(2)V(2) /SO(3)V(3> χ ί

Σ
i = 2

(A.4)

where the vertical dots indicate arbitrary nesting in each product group SO(i). We
emphasize that each of the p(i) factors (SO(i)/...) in the superfactor (SO{ί)/.. .)p ( i ) is
identical in unlabelled graph theory.

To count these graphs, we first establish that

^ ) (A.5)
\ P(0

is the number of distinct affine-Sugawara nests in each superfactor (SO(ί)/...)p(ι\
where C(AS)i is the number of fundamental affine-Sugawara nests in each identical
factor SO(ί). To understand (A.5), consider first the example of (SO(3))3. There are
two fundamental nests SO(3) and SO(3)/SO(2) in each identical SO(3). The distinct
nests in {SO(3)f are

SO(3)xSO(3)xSO(3)= *** j

» I _ (A.6)

SO(3) SO(3) S O ( 3 ) = | #

SO(2) SO(2) SO(2) |

2 3 Examples of type I on SO(6) are SO(5) x SO(ί) = SO(5) and SO(5)/(SO(4) x 50(1))
= SO{5)/SO(4\ while 50(2) x 50(4) is type II because it uses all six points
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where the right-hand side phrases the example as the placement of p(i) = 3 identical

objects * in C(AS)i = 2 boxes. The result is C(AS)\3) = ί 1=4 distinct nests
in the superfactor (SO(3))3. V 3 /

More generally, C(^4S)[P(O) is computable as the number of ways to place p(i)
identical objects in C(AS)i boxes, which is also the number of ways to partition p(i)
identical objects with C(AS)i— 1 walls (the dotted line in Eq. (A.6)). Equivalently,
the result (A. 5) is the number of ways to place p(i) identical objects on a total
number p(i) + C(AS\,— 1 of available sites = objects plus walls.

The total number of nests at fixed {p(i)} is a product over the nests of each
superfactor, and the result for type II nests

Π
ί = 2 \

p(i) Φ 0

is obtained by summing over all partitions
Having computed D^AS^ and Du(AS)n in terms of C(^4S)m<w, the recursion

relation for C(AS)n, given in Eq. (3.27) of the text, follows with Eqs. (A.1), (A.2),
(A.3), and (A.7).

We remark in passing that the same argument on the set of all disconnected
graphs gives the following relation:

- s . - 8 . - , - Σ Π'
{(ί)} i 2

which may be used to compute Cn from Cm<n and gπ. Cn is computed from gn by a
different route in [24].

We finally establish an upper bound on C(AS)n as follows. Any disconnected
graph of order n = odd may be decomposed as

(connected graph of order 1 ̂  i: ̂  (n — l)/2)u (graph of order n — i) (A.9a)

for one or more values of i. Similarly, any disconnected graph of even order may be
decomposed either as

(connected graph of order 1 ̂  i\<Z (n — 2)/2)u(graph of order n—ί) (A.9b)

for one or more values of i, or as

(connected graph of order n/2)u (connected graph of order n/2). (A.9c)

Then, the upper bound on all disconnected graphs
(n-D/2

y C,eM_; n = odd

follows because the decompositions (A.9) are not unique.
The bound (A. 10) may be restricted to affine-Sugawara nested graphs, so that

the simple upper bound

C(AS)n = D(AS)n^\ CiAS^CiAS^i (A.ll)
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is obtained with D(ΛS)n = C(ΛS)n, g(AS)n_i = 2C(AS)n_i and symmetry about
i = n/2. The right-hand side of (A.I 1) is an upper bound on the right-hand side of
the recursion relation (3.27) for C(AS)n9 so the solution C(AS){™ax) of the simple
recursion relation

satisfies C{AS)n^C{AS){™x\ The solution of (A. 12) is

which implies the asymptotic bound in Eq. (3.29b) of the text.

Appendix B: The Deformations £Ό(2/ι

The only new solutions at level 2 of SO(2n + l)[d,6] are the two-parameter
quadratic deformations which we call SO(2n + l)f [d, 6],

(B.I)

c = n.

The deformations are labelled by ε= ± 1 , η=±ί and arbitrary values of the
deformation parameters Lr

+ and L~. The values of ε label two distinct defor-
mations within the construction. The unitary range of the deformation parameters

ΛA (B 2)

defines a rectangle in parameter space. At fixed ε, the construction is closed under
K-conjugation on SO{2n+\)

-Lr+, -hή (B.3)

which shows that K-conjugation in this case isη->—η plus a reflection about the
center of the unitary rectangle.

The conformal weights of SO(2n + l)f \_d,6] are continuous functions of the
deformation parameters, and we have checked that the construction is not
equivalent to any known quadratic deformation. The physical content of the
construction should, as usual, be compared to known linear deformations [11].
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