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Abstract. The problem of describing the bulk behavior of an interacting system
consisting of a large number of particles comes up in different contexts. See for
example [1] for a recent exposition. In [4] one of the authors considered the case of
interacting diffusions on a circle and proved that the density of particles evolves
according to a nonlinear diffusion equation. The interacting particles evolved
according to a generator that was symmetric in equilibrium. In this article we
consider interacting Ornstein-Uhlenbeck processes. Here the diffusion generator
is not symmetric relative to the equilibrium and the earlier methods have to be
modified considerably. We use some ideas that were employed in [3] to extend the
central limit theorem from the symmetric to nonsymmetric cases.

1. The Model and Its Macroscopic Equation

Let S be the circle of circumference 1. For each positive integer N we consider a
system of N interacting particles with positions on S and velocities in R. The
system is described by the following stochastic differential equations in phase

space (X, )= {(x1,0), (X3,05), ..., (Xn, U8)},
dx(t)=Nvt)dt
doft)=—N* ¥ 2V (N(x)—xA0)de
2

— _1_\;_ vit)dt + Ndw?) (1.1)

for i=1,2,...,N; 0<t<T Here {w(t),i=1,2,...,N} are N independent Wiener
processes and V is an even function on R with compact support describing a pair
interaction.

* This research is supported in part by the National Science Foundation, grant nos. DMS 89-
01682 and DMS-88-06727
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We make the following assumptions on V:

(i) V=0, V(0)>0 and V has compact support (super stability).
(i) V is once continuously differentiable.
(iii) w(z)= —zV"(z)=0 (Repulsive Interaction).

The generator of the Markov Process (x(t), v(t)) on (S x R)Y is given by

Ly=Sy+Jy,
where
N2 N (52 0
=3 5 (5 )
N ) B 1.2)
Jy=N i; {via—xi —Nj;i 2V'(N(x;—x;)) GTJ,}
The “equilibrium” measure on (S x R)" for Ly is given by
1 ¥ e N(xi—x
dun(x,0)= e 25" T gy, (13)
Zy

where Z is the normalizing constant. We note that Sy and J), are respectively the
symmetric and antisymmetric part of Ly with respect to uy.

We will assume that the initial distribution of the process has a density f¥(x, v)
with respect to uy and it satisfies the following entropy bound:

Hy(f¥)= | W(x, ) log fR(x,v)dup(x,0) SCN (1.4)
for some suitable constant C.

The empirical distribution of the process at time ¢ is the probability measure on
S defined by

1 N
an(t,d0)= 3 ¥ 3oofd0). .5)

We view ay as an element of C[[0, T'], M,(S)], the space of continuous functions
on [0, T] with values in the space M,(S) of probability measures on S, endowed
with the weak topology. We denote by Qy the distribution of ay on C[[0, T],
M (S)]. The aim of this article is to study the limiting behavior of Qy. The main
result is that as N— 0o, @y will concentrate around a single trajectory which is the
solution of a nonlinear diffusion equation.

Theorem 1.1 (Hydrodynamic Limit). Assume that Hy(f¥)<CN and that there
exists a function my(0) such that my(0) =0, { my(8)d0 =1 and for every J : S —R which
is smooth and every 6>0,

lim [ fY(x v)duy(x,v)=0,

N-o© An,s,7

where

% .=§1 Jx)— jJ(G)mO(B)dé)l ga},

An,s0= {(J_C, v)e(SxR)N:
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then Q= lim Qy exists and it is concentrated on the trajectory of the form u(t,d0) in
N—wo
CLIO, T1, M(S)] satisfying
() u(t,dO)=m(t,0)do for all t.

(i) jT dt | d6[m(t,0)]* < co.
0 S

o T 0 2
(iid) (j) dtg me.0) [b—e P(m(t, 9)):, df<oo.

(@iv) m(t,0) is a weak solution of the equation
om _ 5 0*P(m(0,1))
ot 06?
with initial condition m(t,0) at t =0 given by my(6). Furthermore the weak solution
(1.6) satisfying (ii) and (iii) above is unique. The function P(-) is the thermodynamic
function “pressure” which is defined in Sect. 2.

(1.6)

This theorem will be proved in Sect. 5 using the basic results of Sects. 3 and 4.
The main idea is the following.
Let fy(x,v) be the solution of the forward equation

a t

W1y sy 1)
with initial condition f;}, where L¥ is adjoint of Ly with respect to the measure p,.
The core of the problem is to prove certain local ergodic properties of the time
average

Tulx.0)= (f)fN(x V)t (1.8)

These local ergodic properties will be established in Sect. 4 and are based on
certain bounds on entropy and its rate of change. An elementary computation
yields

d 1 ofy
g7 AW =~ j 70 ,-Z ( 6fv > duy 0. (1.9)

This implies immediately that H(fy) < CN for all t = 0. Defining for any density f
relative to uy

wn=357 5 (L) u.

we have
TI ‘dt————1 Ho(fH—H f0)<_C
g N(f}\') Nz( N(f}v) N( N) = N

Since both Iy(f) and H,(f) are convex functionals of f we have

IS (1.10)

Hy(fy)<CN. (1.11)
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2. Canonical and Grand Canonical Gibbs Measures

Let 4 denote the set of all locally finite configurations of particles on the real line R.
By a locally finite configuration we mean a countable subset of R with no
accumulation points in R. For each value of a real parameter A called the chemical
activity the Grand Canonical Partition function in a finite interval 4 is defined as

enl
ZhA)= Y —~ | exp[— X V(qi_qj)]dql"'dqw 2.1)
nz0 N: An i)
The free energy as a function F(4) of 1 is defined by
F(A)= lim 1 logZ(4,A4). (2-2
AR |4]

By the assumptions made on the interaction V, the limit (2.2) exists and defines a
convex function F(4) of A. In our case since the dimension is 1, the function F(4) is
continuously differentiable with a derivative
dF(%)
)= —. 2.

