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Abstract. We present an example of a generalized Brownian motion. It is given by
creation and annihilation operators on a "twisted" Fock space of L2(R). These
operators fulfill (for a fixed — l ^ μ ^ l ) the relations c(f)c*(g) — μc*(g)c(f)
= </, g>l (/, geL2(R)). We show that the distribution of these operators with
respect to the vacuum expectation is a generalized Gaussian distribution, in the
sense that all moments can be calculated from the second moments with the help of
a combinatorial formula. We also indicate that our Brownian motion is one
component of an n-dimensional Brownian motion which is invariant under the
quantum group SvU(ή) of Woronowicz (with μ = v2).

1. Introduction

We will present a representation of the relations

4f)c*(g) - μc*(gHf) = </, g>l (/, g e L2(R))

for a fixed μ with — l ^ μ ^ l o n a "twisted" Fock space (not to be confused with the
twisted Fock space of Pusz and Woronowicz [PWo]). There are at least three
reasons for studying these relations:

i) They provide an interpolation between the bosonic and fermionic relations.
Independently from our work, Greenberg [Gre] proposed the same relations as a
first (non-relativistic) field theory that allows small violations of the exclusion
principle (i.e. of Fermi statistics) or of Bose statistics.
ii) They give an example of a generalized Brownian motion.

Hi) They exhibit a relation with the twisted SvU(ή) of Woronowicz [Worl,
Wor 2]: the Brownian motion of ii) can be considered as one component of an
n-dimensional Brownian motion which is Svί/(n)-invariant. This also shows how
the twisted creation and annihilation operators of [PWo] (appearing in the
second quantization procedure based upon the twisted SvU(n)) arise in a central
limit theorem.
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Concerning point i) we should mention the work of Lindsay and Parth-
asarathy [LiP], who also construct interpolations (Bose-Fermi bridges) between
the Fock representations of the bosonic and fermionic relations. But whereas they
do this by introducing relations in the full Fock space and thus getting inevitably
additional relations between c(f)c(g) and c(g)c(/), we will produce our represen-
tation by changing the scalar product in the full Fock space. One of our
motivations for this form of interpolation was to include for μ = 0 the Fock
representation of the Cuntz algebra 0^. This cannot be obtained within the
framework of [LiP].

The rest of the introduction is devoted to explaining the points ii) and iii) more
explicitly.

A (generalized) Brownian motion is a structure which is characterized by non-
commutative analogues of the properties of classical Brownian motion. In non-
commutative probability theory such objects (or more general white noises) are
used for modelling non-commutative heat baths (cf. [Kΐiml, Maal, Spel]).
Kummerer and Prin [KPr] have shown that a generalized Brownian motion
allows the development of a stochastic integration theory which ensures that such
a Brownian motion can be coupled to other systems with the help of stochastic
differential (Langevin) equations.

We now give a short review of classical Brownian motion and then translate
this to the non-commutative frame. Let (Ω, Σ, P, (Z*,..., Z")(eR) be an
n-dimensional classical complex Brownian motion. For / = fί l9 ί2), let
Z\: = Z\2 — Z\ t be the increment of the ith coordinate of this process. Let 91 be the
ring generated by all semiclosed intervals / of the above form. Then the definition
of Z\ extends to Ie$R such that the mapping /ι->(Zj, ...,ZJ) is finitely additive.
The distribution of (Z}, ...,ZJ) is an n-dimensional Gaussian distribution with
covariance matrix depending only on λ{I\ the Lebesgue-measure of /.

It is clear that I\-+(Z], ...,ZJ) is characterized by the requirements that
Z [ i u / 2 = Z^ + Z}2 (Ϊ = 1, ...,n; 7^/2 = 0) and that all increments are independent
and have a stationary distribution given by the limit law of a central limit theorem.
It should also be noted that this limit law (Gaussian distribution) is characterized
by the fact that all moments can be calculated in a combinatorial easy way with the
help of the second moments. We are only interested in moments of our process, i.e.
on the collection of all J Z)\ι\ω)... Zf;\ω)dP(ω\ r e N, Ij e « and k(j) e {1,..., n}9

where 1 stands for Z or its complex conjugate Z. Thus we consider two processes
to be equivalent if all their corresponding moments are the same.

