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Abstract. The problem of describing the bulk behavior of an interacting system
consisting of a large number of particles comes up in different contexts. See for
example [1] for a recent exposition. In [4] one of the authors considered the case of
interacting diffusions on a circle and proved that the density of particles evolves
according to a nonlinear diffusion equation. The interacting particles evolved
according to a generator that was symmetric in equilibrium. In this article we
consider interacting Ornstein-Uhlenbeck processes. Here the diffusion generator
is not symmetric relative to the equilibrium and the earlier methods have to be
modified considerably. We use some ideas that were employed in [3] to extend the
central limit theorem from the symmetric to nonsymmetric cases.

1. The Model and Its Macroscopic Equation

Let S be the circle of circumference 1. For each positive integer N we consider a
system of N interacting particles with positions on S and velocities in R. The
system is described by the following stochastic differential equations in phase
space (x, y) = {(xί9 t J, (x2, v2),..., (XN, %)},

dxί(t) = Nvi(ήdt

dvt(t)=-N2 Σ 2V'(N(xi(t)-xjmdt
j*ί

-¥-ΌJt)dt + Ndwft) (1.1)

for i = l,2,.. .,N; O^ί^T. Here {w;(ί), J = l,2, ...9N} are N independent Wiener
processes and V is an even function on R with compact support describing a pair
interaction.

* This research is supported in part by the National Science Foundation, grant nos. DMS 89-
01682 and DMS-88-06727
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We make the following assumptions on V:

(i) F^O, F(0)>0 and V has compact support (super stability).
(ii) V is once continuously differentiable.

(iii) ψ(z)= — zF'(z)^0 (Repulsive Interaction).

The generator of the Markov Process (x(t), v(t)) on (S x R)N is given by

where

s =^ Σ (^-v-
2 ,-Λarf 'dv,. (12)

The "equilibrium" measure on (S x R)N for L# is given by

2- Σ _ _ Ar

'*J dwfdwp, (1.3)
N

where ZN is the normalizing constant. We note that SN and JN are respectively the
symmetric and antisymmetric part of LN with respect to μN.

We will assume that the initial distribution of the process has a density /^(x, v)
with respect to μN and it satisfies the following entropy bound:

HM3)= ίf^v)logf^v)dμN(x,v)^CN (1.4)

for some suitable constant C.
The empirical distribution of the process at time t is the probability measure on

S defined by

%M0)=^ ί^Xi(t)(dθ). (1.5)

We view αN as an element of C[[0, T], M^S)], the space of continuous functions
on [0, Γ] with values in the space MX(S) of probability measures on S, endowed
with the weak topology. We denote by QN the distribution of αN on C[[0, T],
M1(S)]. The aim of this article is to study the limiting behavior of QN. The main
result is that asN^>ao,QN will concentrate around a single trajectory which is the
solution of a nonlinear diffusion equation.

Theorem 1.1 (Hydrodynamic Limit). Assume that HN(f£) ^ CN and that there
exists a function m0(θ) such that m0(0) ̂  0, J m0(θ)dθ = 1 and for every J:S-*R which
is smooth and every δ > 0,

lim J

vv/iere

^7 Σ J(Xi)-SJ(θ)mΌ(θ)dθ
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then Q = lim QN exists and it is concentrated on the trajectory of the form μ(t, dθ) in

Cί&TiM^S)] satisfying

(i) μ(t,dθ)=m(t,θ)dθ for all t.

(ii)
0 S

(iv) m(t, θ) is a weak solution of the equation

dm _^2P(m(θ,t))

-fo-2~d& (1'6)

with initial condition m(t, θ) at t = 0 given by m0(θ). Furthermore the weak solution
(1.6) satisfying (ii) and (iii) above is unique. The function P( ) is the thermodynamic
function "pressure" which is defined in Sect. 2.

This theorem will be proved in Sect. 5 using the basic results of Sects. 3 and 4.
The main idea is the following.

Let /#(*, v) be the solution of the forward equation

with initial condition /^, where L% is adjoint of LN with respect to the measure μN.
The core of the problem is to prove certain local ergodic properties of the time
average

v)dt. (1.8)

These local ergodic properties will be established in Sect. 4 and are based on
certain bounds on entropy and its rate of change. An elementary computation
yields

This implies immediately that HN(f^) ^ CN for all t ̂  0. Defining for any density /
relative to μN

we have

N .