=" 23
The function g(4) is continuous and strictly increasing with ¢(4)—0as A—» — co and
0(A)> 4+ 00 as A— +o00. The inverse A=A(g) exists as a continuous increasing

function and
P(g)=F(4(e) (24

defines the pressure P(g) as a continuous, strictly increasing function of g.

The canonical Gibbs measure in a finite interval A4 with particle number n and
external boundary condition w is a probability measure y;, 4 on configurations in
A with n points or equivalently, a symmetric probability measure on A". The
external boundary condition is a configuration on 4°. We define

1 -
d/‘r?,A=;l"[an,A] ‘eXp[—ZV(qi—qj)—ZZV(qi—ya)]dql---dq.,, (2.5)
where Z;, , is the normalization constant,

2a= s [ owl-EV@-0) 25 Va—)daday. (9

The Grand Canonical Gibbs measure on a finite interval A with activity Ais a
convex combination of u, , with special weights. We define

[ee]
ﬂ(f,A = [Z? ne ! Zo ean'«?’ Aln 4>
n=
where

[ee]
2a= 3 22,
n=0
The Grand Canonical Gibbs measure on the infinite line with activity A is a
point process pu, on the configuration space & such that for every finite interval A
the conditional distribution of the configuration in 4 given the configuration w in
the exterior A°, is given by 13 , for almost all w.
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One of the important aspects of the absence of phase transition in our one
dimensional system is the following theorem. It is stated here without proof. A
sketch of the proof can be found in the appendix of [4].

Theorem 2.1. For each A, there is exactly one Grand Canonical Gibbs measure i, on
X corresponding to the activity . It is a stationary point process with density 0 = 9(A)

given by (2.3). If uy’ 4 are canonical Gibbs measures such that A1 R and l—An—l —0, then

for any continuous bounded local function H(w') on the configuration space,

1 ~
o | Hw)dx—H(e)

lim sup py 4 [ gé] =0. 2.7

n/lAl2e
ATR

Here H(o)=E*[H(w')] with A chosen so that g(4)=p. The configuration «’
translated in space by x is denoted by o).
The correlation measures R{(dz,, ...,dz,) are defined so that

E“"[ y Zk)f(zl, ...,zk)] = R‘.kf(ZI, vz RPdz,, ..., dz,).

(Z15.+s

On the left-hand side the summation is over all k-tuples (z,, ..., z;) that belong to
the configuration. f(zy, ..., z,) is assumed to be a bounded continuous function
with compact support. R¥(dz,, ...,dz,) is a o-finite measure on R¥ invariant with
respect to diagonal translations z,, ...,z,—z, +a, ..., z; +a. In particular

RM(dz)=0(A)dz.
We have the identity proved in the appendix of [4].
Theorem 2.2. For every A and g related by o =0(4),
o+ [[p(x—y)h(y)RP(dx,dy)=P(0),

where h(y) is any function which has compact support with Oj? h(y)dy=1.

3. Some Estimates Based on Entropy and the Dirichlet Form

In this section our aim is to obtain some elementary bounds based on the
inequalities

and Hy(fy)SAN 3.1)

C
< =
INTAESS (32)
for an arbitrary density fy(x,v) relative to uy.

Theorem 3.1. Let fy satisfy (3.1). Then
@ { o] fyduy < N(log}/2 + A). (3.3)
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(ii) For any function ¢ on C(R) with compact support there exists a constant C' such
that for all N and 1.£1,
J4 Z P(AN(x;—x))) fyduy<C'N. (34)
LJ
Proof.

0 46 £, 0 |y Stog fexp L 5ot Ty + i)

=N (10g]/§+A).
(i) The proof can be found in Lemma 4.2 of [4].

In the following we will denote the Gaussian product distribution on R¥ by
1
(2m)N2
and the equilibrium distribution on S¥ by

G(dv)=

e~ WDl Ny (3.5)

)= exp (= X, VNG —x)) s (36)

so that duy(x, v)=dGy(v) - uf(x). Given a probability density fy(x, v) relative to uy,
we denote by fy(v|x) the density of the conditional distribution of v given x, relative
to Gy(dv). By the logarithmic Sobolev inequality (see [1] for a proof) for any
configuration x we have

[ fu(ol)log fy(e]x) Galde) <2 | ﬁ Tfulel )2 Gald).

