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Abstract. According to the theory of superselection sectors of Doplicher, Haag,
and Roberts, field operators which make transitions between different superselec-
tion sectors — i.e. different irreducible representations of the observable algebra —
are to be constructed by adjoining localized endomorphisms to the algebra of local
observables. We find the relevant endomorphisms of the chiral algebra of
observables in the minimal conformal model with central charge c=3% (Ising
model). We show by explicit and elementary construction how they determine a
representation of the braid group B, which is associated with a Temperley-Lieb-
Jones algebra. We recover fusion rules, and compute the quantum dimensions of
the superselection sectors. We exhibit a field algebra which is quantum group
covariant and acts in the Hilbert space of physical states. It obeys local braid
relations in an appropriate weak sense.
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1. Introduction and Summary of Results

According to the laws of local relativistic quantum mechanics, observables are
selfadjoint operators acting in a Hilbert space # of physical states. The Hilbert
space of physical states # may decompose into orthogonal subspaces #, called
superselection sectors, such that observables A do not make transitions between
different subspaces s, [1]. Different sectors #,; carry inequivalent irreducible
positive energy representations of the algebra .« of observables A, possibly with
some multiplicity. Among the sectors is the vacuum sector . It contains the
vacuum |0) and carries the vacuum representation n, of .o, with multiplicity 1.

Typically, states in different sectors transform according to inequivalent
unitary representations of a gauge group G of first kind. By definition, a gauge
group is a symmetry group of the theory which acts trivially on observables.
Examples of sectors and associated gauge groups are

1. Fermi superselection sectors labelled by fermion number F=0,1 (mod2)
lp>—(=1)"w>

gauge group Z,.
2. Baryon superselection sectors labelled by baryon number B=0, +1, +2,...

) —e*Plp)
gauge group U(1).

Nonabelian gauge groups are possible in principle. Suppose that isospin
conservation were exact in the world, electromagnetism were absent, and particle
detectors used gravitational interactions. Then the group SU(2) of isospin
rotations would be a nonabelian gauge group of the first kind. One could still
detect that there are two kinds of nucleons — protons and neutrons — through the
effect of their statistics (and by multiple scattering experiments). For instance, the
high stability of the a-particle comes about because 4 nucleons may be in the same
orbital state. It is then natural to consider a Hilbert space with states that need not
be isospin singlets and may contain arbitrary numbers of protons and neutrons.
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Superselection sectors are then labelled by isospin 1=0,4,1, ..., and occur with
multiplicity 21 +1,

I
H=D D Him-
I m=-1I

Subspaces #;,, with the same isospin I but different 3rd component m of isospin
carry equivalent representations of the observable algebra.

When superselection sectors exist, it is of interest to construct field operators
¢,y ... which make transitions between sectors, and which are relatively local to
the observables (Fig. 1).

" ———n
¥

H O U OA

Ho OA

Fig. 1. Structure of the Hilbert space. Observables A leave subspaces 5#; invariant. The fields y, ¢
make transitions between subspaces 5,

ol

In 2-dimensional conformal quantum field theory (CQFT) some algebras of
chiral observables and their unitary irreducible positive energy representations are
explicitly known, and the relative locality of other primary fields ¢ to observables
like stress tensor T or currents j is embodied in local commutation relations. For
instance,

[Tw), (2)] = d(z — w) gz— $(2)+hd'(z—w)¢(z) (1.1)

for a chiral field ¢. Such fields depend on only one light cone variable, so that
relatively spacelike = disjoint

on the circle (see Sect. 2). In this paper we consider only chiral fields.

In the algebraic approach [2] one prefers to work with bounded operators like
¢'TY) in place of operator valued distributions like T(z), and similarly for fields ¢.
Observables that are localized in bounded topological trivial domains I of a
Minkowskian space time manifold form a subalgebra </(I) of the observable
algebra /. Observables localized in relatively spacelike domains commute.

The basic ideas of the theory of superselection sectors of Doplicher, Haag, and
Roberts are as follows [3]:

1. All the information about the theory is contained in the representation 7, of the
net of local algebras {«/(I)} in the vacuum sector #, and can be deciphered by
looking at the localized endomorphisms g of 7.

2. The representations x; of &/ in other sectors are obtained from the vacuum
representation ©, by composition with suitable endomorphisms ¢; of <:

My =Moo @y, With 70 o(4)=me(e(A)). (1.2)

3. The field algebra is obtained from the observable algebra o/ by adjoining outer
endomorphisms of & to it. This means that an element ¢ of the field algebra should
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exist to every endomorphism g so that ¢ becomes conjugation by ¢ or, more
generally,

Ap=¢o(4) forall Aes.
4. The endomorphisms ¢ and their intertwiners determine the gauge group.

The observable algebra consists of complex linear combinations of selfadjoint
observables. Therefore it admits a nontrivial *-operation (taking adjoints). By
definition, an endomorphism is a linear map g: o/ —.o/ with the properties

o(AB)=o(A)a(B), (1.3)
o(A4*)=o(4)*, (1.4)
o)=1. (1.5)

It is called an automorphism if it has an inverse.
An intertwiner T between endomorphisms ¢, and g, is an element Te <7 of the
observable algebra with the property

To,(A)=0,A)T forall Aes. (1.6)

The linear space of all such intertwiners is denoted Hom(g,, g,).
It is easy to see that m =m0 ¢ is a unitary representation of .« if 7, is. That is

m(A)=m(e(4)) .7
has the defining properties of a unitary representation: n(4,4,)=n(A4,)n(A,) and
n(A*)=n(A)*. Moreover, if the energy operator H is positive, i.e. H=Y 4,4¥ =20,
then o(H)=} o(4;)o(4)* 20. Thus, n=m,- ¢ will be a positive energyirepresent—

ation if ny is. In the context of conformal quantum field theory, H= L.

Let us explain how these constructions work at a simplified example.
Substitute the matrix groups o7 =SL(2, C) or SO(2N) for the algebra of observ-
ables, with the natural *-operation. There exists an outer automorphism g,
[complex conjugation for SL(2,C)]:

A—0,(4). (1.8)

In SO(2N) or SO ,(3,1)=SL(2,C)/Z, (proper orthochronous Lorentz group), the
automorphism is conjunction by reflection. We adjoin an element I" which
implements this automorphism in the sense that

Al =Tp,(A). (1.9)

This yields a new group with elements I'" 4 (n € Z, A € /), since products of any two
such elements may be brought into the same form by commuting A’s through I'’s,
using Eq. (1.9).

Automorphisms (and endomorphisms) can be multiplied, and it follows that
AT'?=T"?g?(A). But the automorphism g? is trivial, thus AI'*=TI"?4. We invoke
now a new principle which says that elements of the field algebra (here: the new
group) which commute with all observables should be in the center of the observable
algebra. This leaves two possibilities I'>= +1, since the center of SO(2N) or
SL(2,C) has only two elements + 1. With either choice, we obtain a group with
elements I"A (n=0,1; AeSU(2)). This “field group” substitutes for the field
algebra in quantum field theory.
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The relation ¢?=id can be expressed in a fancier way by saying that unit
operator 1€ Hom(g?,id), viz. 1¢3(4)= A1 for all A. Thus, relations in the field
group beyond (1.9) are linked to the existence of an intertwiner.

Our baby example admits Z, as a gauge group. Its elements act as
automorphisms of the field group which leave the observables fixed.

I'-»zI'y A-A, z=+1€Z,.

Passing from SL(2,C) to the Lorentz group &/ =S0,(3,1), the field group
becomes O (3, 1). There are many space reflections, parametrized by planes, and
corresponding automorphisms g. But we need only adjoin one new element I". It is
associated with some representative automorphism g,. All other automorphisms
differ only by inner automorphisms o, from ¢,, with unitary U= U*"!. Later on
we will wish to admit partial isometries U, therefore we write

oy(A)=1+U*A-1)U. (1.10)

This will be an auto- or endomorphism whenever UU* =1. All the reflections ¢
are implemented by “field operators”

¢=IU (1.11)

with Ue/, UU*=1, in the sense that
Ad=do(4), (1.12)
Q=0yp0; - (1.13)

If 4 is a unitary irreducible representation of a compact group like SO(2N), and ¢
is an automorphism, then 7, ¢ g is another such representation. It has the same
dimension as . There is therefore no chance of obtaining all representations from
a single one in this way. But all three eight-dimensional representations of SO(8)
are related by outer automorphisms, for instance.

Positive energy representations in CQFT are all co-dimensional. It is known
[3] that &, =, o g, for some (localized) endomorphism g, if the restriction of z; to
the net of subalgebras {/(I),ICI,} with I, =spacelike complement of some
bounded, topological trivial domain in space-time, is unitarily equivalent to 7,
and if (<) satisfies Haag duality. In CQFT, such a spacelike complement is a
compact subset of Minkowski space (see Sect. 2). All representations of nets of von
Neumann algebras on such domains are known to be unitarily equivalent [4].
Therefore we can expect to obtain all positive energy representations from the
vacuum representation n,, provided our local algebras 7y(./(I)) are von Neumann
algebras satisfying Haag duality [5, Theorem 1]. Haag duality requires mq(/(I))
=no(L(I"); I' is the spacelike complement of I and 7=q(</(I))' consists of all
bounded operators on s, which commute with all operators n,(4), A€ ().
Haag duality is a maximality condition on the observable algebras, see below.

In the quantum field theory context, field algebras will be obtained from
observable algebras in the same way as the group O (3, 1) was obtained from the
group SO _(3,1), by adjoining elements I'’. They implement representative
endomorphisms g, one for each sector #;. Fields ¢ are given by “bosonization
formulae.” The bosons here are the observables. Thus Egs. (1.9) and (1.12) of our
baby example remain valid,

Al =T7g,(A) forall Ae«. (1.19)
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Field operators are given by the bosonization formula
¢=I'U, Ues/, UU*=1. (1.15)
They obey
Ad=¢o(A) with o=o0y0, (1.16)

and oy as in Eq. (1.10). The locality properties of fields relative to observables are
given by the localization properties of the endomorphisms ¢ which they determine
via Eq. (1.16).

By definition, endomorphism g is localized in I if

o(A)=A for AeH(I) (1.17)

whenever I and I’ are relatively spacelike (= disjoint on S*). ¢ is called localized if it
is localized on some domain I. We define suppg to be the smallest interval on
which g is localized.

Let #(I) be spanned by the semigroup of field operators of the form (1.15)
which induce endomorphisms ¢ that are localized in I. It follows from Eq. (1.15)
and (1.17) that fields are relatively local to observables in the sense that

[6,4]1=0 if Aest(), ¢eF() 1.18)

whenever I’ is relatively spacelike (disjoint) to I.

Given the quantum numbers J of the field ¢ of Eq. (1.15), its localization
properties are entirely determined by the observable factor U. One may construct
fields at a point ¢(z) by taking limits, as is familiar from vertex operators associated
with loop groups [6]

¢’(z)=1lim ¥, I'’U, with suppg,—{z}. (1.19)

Herein ./, are suitable chosen real normalisation factors, and g,=ay, 0;. By
multiplying with projection operators Ex on the sectors #%, one obtains
intertwining operators between sectors

J

obeying

miar(, ) =r(, 7 )i, (121

and chiral vertex operators

J . J .
¢ < L K) (Z)_.}Ll?o N, T < L K) U, with suppe,—{z} 1.22)

which satisfy the relations of an exchange algebra [7, 8] [Eq. (1.59) below]. These
are new kinds of vertex operators, not associated with lattices [10] unless g, is an
automorphism. Correlation functions

0l¢”(z,) ... $™(z,)I0> (1.23)
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of fields (or vertex operators) may in principle be computed as follows. The
pointlike limit (1.19) is only taken in the end. As a consequence of the product rule
in the field algebra bounded field operators ¢’ =I’U satisfy operator product
expansions (on the vacuum sector), they are found explicitly in Sects. 4.4, 6.4.
Moreover

O’ U0y =0,,0<0|UI0) .

In this way, the correlation functions are expressed in terms of vacuum expectation
values of observables. An illustration of this procedure for a model with
automorphisms only is found in [5].

Application of the theory of superselection sectors in order to reconstruct a
quantum field theory from the algebra of the stress energy tensor was first
proposed by one of us in 1976 [42].

In this paper we consider the minimal 2-dimensional conformal field theory
model with central charge c =2, which describes the scaling limit of the Ising model
at the critical point. It has the Virasoro algebra Vir,_ ,, as a chiral Lie algebra of
observables. This Lie algebra admits 3 inequivalent unitary irreducible positive
energy representations m; in the Hilbert spaces #, J=0,3,1. They have lowest
weights 1,=0, 15,3 for J=0,1, 1. The vacuum |0) € #, is the lowest weight vector
with 1,=0. The local algebras of observables and the Virasoro algebra are
generated by one light cone component of the stress energy tensor.

Interesting algebras of observables in conformal field theory are group
algebras of co-dimensional Lie groups. In particular, the Virasoro algebra is the
Lie algebra of a central extension Diff™(S,;) of (the universal covering of) the
diffeomorphism group of the circle. Therefore it is natural to work with Lie
algebras as much as possible. There is nothing to guarantee that endomorphisms
which we seek come from endomorphisms of Lie algebras, but in our model it turns
out to be the case.

However, the associative algebras of local observables

/°(I) = Span Diff(I) C Span Diff*(S*) (1.24)

(diffefomorphisms of S* that act trivially outside of I) do not have the property that
no(/(I)) are von Neumann algebras satisfying Haag duality.

Violation of the Haag duality condition ny( (1)) =ny(/(I')) means that one
can enlarge .o/ °(I) by adjoining further local operators that act on #,. It turns out
that we need to consider enlarged Lie algebras to find suitable endomorphisms.
Lie algebras of local observables, a global algebra Lies/ in which they are
imbedded, and a complete set of endomorphisms g; of Lie.«Z (J = 0,1, 1) to reach all
the sectors are found explicitly.

We summarize the result in

Theorem 1 (Endomorphisms). There exist local and global Lie algebras of
observables, and injections
i:Lies/(I)~>LiesZ D Vir

such that all unitary irreducible positive energy representations n; of the Virasoro
algebra Vir on a Hilbert space H#; extend to representations of Lie.o/ on the same
Hilbert space #;, and

=m0y (J=0,31; 0o =id).
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The endomorphisms g of Liesf can be chosen so that they take the vacuum into
lowest weight vectors, in particular

To(@s(Lo))10) = 4,(0) .
012 is not an automorphism.

The explicit description of Lie algebras and endomorphisms is found below
and in Sects. 2 and 3. Lie & is extension of the algebra of vector fields and functions

on the circle (with generators L, = z""% and N,=z"" neZ)byan orthogonal Lie

algebra (with generators J,, a,be3Z, a—beZ — {0} plus two central elements 1
and Y).

The basic strategy in the proof of this part of the results is to construct
everything in sight from Majorana fields, and to exhibit suitable homomorphisms
of Majorana algebras, which induce endomorphisms of the global observable
algebra. There are localized endomorphisms among them, but it is not convenient
to choose them as representatives g, since they could not take the vacuum into
lowest weight vectors.