Since both IN(f) and HN(f) are convex functionals of / we have

(1.11)
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2. Canonical and Grand Canonical Gibbs Measures

Let 3C denote the set of all locally finite configurations of particles on the real line R.
By a locally finite configuration we mean a countable subset of R with no
accumulation points in R. For each value of a real parameter A called the chemical
activity the Grand Canonical Partition function in a finite interval A is defined as

Z(A,Λ)= Σ ί expΓ- Σ V(qt-qj)\dqι...dqn. (2.1)
n ^ O n\ Λn [_ ίΦ./ J

The free energy as a function F(λ) of A is defined by

F(A)=lim-|-logZ(A,Λ). (2.2)
\A\

By the assumptions made on the interaction V, the limit (2.2) exists and defines a
convex function F(λ) of A. In our case since the dimension is 1, the function F(λ) is
continuously differentiable with a derivative

TΓdλ

The function ρ(A) is continuous and strictly increasing with ρ(A)-»0 as A-> — oo and
ρ(A)-> + oo as A-» + oo. The inverse A = A(ρ) exists as a continuous increasing
function and

(2.4)

defines the pressure P(ρ) as a continuous, strictly increasing function of ρ.
The canonical Gibbs measure in a finite interval A with particle number n and

external boundary condition ω is a probability measure μ%Λ on configurations in
A with n points or equivalently, a symmetric probability measure on A". The
external boundary condition is a configuration on Ac. We define

d<Λ=~ \7 l J"1 exp[- Σ V(qi-qj)-2Σ V(qi-yJ]dql...dqn9 (2.5)

where Z^Λ is the normalization constant,

ZIA^- \ πpί-ΣV(<li-qJ)-2ΣV(qί-yΛ)'}dqi...dqN. (2.6)
Yl . Λn

The Grand Canonical Gibbs measure on a finite interval A with activity A is a
convex combination of μ%Λ with special weights. We define

oo
Λω _ryω η-1 y pλnyω ..ω
^λ,Λ — L^λ,ΛΔ L e ^n,Λμn,Λ>

n = 0
where

The Grand Canonical Gibbs measure on the infinite line with activity A is a
point process μλ on the configuration space 3f such that for every finite interval A
the conditional distribution of the configuration in A given the configuration ω in
the exterior Ac, is given by μ^Λ for almost all ω.
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One of the important aspects of the absence of phase transition in our one
dimensional system is the following theorem. It is stated here without proof. A
sketch of the proof can be found in the appendix of [4].

Theorem 2.1. For each λ, there is exactly one Grand Canonical Gibbs measure μλ on
9C corresponding to the activity λ. It is a stationary point process with density ρ = ρ(λ)

given by (2.3). // μ™ Λ are canonical Gibbs measures such that A]R and —— ->ρ, then
\Λ\

for any continuous bounded local function H(ω') on the configuration space,

lim sup
n/\Λ\^ρ ω

Λ t R

- - J H(ω'x)dx-H(ρ) (2.7)

Here H(o) = Eμλ\_H(ω'}~\ with λ chosen so that ρ(λ) = ρ. The configuration ω'
translated in space by x is denoted by ω'x.

The correlation measures R(£\dzί,...,dzk) are defined so that

" = ί /(*ι, , zJRftdzi, . . ., dzk) .
Rk

On the left-hand side the summation is over all fe-tuples (zl9 . . ., zk) that belong to
the configuration. f(zl9 ...,zfc) is assumed to be a bounded continuous function
with compact support. R(£\dzί9 ...,dzk) is a σ-finite measure on Rk invariant with
respect to diagonal translations zί,...,zk^>z1 + α9...9 zk + α. In particular

We have the identity proved in the appendix of [4].

Theorem 2.2. For every λ and ρ related by ρ = ρ(λ),

Q + ί ί Ψ(x ~ y)h(y)R?\dx, dy) = P(ρ) ,

oo

where h(y) is any function which has compact support with J h(y)dy = 1.

3. Some Estimates Based on Entropy and the Dirichlet Form

In this section our aim is to obtain some elementary bounds based on the
inequalities

and «jvuW=s^i (3Λ)

IM£jj (3-2)

for an arbitrary density fN(x, v) relative to μN.