If we denote the marginal of fy(x,v) by
INX)= [ fu(x, ) Gpldv),

then by a simple calculation
A | f(01)10g flol) Gn(do)

<2f V(X 0)I* dun(x, v) =41 n(f).- (3.7

1
Inlx,0)
We have therefore proved

Lemma 3.2. Let fy be such that Iy(fy)< C/N. Then the conditional density fy(v|x)
satisfies

| REAE0)] Gl fyel) o8 /50l S 69)

4. Local Equilibrium Distributions

We would like to show that, .relative to the probability distribution fyduy,
. . PR

“average microscopic quantities” like N Y. W(N(x;—x;)) J(x;) are close, for large N,

to the expression involving only the macroscopic density function.
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The approach we use here is similar to the one used in [4], but the information
we have on fy here are different. In [4] two basic estimates available on fy are used,

[ fylog fyduy<BN @.1)
and
1.1 6};,)
— = duy<DN. 4.2
In our case we do not have (4. ) ut instead have
1.1 0 D
37 2 (2 dusy. 43
N i=1

As we saw in the previous section, by the logarithmic Sobolev inequality this will
tell us that the distribution of the velocities conditioned on the positions are all
very close to the equilibrium. But this says nothing about the distribution of
positions. To infer from this that the local position distributions are close to
equilibrium distributions and that the macroscopic density has no unnecessary
fluctuations, we have to actually use information that fy are time averages of the
solution to the forward equation.

Consider a function ®(w) on the configuration of points in R which is bounded,
continuous and localized in some finite interval [ — 1, []. For any given x€ S and
any xeS" we can consider the configuration w} on the line

oy ={N(x;—x):|x;—x|<%}.
If N is sufficiently large ®(w%) makes sense and we are interested in the quantity
Enx)= I P(wy)J (x)dx,

let h(x) be a nonnegative smooth function with { h(x)dx =1, supported on [ —4,3].
For J>1, we define

J N
(%)= N i=Zl h(A(x;—x))
=(h;*ay) (x),

where h,(x)=Ah(Ax) and oy(dx)= ]-1]— [0, +...0,,] is the empirical distribution of
the configuration (x,, ..., xy) on S. We denote by &(o) the expected value
Ere[®(w)]=B(0),
where p, is the Gibbs measure with density ¢ or activity A= A(g). If we define
v, 1(X)= { B(0,(x))J(x)dx,
then we want to prove
Theorem 1.

lim hm | Sup E™|En(x) — 1y, 1(%)|=0.

A=

As in [4] we establish Theorem 1.1 in two steps.
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Theorem 4.2.
lim lim sup E7¥|¢y(x)— 7y, 5 (%) =0.

£e>0 N-o©
Theorem 4.3.
lim lim sup E7 | [g,(x)—@,x(X)|dx=0.
S

£=>0 N-=o
A

Let fy(x,v)= [ fy(x +a,v)da. Then by convexity we have that f satisfies
S
Hy(f) AN,
C
I =—.
N(f N) = N

In exactly the same way as in [4] the proof of Theorem 4.2 can be reduced to

Theorem 4.4.

lim lim sup E7 [ [ d(wd)dx—B(owO)| =0.

e=0 N-oo 2 |x1Z1/Ne
Proof of Theorem 4.4. Both f  ®(w))dy and gy, 0) depend only on the

. . . B I 1 l ..
configuration x in the interval | — — — —, — + — | centered around the origin

of S. Here the function @ is assumed to depend only on the configurationin [ — [, [].
If we project fyduy onto configurations on this interval and expand the interval by

. . . 1 1
a factor N, we will get a point process 7 , on the interval [— P A " +1{. All we

have to prove is that

{ 0w d(e,0)

-1

=0,

lim lim sup E*~-+ °

e*0 N-o© 2
where @™ is the configuration w translated by x in space. Since the density of
particles is 1 under fyduy, ¥y , is compact and we denote by 4, the set of all limit

points of ¥y , as N—oo. We have to prove that
£ -
5 | ¢(w")dx—¢(es(0))] =0.

lim sup E*

e—=0 ve% I: 2 - 1/e
Let y;, , be the Gibbs measure on [ —[, [] with exterior boundary condition w and n
particles inside [ — 1, []. We denote by I; the convex hull of these measures, and by
IV those for which expected particle density in [ — [, [] is at most 1. Then according
to Theorem 2.1,

1/e

k
lim sup E[ 21_k f qs(wx)dx—q“s(gl,k(o))ﬂ =0,
-k

(1)
k- vel"Hk

and we therefore need only establish the lemma

Lemma 4.5. For every | and ¢
gecrfi;5)+l'



Scaling Limit for Interacting Ornstein-Uhlenbeck Processes 363

Proof. Let ¢, be the range of the interaction V,i.e. V(x)=0if |x| = ¢,. Let us consider
Ny . . 1 1 .
the limiting point process on the interval | — — —I—cy, — +1+¢, |, i.€. any
€ €

distribution ve 4,, where 1/¢'+1=1/e+1+c,. We want to show that Vel e
Consider the function

N
uy(x,v)= i; v;P(wR)g(Nx,),

where @ is any function of the configuration of points in [ —I—c¢,, I+ ¢,] which is
bounded continuous and differentiable, and g is any positive continuous function
with compact support contained in [ —1I,I]. By direct computation we have

