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Abstract. A new definition of spectral data of a monopole is given for any
compact Lie or Kac-Moody group. It is shown that the spectral data determines
the irreducible monopole. In the case of maximal symmetry breaking the
spectral data is shown to reduce to an earlier definition in terms of algebraic
curves indexed by the nodes of the Dynkin diagram of the group. The structure
of solutions to Nahm's equations corresponding to the monopole is discussed.

1. Introduction

In 1982 Hitchin defined the spectral curve of an SU(2) monopole which is the
collection of lines in R3 along which a certain differential operator has non-zero
j£?2 kernel. These lines form an algebraic curve in the minitwistor space
«^"= T(P1(C)) of all oriented lines in R3. The monopole is equivalent, via the
twistor correspondence, to a certain holomorphic bundle on 9~ and Hitchin showed
that this bundle and therefore the monopole was determined by the spectral curve.

For other compact groups the definition of the spectral curve was generalised
to the spectral data of a monopole in Murray (1984). The spectral data is a collection
of curves Sf, indexed by the nodes of the Dynkin diagram of the group, and a
division of the intersections StnSj into two pieces Sitj and Sjtί when the nodes /
and; are joined on the Dynkin diagram. For the groups SU(ή), Sp(n) and S0(2n)
it was shown in Murray (1984) that a general monopole (one for which the curves
are reduced and for which their intersections are distinct points) is determined by
its spectral data. Most recently in Hurtubise and Murray (1989) the present authors
showed, amongst other things, that the same result was true for S0(2n 4-1).

The methods used to prove these results all relied in an essential way on the
linearity inherent in the vector bundles involved rather than on the group structure
of the principal bundles. This is why the proofs were difficult to extend beyond
the classical groups. The original definition of the spectral data in Murray (1984)
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however used principal bundles and the structure of the Bruhat cells on G/B and
did not distinguish between the classical and exceptional groups. We give below
a proof that the spectral data determines a general, irreducible monopole for any
compact group or Kac-Moody group using a method that shows that the spectral
data determines the transition function of the holomorphic principal bundle which
is equivalent to the monopole. This is a quite different method from those used
previously and gives a more complete result.

This approach has motivated us to revise the definition of the spectral data of
the monopole. We shall define the spectral data to be a curve in y and a section
of a certain sheaf (determined by the asymptotics of the monopole) supported over
this curve. This new definition is somewhat more abstract than what we had before
however it has two advantages. Firstly it is easy to see that for any type of symmetry
breaking the monopole is always determined by its spectral data without any
assumption of genericity. Secondly for generic, maximal symmetry breaking we
can show that this definition is equivalent to the older one mentioned above. This
proves that the spectral curves and the division of their intersections determines
the general monopole.

Before we begin let us make some notational comments about principal bundles
and also outline the groups involved. Let Q(3~, G) be a principal bundle over y
with total space Q and group G. Then G acts transitively and freely on the fibres
of the projection Q -* y. If Y is any set on which G acts on the left we can form
the fίbration Q x G Y which is the orbit space of the right G action (q, y)g = (qg.g'^y)
on the product Q x Y. We denote the orbit oί(q9y) by [q,y]G and use the notation
Q(Y) for Q x G Y. The general philosophy of this construction is that the fibres of
Q(H)-+y have "whatever structure" Y has that is preserved by group action. As
a number of cases will be important below let us list them here.

1.1. When Y is a vector space and G acts by a representation λ, Q(Y) is a vector
bundle and we shall in addition employ the notation Q(λ) for the vector bundle Q( Y).

1.2. If G acts by group automorphisms on another group H then Q(H) is a bundle
of groups. That is each fibre of the projection Q(H) -> y is a group with the product

ί.3. If G acts on the left of a group H and the action commutes with the right
action of H on itself then Q(H) is a principal H bundle with the action
[<?> h"]Gh' = [g, hh'~\G. A trivial example is that Q(G) is the bundle Q itself under the
isomorphism [q9g]G*-*qg.