The Fourier modes b,=5b* , of the “universal” Majorana field

P&)= ¥ bz V2 (1.25)

aeciZ
satisfy anticommutation relations
{beb} =536, _ [1+(—1)*Y]. (1.26)

Lie s/ is spanned by bilinears b,b, with a—ce Z — {0} and central elements 1, Y. L,
and N, are infinite sums of such basis elements. The endomorphism ¢,,, and the
automorphism g, act according to

iba+1/2 a%%
i
012(ba)= 1'/12‘(1’1/2“19-1/2) a=0, 012(Y)=-%, (1.27)
_iba—l/Z aé‘“%
ba={ ‘ Y)=Y. 1.28
ab)=1, " STUT e (129

The action of these endomorphisms on the unbounded operators L,, N, is well
defined.

Next we turn to the discussion of the field algebra with quantum symmetry.
The example of isospin rotations in a world without electromagnetism, outlined at
the beginning of this section, suggests a relation between gauge symmetry and
statistics. This aspect cannot be illustrated in our baby example. Therefore it will
be necessary to review some known facts before we state our result.

It has been known for a long time [3] that there exists an intrinsic definition of
statistics of a superselection sector J#; if this sector can be reached by localized
endomorphism g, so that 7;=~n, g;. Space time dimension d =3 was originally
assumed, but it was recently pointed out by Fredenhagen, Rehren, and Schroer [8]
that the definition applies in 2 dimensions as well, and leads to a representation of
the braid group B, by operators in .o7(I) C of for suitable I D suppg; which depends
on g;. Since /(I,)S(I,) if I, C1,, suitable I means large enough 1.
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The analysis assumes that the localized endomorphism g =g is transportable
in the following sense. Given arbitrary I;C I, unitaries U, e </(I) should exist such
that g; =0yQ is localized in I;. In conformal field theory, transportability follows
from covariance under dlffcomorphlsms if Diff~(I)C «/(I) for intervals ICS.

The generators o, of the braid group B,, have the form

o,=0" (s, n=12,.... (1.29)
Herein e,= 0, is unitary and satisfies
[e, A]1=0 forall Aeo*(s). (1.30)

It is defined as follows [3,8]. Select disjoint intervals I,,1,CI and unitaries
U;e /(1) such that g,=oy,0 is localized in I; (i=1,2). Set

&,=0(U)U, Uy o(U; e (I). (1.31)

Itis known that this quantity is a homotopy invariant in the following sense. Given
localization regions I, I, &, does not depend on the choice of U,. It is also the same
for any pairs (I,,1,) and (I, I) that can be continuously deformed into each other,
within I, mamtalnmg disjointness. For intervals this means that ¢, depends only on
whether I, is to the left or right of I,.

We desire to work with representative endomorphisms ¢; which are not
localized, but are limits of localized endomorphisms g, and with a global algebra &/
whose vacuum representation is not faithful. We abbreviate

e,=¢, €. (1.32)

There remains some arbitrariness in expressions (1.31) for ¢, if we weaken the
requirement U;e o/(I) to U,;e o/, because we may multiply U; with different
elements of the center of «. The “Minkowski space” choice can be determined as
follows. Select { € S* (“projection of the point at infinity of a Minkowski space” —
see Sect. 2). Consider localized endomorphisms ¢ with suppe CI${ and define ¢,
by Eq. (1.31) with U;e /(I). Inject ¢, o/(I)— /. Then take the limit ¢—g,. The
result may depend on (. But it yields a representation of B, in any case, and ¢; is
invariant under deformations of disjoint pairs of intervals (I,,1,) with {¢I,Ul,.

In practise, the braid group representations are determined by seeking suitable
¢, in the commutant of ¢3(+/), cp. Eq. (1.30).

In d = 3-dimensional Minkowski space there is only one homotopy class of
relatively spacelike bounded, topologically trivial domains, and the braid group
representation degenerates into a permutation group representation (i.e.
o7 '=0,)". Using this fact, Doplicher and Roberts [13] were able to describe a
general construction of a field algebra %, together with a compact gauge group G
which acts as a group of automorphisms of &, such that the G-invariant elements
of the field algebra & are precisely the observables A € /. Clearly a gauge group
with this property cannot be trivial, if there exist superselection sectors #5 = #,
that are generated by localized endomorphisms. Nonabelian gauge groups G are
obtained from endomorphisms which are not automorphisms, while automor-
phisms yield abelian gauge groups.

! Braid group representations in 3 dimensions as were recently discussed by Frohlich et al. and
Fredenhagen [11,12], come from endomorphisms which are not localized in bounded domains,
but in unbounded cones in Minkowski space
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The physical Hilbert space # will be representation space for # and G. A
nonabelian gauge group (or quantum group) G with irreducible representations
that are not 1-dimensional requires that superselection sectors J#; occur with some
multiplicity d;,

dy
H=@® & Hom: (1.33)

where J#,,, carry the same representation n; of & for different m. The fields also
come in multiplets ¢, m=1, ...,d;, which transform covariantly under G. d, is
determined by the permutation group representation associated with g, in
Doplicher and Roberts theory.

Itis also asserted in the work of Doplicher and Roberts that the fields ¢}, can be
chosen to satisfy local commutation or anticommutation relations when they are
localized in relatively spacelike domains. The nucleon field in the hypothetical
world with exact isospin invariance is an example of a doublet of local Fermi fields
which transform covariantly under gauge group SU(2). Only commutation
relations of fields ¢, with the same “charge” J are intrinsically determined though,
others can be changed by Klein transformations.

One expects that some sort of “quantum symmetry” will take the place of the
gauge group G in 2-dimensional quantum field theories with nontrivial braid
group representations (1.29). But there exists no general theory yet which would
identify this quantum symmetry.

In our model we find

Ufsl2) with gq=—i

as a quantum symmetry. This quantum group algebra has generators X =S, and
q*5-/2 and admits 3 “physical representations” ¢/ of dimension 2J + 1. They are
labelled by quantum isospin J =0,, 1. In Sect. 6.1 and 6.2 we will present a brief
review of quantum group theory and an explanation of the notion of covariance of
a quantum field theory under quantum groups. It appears natural if the quantum
group algebra is thought of as a generalization of the enveloping algebra of a Lie
algebra. In the statement of Theorem 2 below, the explicit form of comultiplication
and counit in U (sl(2)) is used.

Basically, Theorem 2 is an assertion about properties of operators I;. In this
paper we concentrate on Lie algebras. The elements A of the observable algebra .o/
in Theorem 2 can be in the Lie algebra of observables Lie.oZ, or in its universal
enveloping algebra, or in other associative algebras .« which are affiliated with
Lie.sZ and to which the positive energy representations and endomorphisms g, of
Lie.s/ can be extended. To obtain nonempty local field algebras Z(I), o needs to
be big enough. In particular we want Diff"(I) C 7. It is fairly obvious what the
natural associative algebra of observables should be. The group algebra of a
(2-dimensional) central extension of the identity component of the restricted
orthogonal group is a natural candidate for the global algebra. It is similar to the
well known restricted unitary group [14]. However, we do not wish to enter into a
mathematical discussion of this group and its endomorphisms in this paper.
Therefore, results which require associative algebras larger than the universal
enveloping algebra will be formulated as remarks.

At a heuristic level, we may think of the elements U of the restricted orthogonal
group as exponentials of quadratics in Majorana fields v, so that the bosonization
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formula takes the form
dLF =TI expi [ w(2) A (z, wyp(w)dzdw, (1.34)

for J =1, with some kernel #” which determines localization properties of ¢./*. The

bosonization formula for ¢), merely reconstructs a triplet of Majorana field.

Theorem 2 (Field Algebra with Quantum Symmetry). Generators of a field algebra
¢l=IIU, Ues, UU*=1 (I=041,m=-J,..,J)

and generators X of the quantum group algebra % = U (sl(2)) with q= —iboth act in
a Hilbert space of physical states

‘%hys=,=§%1 m_é—)zlfm (1.35)
and obey the following covariance conditions.
1. Fields ¢ implement endomorphisms

Adpp=¢no(4) with e=0ye, (1.36)

or, equivalently, AL =TI)0,(A).
2. The vacuum is quantum group invariant,

S:10>=0, g*%/%0)=10). (1.37)
3. Observables are quantum group invariant,
[X,A]1=0 for Aeof, Xe%. (1.38)

4. The field operators are quantum group covariant in the sense that they obey
generalized commutation relations with the quantum group generators,

q* 3¢’ = ¢’ (q*57)g* -, (1.39)
S2¢' =@ S + ¢TSS, (1.40)

5. Local braid relations (cp. Remark 3): The relation
B'Iefle) =Y LiLIE ) (1.41)

holds true for vectors |E) in a subspace of H,,,, which includes #y, if J+ K <1. R is
1

the quantum group R-matrix multiplied with a phase factor, for J=1.

We used matrix notation in 4. ¢’ is the 2J + 1 dimensional matrix representa-
tion of %, and ¢’ is the row vector with components ¢;,. Validity of 4 for general
¢’ follows from its validity for ¢}, = I] by property 3. ¢, defines the representation
of the braid group as explained before.

The fields ¢ = ¢*/? (chiral Ising field) and p=¢@' make transitions between
sectors as specified in Fig. 1.

The significance of Relation 5 comes from its corollary as stated in the
following:

Remark 3 (Local Braid Relations). Suppose that fields ¢ =I;’U and ¢} =I,’U’ are
localized on disjoint intervals on S*\{(}, and U, U’ are limits of elements of local
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algebras s/(I) with 13 (. Then the fields obey local braid relations
G918 = T Pndn i (N)IE> (1.42)
on the subspace of states |£) where Relation 5 of Theorem 1 holds.

Local Braid relations of the form (1.42) were introduced by Frohlich [15].

This corollary of identity 5 of Theorem 2 is established by a short and
instructive calculation which uses the definition and homotopy invariance of
e;=g¢,, (see Appendix A). is the point on the circle which entered the definition of
Eqyr

We were unable to construct a field algebra which obeys local braid relations
on all of #,,,, with a matrix £ that is independent of the sector to which the state
[€> belongs. The reason is easy to explain.

The third component of quantum isospin will be called charge for short.
Charge is conserved. Consider the chiral Ising field, ¢/, J=% and inspect the
desired equations (1.41), (1.42) for states |£) € #, of isospin K =1 and charger=1.
Take it for granted that braid relations are nontrivial in the sense that matrix %(%)
is nondiagonal. The canonical #-matrix for U (sl(2)), g= —i is nondiagonal for

=4. Then #Y3;;1/3+0. Let |=% and k=—73. Then the left-hand side of
Egs. (1.41), (1.42) is zero because there is no state of charge 3 in . But the right-
hand side receives one nonvanishing contribution, m=4, n= —2%. This contri-
bution cannot vanish for all |¢) € #, ; unless ¢'/? vanishes identically on one of the
sectors, because the intertwining operators (1.20) satisfy completeness relations
(Sect. 4.2).

It appears thus that local braid relations as an operator identity, with a
nondiagonal numerical matrix %, would require a space with unphysical states. It
will be remembered that local (anti)commutation relations of charged fields in
gauge theories like Quantum Electrodynamics also require an unphysical state
space.

Theorem 2 is established in several steps which may be summarized as follows:

. . . J
fusion rules—intertwining operators I' K L

7 —>cov. field algebra
endomorphisms

™ braid group representation—local braid relations.

In our baby example a preliminary field group was first constructed, with relations
ATI'=Tg,(A). The existence of an intertwiner was then used to impose a further
relation, (I'> = 4 1). In the conformal model we proceed in a slightly different way
which is suggested by the work of Fredenhagen, Rehren, and Schroer [8]. Instead
of displaying further relations, the field algebra is constructed as an algebra of
operators in a Hilbert space, using the intertwiners as building blocks. Their group
theoretical meaning becomes clear from the following consideration.

In the approach based on endomorphisms, all representations of interest are
realized in one standard Hilbert space . In particular the irreducible represen-
tations (my, #y) = (ny © 0k, H#,). Endomorphisms may be multiplied

0x0,(A)=0xl0,(4)) etc. (1.43)

Therefore, 7y © 90, is also a positive energy representation realized in ;. It may
be reducible. To reduce it into irreducible subrepresentations =~ m, - ¢,, one needs
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.. J . . .
projection operators IT ( L K) which commute with representation operators

7o © 0x05(A),

aaon(, ) )=n(,” ) )esaia. (1.44

J . . . .
and intertwining operators T ( L K) which establish the unitary equivalence of

T[O o QKQJ I‘CStriCth to HL‘%O With 7720 4 QL N
AT T T I (4) (1.45)
oL L k)T '\L K 2x0\A), .

J \* J J
o, ol )=, ) w0

Here we have omitted symbols 7, it is understood that all operators act on J#, for
the moment. Comparing with Eq.(1.21) and remembering that n, may be

identified with 7, o gg, we see that intertwiners I’ L K get identified with the

intertwiners n0<T( >) that reduce the representation myoge,. In our

J
L K
model these intertwiners are unique (up to phase factors). We will find elements T
satisfying Egs. (1.45) and (1.46) in the universal enveloping algebra %(Lie</) of a
Lie algebra of observables which is contained in Lie.«Z, their action on J#, is then

. . J
given by ny(T). In conclusion, operators I’ ( L K) are composed of elements of

% (Lie /) and identification operators.
Writing [¢] for the equivalence class of unitary representation 7, g, the
decomposition into irreducibles comes out as follows:

Theorem 4 (Fusion Rules).

[o?21=[eo] + 1], (1.47)
[Q1/2Q1]=[Q1Q1/2]=[Q1/2]9 (1.48)
[et]=[eo] (1.49)

and [000,1=[0,] for J=0,31.

It is not an accident that this recovers the fusion rules of the conformal field
theory. Using the intertwiners as building blocks, field operators ¢’ =I'"U can be
constructed which act on the Hilbert space

H =D AH' (1.50)
T

which is a direct sum of superselection sectors, without multiplicity. Operators I'’

. . J
can be composed from intertwiners I’ ( L k) that

AV =T79,(4), TI'I’*=1. (1.51)
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The last property fixes complex factors, up to some phases without physical
meaning.
We note that states of the form

PLP’I0> e # (1.52)

transform according to a representation ~m, o 9,0, (or a subrepresentation of it).
This is because they are of the form I''I|¢), |€) € #,, and

A’y = FLFJ“O 0010441,

by bosonization formula (1.15) and Eq. (1.51). The decomposition of representa-
tion 7, 0 9,0, into irreducibles 7 o g Will therefore recover the fusion rules of the
conformal field theory.

To accommodate the quantum symmetry, one will need multiplets of field
operators [16,17]. Our field operators will be given by a bosonization formula

¢L=[IU, Uest, UU*=1. (1.53)

They are required to obey the same commutation relations with observables as the
single component fields considered before:

AL;=T,0,(4), (1.54)

so that
App=0no(4), o=0y0y, (1.55)

independent of m.
Such field operators can be constructed from the intertwining operators

J .
r ( K L between sectors and quantum group Clebsch Gordan coefficients. The
. . . . J .
operators I;] must be linear combinations of intertwiners I’ < L K>’ in order to

have covariance Property 1 of Theorem 2, with coefficients proportional to
quantum group Clebsch Gordan coefficients, in order to have quantum group
covariance. Some overall factors ¢, remain free. The general idea is to require
identity 5 of Theorem 2,

L'Ley= Y LA (1.56)

and reconstruct the quantum group as a commutant [14] of the matrix £.
Equation (1.56) is the generalization of a relation in the field algebra that is valid in
Doplicher and Roberts theory in d >3 dimensions.

Consistency of Eq. (1.56) would require that the Z-matrix satisfies Yang Baxter
equations, and has the same eigenvalues as ¢;.