LN O a (P(R)g(N(x))

Z, 2V'(N(x; — x,)) B(wR) g (N(x;)) — Z
=upn(x,v)— —]\1,—2 (Lyuy) (x, 1)

On integrating by parts:

[§ un(x, v) fu(x, v)dpy| = Ig da [ uy(x+a,v) flx, v) dﬂN'

= |[daf03) 3. g(N (o) D dy
N i=1 v;

<Pl (I Y g(Nx,.)de#N>1/z
c(pans L 5 (B) s anan)

Ofn C
— _ = <
_u¢nw< I z(av) du) £
If gy is any probability density with respect to uy and gy is its average
ggN(J_H‘a, v)da=gy(x,v),
funx, v)gndpy = [ Jun(x+a, v)gn(x, v)duyda
1
<2l <§ N v gn(x, y)dun)
1 1/2
SlPlle (J N ol g, Q)d.uzv>

4 1, 4 12
=9l ‘ﬁlngeXp szi duN+ﬁH(gN)
=C|o

“w’
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T
provided H(gy)<CN. If we now use the explicit formula fN— | fidt and
0

calculate

T O
ILNuNdeﬂN_‘ - .f I“N dthN

= ?[juNfNTduN— IuNfI\(I)duN]’

then
I§ Lyuy fyduy £2C' |9

because H(,)<H(f?)<CN.
We have therefore established

N— o0

lim E/ [z V(N (xi—x,) B(@g(Nx)

— Y 00, — (D(w? W=
N i%”l”; 0xi (P(wy)g(N x,))] 0. (4.4)
Let us define the following N x N matrix
1 6 o
Fifx)=~ =— (‘P(wn)g(N x;).

Because of the scaling {F ,,(x)} are uniformly bounded. Then by the entropy
estimates of Sect. 3,

Iy 5 @ D) s Dy

==

< [ dut) {log foxp [% ¥ 0 - 1)Fﬁ(zc>] Ga(d)

+ | fn(vlx) log fy(vlx) GN(dy)}

< [FH@dui() {log fexp []—1,— Y @7 1)F,,(x)] GN(dv)} n %

By an elementary calculation, essentially because of the law of large numbers we
can conclude that the last term goes to zero with N. Therefore

lim sup 1 3 [07 ~11Fyx) (s, )y SO.
N— oo

Since the same argument works with change of sign we actually have

tim | 1567 — ), (). ] =0 @5)
N—-oo
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Using an exactly similar argument on the off diagonal elements
1
< I Y vFifx) J?N(-an v)duy
N i%;

2C
< [FCodut {% logjexp[ z vvF,,{x)] Gr(de)+ NT}

We can estimate by direct calculation

fexp [% i;j v;F; j:l Gy(dv)= [exp [% iz:_,j viv ;F i j] Gy(dv)

20
I——F||,

where F is the matrix F;; for i#j and F;=0 with F;=3(F;;+F}). Since F;; is
bounded it is easy to obtam the estimate (note trF = 0)

=exp B log det

20 -
I—NF

log det gc%7 Tr(FR<C-o?,
provided o is suitably small. We therefore obtain
1
limsup — [ ¥ v0,F (%) fu(x, v)duy
Now N7 iFj

<Co for all small 6>0
=0.
Again since the argument is insensitive to sign we have

=0. (4.6)

lim sup
N—o0

1
ﬁj i;j 0;0;F /%) Tnx, v)duy
Combining (4.4) with (4.5) and (4.6) we get

lim Ef~ [z 2N (xi—x,) D) g(Nx)

N- o

1

N a (P(w})g(N x,))] 4.7)

Since the function &(w) can be used just as well to cut off configurations having too
many particles, we get from (4.7)

E¥ [Z] 2V~ y) P(@)g() — % % (¢(w°)g(yi))] =0 (4.8)

for any v which is a limit point. But (4.8) is enough to guarantee that veI'fY, .

To see this we choose the function @(w) to be of the form y (w 49 Y,(w 4,), Where
v, and y, are functions of the configurations in the interior of 4;=[—1,I] and its
exterior Aj. We can choose ,(w,,) to be of the form

1P2(w,1,) = ¢(y1, (EES) yn) lf lwAll =n
=0 otherwise,
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where |w 4 | is the cardinality of the configuration inside [ -1, []and y,, ..., y, are the
locations of the n particles inside [ —1, []. Here ¢(yy, ..., y,) is a smooth symmetric
functionofy,, ..., y,. Although such a y,(w ,,) is not smooth on configuration space
it is easily approximated by smooth ones. There is no difficulty because the
probability of finding a particle on the boundary is zero under v. If we denote by
v=v,(dy,,...,dy,|w,5n) the conditional distribution of the configuration on
[—11] given the configuration on ¢, and the cardinality |w 4| of w,, then

f{ S S 20— ) 0 el

i=1 y}emf1l

L
=L 5y, 00 ---,yn)g(yi»} dv' =0.

This identifies v as the canonical Gibbs measure.

Proof of Theorem4.3. For any configuration xeS" we have associated the
empirical measure

an(dx)= % Y. 9,.(dx)
and smoothed version

l N
0= T hix=x)).