1.4. Another example of 1.3 is if we are given a homomorphism χ:G-*H. Then
there is an H bundle induced, most simply, by composing the transition functions
of Q with χ. More invariantly let G act on H by g'h = χ(g)h, then Q(H) is the
induced H bundle.

Recall that a subset R of a principal G bundle Q is called a reduction of Q to a
subgroup B a G if it is stable under B and with respect to the action of B is a
principal B bundle. In such a case if G acts on Y and B acts on Y by virtue of
being a subgroup of G then there is a canonical identification of the two associated
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fibrations

[r,y]B^[r,ylG. (1.5)

The notation for the groups we shall be using is:

K a compact Lie group or a Kac-Moody group,
C(Φ°°(*)) the centraliser in X of an element Φ°°(*) of the Lie algebra LK of K,
G the complexification of K,
T a maximal torus of K contained in C(Φ°°(*)),
Tc the complexification of T,
P a parabolic subgroup of G,
P an opposite parabolic,
L = P nP the complexification of C(Φ °°(*)) and
V and V which are the unipotent radicals of P and P respectively.

The organization of the paper is as follows. In Sect. 2, we recall how a monopole
defines a principal G-bundle Q over 3Γ, as well as reductions, R+, R~ or Q to P,P
respectively. By the exact sequence of groups

and the induction mentioned above (1.4) R+ defines an L bundle M. We show
that the isomorphism class of M belongs to a discrete set determined by the
asymptotics of the monopole; it should be thought of as fixed.

In Sect. 3, we show how to classify the P-bundles with induced L bundle
isomorphic to M. In a generalisation of the construction of a principal bundle
from transition functions these bundles are shown to be determined by "transition
sections" taking values in a bundle of groups. The spectral data is then defined:
the reduction R~ defines a section of R+ (G/P) whosej'principal part" is the spectral
data. The notion of principal part of a map into G/P was introduced by Gravesen
and Segal (Gravesen (1987)) and generalises the classical principal part of a
meromorphic map (see Sect. 3(ii) for Gravesen's definition). In our case, this idea
is extended to a bundle context; the principal part of R~ is supported on a curve
in ,̂ the spectral curve. The spectral curve and the restriction of the principal
part to the curve are the spectral data of the monopole. We show that they determine
the monopole.

Section 4 is devoted to showing that the spectral data in the case of general
monopoles with maximal symmetry breaking reduces to the previous definition of
Murray (1984), that is, a collection of curves indexed by the nodes of the Dynkin
diagram of the group and a partition of the intersection of any two curves joined
on the Dynkin diagram into two equal sets of points. This is used to show that
such curves and points determine the general, maximal symmetry breaking
monopole for any group G.

In Sect. 5, we discuss solutions to Nahm's equations. For the classical groups,
in the case of maximal symmetry breaking these were shown in Hurtubise and
Murray (1989) to encode the structure of the monopole. In this more general case,
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when K is a compact group and for arbitrary symmetry breaking one can define
a solution to Nahm's equations associated to any representation of K. We make
some comments on the structure of these solutions.

2. Monopoles

A monopole for a Kac-Moody or compact Lie group K with Lie algebra LK is
a pair (A9 Φ) such that

i) A is an LK valued 1-form (connection) on R3 and Φis an LK valued function
(called the Higgs field),
ii) (A, Φ) satisfies the Bogomolny equations

*dAΦ = FA, (2.1)

iii) and the action
JIFJ' + I^ΦI2 (2.2)

R3

is finite.

When K is a Kac-Moody group these monopoles are also called calorons, see
Nahm (1983) and Garland and Murray (1989)

As a consequence of the finiteness of the action the monopole satisfies the
Bogomolny, Prasad, Sommerfield (BPS) boundary conditions, in particular the
Higgs field has a limit over S ,̂, the sphere at infinity in R3:

Φ°°:S^->LK (2.3)

whose image lies on an adjoint orbit of the group.
Fixing a point * in S ,̂, we are interested in the set of all monopoles (A, Φ),

where the Higgs field has a limit at infinity and Φ°°(*) is fixed; modulo the action
of the group of gauge transformations with limits at infinity such that 0°°(*) = 1.
The resulting moduli space is the moduli space of based monopoles. To remove
the basepointing condition we would have to allow gauge transformations with
<7°°(*) taking values in the subgroup C(Φ°°(*)) of K consisting of elements which
leave Φ°°(*) fixed. The moduli space of based irreducible monopoles fibres over
the moduli space of unbased irreducible monopoles with fibre C(Φ°°(*)).