The range of indices is not known a priori, and must be found together with the
matrix #. The braid group representation (1.29) determines a statistical dimension
d;=d(g,). Itis given by the index of a linear transformation which determines g, in
our model. This statistical dimension comes out as

d;=1,)/2,1 for J=0,}41 (1.57)

and satisfies the same sum rules as quantum dimensions do in quantum group
theory. This indicates that the quantum dimension substitutes for ordinary
dimension in Doplicher Roberts theory when space time dimension d <2.
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From the knowledge of the endomorphisms one obtains also representations
of the braid group by operators g, ="~ !(¢,) as explained before. This braid group
representation is found explicitly and is related to a Temperley-Lieb-Jones
algebra.

Let us fix J. The interesting case is J =+. The action of braid group generators

J . T
o, on products of chiral vertex operators I'(s)=1I" < L K by right multiplication
yields standard braid matrices [8, 18, 19, 20] R. In particular
I(s)I(sy)e;= Y, T'(s3)I (sa)R5353(J).- (1.58)

Explicit calculation shows that they agree with the expressions for R-matrices in
terms of 6j-symbols for U (sl(2)), g= —i, multiplied with an overall phase factor.
It is not an accident that our matrices R§3j: as defined by Eq. (1.58) agree with
the known R-matrices of the conformal field theory model. If ¢(s) =I'(s)U and ¢'(s)
=TI'(s)U’ are localized in disjoint intervals, then Eq. (1.58) implies local braid
relations for them, as one has in conformal field theory
¢(Sl)¢>’(32)=525 P'(s3)P(sa)RS3ss - (1.59)
This is established in the same way as for Remark 3. Comparing Egs. (1.56) and
(1.58) it follows that the standard R-matrix RS and the quantum group invariant
matrix £ must be related by a “vertex-SOS-transformation” in the terminology of
Frohlich et al. [41]. In this formula, summation over intermediate states should
only run over “physical” representations $’'=0,4, 1, excluding 3. This creates the
problem mentioned before and is responsible for the fact that we were only able to
demonstrate the validity of local braid relations on a subspace of #,;,, (Sect. 6).
As was mentioned above, the braid group generators g, are expressed in terms
of projectors E, of a Temperley-Lieb algebra

Op= Z(qEn —(1 _En)) >

1 (1.60)
EEE=5E, EE=EE for li-jz2
with
z=—&"8,  g=i, and Q=d},=[q+q '+2]=2.

This is isomorphic to the Temperley-Lieb algebra of the 2-state Potts model (Ising
model on a 2-dimensional lattice) [21,22].

It turns out that the projectors in the Temperley-Lieb-Jones algebra generate
the whole observable algebra nq(Lie.o) in the vacuum sector. In this description,
the endomorphism g, , takes a particular simple form, g, ,,(E,)=E, ;.

Let € be another algebra which is obtained from the group algebra [23] CB,,
of the braid group B, by imposing relations, such as quadratic, cubic or higher
order equations which are to be satisfied by all braid group generators o, [39]. If
we wanted to start from such an algebra % as a candidate for vacuum
representation of the global observable algebra, with its natural endomorphism,
0(e,)=0,1, construction of a local quantum field theory would require that we
enlarge ¥ by adding limit points [in the topology furnished by a suitable state
wo(-)=<0]-10>] and exhibit subalgebras /(I) which commute for relatively
spacelike domains. An example of such a construction was described by Connes
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and Evans [29]. In general, the vacuum representation need not be faithful, but the
knowledge of the local subalgebras permits to reconstruct the global observable
algebra. The whole construction amounts to lifting the structure of space time as a
causally oriented manifold to the algebra (cp. Sect. 2.3).

In our model, the algebra & gets lifted to

FQCL,. (1.61)

The group Z, has two elements 1 and Y with Y?=1. They span the group algebra
CZ, and commute with generators g, of ¥. The fundamental endomorphism g,
acts on ¥®CZ, according to

Q1/2(anJ’)=X1/2(Y)0'n+1y (1.62)

for yeZ,. x,,, is the nontrivial character on Z,, i.€. x;,5(1)=1 and y,,(Y)= —1.
The global field algebra includes additional generators I.!/? with relations

UnyC1/2=X1/2(y)1;1/20n+ 1Y (1.63)

and quantum group generators which commute with o, and y € Z, and which obey
generalized commutation relations (6.30) with I,'/2. They invoke comultiplication
(6.10).

These formulae are easy to generalize, but to generalize the embeddings of local
subalgebras /(I) is a nontrivial task. Also the physical field algebra will not be a
faithful representation of the algebra & defined by relations (1.63), (6.30) and
relations in 4. A representation of the quantum group covariant field algebra & in
an unphysical linear space 5 is furnished by the theory of induced representations.
Let 7, be the vacuum representation of ¥ ® CZ, on Hilbert space #;, (obtained
from state w,), and define 5 to consist of C-linear functions f on & with values in
o which obey covariance condition

f(Ap)=no(A)f(p) for Ac¥®CZ,, ¢eF. (1.64)

& acts on # according to

W (D) =f(dy). (1.65)

2. The Observable Algebra and its Positive Energy Representations

2.1. The Virasoro Algebra with c=% and Associated Net of Local Observables.
Einstein causality plays a pivotal role in algebraic field theory. Therefore it is
appropriate to start with some introductory remarks to show what becomes of it
when we restrict attention to chiral observables.

2-dimensional conformal quantum field theory lives on a tube [24,25]
]\:/I =R x S! with points (t,0), t= — 00 ... 00, ¢=0... 2%. This space time manifold
M contains Minkowski spaces M, as subspaces (see Fig. 2). Their positions are
fixed by the unique point { € M at spacelike infinity of M. Manifold M inherits
from M a global causal structure —i.e. a notion of positive timelike, spacelike, and
negative timelike — which is invariant under the action of an infinite dimensional
space time symmetry group (conformal group) [26]

G =[Diff(S") x Diff(S")]/Ziee- 21)
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M

pos. timelike
relative to ¢

neg. timelike
relative to ¢

0 —_— 2T
(o

Fig. 2. Diffeomorphism invariant global causal structure on the tube M =R><Sl~. M, is the
Minkowski space with point { at “spacelike infinity”. It consists of all points of M which are
relatively spacelike to {

ﬁ(sl) is the universal covering group of Diff(S?). Its elements are diffeomor-
phisms f:R—-R with f(o +2n)=f(0)+ 2x. The first factor acts on ¢, =7+ 0, and
the second on 6_=1—0.

In conformal field theory, this symmetry is unitarily implemented, so that the
Hilbert space of physical states carries a unitary representation of the central
extension G~ of G (i.e. a ray representation of G). This symmetry group furnishes
also the most basic observables.

The Lie algebra of G™ is a direct sum Vir@® Vir of two Virasoro algebras. They
are generated by the two light cone components of the stress energy tensor

Ti(zi), Zi"—=eia.:t . (2.2)

Because of 2n-periodicity in o, they are 1-valued functions of their argument
z,eSh

We start from algebras of local observables which are generated by the stress
tensor. Therefore the observables will depend on only one of the light cone
variables z, i.e. they live on the circle S*. Relatively spacelike domains @, and 0,
in M project on disjoint intervals I, and I, on the circle. Therefore

relatively spacelike =disjoint on the circle S*,

and observables which are localized on disjoint intervals on S* should commute,
by Einstein causality.

We restrict attention to one of the algebras Vir, and drop suffix + or —. The
stress tensor has explicitly known commutation relations

[T(z), Tw)] = [25'(2 — W)+ 3(z—w) ad;] TG)+ 1—‘;-5"'(2 —w). 2.3)

The commutator is nonvanishing only for coinciding arguments, in agreement
with the above locality requirement. In this paper we consider the theory with
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central charge c =1, (i.e. the scaling limit of the 2-dimensional Ising model at the
critical point),

T@z)=Y Lz ""? with L_,=L¥, (2.4

neZ

and the Fourier components L, satisfy commutation relations of a Virasoro
algebra. In a positive energy representation of Vir, the “conformal energy”

Ly20. (2.5)

We define complex Lie algebras of observables Vir(I) for arbitrary intervals
IcS'. Vir(I) is spanned by operators

1
T(f)= I § zdzT(z)f(z) (2.6)
Tl S1
with smooth functions f having support
supp fCI. 2.7

T(f) are unbounded operators. Associative algebras of bounded operators are
obtained as group algebra of a central extension Diff (/) of the Lie group

Diff(I)c Diff(S"), 2.8)

which consists of diffeomorphisms of S* which act trivially on the complement of I
in S,

The Virasoro algebra with central charge ¢ =4 admits 3 inequivalent positive
energy representations n;, [ =0,4, 1. They are lowest weight representations with
weights

Ap=0, /11/2=T1€’ Ay=3%. (2.9)

They act in the Hilbert spaces #; with the lowest weight vector |A;)
n(L)|A>=0 for n>0, (2.10)
ULl Ay =AilAr) . (2.11)

7y is the vacuum representation; it acts on the vacuum sector #;, which contains
the vacuum vector |0). All the representations restrict to faithful representations of
the local algebras Vir(I) and we may identify Vir(I) with its vacuum representation
no(Vir(1)).

We seck endomorphisms g; of a net of algebras of observables 2/(I) such that
;=g o 0. As discussed in the introduction, we can expect that they exist, if o/(I)
are von Neumann algebras and satisfy Haag duality. Haag duality means that the
observable algebras are maximal, i.e. it is not possible to add additional local fields
which act in 5£,. The net of algebras Diff*(I) does not have this property (see later).
This is the reason why we need to work with a global Lie algebra Lie.« D Vir of
observables that is larger than the Virasoro algebra. The weak closure of the
associative algebras 7ny(Span Diff (1)) would satisfy Haag duality [27]. But it is
inconvenient for practical calculations. We prefer to work with explicitly known
Lie algebras of observables.

We will exhibit two global algebras Lie &/ C Lie.« of observables. The Virasoro
generators are in Lie.o/, but not in Lie.oZ. They are formal limits of elements in
Lie«, though.
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It will be shown that all the unitary positive energy representations of the
Virasoro algebra with ¢ =3 extend to unitary representations of Lie.sZ, and also of
Lie.s/. Suitable endomorphisms g, are exhibited to obtain all of these represen-
tations 7; from the vacuum representation 7y, i.e. ;= my g, These endomor-
phisms are endomorphisms both of Lie.s/ and of Lie.o/.

These endomorphisms are not localized. But localized endomorphisms (which
generate the same representations) also exist and will be briefly described in
Sect. 3.4. It would be important to show that these localized endomorphisms
define endomorphisms of a Lie group with Lie algebra Lie./. Since this group
would have to contain the difftomorphisms in Diff (S?), it would follow that
localized endomorphisms have the transportability property that was mentioned
in the introduction.

2.2. Majorana Algebras on the Circle. We begin with the construction of local Lie
algebras of observables Lie.s/(I). Its elements are constructed from bilinears in
Majorana fields on the circle. They will be injected into a global algebra Lieo/
CLie.«Z, and our endomorphisms shall be endomorphisms which are obtained by
restriction of endomorphisms of a suitable Majorana algebra.

In the case of a topological nontrivial space time, such as M =R x S! and its
projection S!, the construction of a global algebra </ is subtle. Whereas local
algebras /(I) can be identified with their vacuum representation, the same is not
true for /. Two domains I, and I, may cover all of S?, therefore ./ may contain
global quantities (e.g. exponentials of charge operators in Lie.»/) which lie in the
center of /. These charges may have different values in different superselection
sectors. They must not be identified with multiples of the identity. Therefore .« will
have a nontrivial center, and ny(</) is not a faithful representation. Familiar
examples of such charges which label superselection sectors in the real world are
electric charge Q and fermionic charge (—1)f, F=number of fermions. In our
example, the global algebra will be obtained from a “universal” Majorana algebra
which contains a central element Y. It may take values +1 in the irreducible
representations. In principle it is possible to avoid the use of a global algebra
altogether, by working with localized endomorphisms in the punctured circle. In
practise this is inconvenient.

We denote points on the circle by z=¢, ¢ =0 ... 2n. The Majorana algebra on
the circle is generated by field operators y(z) which satisfy canonical anticommu-
tation relations (CACR).

((2), p(w)} =27i6(z— w1 (2.12)

and hermiticity condition
Y(2)* =zy(2). (2.13)

More precisely, only smeared fields
1 -
W)= 5§27 Pdzf @)z (2.14)
i §1

are operators (hermitian for real f), and their anticommutation relations make
sense for continuous sections f of some line bundle over S!. These spaces of
sections Iy, and Iy may be identified with functions on R which are 2z-antiperiodic
respectively periodic. Accordingly, there are actually two Majorana algebras
Majys and Majg, generated by fields with boundary conditions

Y(ze®™)= +y(z) + for peMajys, — for yeMajg. (2.15)
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The fields can be expanded in Fourier modes

Yiz)= Y bz " Y2eMajys (2.16)
reZT1/2
and
w(z)= Y bz~ 12 Maig. 2.17)
neZ

The commutation relations and hermiticity conditions are in either case
{by,b}=0, -1, b¥=b_,, (2.18)

aeZ+3for b,e Majys, and a e Z for b, e Majg. Each of the two algebras possesses
one faithful *-representation generated by lowest weight vectors [NS) and |R).

bINS>=0 for r=%i, reZ+i, (2.19)
bJR>=0 for n=1, neZ. (2.20)

Note that b3 =41 by CACR, and b,|R) is also annihilated by all b, with n> 1. In the
literature, the algebra generated by byb, is sometimes called Majorana algebra in
the R-sector. Its generators byb, obey canonical commutation relations. The
representations of our fermionic algebra Majg splits into two representations of
this bosonic algebra.

We wish to exhibit both the NS-representation and the R-representation as
representations of a single algebra Maj. Basically, this is done by admitting test
functions fe Ins@® I. They are single valued continuous functions on the double
cover S* of S with points z!/2=¢'*2, =0 ... 4. By abuse of notation we regard
functions on 8! as functions of z.

Definition 2.1. The universal Majorana algebra Maj is the associative *-algebra
with identity which is generated by a central element Y and smeared fields on S*,

w(f)= %m. S§ 27 2z f(z)p(2), (2.21)
subject to anticommutation relations
{w(2), p(w)} =mi[6(z —w)— Yo(z —we?™)], (2.22)
[Yy(z)]=0, (2.23)
hermiticity condition
P(2)* =zy(2) (224
and boundary conditions
Y(ze*™)= — Yy(z), Y?=1. (2.25)
The decomposition in Fourier modes reads
¥(z) =a§2 bz~ 12, (2.26)

The Fourier modes obey relations
{bob}=3[1+(=1)*Y]0, ., 227
[Y,b,]=0, Yb,=(—1)*,. (2.28)
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It follows that
Y=4b%—1.
Therefore the algebra is actually generated by smeared fields y(f) alone.

Proposition 2.2. Maj admits two inequivalent irreducible *-representations myg and
nig With lowest weight vectors INS) and [R).

nNs(Y)= - 1, Tch(bn):O fOV nEZ, Maj/kernngMast
while
nr(Y)=1, ng(b,)=0 for reZ+%, Maj/kerny=Majy.

The proof is obvious. The universal Majorana algebra is only an auxiliary
construct which will be used to build Lie algebras. In place of Maj we could work
with Majys@Majg. This amounts to imposing the further relation b,b,=0 for
atc¢Z.