In quantum probability we replace the random variables Z\, ...,ZJ_- which
may also be considered as n pairs of random variables (Z\, Z\\..., (ZJ, ZJ) - and
the probability measure P by n pairs of operators (c},cj*\ ...,(c?,cj*) with
41u/2 =

 c/1 +
 c/2 (i = l, .--»π; /iΠ/ 2 = 0) and a state ρ on the *-algebra # generated

by all these operators. Of course, cψ denotes the adjoint of c{. We call such a
process (^,ρ,((cj,cj*), ...,(cj5cj*))/e9ί) a (n-dimensional) Brownian motion if its
increments for disjoint time intervals are independent and if the distribution of
(c\9 c\ *),..., (cj, cψ) with respect to ρ (i.e. all moments ρ(^ ( 1 ) . . . cfr)) for all r e N and
k{j)e{l,...,n}, where c stands for c or c*) is given by the limit distribution
(generalized Gaussian) of the corresponding central limit theorem. The problem of
this definition is the meaning of "independence." Whereas in classical probability
theory there is only one possible definition of "independence," the situation in non-
commutative probability theory is not so simple. Independence of the operators
c\γ and c{2 {IuI2ey{, 7 1n/ 2 = 0) shall be understood as usual to be the
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i n d e p e n d e n c e o f t h e * - a l g e b r a s (£Il = (c\1\i = l,...,n} a n d ί f j 2 = < C j 2 | i = l , . . . , n >
with respect to the states QI^Q/Ή^ and ρι2 — ρj^ιr Here <R> denotes the
*-algebra generated by all operators reR. Thus we have to define the inde-
pendence of subalgebras (€k of an algebra # with respect to a state ρ. Of course we
are led by the classical situation and demand some form of factorization.

We will use the general characterization of independence which was given by
Kummerer [Kύm2]. On an algebraic level it can be posed as the factorizing of
pyramidally ordered products, i.e.

ρ(aί... ambm ...b1) = ρ ^ α A ) . . . QIrn(ambm),

if ahb(e<βu and I1<I2< ... <Im9 where Ix <I2 means: for all t1 eIx and t2eI2 we
have t1<t2. For other products no rule is prescribed. This factorizing of
pyramidally ordered products ensures that the coupling of such a generalized
Brownian motion to some other system reproduces the right "pyramidal"
correlation functions (cf. "quantum regression theorem" in [AFL, Kύm 1, Maa 1]).

Example. Let α e ^ , be(£l2 with Iί<I2 Then aabb and abba are pyramidally
ordered and we demand

ρ(aabb) = ρ(abba) = ρ7l(αα)ρ/2(W>),

but no formula for ρ(abab) is given.
So we have different possibilities for adding rules to enable us to calculate

products which are not pyramidally ordered. These different rules lead to differ-
ent forms of "independence," which then also give different classes of concrete
Brownian motions. Until now three main forms of independence have been used,
namely the commuting, the anti-commuting and the free independence, leading to
Brownian motions which are given by creation and annihilation operators of the
CCR-algebra, CAR-algebra, and Cuntz-algebra O^ [Cun, Eva], respectively (cf.
[CuH, CoH, GvW, vWa, Heg, Avi, Voil, Voi2, HuP, ApH, Sma, Spel]). For
these three cases there also exist stochastic calculi [BSW, HuP, ApH, Maa 2,
KSp, Spe2] which yield stronger results (including Ito's formulas) than the
general theory of [KPr].

We will now give our favourite axiomatic definition of "generalized Brownian
motion." We should, however, mention that this definition puts the main emphasis
on algebraic aspects. For a more C*-algebraic version of this subject we refer to
[Kϋm2].