With these definitions we have an explicit realisation of the adjoint orbit and

Φ«:S^K/C(Φ°°(*)). (2.4)

The Higgs field at infinity defines an element of the second homotopy group of
KyC(Φ°°(*)) which is isomorphic to Zr~d, where r — d is the dimension of the torus
generated by Φ°°(*). To find an explicit set of generators for this homotopy group
we proceed as follows.

We choose a maximal torus Γ, whose Lie algebra contains Φ°°(*), and a set
of r simple roots Δ and denote by Δ0 the set of d simple roots vanishing on Φ°°(*).
The subgroup WQ of the Weyl group W generated by the simple root reflections
for simple roots in ΔQ is the subgroup stabilizing Φ°°(*). There is an identification

(2.5)
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where P is the parabolic subgroup containing the negative root spaces and the
positive root spaces for roots in Δ0. The magnetic charges of the monopole are
the collection of r — a (non-negative) integers indexed by the elements of Δ not in
Δ0 and defined by

(2.6)

where λt is a fundamental weight dual to a simple root not in Δ0 and ^(λt) is the
homogeneous line bundle over G/P obtained by extending λt to a holomorphic
character of P.

The Higgs field at infinity determines a reduction of the (trivial) K bundle at
infinity to C(Φ°°((*)). The connection has a limit at infinity (Hitchin (1982)) which
satisfies VΦ°° = 0 and therefore the connection reduces to the C(Φ°°(*)) subbundle.
This connection gives the complexification of the C(Φ°°(*)) bundle a holomorphic
structure. We shall denote this holomorphic L bundle over P1? the sphere at infinity,
by W+. As the dual of the curvature also satisfies V*F°° =0 we have a further
holomorphic reduction to C(*F°°(*)), Finally by a theorem of Grothendieck (1975),
even if F°°(*) is not regular, we can reduce this bundle to Tc. This holomorphic
bundle (which determines W+ by the embedding TC-»L) is a sum of line bundles
determined by their Chern classes which are in turn determined by F°°(*). Note that
if Φ °°(*) is not regular * F°°(*) contains more information than its magnetic charges.
This information takes the form of integers which label strata inside the moduli
space of monopoles. See Murray (1989) for more details when K = SU(N). In any
case, the possibilities for W+ are discrete. Similarly we define W~ which is the
conjugate of the pull-back of W+ under the antipodal map.

By the twistor correspondence a monopole determines a holomorphic principal
G bundle Q, where G is the complexification of X, over y the so-called minitwistor
space of oriented lines in R3. As a complex manifold y is isomorphic to the tangent
space of one dimensional complex projective space. For each oriented line y we
define a G-space by

/ p \ ^ Ί
(2.7)

where g is a map from y to G and t is a normalised linear parameter for y in the
direction of its orientation. The union Q of these G-spaces forms a holomorphic
principal G bundle on &'. Letting g be the exponential of a map s from y to LG
we deduce that the fibre of the adjoint bundle ad Q over y is

The monopole can be reconstructed from this bundle; for details see Hitchin
(1982) and Murray (1984) when the group is a compact Lie group and Garland
and Murray (1989) when it is a Kac-Moody group.

If we define adR+ to be the subbundle of s in adβy that are bounded as we
approach + oo then this is a bundle of parabolic subalgebras whose fibres are
isomorphic to LP. For details see Murray (1984). This determines a reduction of
β to a P bundle R+ whose adjoint bundle is this bundle of Lie algebras. In a
similar fashion by looking at bounded solutions in the direction of — oo we obtain
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a reduction R ~ to P. When we project out the unipotent radical of the parabolics
via the maps.