2.3. The Lie Algebra of Local Observables. The Lie algebra of observables shall be
made of bilinears in the Majorana field. Their vacuum representation shall admit
INS> =]0) as lowest weight vector. We wish to identify the local algebras Lie.o/(I)
with their vacuum representation in accordance with the principles of the theory of
superselection sectors. Therefore we will construct them out of fields in Majyg and
later inject them into a global algebra which is made out of fields in Maj.

Throughout the rest of this paper, I CS! will be open intervals whose closure is
not all of S!.

Definition 2.1a. The real Lie algebra Lie/(I) is spanned by
1. the identity 1,
2. generators

; ;dzldzzzl— Y225 12 F(zy, 2,)w(z,)9(z,), (2.29)
where F is a real C* function on S* x S! with F(z,,z,)=0 unless z,; e [ and z, €1,
and y(-) e Majys.

F may be regarded as ordinary function because functions with the indicated
support properties are identified in a natural way with elements of I.

By CACR of Majorana fields, Lies/(I) is indeed a Lie algebra. It will not
contain the local Virasoro algebra, unless one proceeds to including limits or
infinite sums of generators in Lies/(I). However, the stress tensor can be
constructed as bilinear in the Majorana field.

Definition 2.3b. The real Lie algebra Vir(I) is spanned by identity 1 and
T(f)= gﬁ zdzf(2)T(2), (2.30)

where f is a real C®-function with supp fCI, and
1.. 0 s
T@)=— 7 lim {w(W)gw(Z)—(W—Z) } (2.31)

Elements of Vir(I) act as derivations of Lie «/(I), and Lie /(1)@ Vir(I) is also a
Lie algebra. From the CACR of Majorana fields one deduces also
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Proposition 2.4 (Locality). If InI'=0 then
Aelie()@®Vir(I), BeLlied(I')® Vir(l')

implies [A, B]=0. In particular, the bilocal fields in Lie s/(I) are relatively local to
the stress tensor.

Next we define the global algebra Lie.«# to consist of bilinear in the Majorana
fields y( - ) € Maj on the double covering S* of S! which commute with rotations by
2.

Definition 2.5. The real Lie algebra Lies/ is generated by

1. the identity 1.

2. generators
§ §dzydzyzy P2y PF (2, 2,) 5 [0(2 W(22) + plz,€” " )p(zoe*™)]
8 81

3. conformal energy and number operator

Lo= Y rb_,b,+1b3, (2.32)
re$Z,r>0

No= S b_b,, (2.33)
reiZ,r24%

where b, are the Fourier modes of y, viz.
Y@= 3, bz
z

act
and F is a real C®-function on S§* xS,

We chose to include in the global algebra the generator L, of rotations of the
circle, asis customary also in loop group theory [6], in order to define the notion of
a positive energy representation by condition L,=0.

Next we wish to inject the local algebras into the global one. An interval I CS*
is covered by two disjoint intervals TCS* and Te?™ CS* in the double covering S*.
The function F in Definition 2.3a may be regarded as function on S! with support
onlIxlI.

The algebras /(1) satisfy «/(I) C «(J) if I CJ. One speaks of a “net of algebras.”
An injection i of such a net of (Lie) algebras into a global algebra is given by a
family of injective homomorphisms

iy ()~ sf

such that i;(A4) does not depend on I so long as A € /(I). We write i for i, in this
case.

Definition 2.6. An injection i: Lie.o/(I)—Lie</ is defined by
i:; {dzl dz,z7 Y ?z5 P F(zy, Zo)Wns(21)Wns(22) (2.34)
"[ !dzldzzzl— 1/222_ I/ZF(ZD ZZ)%[V)(ZI)VJ(ZZ) +y(z 162”i)w2292ni)] (2.35)
11

and i(1)=1.

An index NS has been appended to yyg to remind of the fact that elements of
Lieo/(I) were made from fields in Majys. One must verify that i is really an
injection. Working out the commutation relations verifies that i are homomor-



Conformal Field Algebras with Quantum Symmetry 161

phisms. The relation Yy(z)= —1y(ze*™) is used to see this. Finally i is obviously
injective and independent of the choice of 1.

Remark 2.7. The process of injection i of local (Lie) algebras into a global algebra
o = o/(SY) s like covering a manifold with charts. If we think of I CS* as obtained
by injecting subsets of a Euclidean space, then i may be regarded as a lift of that
injection to the algebra. We may obtain the subalgebras i(</(I)) from subalgebras
</(I,) for intervals I, CS'\{(} in a fixed “Minkowski space” (see Sect.2.1) by
making use of the 1-parameter group of automorphisms a, of .7 which is generated
by L. If I is obtained from I, CS*\{(} through rotation by t, then

i(o (1)) = o (i(£ (1)) (2.36)
But let us point out that the intersection of commutants

AR E0)) (2.37)

I''I'nl=9

in &/ is not precisely i(2/(I)) but includes also the element Y in the center of <.

Injection i will extend to an injection of extended algebras Lie.«/(I)@ Vir(l),
which contain the local Virasoro algebras, into a suitable global Lie algebra
Lieo/ 2 Lie.s/ @ Vir. The stress tensor can be regarded as formal limit of elements
in Lie.o/(I). This tells us that the injected stress tensor is

T()= 3 lim {% PO (E) 3 e (e~ } (2.38)

(w—2)?
The injection i extends to i:Lies/(I)@® Vir(I)— Lie &/ @ Vir.

Lie.o/ @ Vir is not suitable as a global Lie algebra, however, because it is not
mapped into itself by endomorphisms which we are going to exhibit. We proceed
to define a larger Lie algebra Lie .o/ D Lie o/ ® Vir, with central elements 1, Y and
further generators

L.N, (neZ),

(2.39)
Jab=—Jba (a,be%Z,a—beZ\{O}).
Hermitian conjugation acts as
Lt=L_,, N¥=N_,, Jh=J_,_,. (2.40)
Definition (2.38) of the stress tensor yields Virasoro generators
1
L= (c=2)b,_b.+20,,b2 for nz0. (2.41)
> 2 2 g "
The other generators are defined as
N,=Y b, b, for nz0, (2.42)
c>n
Jac=babc—'%[1 +(—1)2aY]5a,—C' (243)

Summations run over c €4 Z (integers and half integers),» means “strictly bigger.”
Generators L, and N, are exhibited in manifestly normal ordered form.
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It is straightforward to work out the commutation relations. They come out in
the form

[L,,,Lk]=(n—k)L,,+k+..., [Ln’Nk]=~an+k+"’7 [Nme]:"'a

where ... stands for finite linear combinations of generators J,,1 and Y. More
explicitly we have
Proposition 2.8. Generators L,,N,, J,, satisfy commutation relations

[Lm Lm] = (n - m)Ln +m + _2L4_n(n2 - 1)671, —-m> (244)

ny\ -
[Ln’Nk]=—"an+k+ Z (a__>']n+k—a,a
max(0,n+k)<a=zn 2

n\ -
+ z (a—§>‘]n+k—a,a

-g—<a<min(n,k+n)
+ Z (a_k_g>jn+k—a,aa (245)

max(O,%+k)<a§n+k

for n=0,
[Nk,Nl]z Z Jk+1—c,c> (2‘46)
max(0,l+k)<c=Zk
for k=0,
n - n -
[Jab’ Ln] = (E +b> X%+bJa,n+b— (5 +a> X%-f-a']b,n-i-a
(2.47)
n - n -
+ _b_z X—%—b']n+b,a- -a_—z_ X—_;——a‘]n+a,ba
for n=0,
[V aps Nk]=ija,k+b_Xajb,k+a-x—k—-ajk+a,b+X—k-—bjk+b,a’ (2.48)
for k=0, and
Wapr Jead = — 04, —eIpat0p, —cJaa+ 05, —aJca= 04, —aJ
+‘}L_[1+(_1)2uY](~5a,—c5b,—d+5b,—c5a,—d
+5b, —déa,—c'_aa,—déb,—c)' (249)
We used the abbreviations
Jap=Jp+3[1+(—1)*Y15, _., (2.50)
1 a>0
= . 2.
a {0 i0 (2.51)

We see that the commutation relations close. Therefore, finite linear combina-
tions of the generators form a Lie algebra. It does not contain i(Lie /(1)@ Vir(I))
as a subalgebra, though, because elements of Vir(I) are infinite sums of Virasoro
generators with coefficients that decrease fast,

T(f)=Ya_,L,, Ylel|nM<oo forall M>O0.
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This is easily rectified. We admit infinite sums of generators 1, Y, J,,, Ny, L, with
coefficients that decrease fast with |al, |b], |k, |n]. It follows from Proposition 2.8
that their commutation relations close. In this way, we obtain the desired Lie
algebra Lie.« D Lie.o/ @ Vir.

2.4. Decomposition of Majorana Representations into Representations of Ob-
servable Algebras. Since observables and Virasoro generators were made from
Majorana fields, the two representations of Maj with lowest weight [NS) and |R)
restrict to representations of Lie.o. They are positive energy representations, but
reducible.

The representation space #yg is spanned by vectors

b_,...b_,INS>, r€Z+%, ry>ry_(>..>r 3. (2.52)

The complex Lie algebra myg(Lie.o#) is generated by elements b,b, with r,se Z +3.
The other generators X of myg(Lie), in particular those of myg(Vir), consist of
infinite sums of such generators, but only a finite number of summands does not
vanish when X is applied to a basis vector. Therefore, #} decomposes into two
invariant subspaces A% @ H#ee? for Lie.o. They are spanned by vectors of the
form (2.52) with N even and odd respectively. They admit lowest weight vectors for
the Virasoro algebra

INS)=0) € #AGE™, Lol0>=0 (2.53)
and
by ,INSY>=13> e, Lol =313. (2.54)

It is easy to see that there exist no further lowest weight vectors for Vir. Vectors
(2.52) are eigenvectors of L, to eigenvalue —} r;. For a lowest weight vector, this

eigenvalue would have to equal 0,7, or 3. This admitsonly N=0and N=1,r, =1.
Therefore the representation spaces #g " and #%° are irreducible ones for Vir
and for Lies/ D Vir. It is obvious that they remain irreducible when restricted to
Lieo/. As representations of Vir they are uniquely characterized by their lowest
weights 1 =0,1. Similarly, #; is spanned by vectors

bopeobonlR), meZ, ny>ny_;>..>n 2% (2.55)
The complex Lie algebra ng(Lie o) is generated by elements b,,b, with m,ne Z etc.
One finds that s#; decomposes into two equivalent representation spaces
AP DAY for Lieof/ with lowest weight vectors

R)=|{6> e ™", Lolis) =TelTe> (2.56)
and
boR)=|76> € #5%,  Lolter> =16l - (2.57)

We have proven

Proposition 2.9. The irreducible positive energy representations m; of the Virasoro
algebra with central charge c=7 and lowest weight J;=0,7¢, extend to positive
energy representations of Lies/ in the same representation space.
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3. Endomorphisms Which Intertwine Positive Energy Representations

3.1. Endomorphisms of the Universal Majorana Algebra B
which Restrict to Endomorphisms of the Lie Algebra of Observables Lieo/

Proposition 3.1. Define the action of ¢;(J =0,3, 1) on generators Y, b, (a3 Z) of the
universal Majorana algebra Maj by ¢,1)=1 and

Qo=id, (3.1)
iba+1/27 ag%
i
—=(bya—b_yp), a=0 | oYV)=-Y, (3.2)

Ql/z(ba) = l/i

_iba—1/2s a

_ —'ba, a=f=0, i%
Ql(ba)—{b_a’ a=0’ i%,

IIA
[N

o(Y)=Y. (3.3)

This defines *-endomorphisms of the *-algebra Maj. ¢, is an automorphism but g, ,
is not.

Proof. 1t is easily verified that the relations in Maj are preserved, and g,(b¥)
=0,/b_,)=0/b,)*. Therefore g, are *-endomorphisms. The other statements are
also obvious. g,,, is not an automorphism because b, +b_,, ¢ 0;,,(Maj) and

bo¢ Ql/z(Maj)~

Remark 3.2. i) The automorphism g, projects to an inner automorphism of Majyg
and of Maj;. Explicitly

0,(b,)=Ub,U*
with unitaries U

U=(b,,+b_,,) for aeZ+3}, b,eMajy, (3.4)
U=bo|/2 for aeZ, b,eMajg. (3.5)

But the induced automorphism g, of Lie./ is not inner. It is conjugation by a
reflection in the group of orthogonal transformations of Iyg or Iz which possess a
determinant equal to 1.

i) The endomorphism g, of Maj projects to homomorphisms Majys—Majg and
Maji - Majy.

Proposition 3.3. The endomorphisms of Maj of Proposition 3.1 induce endomor-
phisms of the global observable algebra Lie o/ and Lie.s/. They restrict to a Cartan
subalgebra spanned by commuting generators Lo, No, Hy=b_,,3b;,=J_1)5 1)
+4[1—-Y](a=31,3,...), 1, and Y as follows:

01/2(Lo)=Lo —3No—16Y, 3.6)
Q1/2(N0)=N0—H1/2» (3.7)
Q1/2(Ha)=Ha+ 1/25 (3-8)
QI(LO)=LO+%—H1/2_%[1+Y]s (3.9)
0/(No)=No+1-2H,,—5[1+7Y], (3.10)

Ql(H1/2)=1“‘H1/2_%[1+Y]> 0,(H)=H, for a>73, (3.11)
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and ¢,,,(Y)=—Y, 0,(Y)=Y. The generators of the Cartan subalgebra act on the
vacuum according to

Lyl0>=0, N,0>=0, H,0>=0, [1+Y]/0>=0.
01 is an automorphism but ¢, is not.
The action of endomorphism g, ,, on generators L, and N, is of the form
QI/Z(Ln)=Ln—%Nn+"'7 012(N)=N,+...,

where the dots stand for finite sums of generators J 4, 1, and Y. This shows that g, ,
is lift of an automorphism of the algebra of vector fields and functions on the circle.

Proof. The complexified Lie algebra Lie o/ is generated by b,b, (a,ce1Z,a—ceZ),
L, and N, This includes H,=b_b,. Straightforward computation shows that
each of these generators gets mapped into a finite sum of such generators. Our
endomorphisms g, extend to the unbounded generators L,, N, in Lie.o/ which are
infinite sums of b,b ~terms. In particular the above formulae for g (L), ¢,(N,), and
0,(H,) hold true. Consider for instance g, ,(L,). Inserting the equality 4b§=1+Y
in the definition of L, we find

91/2(L0)= >21/2 cQ I/Z(b—c)Ql/Z(bc) +'31791/2(1 +7)
=Y ¢cb_iboiip +35[1-Y]

cz1/2

=L (@=2b_b,+3:[1-Y]=Lo—3No—16Y.

v

No infinite constants arise because all terms in the various sums are manifestly in
normal ordered form.
012 is not an automorphism, because

biby+b_yp)¢0p(Lied) for reZ+3,
bbo¢ o, (Liesd) for neZ.

3.2. Action of Endomorphisms on Positive Energy Representations. Now we will
study representations 7, o ¢ of the observable Lie algebra. They act in the same
Hilbert space #;,. We begin with the representations of the universal Majorana
algebra.

(3.12)

Lemma 3.4. The representations of Maj obey

TiNs © Q172 =TIR (3.13)

Tins © Q1 = Tins s (3.14)

and the lowest weight vector [NS) of mys is also lowest weight vector of g 0y, i.e.
Tins ©01/2(b)INSY> =0 for a>0. (3.15)

Proof. mys © 01/2(b,)INS) =inns(b, + 1/2)INS) =0 for a<0 since nyg(b,) =0 for ne Z,
and nyg(b,)INS)=0 for re Z+3, r>0.