Definition. An n-dίmensional generalized Brownian motion is a triple
(^β»((c/,Cj*), ...,(cj,cJ*))JeW) consisting of a *-algebra <€9 a state ρ on <g and a
finitely additive mapping JR-^ίP1, I\-^(cj9...,c") such that

i) pyramidally ordered moments factorize (independence)
ii) the moments g($(

1

1+ί...£j£l+f) are independent of ί e R for all r e N ,
k(j)e{l,...,n} a n d IjE% w h e r e c s t a n d s for c o r c*, a n d I + t: = {s + t\seI}
(stationarity)
iii) we have for all r e N , k(j)e {1,...,ή}, Ie91

> r o d d >

(Gaussianity of the distribution).
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Note that the concept of Gaussianity makes no sense if one considers only the
state ρ on the *-algebra generated by the operators c\ for a fixed /. The concept
only gets a meaning if one considers the whole process. To put it another way, the
statement that a special measure on R is a generalized Gaussian one does not
make any sense without specifying the corresponding form of independence.

In the following we will also use (^,ρ,(cj, ...,cj)/6gl) instead of
{V,Q9{{c},c} *),... ,(cJ,cJ*))7eΛ).

In Sect. 2 we construct operators c*(f) for / G L 2 ( R ) on a twisted Fock space.
Let us denote by χ7 the indicator function of 1 e 9ΐ. If we now put n = 1 and
c\ = c*(χ7) and take for ρ the vacuum expectation state, then c\ is a new example
of a generalized Brownian motion, which interpolates between the bosonic,
free and fermionic cases. This gives our point ii).

To discuss iii) we consider an n-dimensional Brownian motion (#,(>> (c/)je«)j
with Cj = (cj, ...,C/) and look for symmetries. First, we consider classical symme-
tries. Let U = (u^ j=sl ne SU(ή). Then define a new Brownian motion dr: = Ucj
b ( « )

4 - Σ UjM, thus 4*= Σ ΰjfil*.
7 = 1 J=l

If dj is equivalent to c7, i.e. if all moments of (d7, d7 *),...,(</?, dj*) and
(c]9 c}*),..., (cn

r, cj*) with respect to ρ are the same, then we say that the Brownian
motion cι is invariant under SU(n). For example, this is true for a classical
w-dimensional complex Brownian motion if the covariance matrix is a multiple of
the unit matrix.

For a non-commutative Brownian motion we can also consider more general
in variance properties, namely in variance under the action of quantum groups. Let
us take the twisted Svl7(n) of Woronowicz [Worl, Wor2]. For convenience we
will only consider the case n = 2. Then Svt/(2) is given by

where α and γ fulfill the relations

oc*α-f 7*7 =
= γγcc

Given a 2-dimensional Brownian motion (^,ρ,(cί,cf)l6%) we define dj = ucj by

d}: = ai®c}+y®cj ά\*": = α*®c/* + 7*®^*
, thus

dj:=-vγ*®cj+a*(g)cj dj*:=-vγ®c}* + oc(g)cl*

Thus ά\eA®c€,Ύo enable us to compare d1 and c7 we identify c\ with 1 (g)c\ and so
embed ^ in ̂ 4®^. We denote the conditional expectation A®(£-*A, a®c 1—• aρ(c)
by l®ρ. Now we can say that c7 and dI are equivalent if all "moments" of the
conditional expectation 1 ® ρ are the same. If this is the case we say that the given
Brownian motion cI = (c},cj) is invariant under SVU(2).

Of course, this invariance property is only a statement about the Gaussian
distribution of the increments for each fixed / e 9ϊ. But it is also related to the
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corresponding Brownian motion by the fact that all increments have to be put
together in such a way that the (quantum) symmetry is preserved by this
procedure. This means there is a connection between the chosen form of
independence and the possible symmetries occurring for the Gaussian distribution
of the corresponding central limit theorem.

We now want to indicate that our 1-dimensional Brownian motion c*(χ7) may
be considered as one component of a 2-dimensional Svl/(2)-invariant Brownian
motion. Consider a 2-dimensional Brownian motion with c\ = cf(χI) (i = l,2),
where the operators cx(f) and c2{g) fulfill the following relations (/, geL2(R)):

Then (Cj, c2) is SvU(2)-mvariant: indeed, the process is written down in such a way
as to satisfy for fixed f=g (with | |/ | | = 1) the relations of the creation and
annihilation operators of [PWo], which are according to their construction
Svl/(2)-invariant. We can also phrase this by saying that the above relations are, for
fixed /=g, invariant under the action of Svt7(2).

