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Abstract. According to the theory of superselection sectors of Doplicher, Haag,
and Roberts, field operators which make transitions between different superselec-
tion sectors - i.e. different irreducible representations of the observable algebra -
are to be constructed by adjoining localized endomorphisms to the algebra of local
observables. We find the relevant endomorphisms of the chiral algebra of
observables in the minimal conformal model with central charge c=\ (Ising
model). We show by explicit and elementary construction how they determine a
representation of the braid group B^ which is associated with a Temperley-Lieb-
Jones algebra. We recover fusion rules, and compute the quantum dimensions of
the superselection sectors. We exhibit a field algebra which is quantum group
covariant and acts in the Hubert space of physical states. It obeys local braid
relations in an appropriate weak sense.
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1. Introduction and Summary of Results

According to the laws of local relativistic quantum mechanics, observables are
selfadjoint operators acting in a Hubert space Jf of physical states. The Hubert
space of physical states ^f may decompose into orthogonal subspaces JfJ? called
superselection sectors, such that observables A do not make transitions between
different subspaces Jfj [1]. Different sectors Jf, carry inequivalent irreducible
positive energy representations of the algebra si of observables A, possibly with
some multiplicity. Among the sectors is the vacuum sector J^o. It contains the
vacuum |0> and carries the vacuum representation π0 of s/, with multiplicity 1.

Typically, states in different sectors transform according to inequivalent
unitary representations of a gauge group G of first kind. By definition, a gauge
group is a symmetry group of the theory which acts trivially on observables.
Examples of sectors and associated gauge groups are

1. Fermi superselection sectors labelled by fermion number F = 0,1 (mod 2)

gauge group Z2.
2. Baryon superselection sectors labelled by baryon number 5 = 0, ± 1 , ±2,. . .

gauge group 1/(1).

Nonabelian gauge groups are possible in principle. Suppose that isospin
conservation were exact in the world, electromagnetism were absent, and particle
detectors used gravitational interactions. Then the group SU(2) of isospin
rotations would be a nonabelian gauge group of the first kind. One could still
detect that there are two kinds of nucleons - protons and neutrons - through the
effect of their statistics (and by multiple scattering experiments). For instance, the
high stability of the α-particle comes about because 4 nucleons may be in the same
orbital state. It is then natural to consider a Hubert space with states that need not
be isospin singlets and may contain arbitrary numbers of protons and neutrons.
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Superselection sectors are then labelled by isospin 7 = 0,^, 1,..., and occur with
multiplicity 2/ + 1,

I m= -I

Subspaces Jj?lm with the same isospin I but different 3rd component m of isospin
carry equivalent representations of the observable algebra.

When superselection sectors exist, it is of interest to construct field operators
φ, ψ ... which make transitions between sectors, and which are relatively local to
the observables (Fig. 1).

Ήι

Fig. 1. Structure of the Hubert space. Observables A leave subspaces Jfj invariant. The fields ψ, φ
make transitions between subspaces Jtifj

In 2-dimensional conformal quantum field theory (CQFT) some algebras of
chiral observables and their unitary irreducible positive energy representations are
explicitly known, and the relative locality of other primary fields φ to observables
like stress tensor T or currents; is embodied in local commutation relations. For
instance,

lT{w\φ{z)] = δ{z-ω)jzφ{z)Λ-hδ\z-w)φ{z) (1.1)

for a chiral field φ. Such fields depend on only one light cone variable, so that

relatively spacelike = disjoint

on the circle (see Sect. 2). In this paper we consider only chiral fields.
In the algebraic approach [2] one prefers to work with bounded operators like

eiτ(f) j n p j a c e of O p e r a t o r valued distributions like T(z), and similarly for fields φ.
Observables that are localized in bounded topological trivial domains I of a
Minkowskian space time manifold form a subalgebra J/(7) of the observable
algebra si. Observables localized in relatively spacelike domains commute.

The basic ideas of the theory of superselection sectors of Doplicher, Haag, and
Roberts are as follows [3]:

1. All the information about the theory is contained in the representation π 0 of the
net of local algebras {«s/(/)} in the vacuum sector J»f0 and can be deciphered by
looking at the localized endomorphisms ρ of sέ.
2. The representations π 7 of si in other sectors are obtained from the vacuum
representation π 0 by composition with suitable endomorphisms ρ7 of sέ\

π/ = π 0 oρ J ? with π 0 ° ρ(Λ) = πo(ρ(A)). (1.2)

3. The field algebra is obtained from the observable algebra si by adjoining outer
endomorphisms of si to it. This means that an element φ of the field algebra should
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exist to every endomorphism ρ so that ρ becomes conjugation by φ or, more
generally,

Aφ = φρ(Λ) for all Aesί.

4. The endomorphisms ρ and their intertwiners determine the gauge group.

The observable algebra consists of complex linear combinations of selfadjoint
observables. Therefore it admits a nontrivial *-operation (taking adjoints). By
definition, an endomorphism is a linear map ρ:si-*si with the properties

(1.3)

(1.4)

(1.5)

It is called an automorphism if it has an inverse.
An intertwiner T between endomorphisms ρx and ρ2 is an element Te stf of the

observable algebra with the property

TQt(A) = Q2(A)T for all Aesί. (1.6)

The linear space of all such intertwiners is denoted Hom(ρ1,ρ2)
It is easy to see that π = π 0 o ρ is a unitary representation of si if π 0 is. That is

π(A) = πo(ρ(A)) (1.7)

has the defining properties of a unitary representation: π(AίA2) = π(A1)π(A2) and

π(A*) = π(A)*. Moreover, if the energy operator H is positive, i.e. H=YdAiAf'^.O9

then ρ(H)=Σβ(Λ )β(Λ )*^0 Thus, π = π0oρ will be a positive energy'represent-
£

ation if π 0 is. In the context of conformal quantum field theory, H = L0.
Let us explain how these constructions work at a simplified example.

Substitute the matrix groups si = SL(2, C) or S0(2N) for the algebra of observ-
ables, with the natural *-operation. There exists an outer automorphism ρί

[complex conjugation for SL(2,C)]:

A-^QM). (1.8)

In S0(2N) or -SO+(3,1) = SL(2,C)/Z2 (proper orthochronous Lorentz group), the
automorphism is conjunction by reflection. We adjoin an element Γ which
implements this automorphism in the sense that

AΓ = Γei(A). (1-9)

This yields a new group with elements ΓnA (neZ,Ae si), since products of any two
such elements may be brought into the same form by commuting A's through Γ's,
using Eq. (1.9).

Automorphisms (and endomorphisms) can be multiplied, and it follows that
AΓ2 = Γ2ρl(A). But the automorphism Q\ is trivial, thus AΓ2 = Γ2A. We invoke
now a new principle which says that elements of the field algebra (here: the new
group) which commute with all observables should be in the center of the observable
algebra. This leaves two possibilities Γ2= ± 1 , since the center of S0(2N) or
SL(2,C) has only two elements ± 1 . With either choice, we obtain a group with
elements ΓnA (n = 0,l; AeSU(2)). This "field group" substitutes for the field
algebra in quantum field theory.
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The relation ρl = id can be expressed in a fancier way by saying that unit
operator I eHom(ρj, id), viz. lρl(A) = Al for all A. Thus, relations in the field
group beyond (1.9) are linked to the existence of an intertwiner.

Our baby example admits Z 2 as a gauge group. Its elements act as
automorphisms of the field group which leave the observables fixed.

Γ-+zΓ, A->A, z=±leZ2.

Passing from SL(2,C) to the Lorentz group J^ = SO+(3,1), the field group
becomes O+(3,1). There are many space reflections, parametrized by planes, and
corresponding automorphisms ρ. But we need only adjoin one new element Γ. It is
associated with some representative automorphism ρv All other automorphisms
differ only by inner automorphisms σv from ρu with unitary U=U*~1. Later on
we will wish to admit partial isometries U, therefore we write

av{A) = l + U*(A-l)U. (1.10)

This will be an auto- or endomorphism whenever UU* = 1. All the reflections ρ
are implemented by "field operators"

φ = ΓU (1.11)

with Uejtf, UU* = ί9 in the sense that

Aφ = φρ(A), (1.12)

ρ = σuρ1. (1.13)

If π 0 is a unitary irreducible representation of a compact group like SO(2N), and ρ
is an automorphism, then π 0 o ρ is another such representation. It has the same
dimension as π0. There is therefore no chance of obtaining all representations from
a single one in this way. But all three eight-dimensional representations of SO(8)
are related by outer automorphisms, for instance.

Positive energy representations in CQFT are all oo-dimensional. It is known
[3] that π 7 ^ π 0 o ρ3 for some (localized) endomorphism ρJ? if the restriction of π3 to
the net of subalgebras {^(I^lcl^ with /1=spacelike complement of some
bounded, topological trivial domain in space-time, is unitarily equivalent to π0,
and if πo(j/) satisfies Haag duality. In CQFT, such a spacelike complement is a
compact subset of Minkowski space (see Sect. 2). All representations of nets of von
Neumann algebras on such domains are known to be unitarily equivalent [4].
Therefore we can expect to obtain all positive energy representations from the
vacuum representation π0, provided our local algebras πo(stf(ϊ)) are von Neumann
algebras satisfying Haag duality [5, Theorem 1]. Haag duality requires πo(«β/(J))'
= πo(<$/(Γ)); Γ is the spacelike complement of / and πo(stf(I))' consists of all
bounded operators on J^o which commute with all operators πo(A), Aesrf(I).
Haag duality is a maximality condition on the observable algebras, see below.

In the quantum field theory context, field algebras will be obtained from
observable algebras in the same way as the group O+(3,1) was obtained from the
group SO+(3,1), by adjoining elements ΓJ. They implement representative
endomorphisms ρs, one for each sector 2tf3. Fields φ are given by "bosonization
formulae." The bosons here are the observables. Thus Eqs. (1.9) and (1.12) of our
baby example remain valid,

AΓJ = ΓJρj(A) for all Assί. (1.14)
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Field operators are given by the bosonization formula

φ = ΓJU, UE^, UU* = 1. (1.15)

They obey

Aφ = φρ{Λ) with ρ = σL/ρJ (1.16)

and συ as in Eq. (1.10). The locality properties of fields relative to observables are
given by the localization properties of the endomorphisms ρ which they determine
via Eq. (1.16).

By definition, endomorphism ρ is localized in I if

ρ(A) = A for Ae^(Γ) (1.17)

whenever / and Γ are relatively spacelike (= disjoint on S1). ρ is called localized if it
is localized on some domain /. We define suppρ to be the smallest interval on
which ρ is localized.

Let 3F{ΐ) be spanned by the semigroup of field operators of the form (1.15)
which induce endomorphisms ρ that are localized in I. It follows from Eq. (1.15)
and (1.17) that fields are relatively local to observables in the sense that

[<M]=0 if Ae*/{!), φε^(Γ) (1.18)

whenever /' is relatively spacelike (disjoint) to /.
Given the quantum numbers J of the field φ of Eq. (1.15), its localization

properties are entirely determined by the observable factor U. One may construct
fields at a point φ(z) by taking limits, as is familiar from vertex operators associated
with loop groups [6]

φJ(z)=lim^ρnΓ
JUn with suppρM->{z}. (1.19)

n-+ao

Herein JίQn are suitable chosen real normalisation factors, and ρM = σ^ρj. By
multiplying with projection operators Eκ on the sectors JVK9 one obtains
intertwining operators between sectors

( L K) ELΓJEK-^K-*^L (1.20)

obeying

and chiral vertex operators

^ Γ { L

J κ ) U n with S U PP««->W
 (1 22)

which satisfy the relations of an exchange algebra [7,8] [Eq. (1.59) below]. These
are new kinds of vertex operators, not associated with lattices [10] unless ρ7 is an
automorphism. Correlation functions

(1.23)
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of fields (or vertex operators) may in principle be computed as follows. The
pointlike limit (1.19) is only taken in the end. As a consequence of the product rule
in the field algebra bounded field operators φJ = ΓJU satisfy operator product
expansions (on the vacuum sector), they are found explicitly in Sects. 4.4, 6.4.
Moreover

In this way, the correlation functions are expressed in terms of vacuum expectation
values of observables. An illustration of this procedure for a model with
automorphisms only is found in [5],

Application of the theory of superselection sectors in order to reconstruct a
quantum field theory from the algebra of the stress energy tensor was first
proposed by one of us in 1976 [42].

In this paper we consider the minimal 2-dimensional conformal field theory
model with central charge c=j9 which describes the scaling limit of the Ising model
at the critical point. It has the Virasoro algebra Virc= 1 / 2 as a chiral Lie algebra of
observables. This Lie algebra admits 3 inequivalent unitary irreducible positive
energy representations πs in the Hubert spaces jPj9 J = 0,^, 1. They have lowest
weights λj=0, χ£, \ for J = 0, \, 1. The vacuum |0> e J f0 is the lowest weight vector
with λo = 0. The local algebras of observables and the Virasoro algebra are
generated by one light cone component of the stress energy tensor.

Interesting algebras of observables in conformal field theory are group
algebras of oo-dimensional Lie groups. In particular, the Virasoro algebra is the
Lie algebra of a central extension Diff^S^ of (the universal covering of) the
diffeomorphism group of the circle. Therefore it is natural to work with Lie
algebras as much as possible. There is nothing to guarantee that endomorphisms
which we seek come from endomorphisms of Lie algebras, but in our model it turns
out to be the case.

However, the associative algebras of local observables

^°(/) = SpanDir(/)cSpanDir(S1) (1.24)

(diffeomorphisms of S1 that act trivially outside of/) do not have the property that
πo(<$/(I)) are von Neumann algebras satisfying Haag duality.

Violation of the Haag duality condition πo(j/(J))' = πo(j/(/')) means that one
can enlarge jtf°(I) by adjoining further local operators that act on J^o. It turns out
that we need to consider enlarged Lie algebras to find suitable endomorphisms.
Lie algebras of local observables, a global algebra Liej/ in which they are
imbedded, and a complete set of endomorphisms ρs of Liej? (J = 0, \, 1) to reach all
the sectors are found explicitly.

We summarize the result in

Theorem 1 (Endomorphisms). There exist local and global Lie algebras of
observables, and injections

i: Lie J/( J) -> Lie si D Vir

such that all unitary irreducible positive energy representations π3 of the Virasoro
algebra Vir on a Hubert space Jtfj extend to representations of Liej? on the same
Hubert space #fj, and



146 G. Mack and V. Schomerus

The endomorphisms Qj of IΛestf can be chosen so that they take the vacuum into
lowest weight vectors, in particular

πo(ρj(Lo))\0) = λj\0).

ρ 1 / 2 is not an automorphism.

The explicit description of Lie algebras and endomorphisms is found below
and in Sects. 2 and 3. Lie J / is extension of the algebra of vector fields and functions

on the circle (with generators Ln — z~n-r- and Nn = z"", n e Z) by an orthogonal Lie
dz

algebra (with generators Jab, a,be^Z,a — beZ — {0} plus two central elements I
and Y).