Tins © Q12 Y)=Tins(— ¥) = — 1 =mg(Y).

This proves the last assertion and establishes mys © 0,,,(Maj) = Majg, implying the
first assertion. The second assertion follows from the fact that g, projects to an
inner automorphism of Majys.
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It is instructive to recompute the two point function of the Majorana field in
the R-representation. We write i for myg(y) or (i) when it acts on vectors in H#yg
and #; respectively,

CRIp(2)p(w)[RD = <NS|y 5(w(2))e1 /(W) INS)
= Y,z T1PwT T U(NS 0y )5(ba)er/2(be)INS)

a,ce+Z

= X > Z—a—UZW_C_1/2<Ns|ba+1/2bc—1/2|NS>

0<aeZ 0>ceZ

_%Z_ 2y~ 1/2<NS‘(b1/2 —b_ 1/2)2|NS> .

The lowest weight property of [NS) was used, and terms {(NS|b,;,,b,,,,INS>
with a> 0 and their conjugate were omitted because they give zero. Using CACR
in the NS-representation to move creation operators b, with a <0 to the left and
annihilation operators b, with a>0 to the right, one finds
- Z zn=1/2n=1/2 +%z' 12y,=1/2

O0<nel

<Rlyp(2)pw)R) = %(Z—W)'1 (l/% + 1/—?) (3.16)

All formulae are to be understood in the sense of generalized functions, (i.e.
smeared with test functions), (z—w) ™! is the generalized function which is the limit
of the holomorphic function (z—w)™ ! in |z|>0, |w| <0 [28].

Now we are already for the first main result

This sums to

Theorem 3.5. The representation of Lie.o/ D Vir obey

1. Mg ° ngTCI (I-_—O,%, 1).

2. the Virasoro lowest weight vector |0) € #, is also lowest weight vector for the
representations m o gy, viz.

oo 0L)0>=0 for n>0, (3.17)
g0 0(Lo)10)> =4£(0) (3.18)

with A;=0,7%,% for1=0,1,1.
3. (ylmA)A;> =<0|no(@(ANI0> for elements A of the universal enveloping
algebra of Liesd.

Theorem 1 follows, since the injection i was already constructed in Sect. 2.

Proof. For I1=0 the assertions are trivial.

Consider I =1%. The representations of the Majorana algebra restrict to Lie.o/
according to s X @7, and my X7y, @7, , by the results of Sect. 2.4. Therefore
Lemma 3.4 implies

Mo Q1 2Py 001, =Ty, BTy
Tyo Q1,2 F 0 since myo 0, ,,(1)=1. Therefore
noogl/zgnl/z and nlogl/Zgnl/Z‘ (3.19)
This proves 1 for I=3. Consider now
7o °01/2(Lo)|0> =(Lo—3 No +76)0> =510, (320
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since my(Y)= —1. Since ¢;;, is an endomorphism, I3 ,2(L) satisfy the Virasoro
commutation re1at1ons2 It follows that g, ,(L,) carries e1genvector 10> of 94,2(Lo)
with eigenvalue % into an eigenvector with eigenvalue {5—n. In the proof of
Proposition 3.3 we computed

01/2(Lo)= Z (a—Pb_b,+35[1-Y],

hence @y,,(Lo)=0. Therefore, nonzero eigenvectors of g(L,) with elgenvalue
£ —n<0 cannot exist, implying o(L,)|0>=0 for n>0. This proves 2 for I=%.
Assertlon 3 is a corollary of 1 and 2.
Consider now I=1. The decomposition nys=~n,@n, and Lemma 3.4 imply
Moo Q1 @7y 00 =MD 7, .

Since 7,00,,#0, it follows that either myo0,=mn; or myog,=m, The first
possibility will be selected by identifying the lowest weight:

7o ° 01(Lo)10> = (Lo +3)10> =310) (3.21)

since |0) =|NS) and b, ,, NS ) =0. By the same argument as for I =4, it follows that
7y 004(L,)10>=0 for n>0. This establishes 1 and 2 for I =1. Assertion 3 follows
again as a corollary.
It is instructive to recompute {4;,,|T(2)|4;,,> =z"2(l, 2l LolAy 2> starting
from the definition of T(z) in Sect. 2.3,
</11/2| T(Z)Ml/2> =0 Q1/2(T(Z))|0>
= —%}vi_rg (<001 2(p(wWy'(2))

+ %Q1/2(U’(We2"i)91/2(w'(zehi) [0>—(w—z)" 2] -

Since ¢, carries 2n periodic field components into antiperiodic ones and vice
versa, and only the periodic ones are nonvanishing in the NS-representation, only
antiperiodic field components contribute. So

Gl (T(@)IAy2) = =7 lim [502 <0l@1/2(p(W)p(2))0) —(w —Z)‘z] - (32

The 2-point function is obtained from the same computation as after the proof of
Lemma 3.4. Thus

(Gl Tl 2> = — 211312[26 (/2 +]/2) o

—2

16 ’
in agreement with A, =+

3.3. Interpretation as Lifts of Endomorphisms of an Orthogonal Group. Index. The
space Ing@ I of continuous sections of real line bundles on S' admits a scalar
product

Sofor= zf f1( )f2(2). (3-23)

%2 We shall often write L, for my(L,) etc. when acting on states in
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Completion in the norm {f, f /2 yields a real Hilbert space. It consists of those
elements of the corresponding complex Hilbert space Hys@Hy which are
invariant under complex conjugation @,

Of(2)=1(z). (3.24)
We consider linear maps (=operators)
Vi@ > Ins®@Ig (3.25)

which are either even or odd in the following sense.
Even maps restrict to maps

v:ls—Ins and 7:Ix—I; (even) (3.26)
while odd maps restrict to maps
v:s—Iy and o:I;—Iys (odd). (3.27)

Even maps U which preserve the scalar products form an orthogonal group. They
extend to unitary operators on Hys@Hg which commute with @. By definition,
operators U have a determinant if U — 1 is traceclass. The determinant can assume
the values +1 and —1 for orthogonal maps.

The group

SO (Hys®Hg) (3.28)

consists of even operators U:Hys®@Hy—Hys@Hi which preserve the scalar
product and have restrictions to Hyg and Hy which possess determinant + 1.

Finally we turn to endomorphisms of groups and Lie algebras. Let V: [ @I
- I @I} be a linear map which is either even or odd and satisfies

V*V=1, dimkerV*<oo (3.29)
(partial isometry). Given such ¥, an endomorphism g of the group SO (Hys@Hg) is
obtained which takes
oU)=1+ (U -1)V*. (3.30)
Itis easily checked that indeed o(U,U,) = 0(U,)a(U,), o(1)=1,and g(U)o(U " !)=1.
Moreover, g(U)—1 is traceclass if U—1 is traceclass.

The universal Majorana algebra Maj consists of smeared fields y(f) with
f=fustfre ns@® I and central elements 1, ¥, with anticommutation relations

{w(f), wlg)} =301 = YT fus 8ns) + 301+ YT fro 8D - (3:31)

The action of partial isometries V on I @ Iy lifts to an endomorphism ¢ of Maj
() =w(Vf), (3.32)

oY)=2Y (3.33)

with + if Vis even and — if V' is odd. If V is odd then (Vf)ys= V/z and vice versa,
while (Vf), = Vf, for «=NS, R if V is even. It follows then straight from the relation
V*V=1 that the anticommutation relations are preserved.

The endomorphisms g of the Majorana algebra restrict to endomorphisms of
the Lie algebra which is spanned by quadratics w(f;)y(f,) that commute with
rotation by 27 (i.e. either f; and f, are both in I'g or both in I}). If V maps smooth
functions into smooth functions then this will give an endomorphism of the global
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Lie algebra Lie «/. In favorable circumstances, which prevail in the examples (3.38),
(3.39) given below, this extends to an endomorphism of Lie.o/.

Let us write g, for the endomorphism induced by V. If V; and V, are two partial
isometries then V,V, is also a partial isometry and

Ov.0v,=0v,v,- (3.34)

Endomorphisms g, and equivalence classes of representations [, ] =7, gy can
be classified by the index of V. We define

index[g,]=index g, =index V. (3.35)
Since V*V=1 implies ker V=0, it follows that
index V=dim ker V—dim coker V'<0. (3.36)

Remembering that cokerV is the orthogonal complement of the range of V, it
follows trivially from ker V=0 that the index is additive

index V; V,=index V| +index V. (3.37)

The explicit examples of endomorphisms g,,, and g, of Lies/ which were
described in the previous subsections, come from partial isometries V;,, and V,
respectively. Explicitly, their action on basis vectors e,(z)=z* (ae$Z) is given by

i€+ 125 a>0
i
Vipe,= V(el/z—e—uz)a a=0 (3.38)
2
—i€,_1/2, a<0
and
—e, a=+0,+1
Vie,= {e_ 4—0 +; (3.39)

Their index is easily read off
indexV;,=—2, indexV;=0. (3.40)

Let & be the center of our global Lie algebra of observables Lie /. It is spanned
by two elements 1 and Y. Lie#/ is a central extension of the Lie algebra ad Lie.&/
=Lie.o//%. A unitary action of selfadjoint generators ad X of ad Lie.o on I3s@® I
can be defined by

X, p(f)]=wlad X -f). (3.41)

It can be shown that the selfadjoint generators L, + L_,, i(L,—L_,),N,+ N _,,
iN,—N_),Jp+J _4_p,and i(J ;,—J _,_,) in ad Lie o/ are generators of 1-param-
eter groups of orthogonal transformations of Hyg@Hy. This is seen as follows.
We introduce a complex basis for H=Hys@Hg. It consists of smooth sections
e,eHyg, aeZ+1%, and e,e Hy, a€Z, given by

efz)=1z"

(£1)V*(J £ J_,-p) generate rotations of e, into e, leaving e, fixed for
c* +a, +b. In particular J, _, rotates e, ,~e*e, . (+1)"*L,+ L_,) generate
1-parameter groups of diffeomorphisms. Their unitary action on H is given by the
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well known imbedding [6] Diff(S')C U,.(H). This restricts to an orthogonal
action on Iys@Iy (the definition of U, involves the natural polarization
H=H,®H_, where H, is spanned by ¢, with a>0).

Finally, the remaining generators (+ 1)*/?(N, + N _,) need to be examined. One
shows that exp[ —#(N,+ N _,)]e, admits a convergent power series expansion in ¢
for small enough ¢, and similarly for i(N,— N _,).

3.4. Localized Endomorphisms. We retain the convention that 1CS? is called an

(open) interval if it is (open and) connected, and its closure is not all of S*.
Given a global (Lie) algebra &/ and a net of subalgebras () associated with

intervals 1CS?, an endomorphism ¢ of &/ is said to be localized on I if

0(A)=A whenever Aes/(I), I'nl=0. (3.42)

In the last subsection we saw how endomorphisms ¢ can be obtained from
partial isometries V of I @ I;z. Now we study their localization properties.

Fix an interval ICS*. Its complement I’ on S! is projection of two disjoint
intervals I, and I" in the double cover S' of S!. Given I, consider partial
isometries V:Hys@Hg > Hys@Hy with the property that

Vf(z)=0, f(z) for zel,, (3.43)
62 =1=02. (3.44)

They will be said to be pseudolocalized on I.

Consider now the action of an endomorphism ¢ of Maj which is induced by a
partial isometry V that is pseudolocahzed in I. Remember that fe Is@® I may be
regarded as ordinary functions in S'. Suppose that f has either support on I, or
support on I".. Then

ep(N=w(V)=0p(f) if suppfCl,, a==. (3.45)

For odd maps ¢, 0_ = — 1. However, the sign factors cancel when we consider
observables. Consider for instance a quadratic y(f,)y(f,)eLies/(I,) with
I,n1=0. Lieo/(I) was originally made out of NS-Majorana fields (smeared with
test functions fe I with support in I,) and then injected into Lie<,

W) =39S +3w(f0)w(s), (3.46)

where f;* and f,” are functions on S! with support in I and I, respectively
(they are determined up to a common sign by the values of f in the local chart I).
It follows from Eq. (3.45) that

o(d)=A4 (3.47)

for A=1p(fi w(fy))+3w(f7w(f,) with supp f;* € T',. The result generalizes to
all elements of Lie.</(I) because they may be written as infinite sums of quadratics

as we have just considered. It generalizes also to endomorphisms ¢ of Lie.o, with
local algebras Lie.oZ(I)@® Vir(I) injected, by a similar argument. In conclusion we
have obtained

Proposition 3.6. If the endomorphism g of the Lie algebra of observables Lies/ or
Lie s/ isinduced by partial isometry V of I @ Iy whichis pseudolocalizedin I, then o
is localized in I.
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We will now present examples of endomorphisms of index —2 which are

2 . . .
localized in domains I, of length ~k£ in angle, k=2,3,.... Conjugation with

rotations of the circle [or with SL(2, C) transformations] will yield endomorphisms
with arbitrary domains of localization. In this way one obtains sequences of
endomorphisms g, which are odd in the sense that g,(Y)= — Y, and whose support
shrink to an arbitrary point {z} as k—o0.

Let {= —1 and consider intervals

R T
I = {Z=6"¢, —‘-k—_S_ é‘g},

: (3.48)
S \{C}=Ik+1— +I+ s
with —n<¢p< — —Z— on I_ and % >¢>monl,. Set
We)=)/ken(s) (ae}Z). (349)

Functions e® with re Z+% form an orthogonal basis in the space L*(I,,d¢/2m)
with scalar product ¢, »,. Thus

e2)= ¥ (W, e e®(z) for zel,. (3.50)
seZ+1/2
Define
i (k) 13
() — iy 115(2), F=2,2..-
f; (Z) {—'ies.kl 1/2(2), r= _%, _%, vee ) (3.51)
It follows that
a r(k)’ s(k) = eik)a e_(vk) = 5r s
) <K 2= D=0, . (3.52)
b) fPe)=Fe¥(ey) for z,=e*ih,
The partial isometry V is defined by
Vea(z) = Z <e£k), ea>f;-(k)(z) fOI’ A4S Ik s (353)
reZ+1/2
Ve (z)= Fe,z) for zel, (aeiZ). (3.54)

It commutes with complex conjugation . To verify that V is a partial isometry it
suffices to show that

<Vew Vec)k = <eas ec>k .

Validity of this equation follows from definition (3.53) by inserting Egs. (3.52),
(3.50). V is pseudolocalized on I, by definition (3.54). One has tr(1 — VV*)=1 both
on Hyg and on Hg. As a result

U-oU)=1—-V(U—-1)V* (3.55)
is a well defined endomorphism of SO (Hys@Hy) which is localized on I,; and
indexg=index V= —2.

Reflections are examples of even partial isometries. Let g=gns®Pgr € Ins® I
with support, as a function on S*, which projects to ICS!, and normalization
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{gns> 8nsy =2 = {gg, gr>- Then the reflection
vif->—f+<{f88 (3.56)

is an even partial isometry and pseudolocalized in I. It induces an automorphism
which is inner on Majyg and Majg, but outer on SO (Hys@Hg). Our (non-

pseudolocalized) standard ¥ is also of the form (3.56) with g= Vieo +ejte_q.

4. Fusion Rules and Intertwining Operators Between Representations

4.1. Fusion Rules. We retain the notation [¢] for the equivalence class of the
unitary representation moo@ of the Lie algebra of observables Lie.«/ D Vir.
Remember that 7, is the vacuum representation of Lie.sZ. It was obtained by
extending the positive energy representation of Vir with lowest weight 0 to a
representation of Lie.o/ which acts in the same Hilbert space .