V-*P-+L (2.9)

and

V-+P-+L (2.10)

we obtain induced L bundles M+ = R+(L) and M~ = R~(L).
By applying a generalisation of the methods in Hitchin (1982), pp. 590-594 we

can show that

M+ =&****> ®π*W+, (2.11)

-9 (2.12)

where W+ and W~ are the bundles at infinity defined above, π\3~ ->P! is the
projection and the bundle j^f φαo(*>, as well as the "tensor product" are defined as
follows. Let (ζ,η)t-+η(d/dζ) be the standard co-ordinates on 2Γ and U0 = {η Φ oo},
[/! = {η φ 0} the standard cover by two open sets. Then j^7*00'** is the Γc bundle
with transition function

from UQ to U1. To put it more concisely <gφ™(*) is the twistor bundle for a T
monopole with zero connection and constant Higgs field equal to Φ °°(*). The tensor
product in (2.11) is defined by multiplying the transition functions of the respective
bundles. This makes sense (that is the cocycle condition is satisfied for the product)
because L is the centralizer of Φ°°(*).

The justification for the use of the tensor product notation is that if χ is an
irreducible representation of L (with highest weight also denoted χ) then one has
a line bundle JS?*(Φ (*}) corresponding to the weight χ and

As these are framed monopoles we have an actual identification of the bundles
in (2.11) over the fibre of π consisting of all lines that point in the direction
* and of the bundles in (2.12) over the fibre of lines that point in the opposite
direction to *. In these case of maximal symmetry breaking, when L is abelian this
defines a unique identification of the bundles in (2.11) and (2. 1 2) over the whole of 2Γ .

We have now shown that M+ belongs to a discrete set and is determined by
the boundary conditions of the monopole. We now fix M+ and ask what extra
information determines the monopole.

3. The Spectral Data

Reductions, such as R~, of the holomorphic principal bundle Q to a parabolic
subgroup P are in bijective correspondence with the holomorphic sections of the



Spectral Data 493

flbration Q(G/P) (see for instance Koboyashi and Nomizu (1989).) Because R+ is
also a reduction of Q recall from (1.5) that we have a natural isomorphism

R+(G/P) = Q(G/P) (3.1)

and R~ therefore determines a section of R+(G/P). Before exploiting this fact to
define the spectral data, we will first classify the P bundles, such as R+, whose
induced L bundles is isomorphic to M (see (1.4)). More precisely we will classify
pairs consisting of a P bundle R+ whose induced L bundle, R+(L) is isomorphic
to M and a choice of such an isomorphism. The different isomorphisms are all
obtained by acting by the automorphism group of M and we will consider the
effect of this later. Because there is the projection R+ -+R+(L\ π-*[r, 1]L, choosing
the isomorphism defines a map R+ -> M which commutes with the action of P,
where P acts on the second bundle via the homomorphism P-+L (see also (1.4)).
Hence we call such bundles "P-bundles projecting to M."

i) P-Bundles Projecting to M. Let us fix a trivialisation, or a collection of local
sections {φα} of M with respect to an open cover {UΛ} of &~ . Because all
holomorphic bundles are trivial over a Stein open set we can fix a Stein open
cover. Then there are transition functions

defined by

Φβ = ΦJaβ

Choose local sections φΛoϊR+ which project to the local sections φΛ of M. Then the
bundle R+ and therefore Q = R+(G), and hence the monopole, is determined by
the transition functions

>P (3.2)

which satisfy

Φβ = ΦaPtβ. (3.3)

Because the group P is a semidirect product of V and L we can write pΛβ = lΛβvΛβ.
The transition functions lΛβ are determined by our fixing of the bundle M and its
local trivialisation. To determine the bundle Q we need only recover the vΛβ9 but
what sort of objects are they? Some manipulating of the cocycle identities

P*γ = PaβPβγ

and

will convince the reader that the υΛβ are not themselves transition functions. We
will show however, that correctly interpreted, they are transition sections.