The basic strategy in the proof of this part of the results is to construct
everything in sight from Majorana fields, and to exhibit suitable homomorphisms
of Majorana algebras, which induce endomorphisms of the global observable
algebra. There are localized endomorphisms among them, but it is not convenient
to choose them as representatives Qj since they could not take the vacuum into
lowest weight vectors.

The Fourier modes ba = bta of the "universal" Majorana field

ψ(z) = Σ baz-«-V2 (1.25)
αe£Z

satisfy anticommutation relations

{ b α , ί > c } = έ ^ - c [ l + ( - l ) 2 ^ ] . (1.26)

Lie si is spanned by bilinears babc with a — c e Z - {0} and central elements 1, Y. Ln

and Nn are infinite sums of such basis elements. The endomorphism ρ1 / 2 and the
automorphism ρx act according to

(1.27)

iba-ί/2

βl(Y)=Y. (1.28)
x 2 ?

The action of these endomorphisms on the unbounded operators Ln, Nn is well
defined.

Next we turn to the discussion of the field algebra with quantum symmetry.
The example of isospin rotations in a world without electromagnetism, outlined at
the beginning of this section, suggests a relation between gauge symmetry and
statistics. This aspect cannot be illustrated in our baby example. Therefore it will
be necessary to review some known facts before we state our result.

It has been known for a long time [3] that there exists an intrinsic definition of
statistics of a superselection sector J^J if this sector can be reached by localized
endomorphism ρJ? so that π j ^ π 0 oρJ. Space time dimension d^3 was originally
assumed, but it was recently pointed out by Fredenhagen, Rehren, and Schroer [8]
that the definition applies in 2 dimensions as well, and leads to a representation of
the braid group B^ by operators in srf{ΐ) C $/ for suitable / 3 suppρ7 which depends
on Qj. Since ^(/ 1)gj/(/ 2) if I\ £ ̂  suitable I means large enough /.
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The analysis assumes that the localized endomorphism ρ = ρ3 is transportable
in the following sense. Given arbitrary It C /, unitaries L̂  e stf(ΐ) should exist such
that Qi = σv.ρ is localized in Jf. In conformal field theory, transportability follows
from covariance under diffeomorphisms if DifT(/)gj/(J) for intervals JcS 1 .

The generators σn of the braid group B^ have the form

σ ^ e " ' 1 ^ ) n = l,2,.... (1.29)

Herein ερ = σ1 is unitary and satisfies

[ε ρ ,4]=0 for all i e ρ V ) . (1-30)

It is defined as follows [3,8]. Select disjoint intervals / 1 , / 2 C/ and unitaries
such that ρi = σu.ρ is localized in It (i = l,2). Set

1 1 (1.31)

It is known that this quantity is a homotopy invariant in the following sense. Given
localization regions Il9J2, ερ does not depend on the choice of l/t. It is also the same
for any pairs (Il912) and (Γί9 Γ2) that can be continuously deformed into each other,
within /, maintaining disjointness. For intervals this means that ερ depends only on
whether lx is to the left or right of I2.

We desire to work with representative endomorphisms ρ3 which are not
localized, but are limits of localized endomorphisms ρ, and with a global algebra stt
whose vacuum representation is not faithful. We abbreviate

εj = εQJes/. (1.32)

There remains some arbitrariness in expressions (1.31) for ε3 if we weaken the
requirement 1/^6^(7) to l/^ej/, because we may multiply I/,- with different
elements of the center of si. The "Minkowski space" choice can be determined as
follows. Select ζeS1 ("projection of the point at infinity of a Minkowski space" -
see Sect. 2). Consider localized endomorphisms ρ with suppρClφζ and define ερ

by Eq. (1.31) with 11^^/(1). Inject εQes/(l)-+s/. Then take the limit ρ - ^ . The
result may depend on ζ. But it yields a representation of B^ in any case, and ε3 is
invariant under deformations of disjoint pairs of intervals (/1?/2) with ζ$l1vl2-

In practise, the braid group representations are determined by seeking suitable
8j in the commutant of Q}(*B/)9 cp. Eq. (1.30).

In d ̂  3-dimensional Minkowski space there is only one homotopy class of
relatively spacelike bounded, topologically trivial domains, and the braid group
representation degenerates into a permutation group representation (i.e.
σi~

1 = σi)
1. Using this fact, Doplicher and Roberts [13] were able to describe a

general construction of a field algebra 3F9 together with a compact gauge group G
which acts as a group of automorphisms of J27, such that the G-in variant elements
of the field algebra J^ are precisely the observables A e J / . Clearly a gauge group
with this property cannot be trivial, if there exist superselection sectors Jfκ Φ jf0

that are generated by localized endomorphisms. Nonabelian gauge groups G are
obtained from endomorphisms which are not automorphisms, while automor-
phisms yield abelian gauge groups.

1 Braid group representations in 3 dimensions as were recently discussed by Frόhlich et al. and
Fredenhagen [11,12], come from endomorphisms which are not localized in bounded domains,
but in unbounded cones in Minkowski space
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The physical Hubert space Jf will be representation space for 3F and G. A
nonabelian gauge group (or quantum group) G with irreducible representations
that are not 1-dimensional requires that superselection sectors J ^ occur with some
multiplicity dj9

^ = ® ® -#j«, (1.33)
J m = l

where #£Jm carry the same representation π7 of si for different m. The fields also
come in multiplets φJ

m, m = ί,...,dj, which transform covariantly under G. d3 is
determined by the permutation group representation associated with ρ3 in
Doplicher and Roberts theory.

It is also asserted in the work of Doplicher and Roberts that the fields φJ

m can be
chosen to satisfy local commutation or anticommutation relations when they are
localized in relatively spacelike domains. The nucleon field in the hypothetical
world with exact isospin in variance is an example of a doublet of local Fermi fields
which transform covariantly under gauge group SU(2). Only commutation
relations of fields φJ

m with the same "charge" J are intrinsically determined though,
others can be changed by Klein transformations.

One expects that some sort of "quantum symmetry" will take the place of the
gauge group G in 2-dimensional quantum field theories with nontrivial braid
group representations (1.29). But there exists no general theory yet which would
identify this quantum symmetry.

In our model we find

Uq(sl(2)) with q=-ί

as a quantum symmetry. This quantum group algebra has generators X = S± and
q±sz/2 a n c j a d m i ts 3 "physical representations" τJ of dimension 2J + 1. They are
labelled by quantum isospin J = 0,^, 1. In Sect. 6.1 and 6.2 we will present a brief
review of quantum group theory and an explanation of the notion of co variance of
a quantum field theory under quantum groups. It appears natural if the quantum
group algebra is thought of as a generalization of the enveloping algebra of a Lie
algebra. In the statement of Theorem 2 below, the explicit form of comultiplication
and counit in Uq(sl{2)) is used.

Basically, Theorem 2 is an assertion about properties of operators Γ^. In this
paper we concentrate on Lie algebras. The elements A of the observable algebra si
in Theorem 2 can be in the Lie algebra of observables Lie.s/, or in its universal
enveloping algebra, or in other associative algebras si which are affiliated with
Liej^ and to which the positive energy representations and endomorphisms ρs of
Lie si can be extended. To obtain nonempty local field algebras !F(l\ si needs to
be big enough. In particular we want Diff~(/) c si. It is fairly obvious what the
natural associative algebra of observables should be. The group algebra of a
(2-dimensional) central extension of the identity component of the restricted
orthogonal group is a natural candidate for the global algebra. It is similar to the
well known restricted unitary group [14]. However, we do not wish to enter into a
mathematical discussion of this group and its endomorphisms in this paper.
Therefore, results which require associative algebras larger than the universal
enveloping algebra will be formulated as remarks.

At a heuristic level, we may think of the elements U of the restricted orthogonal
group as exponentials of quadratics in Majorana fields ψ, so that the bosonization
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formula takes the form

ΦU2 = Γ^2 expί J φ)X{z, w)ψ(w)dzdw, (1.34)

for J=\, with some kernel X which determines localization properties oϊφ^2. The
bosonization formula for φ^ merely reconstructs a triplet of Majorana field.

Theorem 2 (Field Algebra with Quantum Symmetry). Generators of a field algebra

171/* = 1 (J = 0,i,l,m=-J,...,J)

and generators X of the quantum group algebra & = Uq(sl(2)) with q= —i both act in
a Hubert space of physical states

^phys= Θ Θ *J~ (1-35)
J = O,i,l m-=J

and obey the following covariance conditions.

1. Fields φ implement endomorphίsms

AφJ

m = φJ

mρ(Λ) with ρ = σuQj (1.36)

or, equίvalently, ΛΓ^ = Γ^Qj(A).
2. The vacuum is quantum group invariant,

S±|0> = 0, 4± s* / 2|0>H0>. (1.37)

3. Observables are quantum group invariant,

IX9A] = O for Aesrf, Xe%. (1.38)

4. The field operators are quantum group covarίant in the sense that they obey
generalized commutation relations with the quantum group generators,

q±sψ = φJτJ(q±sήq±s% (1.39)

S±φJ = φJτJ(qs*/2)S± +φJτJ(S±)q-s*12. (1.40)

5. Local braid relations (cp. Remark 3): The relation

holds true for vectors \ξ}ίna subspace of J ^ h y s which includes JtKr if
the quantum group M-matrix multiplied with a phase factor, for J—\.

We used matrix notation in 4. τJ is the 2J + 1 dimensional matrix representa-
tion of <§, and φJ is the row vector with components φJ

m. Validity of 4 for general
φJ follows from its validity for φJ

m = Γ^ by property 3. βj defines the representation
of the braid group as explained before.

The fields φ = φ1/2 (chiral Ising field) and ψ = φ1 make transitions between
sectors as specified in Fig. 1.

The significance of Relation 5 comes from its corollary as stated in the
following:

Remark 3 (Local Braid Relations). Suppose that fields φ{ = tfU and φ[J = Γ/U' are
localized on disjoint intervals on S1\{(}, and U, Uf are limits of elements of local
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algebras <stf(I) with Iφζ. Then the fields obey local braid relations

φJ

kφ'ι
J\ξ}= £ φ£φJ

n@™(J)\ξ) (1.42)

on the subspace of states \ξ} where Relation 5 of Theorem ί holds.

Local Braid relations of the form (1.42) were introduced by Frόhlich [15].
This corollary of identity 5 of Theorem 2 is established by a short and

instructive calculation which uses the definition and homotopy invariance of
εj = ερj (see Appendix A), ζ is the point on the circle which entered the definition of

We were unable to construct a field algebra which obeys local braid relations
on all of Jί^hys, with a matrix 01 that is independent of the sector to which the state
|O belongs. The reason is easy to explain.

The third component of quantum isospin will be called charge for short.
Charge is conserved. Consider the chiral Ising field, φJ

9 J=\ and inspect the
desired equations (1.41), (1.42) for states |O e 3fKr of isospin K = 1 and charge r = 1.
Take it for granted that braid relations are nontrivial in the sense that matrix 01%
is nondiagonal. The canonical ^-matrix for Uq(sl(2)\ q = — i is nondiagonal for
J=i Then ®}l\μ,$ΦO. Let l=\ and k=-\. Then the left-hand side of
Eqs. (1.41), (1.42) is zero because there is no state of charge § in ̂ h y s . But the right-
hand side receives one nonvanishing contribution, m=^, n= — \. This contri-
bution cannot vanish for all \ξ} e 2tfγ ί unless φ1/2 vanishes identically on one of the
sectors, because the intertwining operators (1.20) satisfy completeness relations
(Sect. 4.2).

It appears thus that local braid relations as an operator identity, with a
nondiagonal numerical matrix 0ί, would require a space with unphysical states. It
will be remembered that local (anti)commutation relations of charged fields in
gauge theories like Quantum Electrodynamics also require an unphysical state
space.

Theorem 2 is established in several steps which may be summarized as follows:

fusion rules ^intertwinίng operators rl
-* -+coυ. field algebra ^

endomorphisms
^ braid group representation-^local braid relations.

In our baby example a preliminary field group was first constructed, with relations
AΓ = Γρ1(A). The existence of an intertwiner was then used to impose a further
relation, (Γ2 = ± 1). In the conformal model we proceed in a slightly different way
which is suggested by the work of Fredenhagen, Rehren, and Schroer [8]. Instead
of displaying further relations, the field algebra is constructed as an algebra of
operators in a Hubert space, using the intertwiners as building blocks. Their group
theoretical meaning becomes clear from the following consideration.

In the approach based on endomorphisms, all representations of interest are
realized in one standard Hubert space if0. In particular the irreducible represen-
tations (πκ, J^K) = (π0 © ρκ, J«f0). Endomorphisms may be multiplied

QκQj(A) = Qκ(Q J{A)) etc. (1-43)

Therefore, π 0 © ρκρs is also a positive energy representation realized in Jif0. It may
be reducible. To reduce it into irreducible subrepresentations = π 0 © ρL, one needs
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projection operators 77 ( J which commute with representation operators
\L KJ

^ ^L ^ (1.44)

and intertwining operators T[ I which establish the unitary equivalence of
\L KJ

π 0 o ρκρs restricted to 77L J»f0 with π 0 ° ρL,

Here we have omitted symbols π0, it is understood that all operators act on J^o, for
the moment. Comparing with Eq. (1.21) and remembering that πκ may be

identified with π 0 o ρK9 we see that intertwiners Γ\ ) get identified with the
\L KJ

intertwiners π01 TI I I that reduce the representation π 0 © ρκρL. In our

model these intertwiners are unique (up to phase factors). We will find elements T
satisfying Eqs. (1.45) and (1.46) in the universal enveloping algebra ^(Liej/) of a
Lie algebra of observables which is contained in Liej^, their action on Jfo is then

given by πo(T). In conclusion, operators Γ[ I are composed of elements of
\L KJ

%{Liestf) and identification operators.
Writing [ρ] for the equivalence class of unitary representation π 0 o ρ9 the

decomposition into irreducibles comes out as follows:

Theorem 4 (Fusion Rules).

IQ1/2Q1] = IQ1Q1/2] = IQ1/2] > (1-48)

[β?] = [βo] (1-49)

and lρoρj] = [ρ7] for J = 0, i 1.

It is not an accident that this recovers the fusion rules of the conformal field
theory. Using the intertwiners as building blocks, field operators φJ = ΓJU can be
constructed which act on the Hubert space

jf = φjtrJ (1.50)
j

which is a direct sum of superselection sectors, without multiplicity. Operators ΓJ

can be composed from intertwiners Γ[ ), so that
\L KJL KJ

ΓJΓJ* = 1. (1.51)
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The last property fixes complex factors, up to some phases without physical
meaning.

