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Abstract. The representations of a compact Lie group G can be studied via the
construction of an associated "model space." This space has the property that
when geometrically quantized its Hubert space contains every irreducible representa-
tion of G just once. We construct an analogous space for the group DiffS1. It is
naturally a complex manifold with a holomorphic, free action of DifΓS1 preserving
a family of pseudo-Kahler structures. All of the "good" coadjoint orbits are obtained
from our space by Hamiltonian constraint reduction. We briefly discuss the
connection to the work of Alekseev and Shatashvili.

1. Introduction

A geometrical understanding of the representation theory of the group of
diffeomorphisms of the circle remains a desirable, and elusive, goal. Apart from its
intrinsic interest a solution of this problem could shed light on a 2 + 1-dimensional
topological quantum field theory standing in the same relation to Virasoro as
compact Chern-Simons-Witten theory does to Kac-Moody algebras [1]. Given
the success of the method of orbits in understanding the representations of
noncompact groups (see e.g. [2]), it is very natural to look to this method for help
with DiffS1 as well. Considerable progress has been made along these lines [3],
but some problems stand out.

First, there are a variety of different types of orbit. Secondly, while every orbit
has naturally the structure of a Hamiltonian dynamical system, there is in general
no obvious choice of the additional structures needed to quantize these classical
systems. Finally, once a quantization is chosen we find ourselves faced with a
strongly-coupled system unless the central charge c » 1. In the latter case Witten
has shown that indeed the familiar irreducible representations emerge.

Clearly it would be interesting to have an approach to this problem where all
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the representations come from quantizing a single space, with some natural choice
of quantum data (i.e., prequantization and polarization).

In the case of a compact, semisimple, finite-dimensional group G there is a
well-known theorem with a similar flavor (see [4]). Such a group has a natural
complexification Gc. Let N+ be a maximal unipotent subgroup of Gc. For example,
if G = SU(n) then Gc = SL(rc,C) and N+ consists of upper triangular matrices
equal to 1 on the diagonal. Let A = Gc/N + 9 a complex manifold of dimension
j(dim G + rank G). Then the space of holomorphic functions on A, subject to a
certain square-integrability condition, is a representation of G, and moreover it is
the sum of every irreducible representation with multiplicity one. We can thus
refer to A as a model space, a space whose quantum mechanics yields a "model"
for the representations of G.

Let us pause to sketch why this theorem is true. The Cartan torus T c G
commutes with N + , and so acts on A from the right. It also commutes with left
translations. Thus the space 3?λ of eigenstates of the generators of T with
eigenvalues given by some weight λ is a representation of G under left translation.
But 3?λ can also be regarded as the sections of a bundle over (GC/N+)/Tc = G/T;
by the Borel-Weil-Bott theorem it is just the irreducible representation of weight
λ. Letting λ range over the weight lattice we get each irreducible representation once.

We should contrast this result with two similar ones. First, the Peter-Weyl
theorem tells us that the space of all L2 functions on G (not necessarily holomorphic)
also furnishes a representation of G. Now, however, each irreducible representation
occurs with multiplicity equal to its dimension, and so the result is not so useful
even if it remains true in infinite dimensions. Secondly, the generic orbit of G on its
dual algebra g v is a complex manifold of dimension dimc G/T = !(dim G — rank G),
where Γ is a maximal torus of G. The Borel-Weil-Bott theorem tells us that the
sections of a bundle over this orbit give one irreducible representation. Thus roughly
speaking the difference between G/T and the model space A is that we have added
in a complexified maximal torus (complex dimension rankG), and in so doing
enriched the Hubert space of states from one representation to all of them. It
would be nice to have a corresponding result for Diff S1.

The operation of taking all holomorphic functions on a space is reminiscent
of geometric quantization. In the case of a single orbit of G it is well known that
the above construction can be implemented by quantizing a certain classical
dynamical system [2]. This approach seems bound to offer insights into infinite-
dimensional systems, where a regularization is needed.