We found a complete set of representative endomorphisms ¢, of Lie/,
J=0,%,1,such that [g,] are all the positive energy representations of Vir, extended
to Lies/.

The product of two endomorphisms is also an endomorphism. Therefore
Ty © 0x0y 1s also a unitary representation of Lie.s/. It restricts to a positive energy
representation of Vir. [ The positive energy property holds because L, is a positive
element of Maj (i.e. a sum of terms py*), g, extend to Maj, and 4 =0 implies
0(4) =0 by the *-endomorphism property. ] ,

The representation 7, o g0, may be reducible. We will find its decomposition
into irreducibles in the form

Lore,] =; N§Rlex]- 4.1)

This is the decomposition into irreducible representations of Lie.oZ and at the same
time the decomposition into irreducibles for Vir.

We will write A for my(A) when it is clear that it acts in ;. All the
representations myo 9, 0=¢,, 0,0k, ... act in the same Hilbert space #;,. The
projection operators I1¢'” in #, which project on the irreducible subrepresenta-
tions, must commute with the representation operators. Thus

¢ et ,(Liedy 4.2)

[commutant in %(#,)]. We find these projection operators in the even part of
Majys, Which is the same as the universal enveloping algebra of the complex Lie
algebra 7y(Lie.sZ). In fact they happen to be in Lie.o/.

Consider first [0,/,01/,]. From the definition of g, ,, one finds

—b r>0
1ab)=< TP for reZ+3 43
212(b,) {—br—la r <0 rel+3 (4.3)
while g3 ,(b,)=0 in the vacuum representation 7, for ne Z. It follows from the
canonical anticommutation relations in Majyg that

H0=b1/2b-1/2, H1=1‘Ho

are two orthogonal projection operators in the commutant of ¢} ,(Lie.o/). We
show that IT %, and I, 5, carry representations in the equivalence class of 7, and
Ty © 04, TEspectively.
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To do this, we exhibit bijective maps

R*: [ Hy—> Hy, S*: I Hy—Hy 4.9
such that
a AR*=R*p? ,(A),
(@) . il/zz( ) 4.5)
(b) 0:(A4)8*=§ QI/Z(A)'

It follows from the definitions that o =id and g, 0, ,, =@, , (see below). Applying ¢,
to Eq. (4.5b), we see that its solution is

§*=0:(R), (4.6)

with R* a solution of the first equation. The solution for R* is unique, apart from

an overall phase factor. If R'* were another one, R*R’: s#,— #, would have to

commute with the action of Lie.&/ in #,, implying R*R’e C- 1 by irreducibility.
A basis for s, is formed by vectors

|r2N5""r1>=b—r2N"'b—*nl0>» 0<7‘1<...<7'2N, r,€Z+%, N=0,1,....

We extend R* to all of #, by putting R*II, 5#, =0. R* is described explicitly by its
action on basis vectors

—1...r;—1 if >3
[ran ry > i "1:2 @.7)
=3

* —_
R |r2N...rl>—{0 it o7

For N =0 this is to be read as
R*|0>=10).
As a result
RR*=II, and R*R=1.
Since g,(I1,)=11, it follows that
SS*=II, and S*S=1.

This shows that the maps (4.4) are bijective. One verifies by explicit computation
that the intertwining relations (4.5) are fulfilled for all A=b,b., and more generally
for all generators of Lie.s/ (on their common dense invariant domain of definition,
which consists of finite sums of basis vectors).

R* can be written as an infinite product

R*=...A3A2A1H0=<H A")Ho,
n1

A,=b, 1/2b—-n—1/2+b-—n+ 1/2bn+ 1/2+

Factors A4, with larger n stand further to the left. On finite sums of basis vectors, all
but a finite number of factors A, act like the identity operator. Since R* is a partial
isometry, its definition extends to all of #;. $* =¢,(R¥*) admits a similar infinite
product representation. This completes the proof that [¢,,,0,,,]1= [0 =id]+[¢,].

Next we consider [¢7]. From the definition of ¢, one finds

ot=id.
Therefore [0?]=[0,=id].
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Similarly one finds ¢,0, 2(b,) = — 01,2(b,) for a € Z while both sides vanish in the
vacuum representation for ae Z +3, and ¢,0,,,(Y)=¢;,,(Y)= — Y. Therefore

0101/2=01/2

on Lie.. This implies [¢,0,,,]1=[¢;,2]-
Finally we should determine [g,,,0,]. The general theory says that [3]

Loxos1=1[0s0x]

under standard assumptions. In our model, the only case which needs to be
checked is [¢,,,0,]=[0101,2]- We have

—ibyi 125 n>0
i
01201(by)= V(bl/z'_b—l/z), n=0 (4.8)
2
ibn—l/Z) n<0

and g, ,,0,(b,) =0 in the vacuum representation for r € Z +%, while g, ,0,(Y)=—Y
=0;,2(Y). We exhibit a unitary operator
U*: Hy— Hy
such that
Q1Q1/2(A)U* U*QI/ZQI(A) on i, 4.9

for all bilinears 4 =b,b, in the Majorana fields, and more generally for all elements
AeLies/. This will show that my00,,0, and 7,00y, are indeed unitarily
equivalent. Therefore [¢,/,011=[¢1/2]1=[¢101,2] as expected. Explicitly, U* is
given by U*=1-2b_,,b,,.

In conclusion we have proven the fusion rules, Theorem 4 of the introduction.

We note that these fusion rules agree with the known fusion rules for the minimal
model with central charge c=3

4.2. Intertwiners in the Algebra. Let us recall the defining property of an
intertwiner T between endomorphisms ¢, and g,. We say that

TeHom(g,,0,) if Tg,(A)=0,(4)T for all A. (4.10)

We are studying endomorphisms of a Lie algebra Lie.«/, which possess (unique)
extensions to Lies/ DLies/. In this context, intertwiners T are sought in the
universal enveloping algebra U(Lie.«/) with relations imposed which come from

Yb,=(—1)*b,.

It will however be necessary to include in this algebra also some infinite products
which are well defined in all positive energy representations of Lie.o/

Aeliesf, TeU(Lies).

If 7 is any positive energy representation of Lie.o/ [and therefore of U(Lie /)] then
7(T) is an intertwining operator between representations meo g, and 7o g,,

(T (A)=n,(A)n(T) for m,=mog;, if TeHom(gy,0,). (4.11)

The existence of a nonvanishing intertwining operator 7(T) between represen-
tations 7, and 7, means that these representations have a common subrepresen-
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tation. It follows by taking adjoints that
T, (A)(T*)=n(T*)n,(4) for all A. 4.12)

Therefore n(T*T) commutes with w,(A4) for all A, and n(TT*) commutes with
n,(A) for all 4. If x; is irreducible, this implies that n(T*T)eC-1. By suitable
normalisation of T one obtains

oT*T)=1, n(TT*=II,.

I1, =projection operator on the subrepresentation of =, which is equivalent to 7.

. . . . I
We are interested in the intertwiner T( K J between g0, and g.

1
T=T <K J) e Hom(g,e5, 0k) -

They obey
ox(A)T="To;0/(A).

There may be several such intertwiners, if so we distinguish them by a label a.

These intertwiners effect the reduction of representation [g;¢,] into irreduc-
ibles, as we saw in the last subsection. They will also be basic building blocks of
chiral vertex operators.

Our Lie algebra Lie.of has center & which is generated by 1 and Y. We imposed
the relation Y?>=1 in U(Lies/). Therefore 2 contains projection operators
1[1+Y]. If T is an intertwining operator, then so are $[1+ Y]T. There are
therefore two classes of intertwiners:

NS-intertwiners: T=1[1—-Y]T, TT*=i[1-Y],

4.13
R-intertwiners: T=3[1+Y]T, TT*=3[1+7Y]. @.13)

It follows that there are also two classes of projection operators

I I
= * =
H<K J) ™7, T T(K J)'

It turns out that in our model there is at most one NS-intertwiner and one
1

K J/

We say that a set of NS-intertwiners (R-intertwiners) is complete if

R-intertwiner for each triple

;n(KI J> =1[1FY] (- for NS, + for R). (4.14)

Only NS-intertwiners and projectors are nonvanishing in the vacuum represen-
tation 7, since ny(Y)= —1. They effect the decomposition of the representation
Ty © 00y into irreducibles 7, o g, as we found in the last subsection. The case I =0
or J=0 is trivial. The other nonvanishing intertwiners and projectors are
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NS-Projectors and Intertwiners (overall factors 3[1— Y] are understood).

1 1

I=1: H<07 ) brjab_1)2s T<051)ER§S= Hm Ay ... AyAby by,

2 M-

n(, ) =rwme 1(,Fy)a(r(o")

o )
=yt =n ()

a()! )= 1yt

(with Ay=b, 1 12b_ 12+ b_pi12bus1))-

II

—2b_ 1/2b1/2 5

The R-intertwiners and projectors can be found for instance by looking at the
representation m,, 7,00, in place of m,. (The representation n,®n,, is

faithful.) I
It turns out that nonvanishing R-intertwiners T( K J) exist for exactly the

. I . . .
same triples ( K J) as in the case of the NS-intertwiners.

R-Projectors and Intertwiners (overall factors 3[1+ Y] are understood ).

1
I:% H<02%> =%(1+‘/§b0[b1'—b—-1])’

1
T(021>=1imAM+1/2 A3/21/ 1(b—4 l/ibo),

1 1 1
H( 2 =3(1— l/_bo[b1'b s T< ? )=Ql T(,°* )
1 3 13 0 3
_ p )_
=1, T<% 1 =1,
1 1
I=1:H(L ):1, T(L 1>=1ﬁbo(b_1—
2 2 2 2
1 1
11(0 1):1, T<O 1>=1 (4.16)

with A4, as before.
The limit is understood in the same algebraic sense as before: on finite sums of

common eigenvectors of L, and N, the result of the action of

AM+1/2 A3/21/- l/bO)

=]
N
(™
[N
o
— \_/

[

is independent of M for large enough M.
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4.3. Intertwining Operators between Superselection Sectors. From the NS-
intertwining operators in the algebra U(Lie/) we may construct intertwining
operators between superselection sectors, i.e. between irreducible representation
spaces for the observable algebra,

F(KI J>:yfj->]f,(. 4.17)
They are to satisfy the intertwining property
I I

n (AL ( < J) =r< < J) my(es(4). (@18)

The representation 7 on #y is equivalent to m, o gx on #;, as we know. Let iy be
the identification map

ix: Hx—Ho, Moo 0x(A)ig=ixmg(A). (4.19)

I \. . .. .
If T( K J) is an intertwining operator in the algebra, then

F<K1 J>=i,";no<T<KI J,>>i, (4.20)

satisfies the intertwining relation. This shows that NS-intertwining operators yield
intertwining operators between superselection sectors. A nonvanishing inter-
twiner will exist if and only if [¢,0,] contains [g,] as a subrepresentation. In our
model there is at most one such intertwining operator.

We turn now to the consideration of field operators which are defined on the
total Hilbert space which is the sum of superselection sectors, without
multiplicities.

.%‘—'%0@%1/2@”1 .

This space carries a reducible representation n of Lie.s given by

Ay =n,A)ly) for |p)eA]. (4.21)
We construct operators I'' on # such that
A =T"n(0,(A)). 4.22)
Projection operators E; on 5, commute with all n(4). Therefore
I
F(K J) =ExI"E;: #),— Hy 4.23)

will be an intertwining operator as were considered above. Thus, I'! will have to be
put together from such intertwiners.
Consider the action of I'" on #, for fixed 1, J. The crucial observation is that #,

is the orthogonal direct sum of the support of I KI J

%,=QK—)suppI’(KI J)' (4.24)
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This follows from the fact that the T< KI J> form a complete system of NS-

intertwining operators. From this we obtain

Proposition 4.2. Define the operator I'" on # =@ #) by

1 1
F’=F<K J) on suppl"(K J>C%’J. (4.25)

Then
(A =T"n(g(A)). (4.26)

Using the operators I'!, one can construct an algebra of field operators # in
A . It is generated by elements

¢,=T"U.

U unitaries in an associative algebra of observables .27, to which the endomor-
phisms g; extend, and

0=0y°Q;-

¢, is determined by ¢ only up to multiplication with a unitary element in the center
of the algebra of observables. It obeys

(A)p,= P nl0(A4)).
If ¢ is localized in I =suppg, then g(4)=A4 for AeI'nI=0. Therefore
(A)p,=P,m(A) if AcCLie(I'), I'nsuppe=9.

Let #(I) be the subalgebra of all field operators with this property. In this way we
obtain a net of local field algebras. They are relatively local to the observables.
They are not relatively local to themselves or to each other. This issue will be
addressed in the next sections.

The algebra of field operators acts in a Hilbert space. Therefore a *-operation is
defined. From the definition of I'’ and the completeness relation for intertwiners it
follows that

r’r’*=t1.

This implies that I'’*I"’ is a projection operator. I'! has an inverse since g, is an
1

automorphism. If L=0or L =1 there is only one intertwiner I" < K 2 ), withK=1

in both cases. Thus, I''/*> maps J#, bijectively into J#, ,, and also #; bijectively into
#,,- It follows that some vectors on #,@#, are annihilated by I''/2. Thus

kerI’'/240.

4.4. Operator Product Expansions. Here we study products of field operators in the
Hilbert space & =@ #,; (without multiplicities). We write n(A4) for the action of
the observable algebra on J#; n restricts to 7; on 4. In principle the product of
field operators is determined by the multiplication law in the field algebra.

Let us study products of intertwiners I'. We write Hom(n', n?) for the set of
intertwining operators between representations n! and n? of the observable
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algebra on Hilbert spaces #!) and #?,
Hom(n!,72)s T: #W— @
if
XA =T'n'(A).

The Hilbert spaces will be implied by the name of representations, for instance
n, 0@ acts in #; for any endomorphism g. The relation with the space of
intertwiners Hom(g', ¢) between endomorphisms is as follows

TeHom(', ¢) implies 7(T)e Hom(n o g} 7o 0) 4.27)

for any representation 7 of the observables algebra.
Consider intertwiners

J
F<K L>eHom(nLogJ,nK).

Given J,,J,, M, products of the form

(D)

are in Hom(n, o ¢, 7g) if

J
T 2 € Hom(QhQJz, 05). (4.29)
J J,
It follows that
r’=r-r’q|r T2 Y’ (4.30)
= 77, .

obeys

(A =TI""n(g,(A))
just like I'’. That is, I"’ e Hom(n o g;, 7). We omit symbols 7 in the following.
Consider now a complete set of intertwiners T I2 as described in Sect. 4.2.

1
Label a will distinguish between NS- and R-intertwiner. The completeness relation

implies

J
2= ,Z [rera ( J 2 J ) (4.31)
,a 1

Consider now products of fields
¢’>=r""v,, ¢'*=r""v,, Uyedo.

Using commutation relations of observables with constant fields I', we obtain

"¢ =JZ ¢ 4.32)
with
rJa a J
¢7e=reT <J 2J )QJI(UZ)UI. (4.33)
1
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On the vacuum sector # = #,, we have n=r, and only NS-intertwiners survive.
They are unique, and we may drop the lable a. Moreover, uniqueness implies that

-y . J .
the restriction of I’ to #, must be proportional to I < ) =restriction of I'’.