We note that states of the form

φLφJ\0)eJf (1.52)

transform according to a representation = π 0 o QLQJ (or a subrepresentation of it).
This is because they are of the form ΓLΓJ\ξ), \ξ}e^0, and

π(A)ΓLΓJ\ξ> = ΓLΓJπ0 o ρLρj(A)\ξy,

by bosonization formula (1.15) and Eq. (1.51). The decomposition of representa-
tion π 0 o ρLρj into irreducibles π 0 o ρκ will therefore recover the fusion rules of the
conformal field theory.

To accommodate the quantum symmetry, one will need multiplets of field
operators [16,17]. Our field operators will be given by a bosonization formula

They are required to obey the same commutation relations with observables as the
single component fields considered before:

(1.54)

so that

independent of m.
Such field operators can be constructed from the intertwining operators

Γ ί I between sectors and quantum group Clebsch Gordan coefficients. The
\K LJ f J \

operators /JJf must be linear combinations of intertwiners Γ\ I, in order to

have covariance Property 1 of Theorem 2, with coefficients proportional to
quantum group Clebsch Gordan coefficients, in order to have quantum group
covariance. Some overall factors cJKL remain free. The general idea is to require
identity 5 of Theorem 2,

ιk ιl bJ~ la 1m1n ^kl \ J ) \Y.J\J)
m,n

and reconstruct the quantum group as a commutant [14] of the matrix 3ft,.
Equation (1.56) is the generalization of a relation in the field algebra that is valid in
Doplicher and Roberts theory in d^3 dimensions.

Consistency of Eq. (1.56) would require that the ̂ -matrix satisfies Yang Baxter
equations, and has the same eigenvalues as ε7.

The range of indices is not known a priori, and must be found together with the
matrix 0ί. The braid group representation (1.29) determines a statistical dimension
dj = d(ρj). It is given by the index of a linear transformation which determines ρs in
our model. This statistical dimension comes out as

dj = l,]/2,ί for J = 0, i l (1.57)

and satisfies the same sum rules as quantum dimensions do in quantum group
theory. This indicates that the quantum dimension substitutes for ordinary
dimension in Doplicher Roberts theory when space time dimension d^2.
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From the knowledge of the endomorphisms one obtains also representations
of the braid group by operators σn = ρn ~ x(εj) as explained before. This braid group
representation is found explicitly and is related to a Temperley-Lieb-Jones
algebra.

Let us fix J. The interesting case is J=\. The action of braid group generators

σn on products of chiral vertex operators Γ(s) = Γ[ ) by right multiplication
\L KJ

yields standard braid matrices [8, 18, 19, 20] R. In particular

S3S4

Explicit calculation shows that they agree with the expressions for ^-matrices in
terms of 67-symbols for Uq(sl(2)\ q=—i, multiplied with an overall phase factor.

It is not an accident that our matrices Rs

8\
s

s

4

2 as defined by Eq. (1.58) agree with
the known K-matrices of the conformal field theory model. If φ(s) = Γ(s)U and φ'(s)
= Γ(s)Uf are localized in disjoint intervals, then Eq. (1.58) implies local braid
relations for them, as one has in conformal field theory

φ(Sl)φ'(s2)= Σ Φ'isJΦisJKTsl- (1.59)
S3S4

This is established in the same way as for Remark 3. Comparing Eqs. (1.56) and
(1.58) it follows that the standard /^-matrix jR*̂ « a n d the quantum group invariant
matrix 01 must be related by a "vertex-SOS-transformation" in the terminology of
Frόhlich et al. [41]. In this formula, summation over intermediate states should
only run over "physical" representations S" = 0,i 1, excluding •§. This creates the
problem mentioned before and is responsible for the fact that we were only able to
demonstrate the validity of local braid relations on a subspace of J^ h y s (Sect. 6).

As was mentioned above, the braid group generators σn are expressed in terms
of projectors En of a Temperley-Lieb algebra

< U > . ( 1 6 0 )

^ E,E,~Efi, for \i-j\H

with

z=-e™ι\ q = i, and Q = d2

1/2 =

This is isomorphic to the Temperley-Lieb algebra of the 2-state Potts model (Ising
model on a 2-dimensional lattice) [21,22].

It turns out that the projectors in the Temperley-Lieb-Jones algebra generate
the whole observable algebra πo(Liej/) in the vacuum sector. In this description,
the endomorphism ρ1 / 2 takes a particular simple form, ρ1/2(En) = En+ί.

Let <& be another algebra which is obtained from the group algebra [23] CB^
of the braid group B^ by imposing relations, such as quadratic, cubic or higher
order equations which are to be satisfied by all braid group generators σn [39]. If
we wanted to start from such an algebra ^ as a candidate for vacuum
representation of the global observable algebra, with its natural endomorphism,
ρ(σn) = σn + 1, construction of a local quantum field theory would require that we
enlarge ^ by adding limit points [in the topology furnished by a suitable state
ωo( ) = <0| |0>] and exhibit subalgebras stf(I) which commute for relatively
spacelike domains. An example of such a construction was described by Connes
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and Evans [29]. In general, the vacuum representation need not be faithful, but the
knowledge of the local subalgebras permits to reconstruct the global observable
algebra. The whole construction amounts to lifting the structure of space time as a
causally oriented manifold to the algebra (cp. Sect. 2.3).

In our model, the algebra # gets lifted to

^ ® C Z 2 . (1.61)

The group Z 2 has two elements 1 and Y with Y2 — 1. They span the group algebra
CZ2 and commute with generators σn oϊΉ. The fundamental endomorphism ρ1 / 2

acts on ^ ® C Z 2 according to

(i 62)

for yeZ2. χί/2 is the nontrivial character on Z2, i.e. χ1/2(l) = l and χ1/2(Y) = — 1.
The global field algebra includes additional generators Γa

1/2 with relations

(1.63)

and quantum group generators which commute with σn and y e Z 2 and which obey
generalized commutation relations (6.30) with Γa

ί/2. They invoke comultiplication
(6.10).

These formulae are easy to generalize, but to generalize the embeddings of local
subalgebras ^(1) is a nontrivial task. Also the physical field algebra will not be a
faithful representation of the algebra 3F defined by relations (1.63), (6.30) and
relations in c€. A representation of the quantum group covariant field algebra 3F in
an unphysical linear space Jf is furnished by the theory of induced representations.
Let π0 be the vacuum representation pf ^ ® C Z 2 on Hubert space J>f0 (obtained
from state ω0), and define ffl to consist of C-linear functions / on 3F with values in
Jf0 which obey covariance condition

f(Aφ) = πo(A)f(φ) for Ae%®CZ2, φeP. (1.64)

!F acts on Jf according to

(ψf)(Φ)=f(φψ). (1.65)

2. The Observable Algebra and its Positive Energy Representations

2Λ. The Virasoro Algebra with c=\ and Associated Net of Local Observables.
Einstein causality plays a pivotal role in algebraic field theory. Therefore it is
appropriate to start with some introductory remarks to show what becomes of it
when we restrict attention to chiral observables.

2-dimensional conformal quantum field theory lives on a tube [24,25]
M = R x S 1 with points (τ, σ), τ = — oo ... oo, σ = 0 ... 2π. This space time manifold
M contains Minkowski spaceŝ  Mζ as subspaces (see Fig. 2). Their positions are
fixed by the unique point ζ e M at spacelike infinity of M. Manifold M inherits
from M a global causal structure - i.e. a notion of positive timelike, spacelike, and
negative timelike - which is invariant under the action of an infinite dimensional
space time symmetry group (conformal group) [26]

(2.1)
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M

pos. tirnelike
relative to ζ

neg. timelike
relative to ζ

2τr

Fig. 2. Diffeomorphism invariant global causal structure on the tube M = R x S 1 . Mζ is the
Minkowski space with point ζ at "spacelike infinity". It consists of all points of M which are
relatively spacelike to (

Dif^S1) is the universal covering group of DiffίS1). Its elements are diffeomor-
phisms / : R->R with f(σ + 2π) =/(σ) + 2π. The first factor acts on σ+ = τ + σ, and
the second on σ_ = τ —σ.

In conformal field theory, this symmetry is unitarily implemented, so that the
Hubert space of physical states carries a unitary representation of the central
extension G~ of G (i.e. a ray representation of G). This symmetry group furnishes
also the most basic observables.

The Lie algebra of G~ is a direct sum Vir©Vir of two Virasoro algebras. They
are generated by the two light cone components of the stress energy tensor

T±(z±), z±=ei^. (2.2)

Because of 2π-periodicity in σ, they are 1-valued functions of their argument

We start from algebras of local observables which are generated by the stress
tensor. Therefore the observables will depend on only one of the light cone
variables z+, i.e. they live on the circle S1. Relatively spacelike domains Θ1 and Θ2

in M project on disjoint intervals Ix and I2 on the circle. Therefore

relatively spacelike = disjoint on the circle S 1 ,

and observables which are localized on disjoint intervals on S 1 should commute,
by Einstein causality.

We restrict attention to one of the algebras Vir, and drop suffix 4- o r - . The
stress tensor has explicitly known commutation relations

(2.3)= ^2δf(z ~ iv) + δ(z- w)^J T(z) + ̂ b'"(z - w).

The commutator is nonvanishing only for coinciding arguments, in agreement
with the above locality requirement. In this paper we consider the theory with
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central charge c=4, (i.e. the scaling limit of the 2-dimensional Ising model at the
critical point),

T(z)= Σ Lnz-n~2 with L_n = L*n, (2.4)
neZ

and the Fourier components Ln satisfy commutation relations of a Virasoro
algebra. In a positive energy representation of Vir, the "conformal energy"

L o ^ 0 . (2.5)

We define complex Lie algebras of observables Vir(/) for arbitrary intervals
JcS 1 . Vir(/) is spanned by operators

T(f)=^-.jzdzT(z)f(Z) (2.6)

with smooth functions / having support

supp/C/. (2.7)

T(f) are unbounded operators. Associative algebras of bounded operators are
obtained as group algebra of a central extension DifΓ(/) of the Lie group

Diff^cDiffίS1), (2.8)

which consists of diffeomorphisms of S1 which act trivially on the complement of/
inS 1 .

The Virasoro algebra with central charge c=\ admits 3 inequivalent positive
energy representations πj9 7 = 0,^, 1. They are lowest weight representations with
weights

Ao = 0, λll2=&, A 1 = f (2.9)

They act in the Hubert spaces Jfr with the lowest weight vector |AZ>

π/(LJ|A/> = 0 for n>0, (2.10)

\λI) = λI\λI>. (2.11)

π 0 is the vacuum representation; it acts on the vacuum sector J^o which contains
the vacuum vector |0>. All the representations restrict to faithful representations of
the local algebras Vir(J) and we may identify Vir (/) with its vacuum representation
πo(Vir(/)).

We seek endomorphisms ρ3 of a net of algebras of observables srf{I) such that
7ij = π 0 © ρj. As discussed in the introduction, we can expect that they exist, if s/(I)
are von Neumann algebras and satisfy Haag duality. Haag duality means that the
observable algebras are maximal, i.e. it is not possible to add additional local fields
which act in J^o. The net of algebras DifΓ(/) does not have this property (see later).
This is the reason why we need to work with a global Lie algebra Lie ̂ 3 Vir of
observables that is larger than the Virasoro algebra. The weak closure of the
associative algebras πo(Span Diff~(/)) would satisfy Haag duality [27]. But it is
inconvenient for practical calculations. We prefer to work with explicitly known
Lie algebras of observables.

We will exhibit twoglobal algebras Lie ̂  C Liej/ of observables. The Virasoro
generators are in Liej/, but not in Liej/. They are formal limits of elements in

, though.
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It will be shown that all the unitary positive energy representations of the
Virasoro algebra with c=\ extend to unitary representations of Lie J/, and also of
Liei/. Suitable endomorphisms Qj are exhibited to obtain all of these represen-
tations πj from the vacuum representation π0, i.e. πj^zπo°Qj. These endomor-
phisms are endomorphisms both of Liej/ and of Lie J/.

These endomorphisms are not localized. But localized endomorphisms (which
generate the same representations) also exist and will be briefly described in
Sect. 3.4. It would be important to show that these localized endomorphisms
define endomorphisms of a Lie group with Lie algebra Lie<s/. Since this group
would have to contain the diffeomorphisms in DifF^S1), it would follow that
localized endomorphisms have the transportability property that was mentioned
in the introduction.

2.2. Major ana Algebras on the Circle. We begin with the construction of local Lie
algebras of observables Liej/(7). Its elements are constructed from bilinears in
Majorana fields on the circle. They will be injected into a global algebra Lie<s/
C Liei?, and our endomorphisms shall be endomorphisms which are obtained by
restriction of endomorphisms of a suitable Majorana algebra.

In the case of a topological nontrivial space time, such as M = R x S1 and its
projection S1, the construction of a global algebra si is subtle. Whereas local
algebras $i(ΐ) can be identified with their vacuum representation, the same is not
true for si. Two domains lx and I2 may cover all of S1, therefore si may contain
global quantities (e.g. exponentials of charge operators in Liej/) which lie in the
center of si. These charges may have different values in different superselection
sectors. They must not be identified with multiples of the identity. Therefore si will
have a nontrivial center, and πo(si) is not a faithful representation. Familiar
examples of such charges which label superselection sectors in the real world are
electric charge Q and fermionic charge ( — 1)F, F = number of fermions. In our
example, the global algebra will be obtained from a "universal" Majorana algebra
which contains a central element Y. It may take values ± 1 in the irreducible
representations. In principle it is possible to avoid the use of a global algebra
altogether, by working with localized endomorphisms in the punctured circle. In
practise this is inconvenient.

We denote points on the circle by z = eiφ, φ = 0... 2π. The Majorana algebra on
the circle is generated by field operators ψ(z) which satisfy canonical anticommu-
tation relations (CACR).

w)l (2.12)

and hermiticity condition
φ)* = zψ(z). (2.13)

More precisely, only smeared fields

ψ(f)=^§z-^2dzf(z)ψ(z) (2.14)
2πι s1

are operators (hermitian for real /), and their anticommutation relations make
sense for continuous sections / of some line bundle over S1. These spaces of
sections ΓNs and ΓR may be identified with functions on R which are 2π-antiperiodic
respectively periodic. Accordingly, there are actually two Majorana algebras
MajNS and MajR, generated by fields with boundary conditions

ψ(ze2πi)= ±ψ(z) + forφeMajNS, — forφGMajR. (2.15)
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The fields can be expanded in Fourier modes

ψ(z)= Σ M " r " 1 / 2 e M a j N S (2.16)
reZ+l/2

and
(2.17)

neZ

The commutation relations and hermiticity conditions are in either case

{ba, bc} = δύf _ c l , b* = b-a, (2.18)

a e Z + i for ba e MajNS, and α e Z for frfl e MajR. Each of the two algebras possesses
one faithful ^-representation generated by lowest weight vectors |NS> and |R>.

br\NS} = 0 for r ^ i , r e Z + i , (2.19)

feπ|Λ> = 0 for n ^ l , rceZ. (2.20)

Note that bl = ̂  by CACR, and &OI<Ό *s a l s o annihilated by all bn with n ̂  1. In the
literature, the algebra generated by bobn is sometimes called Majorana algebra in
the R-sector. Its generators bobn obey canonical commutation relations. The
representations of our fermionic algebra MajR splits into two representations of
this bosonic algebra.