If we choose f,g with /g = 0, then the above process reveals to us the
appropriate form of independence which gives, via a central limit theorem, an
Svΐ/(2)-in variant Gaussian distribution.

We see that the 1-dimensional Brownian motion constructed in this paper can
be regarded as the second component c\(/) of the above 2-dimensional Brownian
motion (with μ = v2).

A more complete treatment of the statements of this introduction will be given
elsewhere [Spe3].

2. Realization of the Brownian Motion

We want to define Brownian motions which are interpolations between fermionic,
free and bosonic Brownian motion. Hence we consider for j f = L2(R) the relations

c(f)c*(g)-μc*(g)c(f) = <f, g>l (/, getf),

with — 1 ̂  μ ̂  1. For μ = — 1 they correspond to the CAR-algebra, for μ = 0 to the
Cuntz-algebra 0^ and for μ= +1 to the CCR-algebra. We will give a represen-
tation of the relations which generalizes the Fock space representations of the
CAR-, Cuntz-, and CCR-algebras.

The following considerations will be for an arbitrary complex separable
Hubert space Jf, in the end we will specialize to Jf = L2(R).

All our operators are defined on a dense subset 3* of the full Fock space
0 Jf7®", where ^ ^ C . By Ω = (1,0,0...) we denote the vacuum and by & the

set of finite linear combinations of product vectors. Later we will introduce
a scalar product < , >μ and take the completion !Fμ of & with respect to this scalar
product.
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We define c*(f) and c(f) on #" by linear extension of (/, ht e Jf),

c*(f)Ω=f,

c*(f)ht®... ®hn=f®hι®... (x)/ιπ,

and

1 Σ μ k n

The symbol Kk means that hk has to be deleted in the product.
We thus have defined c*(f) as the (left) creation operator [Eva] and c(f) as a

"twisted" (left) annihilation operator.

Remark. For a better understanding of the asymmetry between c(f) and c*(f) it is
advantageous to think of 3F as polynomials in dimJf many non-commuting
indeterminants zt (corresponding to an orthonormal basis {/J of 2tf). Then c*(/f)
and c(/j) correspond to the multiplication operator zt and the partial derivative dZi,
respectively. The sum appearing in the definition of c(β is then nothing but the
product rule for differentiating.

Lemma 1. The operators c(f) on <F fulfill, for all f ge 2tf, the relation

c(f)c*(g)-μc*(g)c(f) = (

Proof.

n + μg®lc(f)h1® ...

It remains to present a scalar product which makes c(f) and c*(f) adjoint.
First, we give a formal definition of this scalar product < , ) μ . The main problem
will be to prove its positive defϊniteness.

We define the symmetric bilinear form < , }μ on & by

<gi® ...®g»,Λi® ...®fcmV. = 0 for

and otherwise recursively by

n

k=ι u k 2 '" "' 1 '" k '" n μ'

Lemma 2. We have, for all fe Jί? and ξ, i

Proof It is sufficient to prove, for all ghhjEJ^, that

<C*(/)gl® ••• ®gnM® '" ®Λ»+l>μ=<gl® ••• ®g

But this is clear from the definition of < , ) μ . •
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It follows immediately that

Now we want to write <, }μ as (ζ,η}μ = (ξ,Pμη) with P^rJ^-*^, where
< 9 ) = < 9 >0 is the usual scalar product on the full Fock space. We write

Pμ==φp(n) with P ^ : ^ ® " - ^ ® " .

To define Pμ

n) we use the following unitary representation π i—• Uπ of the symmetric
group Sn on j f ®":

By i(π) we denote the number of inversions of πeSn, i.e.

i(π):

Then we put

πeSn

In particular, P j f ^ P J / ^ l , i.e. we have not changed the scalar product on the
vacuum and the one particle space.