Recently Alekseev and Shatashvili have proposed to implement the above
program for the group Diff = Diff+ S1 of orientation preserving diffeomorphisms
of the circle, in the hope that a theorem similar to the one above will hold [5].1

They have obtained some encouraging results to the effect that the quantization
of A may contain the irreducible unitary representations of Diff, including the
mysterious discrete series. Things did not quite work out, however. It seems clear
that to make further progress one needs to be quite specific about the "model
space" A and its global geometry. That is what we do here.

1 Indeed, some results of Chern-Simons-Witten gauge theory (see e.g. [6,7]) can be taken to
support this for the case of loop groups. The recent work of H. Verlinde on the case of Vir is
more subtle [8,1]; we can only hint at the connection to the present work
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Specifically Alekseev and Shatashvili define their model space as a Hamiltonian
dynamical system by writing down local canonical (or "Darboux") coordinates;
they then obtain characters by path integration. To get the Hubert space itself,
however, one needs a precise global construction, and moreover a quantum
structure on A. For individual orbits this has seemed problematical [3], but we
will see that the model space has a very natural quantum structure.

In this paper we will construct a complex manifold s/ which is a suitable
generalization of the model space A of a compact Lie group. Since the group Diff
has no complexiίϊcation, this is not quite straightforward. The appropriate method
has already been used in a different context, however, by Kirillov and Yur'ev [9].
We will find on si a free holomorphic action of Diff and a natural family of
invariant pseudo-Kahler structures which implement the analog of the above
prescription for compact groups. It seems rather remarkable and gratifying that
this can be done at all. One feature of our approach is that all our constructions
are complex-analytic, even for nonzero central charge. In principle j/ can then be
quantized to get representations of Diff, but we will not be able to go this far. We
will also explain the sense in which so decomposes into coadjoint orbits of Diff.
Surprisingly the space j/, which has a very natural global definition, automatically
excludes the pathological "unipotent" orbits Diff/T (see [3]) while including the
interesting ones Diff/S1, Diff/5L(n)(2, R). That is, the latter orbits can be obtained
from j/ by Hamiltonian constraint reduction.

Recently we received another paper [10], where a very different proposal is
made for obtaining Virasoro representations from the diffeomorphism group.

2. Complex Structure

Our strategy will be as follows. While Diff admits no complexification, still we
know that Diff/S1 has a natural complex structure and invariant Kahler metric,
indeed a two-parameter family of these [11,9, 12]. Roughly we know we must take
the maximal torus of Diff, namely the circle group of rigid rotations, complexify,
and enlarge Diff/S1 by that. Thus we take the space defined by Kirillov,

0,/'(0)=l} (2.1)

and enlarge it to
^ = {/:/(0) = 0}. (2.2)

In both cases / is a holomorphic function on the unit diskD = {|z| < 1 }, smooth
and univalent up to the boundary. Kirillov showed that 2F can naturally be
identified with Diff/S1. In stf we have added in the maximal torus (the angle
arg/'(0)), and complexified it (the magnitude |/'(0)|). Thus stf is distinct from the
space ?ΓD appearing in [1], which was smaller than Diff/S1.

Our plan is to identify stf naturally with Diff x R + .2 The latter space has an
obvious free action of Diff; we will show that on stf this action is holomorphic.
In later sections we will show that Diff x R + also has a natural invariant symplectic
structure induced from the cotangent space T v (Diff) (cf. [5]). We will see that on

However tf is not to be regarded as the central extension Diff; see Sect. 7
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Fig. 1. Defining G from /

si this determines a Kahler structure. We will for illustration set the central charge
to zero, then generalize in Sect. 7. Finally the space Diff x R + projects to the dual
algebra Vectv, whereupon the action of Diff reduces to the usual coadjoint action.