Theorem 3.1. Let fN satisfy (3.1). Then

(i) $\v\2fNdμN^N(log}/2 + A). (3.3)
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(ii) For any function φ on C(R) with compact support there exists a constant C such
that for all N and Λ,^ 1,

J λ Σ φ(λN(Xi - Xj)) fNdμN ^ C'N . (3.4)
ij

Proof.

(i) if [.Σ

(ii) The proof can be found in Lemma 4.2 of [4].

In the following we will denote the Gaussian product distribution on RN by

, (3-5)

and the equilibrium distribution on SN by

*)= 4 exp ί - Σ ^(NίJC! - xj)} dNx (3.6)

so that dμN(x, υ) = dGN(v) - μ^x). Given a probability density fN(x, v) relative to μN,
we denote by fN(v\x) the density of the conditional distribution of y given x, relative
to GN(dv). By the logarithmic Sobolev inequality (see [1] for a proof) for any
configuration x we have

v) ί 2 J —1

If we denote the marginal of fN(x, v) by

f f f ( x ) = ϊ M x 9 v ) G ^ d υ ) 9

then by a simple calculation

x) ί /^l^log/^lxJG^)
RN

. (3.7)

J tt(x)dμ%x) ί /^l
SN RN

We have therefore proved

Lemma 3.2. Let fN be such that IN(fN) ^ C/N. Then the conditional density fN(v\x)
satisfies

* <4C

TV

4. Local Equilibrium Distributions

We would like to show that, relative to the probability distribution fNdμN,

"average microscopic quantities" like — Σ ψ(N(Xi — x,-)) J(xt ) are close, for large AT,

to the expression involving only the macroscopic density function.
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The approach we use here is similar to the one used in [4], but the information
we have on fN here are different. In [4] two basic estimates available on fN are used,

(4.1)

and

\\γ Σ (ffY^WV. (4.2)
2 JN ί=l \ t fXi/

In our case we do not have (4.2) but instead have

. (4.3,

As we saw in the previous section, by the logarithmic Sobolev inequality this will
tell us that the distribution of the velocities conditioned on the positions are all
very close to the equilibrium. But this says nothing about the distribution of
positions. To infer from this that the local position distributions are close to
equilibrium distributions and that the macroscopic density has no unnecessary
fluctuations, we have to actually use information that fN are time averages of the
solution to the forward equation.

Consider a function Φ(ω) on the configuration of points in R which is bounded,
continuous and localized in some finite interval [ — /,/]. For any given xεS and
any x e SN we can consider the configuration ω# on the line

a% = {N(xi-x):\xi-x\<±}.

If N is sufficiently large Φ(ω#) makes sense and we are interested in the quantity

let h(x) be a nonnegative smooth function with J h(x)dx = 1, supported on [
For λ>\, we define

<?*(*) =4 Σ
•ίV ί = 1

where hλ(x) = λh(λx) and aN(dx) = — [δXi + . . . δXN] is the empirical distribution of

the configuration (xl9 ...,XN) on S. We denote by Φ(ρ) the expected value

E^[Φ(ω)] = Φ(ρ),

where μρ is the Gibbs measure with density ρ or activity λ = λ(ρ). If we define

then we want to prove

Theorem 1.

lim lim sup E~fN \ξN(x) - ηNί λ(x)\ = 0 .
λ->oo ΛΓ-*oo

As in [4] we establish Theorem 1.1 in two steps.
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Theorem 4.2.

Theorem 4.3.

S. Olla and S. R. S. Varadhan

lim lim sup Ef» \ ξN(x) - ηN, NE(X)\ = 0 .
ε_,0

lim lim sup E~fN J \ρλ(x) - ρεN(x)\ dx = Q.
ε->0 JV-»oo S

Let ?N(x,y)= J fN(x + a,v)da. Then by convexity we have that ?N satisfies
s

In exactly the same way as in [4] the proof of Theorem 4.2 can be reduced to

Theorem 4.4.

lim lim sup EfN

ΛΓ-»oo

Ns
— J Φ(ωx

N)dx-Φ(ρNε(0)) = 0.