J 0
Thus we have

Proposition 4.3 (Operator Product Expansion on the Vacuum). Let ¢’:=I"U,.
Then

¢J2¢Jl =; CJ.IZ.Ild)J on #,, (4.34)

¢’'=I"U with U=T<J "ZJ )g,l(Uz)Uled. (4.35)
1

If UU¥=1(i=1,2) then UU*=1 (on ;).

Consider the algebra & of field operators on # which is generated by
operators I/, J=0,3,1 and observables A. It contains all products of field
operators ¢’ =I'’U. Using the operator product expansion one can express the
vacuum expectation value {0|¢|0> of any product of fields ¢ € & as expectation
value of an observable.

This assertion follows from the fact that I'°=1 and I'’ #, L #,, for J+0. The
structure constants c,;,;, can be determined from the explicit form of the
intertwiners. We leave this as an exercise to the reader.

5. Braid Group

5.1. Jones Algebra and Braid Group Representation Determined by the Endomor-
phism g,,,. A well known result of the theory of superselection sectors [8] says that
a transportable localized endomorphism g of an algebra of local observables o/
determines a representation of the braid group B, by operators ;€ .o/. More
precisely there exists a unitary operator ¢, in the commutant of ¢*(«) in ./,

€,€0%(/), unitary (5.1
such that
0,=0"",), i=12,... (5.2
satisfy Artin relations
o0;=0,0; if [i—jl=2, (5.3)
0:0;110;=0;,100;41- (5.4)

In d=3-dimensional space time, this braid group representation degenerates
into a permutation group representation, that is o;=o; 1.

There exists a definition of ¢, in terms of ¢ (see Introduction), but it is much
easier to determine ¢, from its properties. The Artin relations admit substitution of
o; * for o;. This arbitrariness is intrinsic and corresponds to the possibility of space
reflections. The Artin relations also leave an arbitrary phase factor in ¢, free. This
phase factor is determined by the explicit definition, it can be recovered from the

“spin statistics” theorem [9].
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The representation of the braid group turns out to come from a Jones algebra.
Following Fredenhagen, Rehren, and Schroer [8], this Jones Algebra and related
quantities are defined as follows. They consider irreducible transportable localized
endomorphisms in an associative observable algebra o/ with trivial center.

An endomorphism ¢ is said to be conjugate to ¢ if the representation
[0@]=[@¢] contains the vacuum representation [id]. From the associative algebra
of observables 7 one obtains a Jones tunnel

o/ 20(s7)200(4)2000(4)2 ...

and a dual Jones tower of the corresponding commutants M; in <.
Consider intertwiners R* and R* which map to the subrepresentation [id] of

[¢e] and [ea],
R*eHom(gg,id) with R*R=1,

R*eHom(gg,id) with R*R=1, (5:3)
and the corresponding projectors
II=RR* and II=RR*. (5.6)
Then the projection operators (i=1,2,...)
Eyio1=(00)~'(I),  E;=(00) 'o(I) (5.7
obey the Jones algebra relations
E.E,=E.E,, |n—m|=2,
(5.8)

EnEni lEn = d(@)— 2En
with a parameter d(g) called statistical dimension. Moreover @, defined by
&(4)=R*3(4A)R (5.9)

is aleftinverse of g, i.e. a positive map .o/ — o7 with ®(g(A4))= A4 for all A. It is unique
if g is irreducible (i.e. [¢] is irreducible) and g - @ defines a conditional expectation
from o/ to g(o/). This left inverse yields another formula for the statistical
dimension

B(e)=A,0 with |1,=d(0)"". (5.10)

The spin and statistics theorem [9] says that in a conformal field theory the phase
is given by

J,=e*"sd(g) 1, (5.11)

where s is the lowest eigenvalue of L, in the representation [¢]. @ also yields a
Markov trace on B, i.e. link invariants [8].
A nontrivial Jones algebra, and a braid group representation which is not of the
form 0;,=w - 1, w =phase factor, is only obtained when g is not an automorphism.
In our model, ¢,=id and ¢, are automorphisms, and [o3},] contains [id].
Therefore we should consider the special case

0=012=0.

01> is not localized, but it is a limit of localized morphisms. Also, our global
algebra has a nontrivial center, therefore R*ReC-1 is not automatic. But
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operators R = R which fulfill conditions (5.5) exist, and can be obtained from the
intertwiners in Sect. 4,

R*=R¥s+RE (5.12)

with corresponding projection operators
M=I+To=b,,b_, Y +3(1+])/2bo[by—b_,]Y,, (5.13)
Y, =3[1+Y]. (5.14)

From this one may now compute the Jones projectors.
Ejiv1=bisypb iy Yo +3[1+(b;+b_)(bir,—b_;—)]Y, for i+0, (515
Epivo=bipib_ iy Yo +3[1—(bis1a—b_i_15) (bivsp+b_i_3)]1Y-, (5.16)
Ey=by,b_1,Y_ +3(1+]/2bo[b; —b_,])Y, . (5.17)
In the vacuum representation the result simplifies since Y_ =1, Y, =0 on

E2i+1=b1/2+ib—1/2—i>
E2i+2=%[1 —(b1/2+i'b—1/2—i)(b3/2+i+b—3/2—i)]

(i=0,1,2,...). Similar formulae for Jones projectors in terms of complex fields were
obtained in Connes and Evans [29]. The E, satisfy the relations of a Temperly-
Lieb Jones algebra with

d(e, )= ﬂ .

When ¢ =g, the formulae for the Jones algebra and the braid group generators
look very similar, and one can obtain one from the other [8,22].

(5.18)

g=y(1+ ) —1)=y(1+9)E, —1) (5.19)
with IT as defined above, for ¢ =g,,,. More generally
g,=y(1+i)E,—1) (5.20)

for d(g)=]ﬁ; y is an arbitrary phase factor.
Evaluating ®(e,) in the vacuum sector yields

Ble)=3)(—1+i)=24,-1 (¢=01p)-

Therefore d(p) =]/§ in agreement with the previous result. According to the spin
and statistics theorem, the preferred choice for the statistical phase w,=4,/|4,| is

2ms

n,=¢e

s=lowest eigenvalue of L, in the representation [¢]. Here s= and we obtain

We write ¢, for ¢, if 9=0,,,. &, acts by right multlphcatlon on . Its
elgenspaces are generated by projectors in the commutant of o3 ,Z(sz) Projectors
Iy, I, =%(1+Y)—I,,II, and II, are orthogonal and sum to 1. Thus

51/2=y((1+l)H—1), H=H0+H0
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obeys
e, p=iylly, &= —yI,, etc.
3
Therefore we obtain that the eigenvalues of ¢,,, are iy and —7y, y= —e 8. Our
results are consistent with the general classification of Longo [30].
According to Jones, the possible values of d(g) are given by d(9)=2 or

d(0)=2 cos (%) (5.21)

k a natural integer = 3. The value of [ﬁ corresponds to
k=4.
In our model, ¢,=id and ¢, are automorphisms, therefore
d(go)=1=d(¢,)

and
81—: —‘1

by the spin and statistics theorem.
For reducible representations [g;, ... ¢;,] one defines

ey, .- 01,)=dlgy,) ... dley,)- (522
The general theory says that they obey sum rules [8]. If o=g;, ... ¢;, obeys
[e]=% Nglex], (523)
then
d(@)=3. Ngd(ex)- (524

Comparison with our fusion rules shows that these sum rules are indeed satisfied.
It suffices to check this for products of two endomorphisms. Indeed

(/2> =d(} ;) =d(o) +do)=1+1,
1-)/2=d(e,ey,)=d(e,)=)/2,
1-1=d(e})=d(eo)=1.

We saw earlier that our endomorphisms ¢ come from lifting partial isometries V
which can be classified by their index. By comparism we see that

d() =2 *¥index(V) (5.25)
This holds both for irreducible and reducible representations ¢ =g, ... ¢, since
indexV;, ... V; =} indexV;,. (5.26)

j

The sum rule for statistical dimensions translates into an remarkable sum rule for
indices
2‘”‘"“""’1=ZNK2_%“““’"V". (527)
K

Following Jones and Longo [22,30], d(¢) 2 can be interpreted as index of the
inclusion g(o/)C .o/ of associative algebras.
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Let us finally note that the whole Lie algebra of observables Lie.o/ can be
reconstructed from the Jones projectors E, and the central elements Y, =3[1+ Y].
It suffices to exhibit

bcba=jca=']ca+217[1 +(_ 1)20Y]5a, -c

for a>0, c= +(a—1). The other operators J_, can be obtained by considering
adjoints and commutators of these, using J,,, = — J,,. The generators L, and N, are
infinite sums of operators b,b, by Egs. (2.41)f.

One finds by explicit computation

bbeyy= i2(E20—%)E2c+2E2c+1 Y,
b_cbciy =2E2c+2E2c+1(E20——%)Y+:
bb_.=Ey,
for c=4, while

bob, =l/§E2(E1 —'%)Yi >
bob—1 =]/§(E1 ‘%)E2Y+ s
bi=1v, .
+ is to be read as (—1).

5.2. Standard Braid Matrices. Following Fredenhagen, Rehren, and Schroer [8],
standard braid matrices are defined by the action of the braid group By on
products of at least N + 1 intertwiners by right multiplication, as follows.

We will only consider intertwiners which are nonvanishing in the vacuum
representation (NS-intertwiners). These are unique in our model, and we regard
them as operators in #,, omitting symbols .

Fix J and let Pathg i be the set of sequences of n+1 sector labels

£=(Kn,Kn_1 ‘e KI’KO)'
Set

J J
Q-T(Kn Kn_1>"'T<K1 K0>. (5.28)

It follows from the intertwining property of T( KJ L> that

T;e Hom(gg,05, 0k,) - (5.29)

Thus, T, are isometric maps #;,—#,. T; vanishes on the orthogonal complement

of a subrepresentation of 7,0 gg.0k Which is equivalent to myogg,. T, with

¢ ePathy  is a basis in the space Hom(gg 07, 0,) of intertwiners. This is because

one may reduce the representation 7, o g 07 in steps. First reduce the represen-

tation o gg 0, Of & into irreducibles m, 0 o, using T k. Kk.) Then restrict
1 0

this representation to g,(o/). This restriction may be reducible. Reduce this

. L . . J

representation 7, o g, 0, of & into irreducibles 7, o g, using T K. K >, and so
2 1

on.
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Now we remember that
[¢/,A]=0 for Aeg¥A).

It follows from this together with the intertwining properties of T°s and the
definition ;=¢' " !(e,) of the braid group generators that

Teok (o) € Hom(eg,05, 0k,) for i=n. (5.30)

Therefore this must be a linear combination of T, with e Pathy x. More
generally, for any element b=o;, ... 0;,,€B,, Viz. iy, ...,iy =1,

Tb=Y T,RS(b), (5.31)
]

i.e. we get a representation of the braid group B, on n threads by matrices R$,
¢, & ePathg g.. Of course R depends on J.
Making the identification 7 o g =7y these identities get translated into similar

identities for intertwiners I < Kk L) Using the standard abbreviation

S;= Y etc
" \K: K-, '

we get in the special case n=2

I(sy)I(s)e,= Y, T(s)I(s)R3:E (5.32)

Since we know ¢; and the intertwiners explicitly, the matrix R can be calculated.
One writes

o J J
R = 0k,k10k0k6Cr ki I:K K ] (5.33)
2 O_lphys *

=1 is the interesting case, because automorphisms like ¢, lead to 1-dimensional
braid group representations.

The result is given explicitly in Table 1 (Appendix B). It agrees with the

following expression involving 6j-symbols for U (s(2)) when g=e ™2, J, =J 3=,

J, J iZ J, J
C ,[ 2 3:| =e 2C ’l: 2 3:|
JJ Jl J4 phys I Jl J4 q

. i (Jy, Jy J
=(_1)J+J '11“J4q(CJl+CJ4‘CJ—CJI)/2e 2{ 2 1 ,} (534)
Jy Jy T,
c;=JJ+1).
Let us note that the result for R:- depends on a phase convention. The intertwiners
J
T < K L) are only determined up to phase factors. It turns out that a particular

ratio of these phase factors enters into the result for the braid matrices. We have
chosen these phase factors in a particular way.



186 G. Mack and V. Schomerus

6. Fields with Quantum Symmetry U, (s/(2)), g=e~""/?

6.1. The Quantum Group U (sl(2)) with = —i — a Brief Review. The quantum
group algebra [14, 31, 38, 33] U (sl(2)) is the associative algebra ¢ with unit 1,
generators S,,S~, %52 and relations

qS,/2Siq—Sz/2=qi'1/2Si’ qS,/2q—Sz/2=1=q—Sz/2qu/2, (61)
[s+,s_]==j§§;5§:§;1 6.2)
A coproduct
4:9->9R% (6.3)
is defined by 4(1)=1®1 and
A(qiS,/2)=qiSz/2®qi'Sz/2, (64)
AS L) =" @S+ +8,®q 5. (6.5)
A counit ¢: 4 —C is defined by g1)=1 and
g5 =1, &S4)=0. (6.6)
Finally there is an antipode
Fq* =g, (67)
F(S4)=—q*'S,. (6.8)

4 is a homomorphism of algebras, ¢ a homomorphism of 4 into C, and & is an
antiautomorphism of ¢, such that

(id®¢)- A=id. (6.9)

Given representations t” and t* of the algebra % on vector spaces V? and WX a
representation t on the tensor product V'@ WX is defined as follows. Write the
coproduct in the form

A(X)=YZZG(X|KZ)Y®Z- (6.10)

Then
Xp@w=7Y aX|Y,Z)(YWw@tXZ)w. (6.11)
Y, Z

The quantum dimension (character) of a representation 7 is defined by
d,=trt(q%). (6.12)

For g= —i, the group U (sl(2)) has 3 “physical representations” labelled by
isospin J=0,4,1 of dimension 2J+1 and quantum dimension d,=1, 1/5,1.
Physical representations are those which are irreducible and have strictly positive
quantum dimension. We write [J] for the equivalence class of the 2J-+1-
dimensional physical representation.

The tensor product of physical representations decomposes into physical
representations, plus representations of quantum dimension 0 [38]. Omitting the
latter, the decomposition

[JI®[K]I=DN{¥[L] (6.13)
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is explicitly given by [0]®[J]=[J] and
ZI®E]1=[0]+[1],
ZI®]=[3l. (6.14)
[1]®[1]=[0].
This holds whenever g*=1. The quantum dimension satisfies the sum rule
d,dK=;Ni"dL. (6.15)

If e] and ef are basis vectors in physical representation spaces, then their tensor
product decomposes into basis vectors in the physical subrepresentations

L J K

J K L

Qe =Y e , 6.16

j® k I;l 1 [l ] ki! ( )

plus contributions from subrepresentations with quantum dimension 0. This
decomposition involves Clebsch Gordan coefficients.

Representations t/®1X and tX®1’ are equivalent, and there exists a map #

RV QWEWEQV? (6.17)

which commutes with the action of the quantum group algebra. In terms of basis
vectors

Re]@er =73 en@er R (6.18)

Of course, Z depends on J and K. Expressions for quantum group #-matrices can
be found in the literature. For generic g, 6j-symbols can be thought to be defined
through Eq. (6.52) (see below), without the phase factor ™2, with unrestricted sum
over J,. When g becomes a root of unity, 6j-symbols for unphysical J,, become
zero, assuming standard normalisation conventions, but some “unphysical”
Clebsch Gordan coefficients become infinite.