Over the set UΛ the trivialisations define an isomorphism

R + \ϋι? [<Lp]LH+0αp. (3.4)

The bundle R+ can therefore be thought of as made up of copies of the given
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P bundle M(P) over each of the sets Ua glued together by the bundle automorphisms
X^Xβ °n the overlaps UΛo>Uβ. This is just the same as the way a bundle with
transition functions gΛβ is thought of as copies of the trivial bundle over each UΛ

glued together with the transition functions on the overlaps.
We can calculate the maps χ~ 1χβ from the explicit form (3.4). A typical element

[φβ*P\L in M(P) is mapped by χβ to φβp in R+. This is the same as φΛpΛβp from
(3.3) and therefore under χα must have come from

= [^^]L[φ^,p]L. (3.5)

where the last line represents the action of an element of the associated bundle of
groups M(V) (where L acts on V by conjugation; recall that L is also a subgroup
of P and normalises V) on the associated fibration M (P). It can be seen that this
action commutes with the action of P on M(P); that is, it is an action by bundle
automorphisms. If we define sections of the bundle of groups M(V) over UavUβ by

then these transition sections define the bundle R+. It can be easily checked that
these transition sections satisfy a co-cycle identity and that if we change to a new
trivialisation φ'Λ with φ'Λ = φΛva then we have

Notice that this is all the freedom we have in changing the local sections φa as we
require them to project to the given sections $Λ of M.

We see now that the bundle R+ can be defined using these transition sections
and that they behave just like the more familiar transition functions. When
considering transition functions gaβ for a G bundle P -> X it is sometimes useful
to introduce non-abelian sheaf cohomology. The set of all G bundles is then in
bijective correspondence with the sheaf cohomology set H1(X,G). In this setting
the transition functions define representatives for the cohomology class correspond-
ing to the bundle P. In our case a similar theory can be defined and the set of all
bundles R+ with isomorphisms R+(L)^M shown to be equivalent to the set

). However we will not need this machinery.

ii) The Definition of the Spectral Data. The group P acts on G/P and its action
on the coset P sweeps out a dense open set. The subgroup V acts freely and
transitively on this orbit so it is isomorphic to V itself. The complement of this
set is an algebraic variety about which we shall say more later. This structure
theory is well known for the case of Lie groups, see for instance Humphreys (1981)
and for the case of Kac-Moody groups see Pressley and Segal (1986). We shall
identify V with this orbit VP and regard G/P as a "compactification" of V. We
shall call the sheaf of holomorphic maps into G/P which intersect VP the sheaf of
meromorphic maps and denote it by Mr (by requiring that the image of the map
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intersect VP we are excluding maps that are "infinite" everywhere). The sheaf Θ(V)
of maps into the group Kacts naturally on Jtr, and Gravesen (1987) defines the
quotient sheaf &r = JirlΦ(V) to be the sheaf of principal parts. This generalises
the classical case where G/P is one dimensional complex projective space, VP is
C and the complement is the "point at infinity."

Now we return to the section of R+(G/P) defined by the reduction R~ and
mentioned at the beginning of Sect. 3. Locally this section takes the form [φα, /JF,
where /α: l/α-> G/P are defined by

Λ~=W.,/Jp (3-6)

and it follows that

l«βv«βfβ = L (3.7)

As the orbits of P on G/P are P stable they define subvarieties of the fibration
R+(G/P) (see Murray (1984)) and, in particular we can consider the set in ZΓ where
the section R~ doesn't intersect the open orbit. It follows from Hitchin (1982) and
Murray (1984) that this is a compact algebraic curve 5. Locally l/αnS is the curve
where /α intersects the complement of the open orbit VP in G/P.

Away from the points of Sn £/αn Uβ the vΛβ are determined by Eq. (3.7) because
Kacts freely on VP. Because 5 is a curve, its complement is dense in l/αn Uβ9 so
that the vaβ are determined everywhere by knowing the /α.