Proof of Theorem 4 .4. Both J Φ(ω*}dy and ρ ε̂(0) depend only on the

configuration x in the interval -- — — — , — — + — centered around the origin
|_ εN N εN JVJ

of S. Here the function Φ is assumed to depend only on the configuration in [ — /,/].
If we project ?NdμN onto configurations on this interval and expand the interval by

a factor N, we will get a point process VN ε on the interval --- / , - + / .
I ε ε J

have to prove is that

All we

ε->0 2 -l
Φ(ωx)dx-Φ(ρε(0)) = 0,

where ωx is the configuration ω translated by x in space. Since the density of
particles is 1 under ?NdμN, VN>ε is compact and we denote by $ε the set of all limit
points of VN ) £ as ΛΓ->oo. We have to prove that

lim sup Ev
I J Φ(ωx)dx-$(ρε(0))
2 - Ife

Let μ£ l be the Gibbs measure on [ — /, /] with exterior boundary condition ω and n
particles inside [ — /,/]. We denote by Γt the convex hull of these measures, and by
7](1) those for which expected particle density in [ — /, /] is at most 1. Then according
to Theorem 2.1,

lim sup Ev\
*->ooveΓ(i> k L

- j Φ(ω*)dx-Φ(ρllk(0))
-k

and we therefore need only establish the lemma

Lemma 4.5. For every I and s

<% r Γ*1)Me^l π / e ΐ + Z
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Proof. Let c0 be the range of the interaction V9 i.e. V(x) = 0 if |x| ̂  c0. Let us consider

the limiting point process on the interval --- /— c0, -+/+c0 , i.e. any
L ε ε J

where l/ε' + /=l/ε + / + c0. We want to show that veΓ[V(1/ε).distribution
Consider the function

where Φ is any function of the configuration of points in [ —/—c0, / + c0] which is
bounded continuous and differentiable, and g is any positive continuous function
with compact support contained in [ — /,/]. By direct computation we have

Σ 2V'(N(Xi-Xj))Φ(ω°N)g(N(Xί))- Σ ^Wj/-(Φ(ω°N)g(N(Xj)))
™

On integrating by parts:

I f UN(X, y) /N(x, υ) dμN\ = \$ da f UN(X + α, t;) /N(x, t?) dμN

i = l

l/2

ί^ί Zs /N

1/2

1/2

Σ Ψ. '

If gjy is any probability density with respect to μN and gN is its average

?. v)dμNda

l/2

ί %(ί, y)|w^ = I ί %(*
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1 τ

provided H(gN)^CN. If we now use the explicit formula fN=— \J^άt and
T o

calculate

ί LNuN?NdμN = -] $UN-^ dtdμN

= -l!"N ?JdμN - f UN f$dμN~\ ,

then

because H (//) ̂  #(/N°) ̂  CAT.
We have therefore established

lim

- Σ vf>j (Φ(ω°N)g(NXj = 0 . (4.4)

Let us define the following N x N matrix

Because of the scaling (Fj/x)} are uniformly bounded. Then by the entropy
estimates of Sect. 3,

.

) log J exp £(»? -

By an elementary calculation, essentially because of the law of large numbers we
can conclude that the last term goes to zero with N. Therefore

limsup - Σ [t>? -1] Fax) /„(*, υ)dμN g 0.

Since the same argument works with change of sign we actually have

= 0. (4.5)
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Using an exactly similar argument on the off diagonal elements

^ ί ft(x)dμ$ |i log f exp ̂  Σ, υfljF^x)J G^dt?) +

We can estimate by direct calculation

Γσ Ί [σ
> kf Σ ^Λ GN(dv)= I exp — Σ
L^ «*j J L^ «*j

= exp -logdet

.

where F is the matrix Fυ for iΦj and F—0 mt
bounded it is easy to obtain the estimate (note trF=0)

log det

provided σ is suitably small. We therefore obtain

l imsup—J Σ ViVjFi
N-+QO JV i Φ j

^ Cσ for all small σ > 0

= 0.
Again since the argument is insensitive to sign we have

Since is

lim sup ill = 0.

lim E» Σ 2V'(N(Xί-Xj))Φ(ω0

N)g(NXί)
_ί,j

(4.6)

Combining (4.4) with (4.5) and (4.6) we get

0. (4.7)

Since the function Φ(ώ) can be used just as well to cut off configurations having too
many particles, we get from (4.7)

gM- Σ /- (Φ(co0)g(yi))\ =0 (4.8)
°yί j

for any v which is a limit point. But (4.8) is enough to guarantee that v
To see this we choose the function Φ(ώ) to be of the form Ψι(ωA

c)ψ2(ωΛl\ where
ψi and ψ2 are functions of the configurations in the interior of At = [ — /, /] and its
exterior Λ\. We can choose ψ2(