We wish to exhibit both the NS-representation and the R-representation as
representations of a single algebra Maj. Basically, this is done by admitting test
functions feΓNS®ΓR. They are single valued continuous functions on the double
cover S 1 of S 1 with points z 1 / 2 = eiφ/2, φ = 0 ... 4π. By abuse of notation we regard
functions on S 1 as functions of z.

Definition 2.1. The universal Majorana algebra Maj is the associative *-algebra
with identity which is generated by a central element Y and smeared fields on S1,

subject to anticommutation relations

{φ(z), ψ(w)} = πi[_δ{z - w) - Yδ(z - we2π/)], (2.22)

[ϊ;ψ(z)]=0, (2.23)

hermiticity condition

ψ(z)* = zψ(z) (2.24)

and boundary conditions

ψ(ze2πi) = - Yψ(z), Y2 = 1. (2.25)

The decomposition in Fourier modes reads

ψ(z)= Σ baz~a-112. (2.26)

The Fourier modes obey relations

= 0, Yba = (-l)2aba. (2.28)
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It follows that

Y=Abl-\.

Therefore the algebra is actually generated by smeared fields ψ(f) alone.

Proposition 2.2. Maj admits two inequivalent irreducible *-representations π N S and
πR with lowest weight vectors |NS> and |R>.

) = - 1 , πNS(ftΛ) = 0 for neZ, M a j / k e r π N S ^ M a j N S

while

πR( 7) = 1, πR(fcy) = 0 for r e Z + \, Maj/ker πR ^ MajR.

The proof is obvious. The universal Majorana algebra is only an auxiliary
construct which will be used to build Lie algebras. In place of Maj we could work
with Maj N S 0Maj R . This amounts to imposing the further relation babc = O for
a + cφZ.

2.3. The Lie Algebra of Local Observables. The Lie algebra of observables shall be
made of bilinears in the Majorana field. Their vacuum representation shall admit
|NS> = |0> as lowest weight vector. We wish to identify the local algebras Lie^(i)
with their vacuum representation in accordance with the principles of the theory of
superselection sectors. Therefore we will construct them out of fields in MajN S and
later inject them into a global algebra which is made out of fields in Maj.

Throughout the rest of this paper, / c S 1 will be open intervals whose closure is
not all of S 1.

Definition 2.1a. The real Lie algebra Lie J / ( / ) is spanned by
1. the identity 1,
2. generators

J J dzxdz2zl ^2z2- V2F(zu ZzMzMzi), (2.29)

where F is a real C0 0 function on S 1 x S 1 with F(zί9 z2) = 0 unless zί e I and z2 e /,
andφ( )eMaj N S .

F may be regarded as ordinary function because functions with the indicated
support properties are identified in a natural way with elements of ΓNS.

By CACR of Majorana fields, Liej/(7) is indeed a Lie algebra. It will not
contain the local Virasoro algebra, unless one proceeds to including limits or
infinite sums of generators in \ΛQS$(Ϊ). However, the stress tensor can be
constructed as bilinear in the Majorana field.

Definition 2.3b. The real Lie algebra Vir(7) is spanned by identity 1 and

T(f)=§zdzf(z)T(z), (2.30)
s1

where / is a real C00-function with supp/Cl, and

^ψ(z)(wz)\. (2.31)
ΰz J

Elements of Vir(J) act as derivations of Lie ̂ (7), and Liej/(7)®Vir(7) is also a
Lie algebra. From the CACR of Majorana fields one deduces also
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Proposition 2.4 (Locality). // InΓ = Φ then

A e Lie J / ( / ) 0 Vir(J), B e Lie J/(/ ' )Θ Vir(/')

implies [A, JS] =0. Jn particular, the bilocal fields in Lie J/(J) are relatively local to
the stress tensor.

Next we define the global algebra LIQJ^ to consist of bilinear in the Majorana
fields ψ( -) G Maj on the double covering S1 of S1 which commute with rotations by
In.

Definition 2.5. The real Lie algebra Liej/ is generated by
1. the identity 1.
2. generators

s1 s1

3. conformal energy and number operator

Lo= Σ rfc_A+i&o> (2 32)
re^Z,r>0

JV0= Σ fc_A, (2-33)

where fcr are the Fourier modes of ψ, viz.

Ψ(z)= Σ Kz-"-"2

αe-i-Z

and F is a real C^-function on S1 x S1.

We chose to include in the global algebra the generator Lo of rotations of the
circle, as is customary also in loop group theory [6], in order to define the notion of
a positive energy representation by condition L o ^0.

Next we wish to inject the local algebras into the global one. An interval / C S1

is covered by two disjoint intervals ΓcS 1 and 7e2 π ίC§1 in the double covering S1.
The function F in Definition 2.3a may be regarded as function on S1 with support
on 7x7.

The algebras jtf(I) satisfy J/(J) C stf{ J) iϊICJ. One speaks of a "net of algebras."
An injection i of such a net of (Lie) algebras into a global algebra is given by a
family of injective homomorphisms

such that ij(A) does not depend on / so long as A e J/(J). We write i for iι in this
case.

Definition 2.6. An injection i: Lie<£/(/)-• Lie ,£/ is defined by

i:$$dZldz2z;^2z-2 WF{zl9z2)ψNS(zί)ψNS(z2) (2.34)
/1

^ίJrfz 1rfz 2zΓ 1 / 2zΓ 1/^i^2)i[^iMz 2) + φ(z1β
2 πV2^2 πΌ (2.35)

//
andi(l) = l.

An index NS has been appended to φN S to remind of the fact that elements of
Liej/(J) were made from fields in MajNS. One must verify that i is really an
injection. Working out the commutation relations verifies that i are homomor-
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phisms. The relation Yψ(z) = — ψ(ze2πi) is used to see this. Finally i is obviously
injective and independent of the choice of /.

Remark 2.7. The process of injection i of local (Lie) algebras into a global algebra
s& = ̂ (S 1 ) is like covering a manifold with charts. If we think of / C S 1 as obtained
by injecting subsets of a Euclidean space, then i may be regarded as a lift of that
injection to the algebra. We may obtain the subalgebras i{stf{I)) from subalgebras
^/(/i) for intervals /1cS1\{ζ} in a fixed "Minkowski space" (see Sect. 2.1) by
making use of the 1-parameter group of automorphisms αf of &0 which is generated
by Lo. If / is obtained from Iγ cS1\{C} through rotation by ί, then

) . (2.36)

But let us point out that the intersection of commutants

Π WV)) (2.37)
Γ,ΓnI = 0

in s& is not precisely i{sί{I)) but includes also the element Y in the center of sd.
Injection i will extend to an injection of extended algebras Lie ,$/(/) ©Vir(J),

which contain the local Virasoro algebras, into a suitable global Lie algebra
Liej/^Liej/φVir. The stress tensor can be regarded as formal limit of elements
in Lie^/(7). This tells us that the injected stress tensor is

T(z)= - \ lim \U(w)ψ'(z)+ \ψ(we2πi)ψXze2πί)- — ^ 1 . (2.38)
2 w-+z (2 2 (w — z ) )

The injection i extends to f:Liej/(J)©Vir(J)^Liej/φVir.
Lie^ΘVir is not suitable as a global Lie algebra, however, because it is not

mapped into itself by endomorphisms which we are going to exhibit. We proceed
to define a larger Lie algebra Liej/DLiej/φVir, with central elements 1, Y and
further generators

LmNn (neZ),
(2 39)

Hermitian conjugation acts as

L\ = L_n, ΛΓ* = JV-n, Λ W - * - « (2.40)

Definition (2.38) of the stress tensor yields Virasoro generators

Ln= Σ (c-f\bH-J>c+Un,0b
2

0 for n^O. (2.41)
c>n/2\ I) O

The other generators are defined as

Nn= Σ K-cK for n^O, (2.42)

-c (2.43)

Summations run over C G ^ Z (integers and half integers),) means "strictly bigger."
Generators Ln and Nn are exhibited in manifestly normal ordered form.
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It is straightforward to work out the commutation relations. They come out in
the form

[Ln,L fe]=(n-/c)Ln+fc+..., lLn,Nk-]=-kNn+k+..., [iVn, JVJ = . . . ,

where ... stands for finite linear combinations of generators Jah, 1 and Y. More
explicitly we have

Proposition 2.8. Generators Lw, Nm Jab satisfy commutation relations

( n - m ) L π + m + ^ φ 2 - l ) ^ _ m , (2.44)

for nΞϊO,

for fc^O,

— <α<min(«,

+ n Σ
max(θ,y +k)

>NA= Σk)<c<

k + n)

Λ
k

a-k-^\Jn+k-a,a, (2.45)

(2.46)

!L+Ja n+b
2 (2.47)

for n^O,

L"'fll»-^*] =XbJa,k + b~~Xa Jb,k + a~X-k-aJk + a,b + X-k-bJk + b,a> (2.48)

/or fcSϊO, and

Uab> Jed] =—<><,,- Jbd + h,- Jad + h,- άha ~^a,- άKb

+ δ ί,,_A>-c-^,-A,-c) (2-49)

used the abbreviations

Jab = Jab+Kl+(-l)2ar\δa,-c, (2.50)

ίl a>0

We see that the commutation relations close. Therefore, finite linear combina-
tions of the generators form a Lie algebra. It does not contain i(Lie^(/)©Vir(/))
as a subalgebra, though, because elements of Vir(/) are infinite sums of Virasoro
generators with coefficients that decrease fast,

for all M > 0 .
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This is easily rectified. We admit infinite sums of generators 1, Y9 Jab, Nk9 Ln with
coefficients that decrease fast with |α|, \b\9 |fc|, |n|. It follows from Proposition 2.8
that their commutation relations close. In this way, we obtain the desired Lie
algebra Liej/DLiej/0Vir.

2.4. Decomposition of Majorana Representations into Representations of Ob-
servable Algebras. Since observables and Virasoro generators were made from
Majorana fields, the two representations of Maj with lowest weight |NS> and |R>
restrict to representations of Lie J? . They are positive energy representations, but
reducible.

The representation space J fNS is spanned by vectors

rN>rN.1>...>r1^. (2.52)

The complex Lie algebra πNS(Liesi) is generated by elements brbs with r,s
The other generators X of πNS(Lie^), in particular those of πNS(Vir), consist of
infinite sums of such generators, but only a finite number of summands does not
vanish when X is applied to a basis vector. Therefore, f̂NS decomposes into two
invariant subspaces J^lenφJ^^d for Lie**/. They are spanned by vectors of the
form (2.52) with N even and odd respectively. They admit lowest weight vectors for
the Virasoro algebra

|NS> = |0> e J^Z™, Lo |0> = 0 (2.53)

and

(2.54)

It is easy to see that there exist no further lowest weight vectors for Vir. Vectors
(2.52) are eigenvectors of Lo to eigenvalue — £/> For a lowest weight vector, this

i

eigenvalue would have to equal 0, γ£, or \. This admits only JV = 0 and N = 1, r t = \.
Therefore the representation spaces J^s e n a n ^ ^Nsd a r e irreducible ones for Vir
and for Lie J/I) Vir. It is obvious that they remain irreducible when restricted to
Liej/. As representations of Vir they are uniquely characterized by their lowest
weights λ = 0,^. Similarly, J^R is spanned by vectors

b-nN...b..ni\R}, ttt.eZ, % > n N _ 1 > . . . > n 1 ^ i (2.55)

The complex Lie algebra πR(Lie s4) is generated by elements bmbn with m, n e Z etc.
One finds that Jί^ decomposes into two equivalent representation spaces
JfR

evenΘ^fR

odd for Liej/ with lowest weight vectors

(2.56)

and

&olR> = lτk>e^R°dd, UlΊV>=ΊίδlτV> (2.57)

We have proven

Proposition 2.9. The irreducible positive energy representations πs of the Virasoro
algebra with central charge c=\ and lowest weight Λj = 0,γ£,-| extend to positive
energy representations of Liej? in the same representation space.
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3. Endomorphisms Which Intertwine Positive Energy Representations

3.1. Endomorphisms of the Universal Majorana Algebra
which Restrict to Endomorphisms of the Lie Algebra of Observables \ΛQS$

Proposition 3.1. Define the action of ρ3 (J = 0, \> 1) on generators Y, ba (ae^Z) of the
universal Majorana algebra Maj by ρ7(l) = 1 and

ρo = id, (3.1)

-^(61/2-6-1/2), * = 0 , ρ(Y)=-Y, (3.2)

This defines *-endomorphisms of the *-algebra Maj. ρί is an automorphism but ρ 1 / 2

is not.

Proof It is easily verified that the relations in Maj are preserved, and ρ7(6*)
= ρI(b-a) = ρI(ba)*. Therefore ρ7 are *-endomorphisms. The other statements are
also obvious. ρ 1 / 2 is not an automorphism because fci/2 + 6-i/2^ί?i/2(Maj) and
b0φρ1/2(Maj).

Remark 3.2. i) The automorphism ρx projects to an inner automorphism of MajNS

and of MajR. Explicitly

ρί(ba)=UbaU*
with unitaries U

for α e Z + i , fcαeMajNS, (3.4)

for α e Z , fca€MajR. (3.5)

But the induced automorphism ρt of Liej/ is not inner. It is conjugation by a
reflection in the group of orthogonal transformations of Γm or ΓR which possess a
determinant equal to 1.
ϋ) The endomorphism ρ 1 / 2 of Maj projects to homomorphisms MajNS-»MajR and
MajR->MajNS.

Proposition 3.3. The endomorphisms of Maj of Proposition 3.1 induce endomor-
phisms of the global observable algebra λλzsί and \ΛΆS4'. They restrict to a Cartan
subalgebra spanned by commuting generators Lo, No, ffα = ί>_1/2ίΊ/2 = / -1/2 1/2
+?[1 - 1Ί ( β = i l , i •••), 1, and Y as follows:

(3.6)

(3.7)

(3.8)

- y ] ) (3.9)

+ Y], (3.10)

= Ha for a>\, (3.11)
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and Qι/2(Y)= ~~ X £ i ( ^ ) = Y- The generators of the Carton subalgebra act on the
vacuum according to

Lo |0> = 0, JVo |0>=0, Jϊβ |0> = 0, [l

ρί is an automorphism but ρ 1 / 2 is not.

The action of endomorphism ρ 1 / 2 on generators Ln and Nn is of the form

where the dots stand for finite sums of generators Jab, 1, and Y This shows that ρ 1 / 2

is lift of an automorphism of the algebra of vector fields and functions on the circle.