Remark. It is clear, that Pμ

n) is, for each n, a bounded operator on J^®n. Later, in the
n— 1

proof of Lemma 4, we will see that it has the norm γ\ ( l + μ + ... + μ1). Hence Pμ is
i = 0

in the case μ > 0 an unbounded operator on the full Fock space.

Lemma 3. We have for all ξ,

Proof. It is sufficient to prove, for all n e N and all g^hj

<gi® ••• ®gnA® ••• ®ΊΠ>μ = <g!® ... ®gn,P
(

μ%® ... ®hn)

= Σ μi(π)<giA<i)> <gnA<,,>>
πεSn

We do this by induction. For n = 1 the assertion is clear. Assume the assertion is
true for n — 1. Denote by S^lί the set of all bijections from {2, ...,n} to

( k\
and

y ^ί j {, ,

( l-*k\
, where π(l) = k

σ /
σ e S®ί i with σ(l) = π(ϊ) for /=2,..., n. The number of inversions i(σ) for σ e S l̂ x is
defined in the same way as for πeSn. It is easy to see that i(π) = k — l+ϊ(σ) if

( l+k\
.By using Σ Σ = £ we get

σ / fc=l αeSflj πeSn

n

= Σ ^ " ^ g l .

= Σ/"1<?i.**> Σ Z '
fc = 1 σ e S ί ί C - i

= Σ ^< π ><gi^π ( 1 )>.."<gΠ,Λ
S
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Now we tackle the problem of the positive definiteness of < , }μ. This can be
inferred from more general theorems in [BJS]. But we prefer to give an elementary
proof.

Proposition 1. a) The operator Pμ is positive for all μe[ — 1,1].
b) The operator Pμ is strictly positive for all μe( — 1,1).

Proof It is sufficient to consider P™ for all n e N.
a) We will first prove that φμ:π\-^μm is a positive definite function on Sn, i.e.

Σ
π,σeSn

for arbitrary r:Sn-+<C.
We define

and for π e Sn and A C Φ,

: = {(π(ί),π(J))\(ίJ)eΛ}cΦ.

By \A\ we denote the number of elements of the set A. Note in the following that we
have |7φ4)| = \A\. Then we have i(π) = \π(Φ+)\Φ+\ and i(π) = i(π~ *) = \π-\Φ+)\Φ+\
= \Φ+\π(Φ+)\. Denoting by AΔB the symmetric difference {A\B)κj(B\A) of A and
B we get 2ι(π) = i(π) + ϊ(π" 1) = |π(Φ+)zlΦ+ |, which yields for π9σeSn,

2i(π-ισ) = \σ(Φ+)Aπ(Φ+)\.

By using the characteristic function χA and χB for A,BcΦ we can write

\ΛAB\= Σ \XA(X)-XB(X)\= Σ \XΛ(X)-XA<)\2.
xeΦ xeΦ

Now we consider first the case 0 < μ ^ l and put μ = e~λ (λ^.0). We have

n
xeΦ \ /

Remembering the fact that the pointwise product of two positive definite functions
is again positive definite [Sch] we see that it is sufficient to prove for all xeΦ,

Σ e x P ( -^ l%

Putting y0: = 0, yγ: = 1 and

r(yo)-= Σ *&), r(yi):= Σ r(σ)
σ with σ with

xφσ(Φ + ) xeσ(Φ + )
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we have

Σ exp( - - |χ σ (φ+)(x)-χπ ( Φ +)(x) | 2 ) r(σ)r(π)
π,σeSn \ ^ J

= Σ

since xi—•expί — -\x\2 I is a positive definite function on the additive group R.

Thus for 0 < μ ^ l the function φμ:π\-^μίiπ) is positive definite.

For — 1 ̂ μ < 0 we notice

Since πi—•( — l) i (π) is a character on Sn and hence positive definite, we get the
assertion for — 1 ̂ μ < 0 by the fact that the pointwise product of two positive
definite functions is again positive definite.