6.2. Field Transformation Law. If we substitute quantum group representations
[J] for representations [¢,] of the observable algebra (i.e. for superselection
sectors) then the fusion rules in Theorem 4 correspond precisely to the tensor
product decomposition rules (6.14) for U (sl(2)) with g*=1. Also the statistical
dimensions d(g,) of the representations [g,] agree with the quantum dimensions d;
of representations [J], see Theorem 2 and Sect. 5.

This suggests that states in the superselection sector #, should transform
according to the 2J + 1-dimensional representation of U (sl(2)), with g some 4™
root of unity. The analogy with gauge groups in d = 3-dimensional quantum field
theories described in the introduction suggests that observables should be
quantum group invariant. This implies that the irreducible representation z; of the
algebra of observables must occur with multiplicity 2J + 1 (at least) and we are led
to consider the Hilbert space

J
%ﬂphys = @ ; ‘%ilm > (6.19)

J=0,%,1 m=—

N

where J#,,, are 2J + 1 copies of the same representation space carrying represen-
tation 7;~m,0@; The quantum group generators become operators X in the
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Hilbert space #,;,,, which commute with observables 4
[X,A]=0 forall Xe¥%, Ae. (6.20)

The quantum group algebra ¢ is to be regarded as the generalization of the
universal enveloping algebra of a Lie algebra, i.e. X behaves like a sum of products
of Lie group generators X,y,... in many respects. When one studies the
transformation law of states and fields under elements of the universal enveloping
algebra of an ordinary Lie algebra of symmetries, one obtains formulae which look
precisely like those which we are going to write down for the quantum group case.
In the Lie algebra case, comultiplication is

A(x)=1®x+x®1, (6.21)
Axy)=1®xy +xy@1+ xRy +y®x (6.22)

etc., and ¢(1)=1, &X, ... X,)=0.
Accordingly the proper definition of invariance of the vacuum is

X105 =[0>e(X). (6.23)

Let i},: #,— #), be the identification map which identifies representations
(my ° 05, #,) and (n;, 5#7,,). The natural action of X € 4 on states in #,;,  is given by

Xijnlw) =2 Falw)TanX), W)€, (6.24)

This commutes with the action of observables. Finally, we would like to introduce
multiplets of field operators ¢;,, which create states in #,,, from the vacuum.
Following Buchholz,Mack,and Todorov [17], the transformation law of pointlike
fields is postulated to be given by the following generalized commutation relations

X¢(2)= 2 AXIY.2)% P2t Y)Z. (6.25)

Factors af...) are given by the comultiplication law (6.10). Since (id®¢)4 =id, it
follows from this that states @y,(z) [y (lp) € #, C H#,yy,) transform according to the
2J + 1-dimensional representation

X ou(2)lw) =; P> Tan(X) for |y)e . (6.26)
This translates into the present framework as follows. The bounded field operators
shall be of the form
¢2=LU with Ues (6.27)
with
ALl=TJlg,(A) forall m=-—J...J. (6.28)

We may put I =1 so that fields ¢, are observables for J=0. Assuming UU* =1
we obtain from Eq. (6.28),

App=0no(4), e=0y0,. (6.29)

The localization properties of such a field, which substitute for the z-dependence in
the pointlike fields ¢} (z), are determined by the observable factor U, for given J.
Observables are quantum group invariant, and the factors I;] are required to
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transform according to a 2J + 1-dimensional representation in the sense that
XLi=Y aX|L2) Y [ e.(Y)Z. (6.30)
Y,Z n

As a consequence, the same generalized commutation relations are valid for fields
¢1=IL]U, Ue s, since [ X, U]=0. Explicitly

=G =3 drtam(q g2, (6.31)

n

S1@n=2 {$NTam(@>*)S 1+ + PrTum(S+)g 5} (6.32)

This determines the transformation law of states (¢ °=TI1U,),
et a0y (6.33)

One pushes the generators of 4 through fields, using the generalized commutation
relations, until they act on the vacuum, where they get converted into a complex
factor e(X). It follows that such states transform according to the tensor product

Vh®.. V"
of 2J;+ 1-dimensional physical representations (¢”, V”%), or a subrepresentation of
it.
The transformation law of fields can be inverted,

¢qusz/z =Yg iS,/2¢J,cJ (qxs,/z)
oS+ =Y {S1bntnnd ) +q 5 brri(— gt ?S3)} .

This involves matrix elements of antipodes t/(S(Z)), viz. ¢¥5+/*>= #(q*5-%) and
—q*128, =L(S,)
q  + + .

The inverted form (6.34) of the transformation law can be used to push
generators to the left. Let us assume that the vacuum ket vector (0] is defined as a
linear form on the state space in which field algebra and quantum group act, and is
invariant under the quantum group in the sense that

01X =&x)<0]. (6.35)

Then it follows from the transformation law of fields and the invariance of the
vacuum that correlation functions

Ol g™ .. b 10> (6.36)

(6.34)

are quantum group invariant.

6.3. Quantum Group Covariant Field Algebras. Let %, be the associative algebra
with unit, with generators I}, J=0,4,1, m= —J ... J, and relations given by the
multiplication law in the algebra of observables o/

ALy =T0,(4), (6.37)

and Iy =1. A general element of %, has the form IJ... ;]! A with Ae o/, n20,
and any product of elements may be brought into this form by use of Eq. (6.37).

This algebra is quantum group covariant in the sense that we may add the
generators X to those of % .., and impose generalized commutation relations
(6.20), (6.30). They are consistent with the relations in the algebra #,...
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Itis not clear, however, whether this algebra can act in the Hilbert space 5y,
defined in (6.19). If it can act the resulting representation of %, is certainly not
faithful, since a faithful representation space will include states that transform like
arbitrary vectors in the tensor product V/*®...® V’* of physical representation
spaces, including vectors in the unphysical subrepresentations with quantum
dimension 0. Therefore one will seek to divide by an ideal in %, that is impose
further relations in the algebra.

It would be desirable to have the relation

L'Le,= Y LILAY (6.38)

with the matrix
RVIQVI =V QV’ (6.39)

whose action commutes with the action of the quantum group algebra
AX)R=RAX) forall Xe%. (6.40)

As we explained in the introduction, desirability of such a relation comes from
the fact that it yields quantum group covariant braid relations for the field
operators of equal charge J, ¢, is the unitary element in the commutant of ¢*(.«¢)
which determines the braid group representation by operators in 7.

Let us discuss consistency of such a relation (6.38). Consistency with quantum
group covariance follows from property (6.40) of #. The fact that ¢, determines a
braid group representation implies that the same must be true for £, therefore #
must satisfy Yang Baxter equations. The quantum group #-matrix satisfies these
requirements [14]. Also ¢; and £ must have the same eigenvalues.

The eigenspaces of ¢; in & are of the form I1.5#,, where II are projectors in the
commutant of ¢%«/). For J=1, this commutant consists only of the center of
Lieo/, which is spanned by the projectors (1 & Y). The interesting case is J =3.
The eigenvalues of ¢,,, were found in Sect. 5.1 to be

3n
iyand —y with y=—e 8 . (6.41)

This agrees with the eigenvalues of the quantum group %-matrix of U (sl(2)) for
g=e~ "2 for proper choice of overall phase. The overall phase is not determined
by Yang Baxter equations and commutativity with 4.

Let us now try to construct operators I}'/> which act in i, The
commutation relation (6.28) with observables is equivalent to the requirement that
the transition operators #, —#,, determined by I’/ must be proportional to the
intertwiners constructed in Sect. 4. Thus

K J L J
) = % ;
I, KZL kzl C [ kK m l:l IkkTo <T <K L>> in (6.42)

with complex coefficients C [] that vanish unless m+ [ =k.
Consistency with transformation law (6.24), (6.30) under the quantum group

requires that the coefficients C| " | must be quantum group Clebsch Gordan
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coefficients, apart from a normalization factor,

K J L K J L
c[k . l]_cw[k . l]. (6.43)

In this way we obtain a quantum group covariant field algebra which acts on
the Hilbert space #,,,. The scalar product in 5, determines the meaning of
adjoint operators. We could therefore extend our algebra of field operators to a

*-algebra of operators on ., if we wished to include adjoints. The adjoint of

quantum group generators is defined by
S1=Sc, (@SPyr=qte. (6:44)

But the adjoint operators I,* do not have the same covariance properties as I},
Instead

L*A=o,(A)L*, (6.45)

and the generalized commutation relations of I)* with the quantum group
generators X are obtained by taking the adjoint of Eq. (6.34).

XLI*=Y aX*Y*|Z%) Y [)*0, (S (Y*)Z (6.46)

(— is complex conjugate, & is the antipode).

Let us finally check whether condition (6.38) which assures local braid relations
of fields ¢, =TIJU is valid. Braid relations of intertwiners were found in Sect. 5.
Since i} identified representations (g, #%) and (7, o gk, #;), Eq. (5.32) can also be
written in the form

T(s2)T(s1)e es)= T T(s) T(SRE! S (6:47)

shsi

where V=g, if s, = ( ' L>' From Eq. (6.42) we obtain
P J S S J 0
I’'Ye,= C C
ke P.%,s p,zq,s [P k S] [3 ! CIJ

J
(7 )17 ko) 089

SAr=Y Y Y C[P ! Sf]C[Sf ! Q]

mn P,Q0,S" p,q,s’ p m S s n q

s J J .
x RiE o (T (P S,) T ( ¢ Q)) igg. (6.49)
Equation (6.47) and Egs. (5.33), (5.34) for Rz give
J J J J .

T
o o _ i~{J P S
Rg;g))((ssg?)=(_1)s+s P-Qg(erteo=2e/24'2 L

J Q §J,

while

(6.50)
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1/2
P S
expressions (6.48) and (6.49) are equal if

P J S S J Q0 .
elr e[t 9w

=Yy C[P J S:]c[s,' J Q]@,’;". (6.51)

s’,m,n p m § s n q

We abbreviated ) to (PS). Inserting this into Eq.(6.48) we see that

This is called a “vertex-SOS transforamtion” in the work of Frohlich et al. [41].
Summation over S runs over physical representations S=0,3,1 only. The braid
matrices R$2! on the left-hand side are given by Eq.(6.50), while %" and
proportionality factors cg;; in (6.43) remain to be determined.

Inserting expressions (6.50) for R, and setting the coefficients cg;; =1 would

give
P J s|s J g s+5-P-0 @rteg-2002)0 F S| iz
N R e 7o st

_y [P SS T2 am
o M ] L 65

Interpreting %5 as a canonical quantum group #-matrix, Eq. (6.52) agrees
with the defining equation for 6j-symbols, for generic g, except for the restriction in
the sum over S. The equation is also valid whenever the tensor product [J]1®[Q]
of quantum group representations contains no unphysical subrepresentations
[31]. If operators (6.48) and (6.49) are applied to |£) € #,, only the term with
Q=K, g=r contribute. It follows that Eq. (6.38) holds on a subspace of H#
which contains #;, and #,, m= +3 if J=3, as claimed in Theorem 2, with #
equal to the quantum group #-matrix multiplied with e~ /2,

If J=1, then g;= —1 and relation (6.38) is trivially satisfied by

AT =1)= — 78T (6.53)

The corresponding local braid relations are

bedi'=—bi'di - (6.54)

This completes the proof of Theorem 2.

Let us finally explain the difficulty with the vertex-SOS transformation which
prevented us from establishing local braid relations on the whole Hilbert space.

Consider again J =1 and suppose that matrix %#*. is not diagonal [i.e. #*,+0
does not imply (kl)=(mn)]. The 3rd component of quantum isospin is conserved,
ie. 4 =0 unless k+[=m+n. Therefore it follows that

R™1)5 -13%0. (6.55)

The quantum group #-matrix is nondiagonal. Consider the special case P=0Q =1,
p=q=1.Then the left-hand side of Eq. (6.52)is zero because S =0,, 1 implies s +3.
But the sum on the right-hand side consists of one nonvanishing term for S’ =1.
Therefore, validity of Eq. (6.52) for all P,Q is inconsistent with a nondiagonal
Z-matrix. This argument does not depend on the exact form of #5152 and the

51827
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conclusion remains also valid when we admit arbitrary proportionality factors
cxyp, Provided ¢y y; 15 1€y 1z 12F0. I ¢y 172 1-€4 172 172 Were O, the field P2
could either not make transitions to, or from, .

A similar problem was also encountered by Buchholz, Mack, and Todorovin a
different approach [17].

6.4. Operator Product Expansions. It is straightforward to extend the consider-
ations of Sect. 4.4 to obtain operator product expansions on the vacuum sector. If
T4=L'U, with U,e o/ then

J J, J
$iigin =3 cuzh[m L ,‘]«M on #, (6.56)
with
¢l=r’U, U=T(JJZJ>911(U2)U16&@', (6.57)
1

and structure constants c,;,;, as in Sect. 4.4.

Again this expansion does not remain valid on all sectors, but it is good enough
to convert vacuum expectation values of products of field operators into vacuum
expectation values of observables.

A. Appendix. Local Braid Relations

Suppose that the fields
¢7'=L’U;,, U,eo, unitary (A1)

are localized in disjoint intervals I, i=1,2 with { ¢ I;. This means that endomor-
phisms ;= oy, © g; are localized in the intervals I;. The point { entered the defini-
tion of ¢;. We show that braid relations

o =3 ducdn R (A2)

m,n

hold. Using Eq. (1.54), Definition (1.31) and homotopy invariance of ¢;=¢,, and

Eq. (1.41) in turn we calculate

ool =L e, (U,)U,
=17¢117J810J(U U,
=Y Lo U)U =Y. LU LU Ry

=3 onién A
m,n

ey’

as claimed in Eq. (A.2): To justify the use of homotopy invariance, g; should be
regarded as limit of localized endomorphisms as explained after Eq. (1.31), and U,
must be limits of elements of local algebras /(I) with {¢1I as implied by the
hypothesis of Remark 3. This restriction on U; eliminates the possibility of
multiplying the fields with arbitrary elements of the center of <.
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B. Appendix. Table 1

1

i)

% %T _iSn (1 1 ;T
8 2 2 — 8
Cslo of__,7¢ “1lo 0],,7¢
dg=—i L _Iphys
1 17 - 1 17 137‘
2 2 8 2 2 ry
Ciily o)., "¢ > Ciily o], ¢
L dg=—1i L _Iphys
1L 17 P 1 17 ;3n
2 2 g 2 2
L Jdg=-i L —Iphys
[1 17] 15" [1 17 P
2 2 g 2 2 s
Cesly 1.7 Coslyoq],,70 "
- dg=-1i L —Iphys
1 17] 1 3z [1 17 1
2 2 e 2 2 —iz
CO ol1 1 =—=e N CO ol1 1 = ——=¢€ )
L2 2 1g=—i 2 L2 2 _lphys 2
1 1] 1 i B3 y QR
2 _ 8 2 2 _ 8
Cl 0ol 1 1 - € s Cl ol1 1 € 8 s
| 2 2 1g=-—i 2 L 2 2_lphys 2
1 1] 1 - [1 17 1 3
2 2 0 2 2 _ 8
CO 111 1 = e 8, CO 11 1 = e ",
L2 2 1g=—i 2 L2 2 _iphys l/i
[1 17 3n 1L 17 —iE
C 2 2 — 1 g C 2 2 _ 1 e '3
11 L—l' 1 s 1111 1 - .
2 2dq=-i ‘/5 L2 2_Iphys l/i
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