We have to prove that g,(x) for A large but fixed and g, 5(x) with ¢ small but fixed are
close. This amounts to proving that g_y(x) does not have any oscillations. Just as in
[4] we calculate the Young measures associated with g,,(:) and show that as
N—-oo and ¢—0, these converge to a degenerate measure for almost every
configuration. Corresponding to any density g(x) we define a measure ton S x R*
by

[ F(x, @)m(dx, dg) = £ F(x, o(x))dx .

Clearly
fen(dx,do)= [e(x)dx=1,
{ F(x)7(dx, dg)= [ F(x)dx.
If we denote by . the space of probability measures on S x R, then through the
map g(-)—n we can map the random density
Qen(%) = (hey * oty) (%)

into .. If we consider the pair ay and = we get a map of SV into M (S) x .#. We
start with our basic fyduy on S" and denote by Qy , the induced distribution on
M ,(S) x . In order to establish Theorem 4.3, the main step, after establishing
compactness of Qy , as N— oo and then as ¢—0, is to show

Theorem 4.6. Let O be any limit point of Ov.. as N— oo and then as 0. Then for
almost all (o, ) with respect to Q
a(dx)=g(x)dx,
n(dx, dg) = dxd e do)

for some function g(x)e L,(S).
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We will prove Theorem 4.6 by means of the following lemmas.
Lemma 4.7. Let Q be the limit measure as above. Then
Olo:a(dx)=o(x)dx for some ge L (S)]=1,
E2 [; Qz(x)dx] <C-B,
where C is a universal constant and B is the bound on entropy.

Proof. Identical to Lemma 7.7 in [4].

Lemma 4.8. Let Q, be any limit measure of On.. as N—oo. Then

) 0.[(0,m): f on(dx, do)=1] =1,
(i) 0.[(, m): n(dx, dg)=dxm,(do)] =1,
(ii) 0., m): a(dx)=g(x)dx, with o(x)= [on(do)]=1.

Proof. Since this lemma is based only on entropy bounds, like Lemma 4.7 this
proof is identical to Lemma 7.8 of [4].

It remains to prove that as ¢—0 the limit points of Q, are supported by
degenerate Young measures. Consider a function g which is nonnegative, smooth,
symmetric with compact support in [ — 4, %] and having | g(x)dx=1. For every N,
J, and A we define

G w, 2(x)= _f g, 0y,

where
85,n,2(X) = NOg(Ndox)— Ag(Ax).
We note that G; y ; has small compact support on R and is therefore well

defined as a function on S provided N6=1 and 4> 1. We consider the following
test function on SN x R¥:

1
N ;

M=

Wi n,a(x,0)= v; ; G&,N,;.(xi_xj)'
FE

I

1

We then have by calculation

Z {2 Z NV'(N(x;—x) Z G n, (i — X))
Zvvla (Z Gy, (X~ xj))}

1
= —W; N, X, ”)+ 7 LaWs,n,2- 4.9)
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We integrate by parts and use Schwartz’ inequality to obtain

1
[f Ws,w, Ax,0) fN(xa v)duy|= ‘ﬁ Yv j;i G, N, alxi— xj) fN(X, v)duy
v

Z Gy, n, (xi—x;)dpy

U; j*i

0
N 12
< <§% Z (j;i Gs,w, }.(xi_xj))z de#N>

N 1 a N 2 1/2
(s 7, (5 o)
- E 1 Gy e )zfd )1/2
= TIN3Z<Z 5,N, A >N#N
< e, G? Fnd v 4.10
=T IW% 3., 2% — X;) fndpy . (4.10)

From the definition of fy,

1
FI(LNVV&,N,A)de#N— (] W, AfN duy— fm,N,Afz\?d#N),

N2T

since H(f{)<H(fQ)<CN, by Lemma 3.1 and Schwartz’s inequality,
If VV&,N,;.J?I\tldﬂNl
1 N 2 7t 12 2 7t
< jﬁ; L5 deﬂ f— Z (Z Gy, N, alxi— ) deﬂN
1 1/2
=C, <IN'N'N2‘C§ 'fI:'dﬂN)_
<C,N. (4.11)

1/2

We have used here the fact that G; y ; is bounded by some C,. Using (4.9), (4.10),
and (4.11) it follows that

1 N
lim lim "‘N y {2 kgi V'(N(x;— x;)) (j;i Gs n, A(Xi—x))

A= N=oo i=1
d
— z b5 ( Y Gy alxi— ))} Fux, v)duy =0. (4.12)

Let A¥(x) be the symmetric matrix

1
[AN()_C)]ij=ﬁga,N,A(xi—xj) for isj

=0 for i=j.
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We can then use an argument similar to one used in Theorem 4.1 [Egs. (4.7) and
(4.8)] to get

.f Z v Ujga,N,z(xi—xj)deﬂN

ﬂ-

1 1 20 ] C
* — —
— [ I¥FCdus { log det [I N AN()_C)_} +
Just as before we conclude that

lim
N— o

1
IW _;Uinga,N,x(xi—xj)dellN =0. (4.13)
i*j

We treat the remaining term in the same manner:

1 N
jm ,Zl v} —1) AZ~gJ,N,).(xi—xj)deﬂN

! F¥x)dps {log fexp [ v?