ωΛι) to be of the form

) = Φ(y^ - - •> yn) i
= 0 otherwise,

= n
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where \ωΛl\ is the cardinality of the configuration inside [ — /,/] and yl9 ...,yn are the
locations of the n particles inside [ — /, /]. Here φ(yl9..., yn) is a smooth symmetric
function of yί9 ...,yn. Although such a ψ2(

ωΛι) *s not smooth on configuration space
it is easily approximated by smooth ones. There is no difficulty because the
probability of finding a particle on the boundary is zero under v. If we denote by
v = vΛl(dyι,...,dyn\ωΛc,n) the conditional distribution of the configuration on
[ — /,/] given the configuration on ω€

Λl and the cardinality \ωΛ\ of ωΛ, then

ί Σ Σ

This identifies v' as the canonical Gibbs measure.

Proof of Theorem 4.3. For any configuration xeS* we have associated the
empirical measure

<*N(dx)=jjΣδ

Xi(
dx)

and smoothed version

We have to prove that ρλ(x) for λ large but fixed and ρεN(x) with β small but fixed are
close. This amounts to proving that ρeN(x) does not have any oscillations. Just as in
[4] we calculate the Young measures associated with ρεN( - ) and show that as
N ->oo and ε->0, these converge to a degenerate measure for almost every
configuration. Corresponding to any density ρ(x) we define a measure π on S x R +

by
f F(x, ρ)π(dx, dρ) = J F(x9 ρ(x))dx .

s
Clearly

$ρπ(dx,dρ)= $ρ(x)dx = l,

$F(x)π(dx,dρ)=$F(x)dx.

If we denote by M the space of probability measures onSxR+, then through the
map ρ( )->π we can map the random density

into Jΐ. If we consider the pair <xN and π we get a map of SN into Mί(S)x M. We
start with our basic ?NdμN on 5^ and denote by QN ε the induced distribution on
MX(S) x Jί. In order to establish Theorem 4.3, the main step, after establishing
compactness of QN ε as iV^oo and then as ε->0, is to show

Theorem 4.6. Let Q be any limit point of QN ε as N-+ oo and then as ε->0. Then for
almost all (α, π) with respect to Q,

π(dx,dρ) = dxδρ(x)(dρ)

for some function ρ(x)eLi(S).
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We will prove Theorem 4.6 by means of the following lemmas.

Lemma 4.7. Let Q be the limit measure as above. Then

(5 [α : a(dx) = ρ(x)dx for some ρ e L^SJ] = 1 ,

where C is a universal constant and B is the bound on entropy.

Proof. Identical to Lemma 7.7 in [4].

Lemma 4.8. Let Qε be any limit measure of QN ε as iV-κx). Then

(i) &[(α,π):Jρπ(dx,dρ) =!] = !,

(ii) βε[(α, π) : π(dx, dρ) = dxπx(dρ}\ = 1 ,

(iii) Qε[(α, π) : α(dx) = ρ(x)dx , with ρ(x) = J ρπx(dρj] = 1 .

Proof. Since this lemma is based only on entropy bounds, like Lemma 4.7 this
proof is identical to Lemma 7.8 of [4].

It remains to prove that as ε->0 the limit points of ()ε are supported by
degenerate Young measures. Consider a function g which is nonnegative, smooth,
symmetric with compact support in [ — \, £| and having J g(x)dx = 1 . For every AT,
(5, and λ we define

X

Gδ,N,λ(x)= J g*,
— CO

where

We note that GδtNfλ has small compact support on R and is therefore well
defined as a function on S provided Nδ^ί and 1^1. We consider the following

N Ntest function on SNxRN:

1 N
WδtNtλ(x,y)=— Σ

N i=ι

We then have by calculation

Σ 2 Σ. NV(N(Xi-Xk)) Σ,

δ, N, λ . (4.9)
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We integrate by parts and use Schwartz' inequality to obtain

S'*

1/2

From the definition of /N,

δ,N,λ

l/2

1/2

1/2

(4.10)

snce )^CN, by Lemma 3.1 and Schwartz's inequality,

ί ̂  ;Σ

l/2

ί ;Σ (Σ,.
l/2

\ l / 2

"ί-̂ to*)