To get started we must set up the identification #/ ^ Diff x R +. Begin with fe jtf.
It takes the unit circle {|z| = l} to a smooth non-self-intersecting contour K
surrounding the origin. The exterior of K is thus topologically a disk in the Riemann
sphere containing the point oo. (See Fig. 1.) By the Riemann mapping theorem, we
know that there is another function G(u\ holomorphic and single-valued every-
where outside the unit circle (i.e. for \u\ < 1, where M = Z~ I), whose image is the
exterior of K. Moreover there are many such maps, namely G°M, where M is any
transformation in SL(2, R). We can fix this freedom by imposing the additional
conditions

G(0) = 0, G'(0) is real positive.

We can rephrase these conditions in terms of

(2.3)

then g has a simple pole at oo of real positive residue.
Having determined g we now let

What this means is that since /, g both take the unit circle to the contour K, we
must have g(elθ) = f(eiy(θ}) for some diffeomorphism γ. The second entry just denotes

the square of the real residue mentioned above; prime means —. Clearly sf eR +.

We note that this construction is independent of the actual centered complex
coordinate z chosen in the disk D. Indeed if z = F(z) with F(0) = 0, then the map

represented by zi—>/(z) becomes z\-^F°f°F~1(z\ and — ( F ° f ° F ~ ί ) ( 0 ) =—/(O).
dz dz

Thus we map /t :<$/-> Diff x R + . Let us examine this map close to the base
point, /0(z) = az, where a is some real number. Thus let

fε(z) = az 4- ε £ φnz
n > 0

(2.5)

gε(z) =
n<2

ι real, (2.6)
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sε = α2 + εΔ, (2.7)

y£(0) = 0 + ε f ; vne
ίnβ, »_„ = »;. (2.8)

— oo

We have incorporated the conditions on /, g into these expansions. Expanding
gε(eiθ)=fε(eiy*(θ)) we easily find

υ0= --
a

vn=-l-φn+ί, n>0, (2.9)

and so our map is invertible at the base point. In fact we can invert it everywhere,
as follows (cf. [9]). Given (y,s)eDiffx R+ we construct a 2-sphere by gluing two
standard disks D± using y. The resulting space, with standard complex structure
on each hemisphere, is isomorphic as a complex manifold to the usual sphere, by
the uniformization theorem. Thus there is an invertible holomorphic function F
from it to the Riemann sphere, or in other words holomorphic functions F± from
the disk to the latter related by y. F is well defined up to the automorphisms SL(2, C)
of the sphere. We use this freedom to set F+(0) = 0, F_(oo) = oo, F'_(oo) = 1. Finally

we let f(z) = ^/sF + (z). This inverts the map Λ.
We now have that the map Λ:jtf ->Diff x R + is a bijection. It gives Diff x R +

the desired complex structure.

3. Action of Diff

Recall [13] that a complex manifold M of dimension n is also a real manifold of
dimension 2n. We complexify the real tangent space to get ΓCM, a vector space of
complex dimension 2n, then split it into TCM ̂  T ( l f0)M® T(0fl)M, two complex
pieces of dimension n. Every curve P(ε) in M has a tangent P(0) in the real tangent
space of M; thus P(0) = V + 7, where KeT ( l t 0 )M and V is its complex conjugate.

Consider the action of U(l) on the complex plane: P-+Θ-P, where zθ.P = eiθzp.
For fixed θ we see that zθ.P depends holomorphically on zp and we say the action
is holomorphic. We can also formulate an infinitesimal criterion as follows. Fixing

now P, the tangent
o

a
ffo P

d_
'dί

As noted above this has to be

real, and it is. What we see is that its (1,0) bit is a holomorphic vector field on M.
This is another criterion for the action of Diff to be holomorphic, and far more
convenient for our purposes.