Notice that because P doesn't act freely on VP we cannot determine the paβ

from Eq. (3.7) unless we know the lΛβ. This is the reason for introducing the idea
of transition sections and the bundle M.

The correct interpretation of the /α is also to use the bundle M and to define
local sections of M(G/P) by [$«,/«]. These do not define a global section as on
overlaps Ua n Uβ they are related by

However they do define a global principal part if we generalise the definition of
Gravesen to sections of bundles. We have the sheaf M(Jίr) of "meromorphic
sections of M(K)" that is, sections of M(G/P) intersecting M(VP). The quotient
sheaf M(Jίr)/M(V) = M(^r) is the sheaf of principal parts and the [φα, /α] define
a global section of this which we call the principal part of the monopole. It can
be checked that changing the sections φΛ leaves the principal part unchanged.

It should be noted that these sheaves are sheaves of sets rather than the, perhaps
more familiar, sheaves of abelian groups or vector spaces. Definitions can be found
in Tennison (1975). In any case it is hoped the local definitions are clear.

It is immediate from the discussion above that a monopole is determined by
its principal part.

The reader familiar with sheaf theory will note that this construction of vaβ

from /α resembles the construction of the coboundary of an element in sheaf
cohomology. To see how to make sense of this we will make a short one paragraph
digression that can be safely ignored if the reader wishes. We need to consider
sheaves of pointed sets, that is sheaves whose stalks are sets with a distinguished
element (the "point") and exact sequences of sheaves of pointed sets where the
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sequence of pointed sets

A-^B-^C (3.8)

is called exact at B if f ( A ) is equal to the preimage under g of the point in C. (In
the case that A, B, C are groups the point is taken to be the identity and then this
becomes the more familiar definition of exactness.) Then we have two exact
sequences of sheaves of pointed sets, whose first terms are sheaves of groups;

Q, (3.9)

0 -» M(V) -> M(Jlr} -» M(0>r] -> 0. (3. 10)

The above can then be reinterpreted as saying that the principal part ^ of the
monopole is the image in H°(̂ ", Λί(^r)) of the element R~ of H\F , R+(0>r)) under
the map induced by (3.9). Similarly, the statement that 2? determines the monopole
is then that [v^H\^,M(V)) is the image of ^6H0(5",M(^r)) under the
coboundary map corresponding to 3.10. This interpretation makes the construction
a non-abelian version of the original construction in Hitchin (1982) where the
monopole bundle is recovered by applying a coboundary map to the section of
L2 supported over the spectral data.

Lastly let us define the spectral data of the monopole. If Ua does not intersect
S then /α is a map into V and therefore in the same coset as the constant map 1.
It is therefore determined! The principal part of the monopole is thus in the sense,
supported on S and we shall denote its restriction to S by /. This pair (S, /) is the
spectral data of the monopole and it is immediate from the discussion above that
the spectral data determines the bundle Q without restriction of any kind. (More
correctly we should define the spectral data to be S and the orbit of / under the
automorphism group of the bundle M. Whether or not we do this is connected
with whether or not we frame the monopole.)

From the more involved structure theory of G/P (see for instance Bernstein,
GeΓfand and Gelfand (1973)) we can show as in Murray (1984) that the curve S
is a union of r — d curves Sf indexed by the elements of Δ not in Δ0. The degree
of Si is twice the magnetic charge m^ The curves {Sj we call the spectral curves
of the monopole.

To finally complete the result we have to worry about the real structure. We
have determined the monopole as a G monopole and we want to know that the
original K reduction is also determined. However if there were two different
reductions to K compatible with the original connection and Higgs field then this
would induce a non-trivial automorphism of the original monopole, and if we
assume that the monopole is irreducible this cannot happen (Murray (1984)). So
we have proved.

Theorem. The irreducible monopole is determined by its spectral data.