Γ . (4.11)

We have used here the fact that GδtNfλ is bounded by some C2. Using (4.9), (4.10),
and (4.11) it follows that

(4.12)

lim lim J- X 2 Σ V'(N(Xi-xJ)(Σ Gd,NJXi-Xj)
λ^ooN^oo ft i=ί ( fcφi

N d
~ Σ ViVifi-1=1 dxl

Let A^(x) be the symmetric matrix

t. N, λ

=o

for i φj

for i =7 .
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We can then use an argument similar to one used in Theorem 4.1 [Eqs. (4.7) and
(4.8)] to get

ί Jj2 Σ, Wjgδ. N, Λ(XI ~ xj) fNdμN

Just as before we conclude that

lim τ72- Σ
1" ίφj

=0.

We treat the remaining term in the same manner:

2 .Σ (»?-!) .Σ g*.w.Ji(*(-*j

If we denote £ gδ N λ(Xi — Xj) by ξi then \ξt\ ̂  CAT2. Moreover
' '

Therefore for small σ,

(4.13)

We have now as before

lim

If we combine (4.12), (4.13), and (4.14) we get

= 0.

lim lim
1 £

ί ^2 .Σ {. Σ . NV'(N(Xi-x}))Gttlf.λ(Xl-x}

= 0.

(4.14)

(4.15)

From this point on the rest of the proof proceeds exactly like in [4]. First we note
that with <5 = 1 and λ = ί ,

sup
N
1 Σ (4.16)
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This provides us with the estimate

sup
N

i Σ I ψWxt-Xj)) ?NdμN
(4.17)

According to Lemma 7.9 of [4] this will give the required uniform integrability to
take the limits as JV-»oo and then λ-+co and <5->0. We remark that once ΛΓ-κx),
according to Lemma 4.5 we are in the local Gibbs situation and that puts us in the
circumstances of [4]. In particular we get Lemma 7.10 of [4] establishing for any
possible limit point the bound

(4.18)

5. Hydrodynamic Limit

We will prove in this section the main part namely (iv) for Theorem 1.1. Parts (i)
and (ii) were essentially established in the previous section. We will prove (iii) in the
next section. Of course we need some estimates to prove compactness. These will
also be deferred to the next section.

For any function J on S which is smooth by Eq. (1.1) we have

\ N \ N T N

N i=ι l N i=ι o i=ι

On the other hand

/ N \ N

d( Σ J'(xi(t))vi(t))=N Σ J"(*i(t))vf(t)dt
V=ι / i=ι

~NJi(2,Sι
-— V Y
"Til (*'

+ N Σ Jf(Xi(t))d^(t)9 (5.2)
ί=l

we can rewrite this in the form

Γ N 9 Γ N

.Σ J'(xft))υjt)dt= ι J"(Xί(t))vf(t)dt

J Σ (
0 i=l\

2 Σ
jφi

- ~2 (.Σ JWr . « . (5 3)
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Combining it with (5.1)

where

-τ* Σ JWTMT)- Σ J'WOM
IM ' ' ' '

)- Σi = ι

From (i) of Theorem 3.1 it is easy to show that

Σ J
=1

=o,

and because w^ί),..., wN(t) are independent Brownian motions

lim ί .Σ J'(χff))dwft) =0.

The next step is to replace vf by 1 in (5.5).

Lemma 5.1.

Λ =0.lim EfN I

Proof. By entropy inequality and logarithmic Sobolev inequality,

J 7 Σ J (χί) (vί ~

2NT'

By the law of large numbers

Σi=ι
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(5.4)

(5.5)

(5.6)

(5.7)

as ΛΓ-KX), uniformly over x This proves the lemma.
Now the velocities are completely out of the picture and we only have to look at

Σ fW))- Σ 2NV\N(xi(t)-xJ{t)))J'(xi(t))\dt.

We replace J'(xj(t)) by iC 'WO) — ̂ '(^X0)]> which we can, because of the skew
symmetry of V'. As in [4], we proceed to replace

by (xti)-xjtt))Jtt(xJt))
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Σ J"(xjf))(l+ Σ ψ(N(xtt)-xJt))]dt,
'

Now we can use Theorem 4.1 as in [4] and show that any weak limit will satisfy (iv)
of Theorem 1.1.