Since for μ = 0 we have φo(ί) = ί, φo{π) = 0 (πφl), which is clearly positive
definite, we have the positive definiteness of φμ for all μe [ — 1,1].

Now we show that P™ is a positive operator, i.e. that < ^ , P ^ > ^ 0 for all
ηe tf®". We have (with {£,} denoting a CONS of the Hubert space

= Σ μiiπ)<η,uπη)
πeSn

nl π,σeSn

= -. Σ μiiπ'lσ\Uπη,Uση}
nl π,σeSn

4 Σ Σμi(π"M<^Λ
W! π,<xeSn {̂ }

= ^ Σ j Σ μί(

since φμ is positive definite.
b) It is sufficient to show that φμ is a strictly positive definite function on Sn for
μ e (— 1,1). We only consider μ e (0,1) the case μ e (— 1,0) is analogous and μ = 0 is
trivial.

We call φμ degenerate if it is not strictly positive definite. Assume that there
exists a μe(0,1) with φμ degenerate. Since the pointwise product of two strictly
positive definite functions is again strictly positive definite [Sch] we can conclude
that also φμ, with μ': = j/μ is degenerate. Since |/μ φ μ we get in this way infinitely
many different μ{ with φμ. degenerate. But the fact that φμ is degenerate can be
stated as the vanishing of det^, where A: = (μi(π"lσ))π><τeSn. Since det^ is a non-
constant polynomial in μ, it has only a finite number of zeros, and we obtain a
contradiction. Thus there exists no μe(0,1) with φμ degenerate. •

We now denote by &μ the completion of iF with respect to the scalar product
< , }μ. Note that in the cases μ= — 1 and μ= +1 we first have to divide out the
kernel of P before taking the completion.
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Remarks. 1) Note the following special cases:

i) μ = 0: P o = id. For k: = dim Jίf < oo we get the full Fock space representation of
an extension of the Cuntz algebra Ok by the algebra of compact operators, for
fe= oo we get the full Fock space representation of the Cuntz algebra 0^ itself (cf.
[Eva]).
ii) μ = l : P(

1

w)2 = n!P(

1

π); X/nlPψ projects onto the space of symmetric functions,
thus our scalar product implements automatically the additional relations c(f)c(g)
= c(g)c(f). We get a representation of the CCR-algebra over Jtf*.
iii) μ= — 1: P(-)ι=n\Pi!!}1; ί/nϊP^x projects onto the space of antisymmetric
functions, thus our scalar product implements automatically the additional
relations c(f)c(g)= — c(g)c(f). We get a representation of the CAR-algebra
over Jίf.

2) The strict positivity of Pμ in the interval μe( — 1,1) shows that, apart from the
above three cases, Pμ is not a multiple of a projection.

Lemma 4. The operator c(f) on 3Fμ is bounded for — 1 ̂  μ < 1 and has the norm

\\c(f)\\μ=L

lk(/)ll,= I
Pr oo/. First, we consider — 1 ^μ^O. Then we have for

ξ, c(f)ξ\

Thus we have ||c*(/)|| ^ | |/ | | and equality holds since c*(f)Ω=f.
Now we treat the case O^μ<l. We will show

for all ξe^.lt is sufficient to deal with ξeJίf®n for arbitrary weN0.
We denote by π feSn (n>ί) the transpositions of the symmetric group/

i.e. %i interchanges i and i+1. One sees easily that each element π of the sym-
metric group can be written uniquely in the form π f c ( 1 )π f c ( 1 ) + 1π f c ( 1 ) + 2 ...
π f c ( l ) + r ( l ) π f c ( 2 ) π f c ( 2 ) + l π f c ( 2 ) + 2 ••• π f c ( 2 ) + r ( 2 ) ••• πk(i)πk(i)+ l π k ( i ) + 2 •" πk{i) + r(i) W i t h ί ^ O

(i = 0 gives the unit element 1 € Sw), r(f) ̂  0 and fc(l) > fe(2) > ... > fc(ι). Furthermore,
the length of this product, i.e. (r(l) + l) + (r(2) + l)+ ... +(r(z) + l) is equal to ί(π).
This shows that we can write Pμ

n+1) in the following form (by identifying Uπ

with π):

p( ί

r t + 1 >=l®p( t

w >(l+ μ π i +μ 2

π i π 2 + ... +μ"π 1 π 2 . . .π Π ).