N
2z @
X (j;i s, N, A(Xi— :l GN(dU)}

If we denote Y. g; v, 2(X;—x;) by &; then |£|< CN2 Moreover
JjFi
0% 1, (280
fexp[ é(v —1)] ~st_L_ dv,=e M 21g<1 NZ).
[/ 2n
Therefore for small g,
o ¥ 1 2¢(0
logfexp[ﬁ PGS 1)5]GN<dv)—— sz[ 5 g( = )]

S Lht T et S T

<c,0?

We have now as before
N

1
W[ '21 (v} - 1)j;i ga,N,A(xi—xj)deﬂN

i=

=0. (4.14)

lim
N-wo

If we combine (4.12), (4.13), and (4.14) we get

. . 1 X
Alglolo 1\111-120 '[Fi; { Y, NV'(N(x;—x))Gs, n, a(x;—x;)
- 3, i) deuN} ~o0. @15

From this point on the rest of the proof proceeds exactly like in [4]. First we note
that with 6=1 and A=1,

sup iz %, (NVNG— )G 05—} fudin| SC. (416)
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This provides us with the estimate

sup <C. 4.17)

1 N (N 2
N ) {Z w(N(xi_xj))} de#N
i= 1

According to Lemma 7.9 of [4] this will give the required uniform integrability to
take the limits as N — o0 and then A— o0 and 6—0. We remark that once N— oo,
according to Lemma 4.5 we are in the local Gibbs situation and that puts us in the
circumstances of [4]. In particular we get Lemma 7.10 of [4] establishing for any

possible limit point the bound
E2 [dx[g*n(do)<C. (4.18)
S

5. Hydrodynamic Limit

We will prove in this section the main part namely (iv) for Theorem 1.1. Parts (i)
and (ii) were essentially established in the previous section. We will prove (iii) in the
next section. Of course we need some estimates to prove compactness. These will

also be deferred to the next section.
For any function J on S which is smooth by Eq. (1.1) we have

1 N 1 N T N
v 2 D) -5 X J0)=[ ¥ J(x{O)vlt)de. (5.1
i=1 i=1 0i=1

On the other hand

d (g J’(xi(t))vi(t)> =N % J"(x{t)vi(t)dt
i=1 i=1
N
-N ¥ (2 2 NV(NC(0)~ x,(t)))) J(x{t)dt
NS sy
2 i=1
+N ':Zl J'(x,(t))dwt), (5.2)
we can rewrite this in the form

TeO)olde= o [ T G020
0i=

1 N
z ( NV’

N

II.M 2

Ot~

13

(N(xt)—x (t)))) J'(x{t))ct

—-

i

+ J'(x(t)dwt)

Ot N Ot— N

-

(%(wmun ;nmwmﬂ. .

Z‘N 2| Z(N
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Combining it with (5.1)
1 1
N2/l — 2T (x40))
T 2 T N
=2 [ Fy0di+ 5 [ ¥ J(x(@)dw()
0 0i=1

-2 (ii JE(TYoT)~ T T(0) v,.(())), (54)

where

FaD= 3, (O~ % NVINGO - 0N ). 653)

From (i) of Theorem 3.1 it is easy to show that

. ° 2 N N
lim E/~ (W Y Jx(T)vdT)— ¥, J’(xi(O))vi(0)> =0, (5.6)
N—-oo i=1 i=1
and because w,(¢), ..., wy(t) are independent Brownian motions
o 2 T N
lim E/¥|— [ ¥ J(x(t)dw{t)| =0. (5.7
N> N b =1

The next step is to replace v? by 1 in (5.5).
Lemma 5.1.

o (T
lim Ef”<j

N-ow 0

)0

Proof. By entropy inequality and logarithmic Sobolev inequality,

1 ",
5 S 0) 30~ 1)

|5 29762 0| T
< [ ) du L $ 02— 1)) | Gl ¢
< [ f¥(x)duflog {feXp[ﬁ igl (v —=1)J"(x))| | Gnldv) ¢ + INT'
By the law of large numbers
foxp| [ £, 02~ | Gt

as N— oo, uniformly over x. This proves the lemma.
Now the velocities are completely out of the picture and we only have to look at

ot—
Z| e

2, {770s0)= 3 2NV NGO —5(0) T s(0)) e

We replace J'(x(t)) by 3[J'(x,(t))— J'(x{t))], which we can, because of the skew
symmetry of V’. As in [4], we proceed to replace

S ) =T (x() by (x()—xA)J"(x(2))
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to get

2 N .
¥ & 7o (1 £ voveo-xi)a

Ot

where
w(z)=—2zV'(2).

Now we can use Theorem 4.1 asin [4] and show that any weak limit will satisfy (iv)
of Theorem 1.1.

6. Some Auxiliary Lemmas
Lemma 6.1. There exists a constant C such that for all N,
1 N
¥ L
Proof. This is precisely (4.17).