Proof. The complexified Lie algebra Lie<s/ is generated by babc (α, ce^Z, α - c e Z ) ,
L o and iV0. This includes Ha = b_aba. Straightforward computation shows that
each of these generators gets mapped into a finite sum of such generators. Our
endomorphisms ρj extend to the unbounded generators Ln, Nn in Lie J / which are
infinite sums of babc-terms. In particular the above formulae for ρj(L0), ρj(N0), and
ρj(Ha) hold true. Consider for instance ρ1/2(L0). Inserting the equality 4b% = 1 + 7
in the definition of L o we find

o)= Σ cρ 1 / 2(b_ c)ρ 1 / 2(/> c)+^ρ 1 / 2(l-h Y)
^l/2

c l̂/2

No infinite constants arise because all terms in the various sums are manifestly in
normal ordered form.

ρ 1 / 2 is not an automorphism, because

fcr(fc1/2 + b_ 1 / 2 )^ρ 1 / 2 (Lie^) for r e Z + i ,

bnboφρ1/2(Lie<8?) for n e Z .

3.2. Action of Endomorphisms on Positive Energy Representations. Now we will
study representations π 0 ° ρ3 of the observable Lie algebra. They act in the same
Hubert space «^0. We begin with the representations of the universal Majorana
algebra.

Lemma 3.4. The representations of Maj obey

πNS°£l/2 = πR> (3-13)

TTNsoρ^πNs, (3.14)

and the lowest weight vector |NS) of π N S is also lowest weight vector of π N S ° ρ 1 / 2, i.e.

= 0 for a>0. (3.15)

Proof. π N S o ρ1/2(feβ) |NS> = iπNS(feβ + 1 / 2) |NS> = 0 for a < 0 since πNS(ί?Π) = 0 for n e Z,
and πNS(6r)|NS> = 0 for r e Z + i r > 0 .

This proves the last assertion and establishes π N S o ρ 1 / 2(Maj)^MajR, implying the
first assertion. The second assertion follows from the fact that ρt projects to an
inner automorphism of MajN S.
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It is instructive to recompute the two point function of the Majorana field in
the R-representation. We write ψ for πNS(ψ) or πR(ψ) when it acts on vectors in J4?NS

and J^R respectively,

= <NS|ρ1/2(φ(z))ρ1/2(ιp(w))|NS>

z-a-ll2w-a-vχm\ρίl2(bjρil2(bc)\πsy

= Σ Σ
0<αeZ 0>ceZ

The lowest weight property of |NS> was used, and terms <NS|b α + 1 / 2 ί? ± 1 / 2 |NS>
with α > 0 and their conjugate were omitted because they give zero. Using CACR
in the NS-representation to move creation operators ba with a < 0 to the left and
annihilation operators ba with a > 0 to the right, one finds

= £ z-
n- 1 / 2w n~ 1 / 2+iz- 1 / 2w~ 1 / 2.

0<weZ

This sums to

w
(3.16)

All formulae are to be understood in the sense of generalized functions, (i.e.
smeared with test functions), (z — w)~* is the generalized function which is the limit
of the holomorphic function (z — w)~ι in |z |>0, |w |<0 [28].

Now we are already for the first main result

Theorem 3.5. The representation of Lie ̂ 3 Vir obey

2. the Virasoro lowest weight vector |0> e Jf0 is also lowest weight vector for the
representations π 0 ° ρ/5 viz.

π0oρ7(LΠ)|0> = 0 for rc>0, (3.17)

(3.18)

3. <AJ|πi(y4)|ϊj>_=<0|πo(ρJ(^4))|0> for elements A of the universal enveloping
algebra of Liei/.

Theorem 1 follows, since the injection i was already constructed in Sect. 2.

Proof. For 7 = 0 the assertions are trivial.
Consider I=j. The representations of the Majorana algebra restrict to Liej/

according to τιNS^πoφπ1 and πR = π 1 / 2 © π 1 / 2 by the results of Sect. 2.4. Therefore
Lemma 3.4 implies

π 0 ° 01/20% o ρ 1 / 2 ^ π 1 / 2 φ π 1 / 2 .

π i ° Qi/2 + 0 since %ι o ρ1 / 2(l) = 1. Therefore

π 0 o ρ 1 / 2 ^ π 1 / 2 and π± °ρi / 2 = π 1 / 2 . (3.19)

This proves 1 for I=\. Consider now

ί ^ ^ (3.20)
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since πo(Y)= —1. Since ρ1 / 2 is an endomorphism, ρ1/2(LΠ) satisfy the Virasoro
commutation relations2. It follows that Q1/2(Ln) carries eigenvector |0> of ρ1/2(L0)
with eigenvalue γ£ into an eigenvector with eigenvalue γβ~n. In the proof of
Proposition 3.3 we computed

hence ρ1 / 2(L0)^0. Therefore, nonzero eigenvectors of ρ(L0) with eigenvalue
X6~n<6 cannot exist, implying ρ(LM)|0> = 0 for n>0. This proves 2 for I=j.
Assertion 3 is a corollary of 1 and 2.

Consider now 1 = 1. The decomposition πNS^π0(Bπί and Lemma 3.4 imply

Since 7i1oρ1/2φO, it follows that either π 0 oρ 1 = π1 or πQoρ^πQ. The first
possibility will be selected by identifying the lowest weight:

π0oβi(L0)|0> = (L0+i)|0>=ί|0> (3.21)

since |0> = |NS> and b1/2 |NS> = 0. By the same argument as for I=\, it follows that
nx oρ1(LΠ)|0> = 0 for n>0. This establishes 1 and 2 for 7 = 1. Assertion 3 follows
again as a corollary.

It is instructive to recompute (λ1/2\T(z)\λί{2y = z~2(λ1/2\L0\λ1;2y starting
from the definition of T(z) in Sect. 2.3,

Since ρ1 / 2 carries 2π periodic field components into antiperiodic ones and vice
versa, and only the periodic ones are nonvanishing in the NS-representation, only
antiperiodic field components contribute. So

J (3.22)

The 2-point function is obtained from the same computation as after the proof of
Lemma 3.4. Thus

ai/2|T(z)|A1/2> = - \ lim [1 A(w-z)- {f-

1 ,

= Ϊ 6 Z '

in agreement with λlj2=γ^.

3.3. Interpretation as Lifts of Endomorphisms of an Orthogonal Group. Index. The
space ΓNSξ&Γκ of continuous sections of real line bundles on S1 admits a scalar
product

έ (3 23)

We shall often write Ln for πo(Ln) etc. when acting on states in
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Completion in the norm </, / > 1 / 2 yields a real Hubert space. It consists of those
elements of the corresponding complex Hubert space H N S 0H R which are
invariant under complex conjugation (9,

Θf(z)=f(z). (3.24)

We consider linear maps ( = operators)

(3.25)

which are either even or odd in the following sense.
Even maps restrict to maps

v:

while odd maps restrict

v:

to

~^NS

maps

and

and

v\ΓR

v:ΓR-

ΓR (even) (3.26)

ΓNS (odd). (3.27)

Even maps U which preserve the scalar products form an orthogonal group. They
extend to unitary operators on HN S©HR which commute with Θ. By definition,
operators U have a determinant if U — 1 is traceclass. The determinant can assume
the values +1 and — 1 for orthogonal maps.

The group
SOe(HNS0HR) (3.28)

consists of even operators l/:H N S ®H R -+H N S 0H R which preserve the scalar
product and have restrictions to HN S and HR which possess determinant +1.

Finally we turn to endomorphisms of groups and Lie algebras. Let V: Γm®ΓR

-+ΓNS®ΓR be a linear map which is either even or odd and satisfies

F* 7= 1, dim ker F* < oo (3.29)

(partial isometry). Given such V, an endomorphism ρ of the group SOe(HNSφHR) is
obtained which takes

ρ(l/) = 1 + 7(17-1)7*. (3.30)

It is easily checked that indeed ρ ^ U2) = ρ(ί/1)ρ(ί72), ρ(l) = 1, and ρ{U)ρ(U~ *) = 1.
Moreover, ρ(U) — 1 is traceclass if (7 — 1 is traceclass.

The universal Majorana algebra Maj consists of smeared fields ψ(f) with
/ = / N S + / R G ^NS®^.

 a n d central elements 1, Y, with anticommutation relations

= i P - r\ </NS) g N S > + i [ i + 7] </R, g R > . (3.3i)

The action of partial isometries V on ΓNS®ΓR lifts to an endomorphism ρ of Maj

Q(ψ(f)) = ψ(Vf), (3.32)

ρ(Y)=±Y (3.33)

with + if V is even and — if F is odd. If F is odd then (Vf )NS = VfR and vice versa,
while (Vf )α = Vfa for α = NS, R if F is even. It follows then straight from the relation
F*F=1 that the anticommutation relations are preserved.

The endomorphisms ρ of the Majorana algebra restrict to endomorphisms of
the Lie algebra which is spanned by quadratics ψ(fι)ψ(f2) that commute with
rotation by 2π (i.e. either fγ and f2 are both in ΓNS or both in ΓR). If F maps smooth
functions into smooth functions then this will give an endomorphism of the global
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Lie algebra Lie si. In favorable circumstances, which prevail in the examples (3.38),
(3.39) given below, this extends to an endomorphism of Lie si.

Let us write ρv for the endomorphism induced by V. If Vγ and V2 are two partial
isometries then Vγ V2 is also a partial isometry and

Endomorphisms ρv and equivalence classes of representations [ρF] = π0oρv can
be classified by the index of V. We define

index \_ρv~] =indexρF = index F. (3.35)

Since F * F = 1 implies kerF=0, it follows that

index V= dim ker F - dim coker F ^ 0. (3.36)

Remembering that coker F is the orthogonal complement of the range of V, it
follows trivially from ker V= 0 that the index is additive

index Vx V2 = index Vx + index F 2 . (3.37)

The explicit examples of endomorphisms ρ 1 / 2 and ρx of Liej? which were
described in the previous subsections, come from partial isometries F 1 / 2 and Vx

respectively. Explicitly, their action on basis vectors ea(z) = za (ae^Z) is given by

lea + 1/2, α > 0

Λell2-e_lj2), a = 0 (3.38)V1/2ea = \

a<0

and

Vlea~ ) Ail* \~>.~>s)

\e_a α = 0, ± f

Their index is easily read off

index F 1 / 2 = - 2, index Vί = 0. (3.40)

Let JΓ be the center of our global Lie algebra of observables Lie J&. It is spannedby two elements 1 and Y. Liej/ is a central extension of the Lie algebra ad
= Lies$l%. A unitary action of selfadjoint generators adX of ad Liei? on ΓNS@ΓR

can be defined by

) . (3.41)

It can be shown that the selfadjoint generators Ln-\-L_n, i(Ln — L_n), Nk + N_fc,
i(Nk — N _ k), Jab + J _ a _ b9 and ί( Jα b — J _ α _ b) in ad Lie s& are generators of 1 -param-
eter groups of orthogonal transformations of H N S ©H R . This is seen as follows.
We introduce a complex basis for H = H N S ©H R . It consists of smooth sections
eaeHNS, aEZ+i and eaeHR,αeZ, given by

ea(z) = za

(±l)1/2(Jab±J-a-b) generate rotations of e±a into e±b9 leaving ec fixed for

C φ ±α, ±b. In particular J f l t_α rotates e± α->e± ί φe± έ l. (±1) 1 / 2(LΠ±L_N) generate
1-parameter groups of diffeomorphisms. Their unitary action on H is given by the
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well known imbedding [6] Diff(S1)Cl/res(H). This restricts to an orthogonal
action on ΓNSφΓR (the definition of ί/res involves the natural polarization
H = H + φ H _ , where H + is spanned by ea with α>0).

Finally, the remaining generators (± l)1/2(iVfc±N_k) need to be examined. One
shows that exp[—ί(iVfe + iV_fc)>α admits a convergent power series expansion in t
for small enough t, and similarly for i(Nk — N_k).

3.4. Localized Endomorphisms. We retain the convention that J c S 1 is called an
(open) interval if it is (open and) connected, and its closure is not all of S1.

Given a global (Lie) algebra si and a net of subalgebras J/(7) associated with
intervals /CS1, an endomorphism ρ of s/ is said to be localized on / if

ρ(Λ) = Λ whenever Aes/(I/), Γnl = 0. (3.42)

In the last subsection we saw how endomorphisms ρ can be obtained from
partial isometries V of ΓNSφΓR. Now we study their localization properties.

Fix an interval JcS 1 . Its complement /' on S1 is projection of two disjoint
intervals T+ and /'_ in the double cover S1 of S1. Given /, consider partial
isometries F:HN S©HR->HN S©HR with the property that

Vf(z) = σ±f(z) for ze?±9 (3.43)

σl = l = σ 2 L . (3.44)

They will be said to be pseudolocalized on /.
Consider now the action of an endomorphism ρ of Maj which is induced by a

partial isometry V that is pseudolocalized in /. Remember that fe ΓNSQ>ΓR may be
regarded as ordinary functions in S1. Suppose that / has either support on J+ or
support on /'_. Then

Q(ψ(f)) = W(Vf) = σMf) if supp/c/i, α = ± . (3.45)

For odd maps σ+σ_ = — 1. However, the sign factors cancel when we consider
observables. Consider for instance a quadratic φ(/1)i/)(/2)eLiej/(/1) with
71n/ = 0. Liej^J) was originally made out of NS-Majorana fields (smeared with
test functions feΓNS with support in /x) and then injected into

ψ(fMf2)-+iψ(fi+)ψ(f2

+)+WΓ M/2Ί, (3.46)

where fx

+ and /2~ are functions on S1 with support in fj*" and /J respectively
(they are determined up to a common sign by the values of / in the local chart /).
It follows from Eq. (3.45) that

ρ(A) = Λ (3.47)

for A=j\p( fί

+)ψ(f^)+^ψ(ff)ψ{f2^) with supp/j1 ε/'±. The result generalizes to
all elements of Liej/(/) because they may be written as infinite sums of quadratics
as we have just considered. It generalizes also to endomorphisms ρ of Lie Jtf, with
local algebras Liej/(/)©Vir(J) injected, by a similar argument. In conclusion we
have obtained

Proposition 3.6. // the endomorphism ρ of the Lie algebra of observables Lie stf or
Lie si is induced by partial isometry V of ΓNS@ΓRwhich is pseudolocalized in /, then ρ
is localized in I.
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We will now present examples of endomorphisms of index —2 which are

localized in domains Ik of length — in angle, fc = 2,3,.... Conjugation with
K

rotations of the circle [or with SL(2, C) transformations] will yield endomorphisms
with arbitrary domains of localization. In this way one obtains sequences of
endomorphisms ρk which are odd in the sense that ρk(Y) = — Y, and whose support
shrink to an arbitrary point {z} as fc->oo.