6. Some Auxiliary Lemmas

Lemma 6.1. There exists a constant C such that for all N,

7=1

ψ(N(Xi-Xj))

Proof. This is precisely (4.17).

Lemma6.2 (Compactness). For every smooth J( ) on 5, and ε > 0,

lim lim sup PfN Γ sup |<J, ξN(t)y — <J, <
<5->0 N-»^oo |θ^s<ί^Γ

According to Eq. (5.1),

< J, ̂ (t)> - < J, ί « ( s ) > = Σ J(χ<(ί)) - Σ ̂

= ί Σ J'(Xl{σ))Vl{

We can rewrite this using (5.3) as

ί N 9 l N

\ Σ J'(xί(σ))fί(σ)^=-ί Σ J"(Xi(σ))vf(σ)dσ

Σ 2 Σ NF
-ίV s i=ί j φ i

ί Σ J'(x;(σ))dω,.(
i = l

- Ί Σ ^'WO)^)- Σ ^'Ws))
_ί=ι ί=l
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Since EfSί

N
dσ -»Ό as JV->oo it follows that

lim limPf°Γ sup
< 5 J O ΛΓ->oo

T

L°i
A2(s,t)= - f .Σ

and

s, t)l ̂  T7 IUΊI oo ί Σ ψ(N(xf?)-xjσ)))dσ
™

|r I I JΊL Γf (Σ
W L*\i J

Σ ψ(N(xί(σ)-xJ{σ)))}2dσ
J

1/2

From Lemma 6.1

lim lim sup PfSr [ sup \A2(s, t)\ ̂  εl = 0 .
<ϊ->0 ΛΓ-*c» 0<s<ί<Γ

L(ϊ"-51^ J

From Doob's inequality

sup
0 i=l

Therefore

lim Pf» Γ sup IA3(s, f)| ̂  ε] = 0.
ΛΓ->oo L0^5^^7 J

In order to handle A4(s, t) it is sufficient to prove

lim pf* I sup -j.
i=ι

(6.1)

Let us denote by //Λ,(ί)= Σ 7'(* W) «>«(*)• We can rewrite (5.2) in the form
i = l

N2

+ JV ( Σ J"(xff))v}(t)dt

N

-N
i = l

N

(6.2)
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Integrating this we get

where

PI

Since we have a uniform bound on

EfS [M0)0 ̂  log J exp [|Σ J'MvtU dμN + CAT

» \ j - s u p \ηN(
N ogi^r

In order to establish (6.1) we need only prove

as

P^Γsup }e-(N2l2}(s-t}\AN(s)\ds^ε\-+Q as N->oo,
Lθ^ί<T 0 J

sup fβ-^^^-^IB^Ids^e ->0 as A^oo,
Lθ^ί<Γ 0 J

and

P/ sup

PfSr sup
|_0^ί<T

as N-χχ>,

^μ'ΊL +

(6.3)

(6.4)

(6.5)

(6.6)
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Clearly, τ

sup J e-(N2/2)(t~s)ds^O as JV->oo,
- o

375

[Γ
J
o

We estimate

i "

SUp Je-<"2/2>«-

=!^Σ J

^ΣΛ*«(s))(t>?(s)

™-*\BM*>*

* ^ΣJ"(χM)(vϊ(s)

-W»(^)-1)Λ.

— 1) ds\ -»0 as ΛΓ->

/t 2 \ 1 / 2 / ί

(!•"*-*) ί 1

-1) ds

oo we have (6.4).

B (s)\2ds\'2

1/2

^ ί .Σ (.Σ ψ(N(xi(s)-xJ(s)))Jds.

Since we have a uniform bound on the expectation of the right-hand side from
Lemma 6.1 we have (6.5).

Finally we turn to (6.6). Let us pretend N2T is an integer. Then

sup
t J

0

^ sup SUp

We can estimate

Pf - Γ s u p
Lo^ίg

N2T n Γ

^ X Pf»\ s
fc=l \_Q^t

^ Σk=ι ε

e-N2t/2e(N2l2}sdMN(s)

kfN2

/ ί

as ΛΓ-κx) and we are done.