Fix any generator v for Diff. Thus i eVect, the smooth vector fields on the

circle, and we write v = v(θ)—. Letting v act from the left on any y0eDiff gives us
an action on Diff x R + :

sc = s0. (3.2)

This action is of course globally well defined. Choose a base point /0, not necessarily



544 H. La, P. Nelson and A. S. Schwarz

of the special form (2.5). Following [9] we will trivialize the tangent spaces Tfojtf
d

by writing a tangent to /0 as — /., where
dε

(3.3)

where φ is holomorphic on the disk, φ(0) = 0, and similarly

(3.4)

where ψ is holomorphic off the disk. We don't permit any pole for ψ, even with
real residue, because we are imposing (3.2).

We now want to find φy;/0 corresponding to the fixed υ and the chosen /0. If
it varies holomorphically as /0 varies then the (1,0) part of the tangent to (3.3)
will be a holomorphic vector field as desired. As again expanding gε(eίθ) =fε(eiy*(θ})
we find

Ψogόl = Ψ ° f o 1 + iίzf'o(z)v(-i\ogzK°fβi a t w w h e r e |̂ »| = 1. (3.5)

This together with the boundary conditions on φ, ψ determines φ as follows.
Following [9], suppose we have a function F on the circle. Given a parametrized

contour K in the plane we can regard F as a function on K and define its positive-
frequency part as3

= ~
for z a point inside K. Similarly define [F]^(z) by the same formula with z outside
K. We then clearly have that on K, F(z) = [F]£ (z) - [F]^(z) for any contour K
surrounding the origin, and [F]£ is holomorphic inside K with [F]£(0) = 0. More-
over the boundary condition on ψ clearly amounts to saying that [^°0o l^\κ — 0>
since g$ 1 sends the exterior of K holomorphically to the exterior of the disk, and
ψ is in turn holomorphic there. Similarly [φ0/^1]^ = 0. We get

φv ,fo = iL(zfΌ(z)v(-ilogz))of-^>of0. (3.7)

Since v is fixed, everything in this formula depends holomorphically on /0 and we
are done.

We now have a holomorphic action of Diίf on our space #/. In the next section
we will proceed to investigate its symplectic structure. Before doing so, however,
it is appropriate to ask how unique our construction is. The requirement that left
actions of Diff on Diff x R + be holomorphic is a strong condition on our
identification Λ :,£/-» Diff x R + , but suppose we replace (2.4) by

(yf,sf) = (f-logM«>)2)), (3.8)
where ξ is a real function. Then the induced action of Diff on j/, which doesn't
change s at all, is completely unaffected. We will say more about this fredom shortly.

We close this section with an aside. While the group Diff has no complexification,
still there is a complex semigroup, the "Neretin semigroup," which is the best

3 This differs slightly from [9]
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substitute [14,9,15]. This complex semigroup can be shown to act holomorphically
on J2/; the action of Diff found in this section can be deduced from this action.

4. Symplectic Structure

We will begin by writing a symplectic form on «$/ = Diff x R + and showing that it
is indeed nondegenerate and left-invariant under Diff. This form is essentially the
one proposed by Alekseev and Shatashvili; it is induced by a map from Diff x R +
into the cotangent space T v Diff. Finally we show that this 2-form is of type (1,1)
in the complex structure of part two, and hence is the Kahler form of an invariant
(pseudo-)Kahler metric on s/.

Trivialize T v Diff ^ Diff x Vectv by the map

(4.1)

where L y-1 is left translation and b is a cotangent vector to Diff at the origin, i.e.
a quadratic differential b(Θ)(dθ)2 on S1. We include Diff x R + into Γ v Diff by
sending

/ c \

(4.2)

It is traditional to use a complex basis for Vect in which — UQ corresponds to the
middle element of the basis in (2.8). Hence il$ is the middle element of the dual
basis, and ilξ^>(2πΓl(dθ)2.