Let ζ = — 1 and consider intervals

(3.48)

(3.49)

Functions e(k) with reZ+^ form an orthogonal basis in the space L2(Ik,dφ/2π)
with scalar product <, >fc. Thus

eJίz)= Σ <ef\ea}kef\z) for zelk. (3.50)
seZ+1/2

Define

71 %

with —π<φ< — — on /_ and — >φ>π on / + . Set

It follows that

~\ / f(k) f(k)\ —/p(k) p(k)\ £

aJ \Jr >Js /k—\er >βs /k — °r,s>

b) frik)(z±)=+e?Kz±) for z±=e±iπ/k.

The partial isometry V is defined by

Vea(z)= Σ <e?\eayfϊkXz) for zelk, (3.53)
reZ+l/2

Vea(z)=+ea(z) for z e / ± (αe^Z). (3.54)
It commutes with complex conjugation Θ. To verify that V is a partial isometry it
suffices to show that

Validity of this equation follows from definition (3.53) by inserting Eqs. (3.52),
(3.50). V is pseudolocalized on Ik by definition (3.54). One has tr(l - FF*) = 1 both
on H N S and on HR . As a result

U-+ρ(U) = 1 - V(U-ί)V* (3.55)

is a well defined endomorphism of SO e(HN S©HR) which is localized on Jk; and
index ρ = index V— — 2.

Reflections are examples of even partial isometries. Let g = gNs©^R6^Nsθ^R
with support, as a function on S1, which projects to /CS 1 , and normalization
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<gNs>gNs> = 2 = <gR,gR>. Then the reflection

v f-+-f+<f,g>g (3.56)

is an even partial isometry and pseudolocalized in J. It induces an automorphism
which is inner on MajNS and MajR, but outer on SOe(HNS©HR). Our (non-
pseudolocalized) standard Vί is also of the form (3.56) with g = \/ϊe0 + e1/2-\-e_ 1 / 2.

4. Fusion Rules and Intertwining Operators Between Representations

4Λ. Fusion Rules. We retain the notation [ρ] for the equivalence classof the
unitary representation πQ°ρ of the Lie algebra of observables Lie^DVir.
Remember that π 0 is the vacuum representation of Liei/. It was obtained by
extending the positive energy representation of Vir with lowest weight 0 to a
representation of Liej/ which acts in the same Hubert space Jf0.

We found a complete set of representative endomorphisms ρ7 of Liej/,
j = 0, Ί, 1, such that [ρ j] are all the positive energy representations of Vir, extended
to Lie<s/.

The product of two endomorphisms is also an endomorphism. Therefore
π 0 o QKQJ is also a unitary representation of Liej/. It restricts to a positive energy
representation of Vir. [The positive energy property holds because Lo is a positive
element of Maj (i.e. a sum of terms ψψ*)9 Qj extend to Maj, and y4^0 implies
ρ(^4)^0 by the *-endomorphism property.]

The representation π 0 ° QKQJ may be reducible. We will find its decomposition
into irreducibles in the form

- (4-1)

This is the decomposition into irreducible representations of Lie 3 and at the same
time the decomposition into irreducibles for Vir.

We will write A for πo(A) when it is clear that it acts in 3Ίf0. All the
representations π 0 © ρ, ρ = ρ j5 ρ7ρx,... act in the same Hubert space J^o. The
projection operators Π{l'J) in Jίf0 which project on the irreducible subrepresenta-
tions, must commute with the representation operators. Thus

Π«-»eρ2

1/2(Ueάy (4.2)

[commutant in ^(J^of]- We find these projection operators in the even part of
MajNS, which is the same as the universal enveloping algebra of the complex Lie
algebra πo(Liej/). In fact they happen to be in Liej/.

Consider first [ρi/2£?i/2] From the definition of ρ1 / 2 one finds

<??,#,)= { l ^ + j ; ^ 2 for reZ+i (4.3)

while Qiι2{bn) = 0 in the vacuum representation π0, for neZ. It follows from the
canonical anticommutation relations in MajNS that

are two orthogonal projection operators in the commutant of ρ\l2(L\estf). We
show that Π034f0 and Π^Q carry representations in the equivalence class of π 0 and
π0 o ρ1? respectively.
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To do this, we exhibit bijective maps

R*:ΠoJfo-^Jfθ9 S^il^o-^o (4.4)

such that

(a) AR* = R*Q2

lf2(A)9

(b) {A)S* S*2(A)

It follows from the definitions that Q\ = id and QιQι/2 = Qi/2 ( s e e below). Applying ρ1

to Eq. (4.5b), we see that its solution is

S* = Q1(R*)> (4.6)

with R* a solution of the first equation. The solution for R* is unique, apart from
an overall phase factor. If R'* were another one, R*R': J^0-^Jf0 would have to
commute with the action of Lie 3 in f̂0, implying R*R e C 1 by irreducibility.

A basis for jtΌ is formed by vectors

0 < r 1 < . . . < r 2 N , r , e Z + i , N = 0,ί9....

We extend K* to all of jf0 by putting J R * ^ Jfo = 0. R* is described explicitly by its
action on basis vectors

For N = 0 this is to be read as

}.

As a result

RR* = Π0 and

Since ρ1(Π0) = Π1 it follows that

SS* = Πί and

This shows that the maps (4.4) are bijective. One verifies by explicit computation
that the intertwining relations (4.5) are fulfilled for all A = baba and more generally
for all generators of Lie 3 (on their common dense invariant domain of definition,
which consists of finite sums of basis vectors).

R* can be written as an infinite product

+ 1/2

Factors An with larger n stand further to the left. On finite sums of basis vectors, all
but a finite number of factors An act like the identity operator. Since R* is a partial
isometry, its definition extends to all of ̂ f0. S* = ρ1(K*) admits a similar infinite
product representation. This completes the proof that [£i/2£i / 2] = ίQo = id] + lQi]>

Next we consider [ρf]. From the definition of ρx one finds

Therefore
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Similarly one finds £i£i/2(fr«) = - QinΦa) for a e Z while both sides vanish in the
vacuum representation for aeZ+j, and ρ1ρij2{Y) = ρ\ιi{Y) = — Y Therefore

on Liej/. This implies [ρiρi/2] = [ρi/ 2].
Finally we should determine [ρ1/2Qi]- The general theory says that [3]

IQKQJ] = LQJQKΊ

under standard assumptions. In our model, the only case which needs to be
checked is [ρ i / 2 ρi] = [ρ iρ i / 2 ] . We have

-ibn+1/29 n>0

(4.8)

and ρ1/2ρi(br) = 0 in the vacuum representation for r e Z + ^ while Qι/2Qi(Y) = — Y
= ρ1/2(Y). We exhibit a unitary operator

such that

^) onJf0 (4.9)

for all bilinears A — babc in the Majorana fields, and more generally for all elements
AeLiejtf. This will show that π 0 oρ 1 / 2 ρ 1 and π o °ρ 1 / 2 are indeed unitarily
equivalent. Therefore [ρi/2£?i] = |j?i/2] = |j?i£i/2] as expected. Explicitly, (7* is
given by t/* = l-2f>_1/261/2.

In conclusion we have proven the fusion rules, Theorem 4 of the introduction.
We note that these fusion rules agree with the known fusion rules for the minimal
model with central charge c=\.

4.2. Intertwiners in the Algebra. Let us recall the defining property of an
intertwiner T between endomorphisms ρx and ρ2. We say that

TeHom(ρ1?ρ2) if TQi(A) = ρ2(A)T for all A. (4.10)

We are studying endomorphisms of a Lie algebra Liej/, which possess (unique)
extensions to Lie J&D Lie s/. In this context, intertwiners T are sought in the
universal enveloping algebra U{Lie<srf) with relations imposed which come from

It will however be necessary to include in this algebra also some infinite products
which are well defined in all positive energy representations of Liej/

If π is any positive energy representation of Lie si [and therefore of l/(Lie<s/)] then
π(T) is an intertwining operator between representations noρί and πoρ2,

π(T)π1(A) = rc2(Λ)π(T) for πt = πoρi9 if TeHom(ρuρ2). (4.11)

The existence of a nonvanishing intertwining operator π(Γ) between represen-
tations π1 and π2 means that these representations have a common subrepresen-
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tation. It follows by taking adjoints that

π1(A)π{T*) = π(T*)π2(A) for all A. (4.12)

Therefore π{T*T) commutes with πx(A) for all A, and π{TT*) commutes with
π2(A) for all A. If πx is irreducible, this implies that π(T*T)eC 1. By suitable
normalisation of T one obtains

πίΓ*Γ) = l , π(TT*) = Π1.

Πί = projection operator on the subrepresentation of π2 which is equivalent to πx.

We are interested in the intertwiner T ( I between ρJρI and ρκ.
\K JJ

They obey

ρκ(A)T=TρJρI(A).

There may be several such intertwiners, if so we distinguish them by a label a.
These intertwiners effect the reduction of representation [#J£>J] into irreduc-

ibles, as we saw in the last subsection. They will also be basic building blocks of
chiral vertex operators.

Our Lie algebra Lie si has center 2£ which is generated by 1 and Y. We imposed
the relation Y2 = l in (7(Liej/). Therefore 2£ contains projection operators
i [ l + y]. If T is an intertwining operator, then so are i [ l ± 7 ] ϋ There are
therefore two classes of intertwiners:

NS-intertwiners: Γ = i [ l - Y]T, TT* =4[1 - Y],
(4.13)

R-intertwiners: T = | [ l + 7]T, TT* =4[1 + 7] .

It follows that there are also two classes of projection operators

It turns out that in our model there is at most one NS-intertwiner and one

R-intertwiner for each triple '
K Jj

We say that a set of NS-intertwiners (R-intertwiners) is complete if

1 + y ] ( ~ f o r N S> + f o r R ) ( 4 1 4 )

Only NS-intertwiners and projectors are nonvanishing in the vacuum represen-
tation π 0 since πo(Y)= — 1. They effect the decomposition of the representation
π0 o ρjρj into irreducibles π 0 o ρκ, as we found in the last subsection. The case / = 0
or J = 0 is trivial. The other nonvanishing intertwiners and projectors are
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NS-Projectors and Intertwiners (overall factors ^[1 — Y] are understood).

J = | : Π[ * A =6 1 / 2 6_ 1 / 2 , τ( * A Ξ R * S = lim AM...A2A1b1/2b-
\U 2"/ \U 2/ Λί-oo / 1 / 2 9

Λί-oo

U J (4.15)

The R-intertwiners and projectors can be found for instance by looking at the
representation π 1 / 2 = π 0 oρ 1 / 2 in place of π0. (The representation π o 0 π 1 / 2 is
faithful.)) i

It turns out that nonvanishing R-intertwiners TI I exist for exactly the
( 1 \

same triples I as in the case of the NS-intertwiners.
\K JJ

R-Projectors and Intertwiners (overall factors \\\ + Γ] are understood).

iM

= 1 (4.16)
1/ \U 1/

with 4̂n as before.
The limit is understood in the same algebraic sense as before: on finite sums of

common eigenvectors of Lo and No, the result of the action of

is independent of M for large enough M.
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4.3. Intertwining Operators between Super selection Sectors. From the NS-
intertwining operators in the algebra t/(Liej/) we may construct intertwining
operators between superselection sectors, i.e. between irreducible representation
spaces for the observable algebra,

Γ{κ }'*>-**• (417)

They are to satisfy the intertwining property

) ( 4 1 8 )

The representation πκ on Jί?κ is equivalent to π 0 o ρκ on Jf0 as we know. Let iκ be
the identification map

iκ: JίTκ-+Jίr0, π 0 o Qκ(Λ)iκ = iκπκ(A). (4.19)

If T ( I is an intertwining operator in the algebra, then
\K JJ

Γ{κ' J)"ΆT(K' j))'> ( 4 2 0 »
satisfies the intertwining relation. This shows that NS-intertwining operators yield
intertwining operators between superselection sectors. A nonvanishing inter-
twiner will exist if and only if [ρjρj contains [ ρ j as a subrepresentation. In our
model there is at most one such intertwining operator.

We turn now to the consideration of field operators which are defined on the
total Hubert space which is the sum of superselection sectors, without
multiplicities.

This space carries a reducible representation π of Lie J / given by

π(A)\ψ> = πj(A)\ψ} for | V > e ^ . (4.21)

We construct operators Γ1 on Jf such that

πμ)Γ' = Γ'φ,W)). (4.22)

Projection operators Ej on J^j commute with all π(A). Therefore

Γ ( K I J) = EκflEj: **-

will be an intertwining operator as were considered above. Thus, T1 will have to be
put together from such intertwiners.

Consider the action of Γ1 on J^fj for fixed /, J. The crucial observation is that Jfj

is the orthogonal direct sum of the support of ΓI

/

K Jj

(4.24)
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This follows from the fact that the TI ) form a complete system of NS-
\K JJ

intertwining operators. From this we obtain

Proposition 4.2. Define the operator Γ1 on Jf = © Jί?j by
fI=Γ{κ J) on su™Γ{κ J)C^ (425)

Then

' ' (4.26)

Using the operators Γ1, one can construct an algebra of field operators 2F in
Jf. It is generated by elements

Φβ=r'u.
U unitaries in an associative algebra of observables J/, to which the endomor-
phisms Qj extend, and

φρ is determined by ρ only up to multiplication with a unitary element in the center
of the algebra of observables. It obeys

ρ = φρπ(ρ(A)).

If ρ is localized in / = suppρ, then ρ(A) = A for AeΓnI = φ. Therefore

π(A)φρ = φρπ(A) if AcLk^(Γ), fnsuppρ = 0.

Let #"(/) be the subalgebra of all field operators with this property. In this way we
obtain a net of local field algebras. They are relatively local to the observables.
They are not relatively local to themselves or to each other. This issue will be
addressed in the next sections.

The algebra of field operators acts in a Hubert space. Therefore a *-operation is
defined. From the definition of ΓJ and the completeness relation for intertwiners it
follows that

ΓJΓJ* = ί.

This implies that ΓJ*ΓJ is a projection operator. Γ1 has an inverse since ρx is an
/ i \/ i

automorphism. If L = 0 or L = l there is only one intertwinerΓ I 2

\K LJ
in both cases. Thus, Γ1 / 2 maps ̂ f0 bijectively into ̂ f1/2, and also ^ bijectively into
J^1/2. It follows that some vectors on J^SJf^ are annihilated by Γ1/2. Thus

kerΓ 1 / 2Φ0.

4.4. Operator Product Expansions. Here we study products of field operators in the
Hubert space Jf = φM?

J (without multiplicities). We write π(A) for the action of
the observable algebra on Jf7 π restricts to πs on Jίfj. In principle the product of
field operators is determined by the multiplication law in the field algebra.

Let us study products of intertwiners Γ. We write Homίπ^π2) for the set of
intertwining operators between representations π1 and π2 of the observable
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algebra on Hubert spaces ^f(1) and

if

π2(A)Γ = Γπ1(A).