Lemma 6.2 (Compactness). For every smooth J(-) on S, and ¢>0,
lim lim sup P/¥ [ sup__ [<J, Ex(0)) — <, Enlo))| zs] =

2
Ivduy=C.

N
j; P(N(x;— x;)

600 N-wo 0ss<t=
s— t|<5

Proof. According to Eq. (5.1),
Jet)~ 5 ZIC65)

J'(x{0))v{o)do .
We can rewrite this using (5.3) as

N 2t
; J (X,(O' )UI(O')dO'— ﬁ :‘;

1

N
Z "(x{0))v¥(0)do

U —

i i

[
2o 2l =2

2 Z NV'(N(x{(0)—x (o)) J'(x{0))do

1=

-

+

J'(x{0))dw{o)

B o O e
-
"Mz

—

Nz l:i; J'(x{e)odt)— i=§1 J ’(xi(S))vi(S)]
=A,(s, 1)+ A,(s, )+ A5(s, 1)+ Ayls, 1),

A= 21 3 ko) 70)— 11do+ = [T (xf0)do,

i

v 27 (o)) Wi (0)—1)|do +2]t—s| |J"]| -

Ay, 012 =
0
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° T
Since E/¥ [ | '% Y J"(x(0)) (v¥(0)— 1) da} —0 as N— oo it follows that
0

610 N-ow 0SsSt<T

lim lim P”°[ sup [A,(st)|=¢]=
5| <o

t N
Axs,)=—5 | X NV (N(x{o)—x{a) (/' (x{o))do,

i=1

=z

and

|4(s, t)I< ~ s I Y. w(N(x(0) —xf0)))do

s i,j

<=9 2 Wl [

1/2

( W(N(xi(ff)—x,(a)))>2da]

U — ~

1/2

-gl [ j;i P(N(x{0)—x (o )))]2 da)

13

z| =

T
S(E=9)"?200" 1 (I
0

From Lemma 6.1

lim lim sup P/¥ l: sup |A2(s,t)|g£]=
60 N-w 0<sf|<6

From Doob’s inequality

4
— . N-||J|I?
S NI

P 13|: sup ’—j Z J'(x{0))dwo) >s] §~27'

0=st=
Therefore

lim Pfﬁ[ sup |A3(s,t)lga]=

N-w 0<s<t<T

In order to handle A,(s,) it is sufficient to prove

(xd®)v2)

) 0 1
lim P/~ l:ossltlgT N ga] =0. (6.1)

N—- o

N
Let us denote by ny(t)= Y. J'(x(t))v(t). We can rewrite (5.2) in the form
i=1

2

N
dny(t)= — = nn(0)dt

+N Y J(xdt) o) dt

le ”MZ

<2 2 NV/(NGxi(t)—x£0)J' (x,(t))>

N _:Zl J'(x{t))dw(?). 6.2)
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Integrating this we get

S. Olla and S. R. S. Varadhan

nx()=ny0)e 12

where
Ap(s)=
[By(s)| =

My(s)=

t

+ N2 [ Ay(s)e~ VD=9 g
0
t

+ N2 [ By(s)e” V129 s
0

t
+N2 [ e~ VD940 (), (6.3)
0

LI (x(s)v?

11l ,ZJ PN (x(s)—x1(s)),

Zl= Z2l= Z|=

I £J(x(o)doofo).

Since we have a uniform bound on

E/N[Inn(O)1=1og fexp[IX J'(x)vd1dpy + CN

1<

<CN,

ol 1
Py — su 0)e N22| =6
[Nz oS P [nn(0) |2

]—»0 as N-ooo.

In order to establish (6.1) we need only prove

pPrR

| 0<t<T 0

| 0<t<T O

and

sup
[ 0<e<T

0

ICHES

-y [/

t
sup j’e“”z/z)‘s“)lAN(s)ldsge]—+0 as

t
sup je'("2/2)“"’|BN(S)|dsge:|—»0 as

f[ e~ (N*2)(s—1) dMN(s)

N-ow, (6.4)

N-ow, (6.5)

;s} -0 as N-oo,

J"(xi(s))

Uy
+ ‘N ¥ J"(x(s)) (vF(s)— 1)\

+ ‘%zr’(xi(s» (v25)-1)]. (66)
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Clearly, T
sup [e WDE-94s 50 as N—oo,
0<I<T 0
sup [ =269 L5 () (2(9)— )] ds
0<t<T 0 N
T 1 " 2
= NZJ (x4s) (vi(s)—1)| ds,
0

and since E/¥ U ‘% Y J"(x(s)) (v (s)— 1)
0

We estimate
t 5 ! N2 ‘ 1
je_(N 129 B (s)|ds < (f (t~ ”ds) (I |BN(s)|2dS>
0 0 0
1/2
<= (f |By(s)]? ds>

T 1T 2
[ |BN(S)|2dS§N.[ ,Z <.Z w(N(x,-(S)—X,(S)))> ds
0 0i=1 \j=1

ds:I —0 as N—oo we have (6.4).

Since we have a uniform bound on the expectation of the right-hand side from
Lemma 6.1 we have (6.5).
Finally we turn to (6.6). Let us pretend N2T is an integer. Then

sup e~ WN2r j N D5 dM \(s)
0<t=T
t
< sup e WUDETDINZgqup [ N*SI2M (s)|.
1Sk<N2T 0<t<k/N2 |0

We can estimate

Pfg’li sup

0<t<T

e —N2t/2 j e(N2/2)de (S)

.

j e~ VD5 AM \(e)

N2T
Z PfN[ sup > el 1)/2]

0<t<k/N2 |0
N2T e""‘ 1

IA
N

2
EfN[ (5) e<N’/2>SdMN(s)]

<5 Lereveg. ok

=k=182 <9} N3
T

e W

—0 as N— oo and we are done.