Lemma 6.3. Let Q be any limit point of the distributions of ξN( - ) under Pf" as
JV-+00, where f$ satisfies HN(f£)^CN. Then

with the same constant.
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Proof. Given two integers n and / we consider a family of functions u±(x\ ..., un(x\
FI(X\ ..., Ft(x) which are smooth functions on S. We consider also a family
giCVu •> y& •» gn^i? •> J>ι) of smooth functions with compact support on Rl. We
use these functions to define a family Ul9..., I7B of functions on SNxRN and
G1 ?...,Gπon^,

ΛT

tfrfe,ί>) = Σ ^Wr(*/)>

By a direct calculation for each r,

\ N ( N
AT Σ I2 Σ ΛΓΠ
W ; = ι I j=ι

= - ^ l/Λx, i?) - i L* tfrfo 0) (6.7)
2 iV

We want to prove first that

Jim ̂  J (LNI7r) (x, v) - Gr(x) /NrfμN = 0. (6.8)

In fact since Gr(x) is only a function of x and LN is first order in x derivatives,

and

[J U,G,fN

τdμN- \ t/ΓGr/w°dμw] -.,

Since both // and /^ satisfy entropy bounds,

HXf

N\ ̂  ||GΓ|| || l/J

where /N can be either // or /^. Therefore

1
lim ^2$LN(UrGr)fNdμN = Q. (6.9)

Moreover

1

By the arguments we have used in the proof of Theorem 4.6 we can replace υpj by
(5 -̂ and because it is obvious that

1 N fiG
lim — u,(X)
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we conclude that

lim -±-

377

(6.10)

(6.8) follows immediately from (6.9) and (6.10).
We now turn to the relation (6.7). Let us use fN to construct a measure QN on

Mj(S) by the map (xι,...9xN)->^(δXί + ...δXN) and let Q be any weak limit.

According to the results of Sects. 4 and 5,

juM^IKi
along the subsequence giving the weak limit Q can be represented as

— FQnp(a(x\\u'(\\G([F (\\ai\\o\ I F (τc\a(τc\dτc\\i I \ j f \ // r\ / r\ I 1 \ /Ί\ /**"^^ •••? 1 Z\ / ji\ / /) *

If we now use (6.7) and (6.8) and sum over r = l,2,..., we obtain

q(x)dx9...9IFjx)q(x)dx)dx

^ lim sup

= lim sup

= lim sup
N-» oo

_ VJix9v)GJix)f^
L ' r=i

1 n N

o f Σ Σ "X.
»• = 1 i = 1

« N

^ί Σ Σ uMGJίx)^dμj,
2 J Λ ,έ-! rV ι; rV-;ai;t. ™

1/2

1/2

QT

j Σ
JN ί =

N / n

f Σ Σ
r = l

1 / 7 Γ X 1 / 2

^l imsupif^) Λ Γ ^ ί j ^ Σ l Σ «,
2 \NTJ

1/2

2 _ \ l / 2

fNdμN

1/2

(6.11)

Denoting by ω the typical point in M^S) we can rewrite (6.11) as

c Y/ 2

' & c v ' '*

for test functions G from a suitable class. First we have it for G of the form

(6.12)
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Then we can obtain the inequality for G of the form

Σur(x)G,(ω).

The next step js to use test functions of general form G(x, ω) but with reasonable
bounds on dG/dx. Then by standard regularization techniques one can prove

It is easy to see that if Q is a weak limit on C[[0, T]; M^SJ] then Q is just the
average marginal distribution over the time interval [0, T]. Therefore

§• (6.14)

Lemma 6.4. There is at most one weak solution of the equation

dρ(t,x)

dt
= 2(P(ρ(t,xJ))x

with initial condition ρ(0, x) = ρ0(x) among the class of nonnegative solutions
satisfying

Q(t,x)

Proof. This has been carried out in [4],

References

1. Deuschel, J.D., Stroock, D.W.: Large deviations. New York: Academic Press 1989
2. De Masi, A., Presutti, E.: Lectures on the collective behavior of particle systems. C.A.R.R.

Reports in Mathematical Physics, 5/89, 1989
3. Papanicolaou, G., Varadhan, S.R.S.: Ornstein-Uhlenbeck process in a random potential.

Commun. Pure Appl. Math. 35, 819-834 (1985)
4. Varadhan, S.R.S.: Scaling limits for interacting diffusions. Commun. Math. Phys. 135,313-353

(1991)

Communicated by J. L. Lebowitz