The Hubert spaces will be implied by the name of representations, for instance
πLoρ acts in JfL for any endomorphism ρ. The relation with the space of
intertwiners Hom(ρ',ρ) between endomorphisms is as follows

Te Hom(ρ', ρ) implies π(T) e Hom(π o ρ', π o ρ) (4.27)

for any representation π of the observables algebra.
Consider intertwiners

Given JUJ2,M, products of the form

are in Hom(πL o ρ j5 πκ) if

T\J j J e H o m ( β J i β ^ β j ) (4 2 9 )

It follows that

obeys

just like ΓJ. That is, Γ^eHomfπo^π). We omit symbols π in the following.

Consider now a complete set of intertwiners TI 2 ) as described in Sect. 4.2.

Label α will distinguish between NS- and R-intertwiner. The completeness relation
implies

Consider now products of fields

Using commutation relations of observables with constant fields Γ, we obtain

φJψ>=ΣΦJ'a (4.32)

with

φJ,a = ΓJaTa ^ ^ J ρ / i ( C/ 2 ) |Γ / i . ( 4 . 3 3 )
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On the vacuum sector ffl = Jf0, we have π = π 0 and only NS-intertwiners survive.
They are unique, and we may drop the lable a. Moreover, uniqueness implies that

the restriction of Γ'J to J»f0 must be proportional to ΓI J = restriction of ΓJ.

Thus we have

Proposition 4.3 (Operator Product Expansion on the Vacuum). Let φJι = ΓJiL/ί .
Then

ΦJΨ1=ΣCJJ2JIΦ
J onje0} (4.34)

φJ = ΓJU with U=T[ J l )ρJι(U2)Uίes/. (4.35)

If UiUf = l 0 = 1,2) then UU* = 1 (on tf0).

Consider the algebra 3F of field operators on #? which is generated by
operators ΓJ, J — 0,^,1 and observables A. It contains all products of field
operators φJ = ΓJU. Using the operator product expansion one can express the
vacuum expectation value <0|φ|0> of any product of fields φe 3* as expectation
value of an observable.

This assertion follows from the fact that Γ° = 1 and ΓJJTO1JT0 for JφO. The
structure constants cJj2Jl can be determined from the explicit form of the
intertwiners. We leave this as an exercise to the reader.

5. Braid Group

5.1. Jones Algebra and Braid Group Representation Determined by the Έndomor-
phism ρ1/2. A well known result of the theory of superselection sectors [8] says that
a transportable localized endomorphism ρ of an algebra of local observables sd
determines a representation of the braid group B^ by operators σ{es$. More
precisely there exists a unitary operator ερ in the commutant of ρ2(stf) in jtf,

ερeρ2(<$/)', unitary (5.1)

such that

σ^ρ'-He,), i=l,2,. . . (5.2)

satisfy Artin relations

σp^σpt if |i-j|^2, (5.3)

In d ̂  3-dimensional space time, this braid group representation degenerates
into a permutation group representation, that is σ—σf1.

There exists a definition of ερ in terms of ρ (see Introduction), but it is much
easier to determine ερ from its properties. The Artin relations admit substitution of
σf * for σt . This arbitrariness is intrinsic and corresponds to the possibility of space
reflections. The Artin relations also leave an arbitrary phase factor in ερ free. This
phase factor is determined by the explicit definition, it can be recovered from the
"spin statistics" theorem [9].
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The representation of the braid group turns out to come from a Jones algebra.
Following Fredenhagen, Rehren, and Schroer [8], this Jones Algebra and related
quantities are defined as follows. They consider irreducible transportable localized
endomorphisms in an associative observable algebra si with trivial center.

An endomorphism ρ is said to be conjugate to ρ if the representation
LQQI = LQQI contains the vacuum representation [id]. From the associative algebra
of observables si one obtains a Jones tunnel

d 2 ρ M 2 QQ{S/) 2 QQQ{^) 2 . .

and a dual Jones tower of the corresponding commutants Mt in si.
Consider intertwiners K* and JR* which map to the subrepresentation [id] of

[ρρ] and [ρρ],

R* e Hom(ρρ, id) with R*R = 1,

£* e Hom(ρρ, id) with R*R = 1,

and the corresponding projectors

Π = RR* and Π = RR*. (5.6)

Then the projection operators (i = l,2,...)

E2i^={ρρr\Π), E2i = {QQJ~"Q{ή) (5.7)

obey the Jones algebra relations

EE \n-m\^2
(j.o)

with a parameter d(ρ) called statistical dimension. Moreover Φ, defined by

Φ(A) = R*ρ(A)R (5.9)

is a left inverse of ρ, i.e. a positive map si-> si with Φ(ρ(̂ 4)) = A for all 4̂. It is unique
if ρ is irreducible (i.e. [ρ] is irreducible) and ρ o Φ defines a conditional expectation
from si to q(si). This left inverse yields another formula for the statistical
dimension

Φ(sρ) = λρl with \λQ\ = d{Q)-χ. (5.10)

The spin and statistics theorem [9] says that in a conformal field theory the phase
is given by

(5.11)

where s is the lowest eigenvalue of Lo in the representation [ρ]. Φ also yields a
Markov trace on B^, i.e. link invariants [8].

A nontrivial Jones algebra, and a braid group representation which is not of the
form σi = ωΊ,ω = phase factor, is only obtained when ρ is not an automorphism.

In our model, ρo = id and ρι are automorphisms, and [ρ?/2] contains [id].
Therefore we should consider the special case

ρ1 / 2 is not localized, but it is a limit of localized morphisms. Also, our global
algebra has a nontrivial center, therefore R*ReCΛ is not automatic. But
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operators R = R which fulfill conditions (5.5) exist, and can be obtained from the
intertwiners in Sect. 4,

(5.12)

with corresponding projection operators

iγ (5.13)

From this one may now compute the Jones projectors.

+ 1-b^ίW+ for iφO, (5.15)

In the vacuum representation the result simplifies since Y_ =1, Y+ =0 on J^o,

(ί = 0,1,2,...). Similar formulae for Jones projectors in terms of complex fields were
obtained in Connes and Evans [29]. The En satisfy the relations of a Temperly-
Lieb Jones algebra with

When ρ = ρ, the formulae for the Jones algebra and the braid group generators
look very similar, and one can obtain one from the other [8,22].

with Π as defined above, for ρ = ρ1/2. More generally

ί) (5.20)

for ί/(ρ) = |/2; y is an arbitrary phase factor.
Evaluating Φ(sρ) in the vacuum sector yields

Φ(εβ)=iy(-l+ί) = V l (Q = Q 1/2).

Therefore d(ρ) = ]/ΐ in agreement with the previous result. According to the spin
and statistics theorem, the preferred choice for the statistical phase ωρ = λj\λρ\ is

s = lowest eigenvalue of Lo in the representation [ρ]. Here s=χ£ and we obtain
.3τr

y= — e 8 .

We write ε1/2 for ερ if ρ = ρi/2. ε1/2 acts by right multiplication on s/. Its
eigenspaces are generated by projectors in the commutant of ρ\/2{jf). Projectors
Π0,Π1 = |(1 + Y) — Π0,Π0 and Πί are orthogonal and sum to 1. Thus
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obeys

/ = iyπo> Π1ε1/2=-yΠ1, etc.
,3π_

Therefore we obtain that the eigenvalues of ε1/2 are iγ and — γ9 γ = — e 8 . Our
results are consistent with the general classification of Longo [30].

According to Jones, the possible values of d(ρ) are given by d(ρ) ̂  2 or

V (5.21)

k a natural integer ^ 3. The value of ]/ϊ corresponds to

fc = 4.

In our model, ρo = ίd and ρx are automorphisms, therefore

and

by the spin and statistics theorem.

For reducible representations [ρ / χ . . . ρJn] one defines

d(Qll...Qln) = d(Qlx)...d(Qln). (5.22)

The general theory says that they obey sum rules [8]. If ρ = ρIl --Qin obeys

M=Σ^[βJ» (5-23)
then

(Qκ) (5.24)

Comparison with our fusion rules shows that these sum rules are indeed satisfied.
It suffices to check this for products of two endomorphisms. Indeed

(|/2)2 = d(ρl /2) = φ 0 ) + Φ i ) = 1 + 1 ,

We saw earlier that our endomorphisms ρ come from lifting partial isometries V
which can be classified by their index. By comparism we see that

2~^ i n d e x ( F ). (5.25)

This holds both for irreducible and reducible representations ρ = ρIι... ρIn since

indexVu ... F ^ ^ i n d e x ^ . . (5.26)
j

The sum rule for statistical dimensions translates into an remarkable sum rule for
indices

2-iΣindexFZj_y ŷ 2~^ i n d e x F«. (5.27)
K

Following Jones and Longo [22,30], d(ρ)~2 can be interpreted as index of the
inclusion ρ(stf) C si of associative algebras.
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Let us finally note that the whole Lie algebra of observables Lies/ can be
reconstructed from the Jones projectors En and the central elements Y+ = i [ l ± Y].
It suffices to exhibit

for α>0, c= ±(a — 1). The other operators Jca can be obtained by considering
adjoints and commutators of these, using Jab = — Jba. The generators Ln and Nn are
infinite sums of operators babc by Eqs. (2.41)f.

One finds by explicit computation

KK +1 = ± 2(E2c - i)E2c + 2E2c + 1Y±,

b-cbc+i—2E2c+2E2c+ί(E2c—j[)Y+,

for c^i , while

± is to be read as ( — l)2c.

5.2. Standard Braid Matrices. Following Fredenhagen, Rehren, and Schroer [8],
standard braid matrices are defined by the action of the braid group BN on
products of at least N +1 intertwiners by right multiplication, as follows.

We will only consider intertwiners which are nonvanishing in the vacuum
representation (NS-intertwiners). These are unique in our model, and we regard
them as operators in J4f0, omitting symbols π0.

Fix J and let Path£nKo be the set of sequences of n +1 sector labels

Set

Ά = τ ( κ

 J

κ ) - τ { κ

 J

κ ) ( 5 2 8 )

It follows from the intertwining property of T ( I that
\K LJ

TξEHom(ρKoρ
nj,ρKn). (5.29)

Thus, Tξ are isometric maps J fo-> jf0. Tξ vanishes on the orthogonal complement
of a subrepresentation of n0oρKoρ

n

κ which is equivalent to π o °ρ K n . Tξ with
ξ E Path£n£0 is a basis in the space Hom(ρXoρJ, ρKn) of intertwiners. This is because
one may reduce the representation π 0 o ρKoρ

n

3 in steps. First reduce the represen-
tation π 0 © ρX oρj of si into irreducibles π 0 o QK using T( I. Then restrict

\ κ ι κoJ
this representation to ρj{si). This restriction may be reducible. Reduce this

representation π0 o ρKιρj of si into irreducibles π 0 o ρ^2 using TI ), and so

on. V * 2 K l /
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Now we remember that

[εJ,A]=0 for Λeρj(Λ).

It follows from this together with the intertwining properties of T's and the
definition σi = ρi~1(sJ) of the braid group generators that

Kj for iύn. (5.30)

Therefore this must be a linear combination of Tξ> with ξ' eFa.thn

KnKo. More
generally, for any element b = σh ...σiMeBn, viz. iί9 ...,iM^n,

Tξb = ΣTξ,RΪ(b), (5.31)

i.e. we get a representation of the braid group Bn on n threads by matrices JRjΓ,
ξ, ξ e Pathn

KnKo. Of course R depends on J.
Making the identification π°Qκ = πκ these identities get translated into similar

identities for intertwiners Γ[ I. Using the standard abbreviation
\K L)K L)

we get in the special case n = 2

Γ(s2)Γ(Sl)εj = Σ ns'JΓWR^l. (5.32)

Since we know ε7 and the intertwiners explicitly, the matrix R can be calculated.
One writes

H Jλ (5.33)
ys

J = ^ i s the interesting case, because automorphisms like ρx lead to 1-dimensional
braid group representations.

The result is given explicitly in Table 1 (Appendix B). It agrees with the
following expression involving 6/-symbols for Uq(sl(2)) when q = e ~iπ/2, J2 = «/3 =«/,

WJ/| T T I ~ -JJ I r
f l J4jphys L J 1

Let us note that the result for R depends on a phase convention. The intertwiners

Tl I are only determined up to phase factors. It turns out that a particular
\K LJ

ratio of these phase factors enters into the result for the braid matrices. We have
chosen these phase factors in a particular way.
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6. Fields with Quantum Symmetry Uq(sl(2)), q = e~iπ/2

6.1. The Quantum Group Uq(sl(2)) with q= —i ~ a Brief Review. The quantum
group algebra [14, 31, 38, 33] Uq(sl(2)) is the associative algebra 9 with unit 1,
generators S+,S~,q±Sz/2 and relations

, <f*ί2qs.l2:=ί=q-sπ/2qsπί29 ( 6 Λ)

A coproduct

Δ\g-+g®g (6.3)

is defined by Δ(ϊ) = \®\ and

Szί2, (6.4)

+S±®q-Sz/2. (6.5)

A counit ε:^->C is defined by ε(l) = l and

ε(q±s*>2) = ί, ε(S±) = 0. (6.6)

Finally there is an antipode

y(q±s>l2) = q*s'l2, (6.7)

<?(S±)=-q±ll2S±. (6.8)

A is a homomorphism of algebras, ε a homomorphism of 9 into C, and £f is an
antiautomorphism of ^, such that

= id. (6.9)

Given representations τJ and τ x of the algebra 9 on vector spaces VJ and l¥ κ , a
representation τ on the tensor product VJ®WK is defined as follows. Write the
coproduct in the form

Δ(X)= X a{X\XZ)Y®Z. (6.10)
γ,z

Then
= Y a{X\χZ)τ\Y)v®τκ{Z)w. (6.11)

The quantum dimension (character) of a representation τ is defined by

dτ = trτ(qsή. (6.12)

For q=—i9 the group C/̂ (s/(2)) has 3 "physical representations" labelled by

isospin 7 = 0,^,1 of dimension 2J + 1 and quantum dimension dj = l, ]/2,l.
Physical representations are those which are irreducible and have strictly positive
quantum dimension. We write [J] for the equivalence class of the 2J + 1-
dimensional physical representation.

The tensor product of physical representations decomposes into physical
representations, plus representations of quantum dimension 0 [38]. Omitting the
latter, the decomposition

[L] (6.13)
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is explicitly given by [0]®[J] = [J] and

[θ] + [ i ] ,

ffi, (6.14)

This holds whenever q*=ί. The quantum dimension satisfies the sum rule

dL. (6.15)

If ej and ef are basis vectors in physical representation spaces, then their tensor
product decomposes into basis vectors in the physical subrepresentations

plus contributions from subrepresentations with quantum dimension 0. This
decomposition involves Clebsch Gordan coefficients.

Representations τJ®τκ and τκ®τJ are equivalent, and there exists a map M

St\ V3®WK->WK®VJ (6.17)

which commutes with the action of the quantum group algebra. In terms of basis
vectors

Of course, 01 depends on J and K. Expressions for quantum group ^-matrices can
be found in the literature. For generic q, 6/-symbols can be thought to be defined
through Eq. (6.52) (see below), without the phase factor eiπ/2

9 with unrestricted sum
over J 1 2 . When q becomes a root of unity, 6/-symbols for unphysical J12 become
zero, assuming standard normalisation conventions, but some "unphysical"
Clebsch Gordan coefficients become infinite.