Lemma 6.3. Let Q be any limit point of the distributions of &y(-) under P’ ¥ gs
N— o0, where f¥ satisfies Hy(f) <CN. Then

Q 2 ¢
E <§dtjd0 (et)[ P(q(@t))]) >

with the same constant.
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Proof. Given two integers n and | we consider a family of functions u,(x), ..., u,(x),
F(x),..., F(x) which are smooth functions on S. We consider also a family
€115 s Vs o r 84V 15 - - -» y1) Of smooth functions with compact support on R.. We
use these functions to define a family U,, ..., U, of functions on S¥ x R¥ and
G,,...,G, on SV,

Ul = 3 opulx),
1 XN 1
Gx)=1g, (N T Py 3 Fl ))

By a direct calculation for each r,

1 N N
~ X {2 LN V'(N(xi—xj))ur(xi)—vizui(xi)}
N.& A&

2 Ul ) 307 LU ). 67)

We want to prove first that
Jim Nz (LU, (x,0)- G,(x) Fudpy =0. (6.8)

In fact since G,(x) is only a function of x and Ly is first order in x derivatives,
(LN Ur) Gr = LN( UrGr) - Ur(LN Gr)
and

1 - 1
NE’ jLN(UrGr) de/J'N = er—v_ [j UrGr fNTd:uN_ .[ UrGr f]‘?d#N] DA

Since both fif and fy satisfy entropy bounds,

Hy(fy)<CN,
[ U,G, fydunl S1G,I I1UI Y/ N(SL0? fydpn)?
<CN,

where fy can be either f,} or f{. Therefore

lim 2 1 Ln{U,G) Fadiy =0 (69)

Moreover
N2 JUALyG,) fvdpy= =5 N2 f Z v “r(xz) (x) de/‘tN

By the arguments we have used in the proof of Theorem 4.6 we can replace v;v; by
d;; and because it is obvious that

hm N2 ) Z (xz) (x) vdun=0,
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we conclude that

lim j U,(LyG,) fuduy=0. (6.10)

(6.8) follows immediately from (6.9) and (6.10). 3
We now turn to the relation (6.7). Let us use fy to construct a measure Qy on

1 ~ -
M,(S) by the map (x,..., xN)—> (0,,+...9,,) and let Q0 be any weak limit.
According to the results of Sects. 4 and 5,

im £ 3 {2 5 NV OG x50 6,01

N—ow i=
along the subsequence giving the weak limit Q can be represented as
—E2{[ P(g(x)u,(0) G,([ F1(x)q(x)dx, ..., | F{(x)q(x)dx)} .

If we now use (6.7) and (6.8) and sum over r=1,2, ..., we obtain

’EQ {I P) T, w()G ] F()q(dx, ... | F:(X)q(X)dX)dX}

1

~
]

. 1. 2
< llrﬁlqsup 5 [} ;1 U,(x,0)G(x) fydpin
. 1 n N
= IIIAIIl sup fj ;1 ; u,(x;) G(x)v; fydin
. 1 n N
—timsup 1 5. T )G 2 dy
N—=w r=1i=1
N 7\2 1/2
< lim sup % (j 1 y <6f~> dﬂN)
N—-w fN i=1 v;

N 172
X (j ig.l ( Zl u,(x;) Gr(X)) ﬁvdﬂN>

1/2 N n 1/2
< lim sup % (%) N2 (I"]::? Z <r§ ur(xl) G,.(X)) deﬂN>

N- oo =
1/2

1/2 n
=3(5)" (Bosaoan £, w60 Fitorts. .. i)

(6.11)
Denoting by w the typical point in M,(S) we can rewrite (6.11) as

0 oG C\"2 5. s -
E2 [ Pla) 2 (x| < ﬁ> (2] (v, )g(9)dx)?  (612)

for test functions G from a suitable class. First we have it for G of the form

Zu,(X)G,.(<F1, q>7 HiE) <Fb q>)
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Then we can obtain the inequality for G of the form

Y. u,(x) G(w).

The next step is to use test functions of general form G(x, w) but with reasonable
bounds on #G/dx. Then by standard regularization techniques one can prove

1 (0P(q(x)) C
Ef—— ) (hax >dx§ﬁ. (6.13)

It is easy to see that if Q is a weak limit on C[[0, T]; M(S)] then @ is just the
average marginal distribution over the time interval [0, T]. Therefore

2
! n <£ P(q(x, t))) dxdt< -T

AN

(6.14)

Lemma 6.4. There is at most one weak solution of the equation
de(t,x)
ot

with initial condition 9(0,x)=gq(x) among the class of nonnegative solutions
satisfying

=2(P(e(t; X)))xx

}IQ:‘(t, x)dtdx < oo
0
T (0Pt x)\* 1
(j)j( I ) Q(t’x)dtdx<oo.

Proof. This has been carried out in [4].
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