Using this equation and its adjoint version we get

. +μ» π i . . .π n )( l+ ... +μnπn... W l

This implies
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Now we obtain

< r^— </®ί»ί ®PiΛf® ξ)>
l-μ

= j^<f,f><ξ,P?ξ>.

This gives the boundedness of c*(f). That the norm of c*(f) is equal to
1/j/l-μ 11/11 can be seen from c*(f)f®n=f®in+1) and

• . +μnKfJXf®nJ®n>μ •

This lemma implies that Lemmata 1 and 2, which were proved only on the
dense domain &, remain valid for μe [— 1,1) also on J^. The case μ = +1 is an
exceptional one. In this case our operators are unbounded ones defined only on the
dense domain #\

Now we can consider our Brownian motion. In the following we choose
2tf = L2(R) and fix a μe [-1,1]. By c€μ we denote the *-algebra generated by all
c(χj) for / e SR and by ρ the vacuum expectation state on <$μ. Then one only has to
use the definition of c(f) and c*(f) to see the stationarity of the distribution and, by
induction, the factorizing of pyramidally ordered moments. To justify the name
"Brownian motion" for the object (#μ, ζ, ((c(#j), c*(χ7)))je9l), it only remains to show
the Gaussianity of the corresponding distribution. This is a consequence of the fact
that all moments of our operators are determined in a special way by the second
moments. This is, of course, an implication of a central limit theorem, which will be
considered elsewhere [Spe 3]. To describe this connection between the moments
we have to define the number of inversions i(i^) of the special partitions
ΊΓ = {(el9 zx),..., (er/2i zrJ2)} of the set {1,2,..., r}, where et <e3 for i<j and et <z% for
all i = l, ...,r/2 (r even). It is defined as

The set of all such partitions will be denoted by έP2(l, ...,r).

Examples. ί((l,2),(3,4)) = 0, i((l,3),(2,4)) = l, i((l,4),(2,5),(3,6)) = 3.

Remark. If we visualize our partitions as in [Spel] by building bridges
(connecting et with zt), then i(i^) is the minimal number of crossing points of these
lines. In particular, for an admissible partition *V (cf. [Spel]) we have i(ir) = 0.

Now we have

Proposition 2. Let cι: = c(χ7) and cj : = Cj,cj: = cf. Then we have for allre¥l and
}

ρ(ck(βi)cfc(zθ) ρ(cJ(^/2)c^ z ' / 2 V i ( ^ )

 5 r even
,...,r)

vv/ẑ rβ ίfe 5«m runs over all partitions i r = {(eι,zί),...i(erι2,zrι2)}. The matrix
(QI)ij = QI(i,j) = ρ(ci

Ic
j

I) is given by

0 0
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= Qj(k(ί),

+ μρ/(/c(l),k(3))β/(fe(2),fe(4)).

and ρ(cjcfCjcf) = λ(I).In particular, ρ(c/c/cJίcf)

Proof. We only have to note that the formula is valid by definition of the scalar

product < , >μ for products of the form cι... c^f ...cf (i.e. et <Zjfor all ί and ) and

that both sides of the formula change in the same way if we replace in c){l)... cj ( r ) a

factor Cjcf by cfcj. •

Now we can summarize our result.

Theorem. The triple (^,ρ,((c(χ/),c*(χ/)))/e9l) is, for μ e [ - l , l ] , a generalized

Brownian motion fulfilling the relations

c(f)c*(g)-μc*(g)c(f) = (f,g>l.
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Communicated by A. Connes

Note added in proof. Philip Feinsilver called our attention to the following article: Arik, M.,
Coon, D.D., Lam, Y.: Operator algebra of dual resonance models. J. Math. Phys. 16,1776-1779
(1975), where the same relations were considered on a formal level; but none of our main results
is contained in this article.