6.2. Field Transformation Law. If we substitute quantum group representations
[J] for representations [ρ7] of the observable algebra (i.e. for superselection
sectors) then the fusion rules in Theorem 4 correspond precisely to the tensor
product decomposition rules (6.14) for Uq(sl(2)) with q4 = l. Also the statistical
dimensions d(ρj) of the representations [ρj] agree with the quantum dimensions d5

of representations [J], see Theorem 2 and Sect. 5.

This suggests that states in the superselection sector Jf7 should transform
according to the 2J + 1-dimensional representation of Uq(sl(2)\ with q some 4th

root of unity. The analogy with gauge groups in d ̂  3-dimensional quantum field
theories described in the introduction suggests that observables should be
quantum group invariant. This implies that the irreducible representation π3 of the
algebra of observables must occur with multiplicity 2J +1 (at least) and we are led
to consider the Hubert space

^phys= 0 Θ •#/«, (6.19)
J = 0 , i , l m= -J

where J^Jm are 2J +1 copies of the same representation space carrying represen-
tation πj^π0oQJ. The quantum group generators become operators X in the
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Hubert space f̂phys which commute with observables A

[Jir,y4] = O for all I e f , i e ^ . (6.20)

The quantum group algebra 9 is to be regarded as the generalization of the
universal enveloping algebra of a Lie algebra, i.e. X behaves like a sum of products
of Lie group generators x, y,... in many respects. When one studies the
transformation law of states and fields under elements of the universal enveloping
algebra of an ordinary Lie algebra of symmetries, one obtains formulae which look
precisely like those which we are going to write down for the quantum group case.
In the Lie algebra case, comultiplication is

(6.21)

(6.22)

etc., and ε(l)=l,
Accordingly the proper definition of invariance of the vacuum is

(6-23)

Let ijm'><#Ό-+^jm be the identification map which identifies representations
(π0 o ρ j 5 jf0) and (πj9 J^Jm). The natural action of X e & on states in J^p h y s is given by

ψy=Σ %n\ψ><JίX), IV> e ^ o (6.24)
n

This commutes with the action of observables. Finally, we would like to introduce
multiplets of field operators φJ

m which create states in J^p h y s from the vacuum.
Following Buchholz,Mack, and Todorov [17], the transformation law of pointlike
fields is postulated to be given by the following generalized commutation relations

Xφ&)= Σ a(X\Y,Z)ΣΦί(zynm(Y)Z. (6.25)
y,z n

Factors α(...) are given by the comultiplication law (6.10). Since {id®ε)Δ — id, it
follows from this that states φJ

m{z) \ψ) (|φ> e ̂ f0 C ̂ h ys) transform according to the
l-dimensional representation

Xφi(z)\ψ}=ΣΦJn(z)\ψ><m(X) for lv>6Jf0. (6.26)

This translates into the present framework as follows. The bounded field operators
shall be of the form

φJ

m = ΓjU with Ues/ (6.27)

with

AIi = ΓiQj(A) for all m=-J...J. (6.28)

We may put Γo° = 1 so that fields φJ

m are observables for J = 0. Assuming (7(7* = 1
we obtain from Eq. (6.28),

ρ = σuQj. (6.29)

The localization properties of such a field, which substitute for the z-dependence in
the pointlike fields φJ

m(z\ are determined by the observable factor (7, for given J.
Observables are quantum group invariant, and the factors Γ£ are required to
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transform according to a 2J + 1-dimensional representation in the sense that

XΠ= Σ a(X\Y,Z)ΣΓn

Jτim(Y)Z. (6.30)
γ,z n

As a consequence, the same generalized commutation relations are valid for fields
φJ

m = Γ^U, Vest, since [X,l/]=0. Explicitly

U<l±S*/2)q±S*/2, (6.31)
n

S±Φί=Σ {φJ

NτUqS*l2)S± + φJ

nτUS±)q-s*12}. (6.32)
n

This determines the transformation law of states (φma = Γ^Ua\

<fe" <^VΊ0> (6.33)
One pushes the generators of ^ through fields, using the generalized commutation
relations, until they act on the vacuum, where they get converted into a complex
factor ε(X). It follows that such states transform according to the tensor product

of 2Jf +1-dimensional physical representations (τJi, VJ% or a subrepresentation of
it.

The transformation law of fields can be inverted,

This involves matrix elements of antipodes τJ(S(Z)), viz. q*s'l2 = Sf(q±s*2) and

The inverted form (6.34) of the transformation law can be used to push
generators to the left. Let us assume that the vacuum ket vector <0| is defined as a
linear form on the state space in which field algebra and quantum group act, and is
invariant under the quantum group in the sense that

<0|X = β(x)<0|. (6.35)

Then it follows from the transformation law of fields and the invariance of the
vacuum that correlation functions

^V..Φ;LvΊ0> (6.36)

are quantum group invariant.

6.3. Quantum Group Covariant Field Algebras. Let ^ Γ e e be the associative algebra
with unit, with generators Γ£9 J = 0,^, 1, m= — J... J, and relations given by the
multiplication law in the algebra of observables si

AΓt = ΓrίρJ(A), (6.37)

and Γo° = 1. A general element of &ΐm has the form Γ^... Γ^A with A e si, n ̂  0,
and any product of elements may be brought into this form by use of Eq. (6.37).

This algebra is quantum group covariant in the sense that we may add the
generators X to those of #free, and impose generalized commutation relations
(6.20), (6.30). They are consistent with the relations in the algebra J^ ree.



190 G. Mack and V. Schomerus

It is not clear, however, whether this algebra can act in the Hubert space ^ p h y s ,
defined in (6.19). If it can act the resulting representation of J^ r e e is certainly not
faithful, since a faithful representation space will include states that transform like
arbitrary vectors in the tensor product VJn®...®VJi of physical representation
spaces, including vectors in the unphysical subrepresentations with quantum
dimension 0. Therefore one will seek to divide by an ideal in «^ree, that is impose
further relations in the algebra.

It would be desirable to have the relation

ΓJΓJP — v rJrJΦmn (f\ ^8ϊ
lk ll εJ— L 1min ^kl [O.^Q)

m,n

with the matrix
M\VJ®VJ=VJ®VJ (6.39)

whose action commutes with the action of the quantum group algebra

for all Xe%. (6.40)

As we explained in the introduction, desirability of such a relation comes from
the fact that it yields quantum group covariant braid relations for the field
operators of equal charge J, βj is the unitary element in the commutant of ρ2(s/)
which determines the braid group representation by operators in si.

Let us discuss consistency of such a relation (6.38). Consistency with quantum
group covariance follows from property (6.40) of M. The fact that βj determines a
braid group representation implies that the same must be true for 01, therefore 01
must satisfy Yang Baxter equations. The quantum group ^-matrix satisfies these
requirements [14]. Also ε, and ^ must have the same eigenvalues.

The eigenspaces of ε7 in si are of the form Π Jf0, where Π are projectors in the
commutant of ρj(^/). For J=ί, this commutant consists only of the center of
Lies/, which is spanned by the projectors ^(1 ± Y). The interesting case is J = | .
The eigenvalues of ε1/2 were found in Sect. 5.1 to be

iγ and — γ with γ= — e 8 . (6.41)

This agrees with the eigenvalues of the quantum group ^-matrix of Uq(sl(2)) for
q = e~l7C/2

!> for proper choice of overall phase. The overall phase is not determined
by Yang Baxter equations and commutativity with A.

Let us now try to construct operators f}1/2 which act in J^phys. The
commutation relation (6.28) with observables is equivalent to the requirement that
the transition operators #Cmr*^u determined by Γf must be proportional to the
intertwiners constructed in Sect. 4. Thus

tf=ΣΣcΓf J

m fWoirf / ))/„ (6.42)
κ,Lk,ι l_κ m ίj \ \K L))

with complex coefficients C ' " that vanish unless m + / = k.

Consistency with transformation law (6.24), (6.30) under the quantum group

requires that the coefficients C\ '" \ must be quantum group Clebsch Gordan
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coefficients, apart from a normalization factor,

J L Ί Γ K J L l (6.43)

In this way we obtain a quantum group co variant field algebra which acts on
the Hubert space f̂phys. The scalar product in Jfphys determines the meaning of
adjoint operators. We could therefore extend our algebra of field operators to a
*-algebra of operators on J^phys, if we wished to include adjoints. The adjoint of
quantum group generators is defined by

O* C //r,±Sz/2Λ* rt + Sz/2 iC ΛΛ\

i3+=θq:, (q ' ) = q . (Ό.44)

But the adjoint operators Γ^* do not have the same covariance properties as Γ^.
Instead

r£*A = Qj{A)Γ^, (6.45)

and the generalized commutation relations of Γ^* with the quantum group
generators X are obtained by taking the adjoint of Eq. (6.34).

XΓ^ = Σ a(X* Ύ* |Z ) Σ Γn

J*τUnY*))Z (6.46)
n

(— is complex conjugate, Sf is the antipode).
Let us finally check whether condition (6.38) which assures local braid relations

of fields φn = ΓnU is valid. Braid relations of intertwiners were found in Sect. 5.
Since i% identified representations (πK9 J^κ) and (π0 © ρK9 j ^ 0 ) ? Eq. (5.32) can also be
written in the form

;;, (6.47)

where ρ(Sl) = ρL if sί = ( ). From Eq. (6.42) we obtain

W β J = Σ Σ c\p J

}

 s]c\s f Q]
P,Q,S p,q,s \_p k s j Is I q\

(6.48)

\ \^ °/ \° V,/ / "
while

Γp j c/1

V V C\
p,Q,sf p,q,sr [_p m s'

Equation (6.47) and Eqs. (5.33), (5.34) for R*»\ give

/ j \

\S' 01
(6.50)

•'.)•
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We abbreviated ( ) to (PS). Inserting this into Eq. (6.48) we see that

expressions (6.48) and (6.49) are equal if

γclp

= Σ CΪP J S']CΪS: J <>W (6.51)
s'£,n \_p m s'J \_s' n q\

This is called a "vertex-SOS transforamtion" in the work of Frόhlich et al. [41].
Summation over S runs over physical representations S = 0,j, 1 only. The braid
matrices RsJfsl on the left-hand side are given by Eq. (6.50), while 01™ and
proportionality factors cKJL in (6.43) remain to be determined.

Inserting expressions (6.50) for R;;;, and setting the coefficients cKJL = l would
give

j jK } q {J Q S'J

Γ
s',m,ΛL

k sjls I qjK } q {J Q S'J,

P J ψ J βl

Interpreting ^£f as a canonical quantum group ^-matrix, Eq. (6.52) agrees
with the defining equation for 6/-symbols, for generic q, except for the restriction in
the sum over S. The equation is also valid whenever the tensor product [J] ® [Q]
of quantum group representations contains no unphysical subrepresentations
[31]. If operators (6.48) and (6.49) are applied to \ξ)eJ^fKr, only the term with
Q — K, q — r contribute. It follows that Eq. (6.38) holds on a subspace of J^phys

which contains J"f0 and Jf1/25 m= ±\ if J = i , as claimed in Theorem 2, with 0ί
equal to the quantum group ^-matrix multiplied with e~ιπl1.

If J = 1, then Sj= — 1 and relation (6.38) is trivially satisfied by

l)=-δτδl. (6.53)

The corresponding local braid relations are

ΦlΦΪ=-ΦΪΦl (6.54)

This completes the proof of Theorem 2.
Let us finally explain the difficulty with the vertex-SOS transformation which

prevented us from establishing local braid relations on the whole Hubert space.
Consider again J—\ and suppose that matrix 0^n is not diagonal [i.e. 0SU^n φ 0

does not imply (fe/) = (mn)]. The 3rd component of quantum isospin is conserved,
i.e. 0tmn — O unless fc + / = m + n. Therefore it follows that

ΛΊίi-ίί iΦO. (6.55)

The quantum group ^-matrix is nondiagonal. Consider the special case P = Q = 1,
p = q = ί. Then the left-hand side of Eq. (6.52) is zero because S = 0, \, 1 implies s φ | .
But the sum on the right-hand side consists of one nonvanishing term for S' =j.
Therefore, validity of Eq. (6.52) for all P, Q is inconsistent with a nondiagonal
^-matrix. This argument does not depend on the exact form of $s}*£, and the
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conclusion remains also valid when we admit arbitrary proportionality factors
CKJU provided c 1 / 2 1 / 2 t-cx 1</2 i / 2 *0.I fc 1 / 2 1 / 2 1 c1 1 / 2 1 / 2 were 0, the field φlf2

could either not make transitions to, or from, 2f1.
A similar problem was also encountered by Buchholz, Mack, and Todorov in a

different approach [17].

6.4. Operator Product Expansions. It is straightforward to extend the consider-
ations of Sect. 4.4 to obtain operator product expansions on the vacuum sector. If
φt>« = Γk

JUa with Uae^ then

Σ m k ; (6.56)

with

J ' ( J 2 J (6.57)

and structure constants cJj2Jι as in Sect. 4.4.
Again this expansion does not remain valid on all sectors, but it is good enough

to convert vacuum expectation values of products of field operators into vacuum
expectation values of observables.

A. Appendix. Local Braid Relations

Suppose that the fields

ΦJki = ΓkUii U{esrf, unitary (A. 1)

are localized in disjoint intervals Ih ί = l,2 with ζφlt. This means that endomor-
phisms Qι = σv. © Qj are localized in the intervals ί( . The point ζ entered the defini-
tion of Ej. We show that braid relations

Φί'1Φί'2=Y Φi:sΦίΛ&?!1 (A2)
m,n

hold. Using Eq. (1.54), Definition (1.31) and homotopy invariance of Sj = ερj, and
Eq. (1.41) in turn we calculate

= Σ W e Λ f 2)iΊ«2Γ= Σ

as claimed in Eq. (A.2): To justify the use of homotopy invariance, Qj should be
regarded as limit of localized endomorphisms as explained after Eq. (1.31), and t/f

must be limits of elements of local algebras srf(ΐ) with ζ φ I as implied by the
hypothesis of Remark 3. This restriction on Ut eliminates the possibility of
multiplying the fields with arbitrary elements of the center of s/.
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B. Appendix. Table 1

C

* *

Γl ! Ί .5π Γ l 1Π π

Lo oJ, . .Γ e ' M o ojp h y s-
e '

± 1 0

L1 U
n - e ' ± ± 1 0 ~ '

1 ΌJq=-i L 1 UJphys

* έl -r1* c Γ* "1 -fi

* C
C

* ±

0 0Li u — ~ v f ' 0 0Li

l 0U ύ~Γγ2e ' C i o U p ^ ^
π η 1 /π Γ1 -̂ Ί 1 i3π

l_2 2jq=-i | /2 L2 2jphys ]/2
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