We need a convenient description of two-forms on Tv Diff. Since these eat
tangent vectors we introduce the natural trivialization T(Ty Diff) ^ Diff x (Vectv

0 Vect 0 Vect v) via

(y, b v,p)->((Lγϊφv,p)\(γ,b)£T(y^(Tv Diff). (4.3)

Note that the tangent to a vector space, like Vectv, is naturally just that vector space.
The natural symplectic form on T v Diff is now quite simple. Define a one-form

α by the formula

(4.4)

the dual pairing of Vect with its dual. We will also let α denote the corresponding
pulled-back one-form on st = Diff x R +. Tangent vectors to &0 are given by
(y,s\v,A\ where now Δ is a real number. Using the embedding (4.2) we get

' ^-Λ""' / / ~~ otΌ> (4.5)
Zπ / (yf(s/2π)(dβ)2),

where v0 is the middle expansion coefficient of v in (2.8).
The symplectic form Ω is now just the exterior derivative of α. For this we

need the Lie bracket. With our trivialization of T(TV Diff) a vector field amounts
to a pair of functions (X(γ,b)9η(γ9b)) from Diff x Vectv to Vect x Vect v. We will
sometimes denote this vector field by Vx^η to denote its dependence on these two
functions. Considering the successive derivatives of a function / by two of these
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vector fields one gets

Here VXtη Y denotes the derivative of the Vect-valued function 7, while [ Jf , 7] is
taken pointwise and does not differentiate the functions X, Y with respect to 7, b.
We thus have da = Ω, where at (7, fo)

β(tχ.,, ̂ .4)= <f, γ> - <£>*> - <b,ιχ, n>, (4.7)
a function on Γ v Diff given two vector fields. Again let Ω denote also the

i S
corresponding pullback to jtf. We then have that at (7, s) recall we set b = —(dθ)2

V 2π

Ω((v,Δ),(ι/9Δ')) = Δv'0 - Δ'v0 + 2is £ my/.,. (4.8)
— oo

Here we have used the same expansion coefficients as in (2.8).
While we know that Ω is invariant as a differential form on T v Diff, still one

may worry that our choice of Diff x R+ c^+ T v Diff will spoil the invariance of Ω
on j2/. After all we did choose a basis, to define /J. We now check this invariance
briefly. For any generator v1 of Diff we get a vector field of the left action, which
in our trivialization is seen to be (Ady- ιu,0) at the point (7,5). Let us compute the
Lie derivative of α along this vector:

(^(Ady-iy,o)«)(^vi) = ^(K(Ady_lt),0)) + Ω(V(Ady_lv^ VXΛ\ (4.9)

The derivative in the first term substitutes s-*s + εΔ,γ-*y°(l + εX) and takes the
derivative of ε. Thus using (4.4), (4.7)

(4.10)

and α is invariant, and hence Ω as well.4

It is clear from (4.8) that Ω is nondegenerate and hence an invariant symplectic
form on Diff x R + . In other words we have a Hamiltonian action of Diff on this
space. In fact this action is strictly Hamiltonian, i.e. there is a globally defined
moment map μ:es/->Vectv. One finds that, since Ω is exact, we have that

(4.11)

generates the action (3.1)-(3.2). We also have a close relation to the usual
Hamiltonian action of Diff on its coadjoint orbits. Since clearly μ(7ι"M) =
Ad*-ιμ(y,s), we see that one flow covers the other [16]. Furthermore, the map μ
restricted to the inverse image of a generic coadjoint orbit is holomorphic. This is a
meaningful statement, since such orbits are isomorphic to Diff/S1, which has an
invariant complex structure [11,9].

We note that the single form (4.8) corresponds to a family of forms on Diff/S1

parametrized by s. Generalizing to arbitrary central charge gives the two-parameter
family of Bowick and Rajeev, as we will see in Sect. 7.

The space Diff x R + has an important property: it is multiplicity-free in the sense

4 Compare the discussion of [5], where a residual global right invariance remains after
"gauge-fixing"