The spectral data as we have defined it here is a rather abstract object. In the
next section we shall show that for a general monopole with maximal symmetry
breaking our new definition is equivalent to the one in Murray (1984) in terms of
curves St indexed by the Dynkin diagram of the group and a splitting of the
intersections S^Sj when i and; are joined on the Dynkin diagram.
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4. The Maximal Symmetry Breaking Case

We now consider the case of maximal symmetry breaking when P is a Borel
subgroup B. We review first some of the results from Murray (1984).

Let Y, be the G-module with lowest weight the negative of the fundamental
weight λι corresponding to the simple root α, , and let y,(μ) denote the irreducible
summand under the action of T with weight μ. Then we have

and we denote by Z the direct sum of all the irreducible summands except the
lowest. We then define the following vector bundles on y\

E+=R+(Z),

E = Q(Yi) = R+(Yi) = R-(Yi). (4.1)

These fit together to form a commuting diagram

£/£ί

/ \ (4.2)

0 — >£f — > £2 — >£J/£Γ — >0.

Using the identification in (2.13) this diagram becomes

0 - _ j - - ( ) .

(4.3)
where

<* = =£*¥ (4.4)
(«ι,αι)

and (,) is the Killing form. The spectral curve Sf is defined by the vanishing of the
map

tfr,:£Γ->£/£ί, (4.5)

and from the commuting diagram (4.3) over St the middle map factors to define a
section

'(Σ wΛ).\ffι Ί)
Slt jS?- «<*"<*)) V cym (4.6)

To relate the ̂  and ξf to the principal parts we will define them by an equivalent
method which begins on G/B, extends to R+(G/B) by forming associated bundles
and then pulls back to y by R~. We begin this procedure with a discussion about
the Schubert cells on G/B.
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The orbits of V on the manifold G/B decompose it into cells

χw = Kw£, (4.7)

where w runs over the elements of the Weyl group W— N(T)/T or more correctly
their coset representatives in the normaliser of the torus N(T) <= G. The closures
of these cells are algebraic subvarieties of G/B. The cell VeB is open and there
are r cells of codimension one indexed by the simple root reflections σf = σα.
in the hyperplanes orthogonal to α, or the nodes ί of the Dynkin diagram._If
the nodes i and; are joined onjhe Dynkin diagram then the intersection XσtnXσj

is the union of Xσiσ. and Xσjσr If the nodes ί and j are not joined then

Defining the following associated vector bundles on G/B

j£?(-4 -Λ + α£) = G x

J8?(-λ! 4- α f) = G x aW-λ,)® YA-λt + ̂ /^(-Λ )), (4.8)

we have the diagram

G/5 x y£/z
X I (4.9)

0 - >J?(-A£) - ̂ ^(-/l^-^-hα,) - ̂ (-/L + αO - >0.

The diagonal map vanishes on the z'th Schubert variety Xt and over it the vertical
map factors to give a map

^-λi + z^XiXYJZ. (4.10)

The group B acts on this diagram and we can form associate fiberings with
R+. The section R~ of R+(G/B) then pulls this back to give the diagram of vector
bundles (4.2) or (4.3). Because the orbits are B stable we can consider the associated
fiberings

(4.11)

It is shown in Murray (1984) that using the section R~ of R+ (G/B)

St = R-*R+(Xσi), (4.12)

and moreover that if we define

St9j = R-*R+(X9iβJ) (4.13)

so that when ί and j are joined on the Dynkin diagram

S nS^S^uS,,, (4.14)

then the divisor of ξi is

Σ **SU. (4.15)
kΦi

We shall show that a general, unframed, irreducible monopole, for any choice
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of X, is determined by the spectral curves and the division S^nS; = SyuS^ when
i and j are joined on the Dynkin diagram (that ctj φ 0). The proof will consist of
a number of steps. First we shall show that the ψt and ξi determine the principal
part of a framed monopole. Then, we prove that the t/^ are determined by the
framing and the curve 5ί9 Lastly we note that the ξt are normalised by the real
structure so that there is only the freedom of multiplying each of them by a phase
and that this multiplication corresponds to acting by the torus on the framing.

The proof that the i/^ and the ξt determine the monopole involves looking at
local representatives of the principal parts so we will collect first some formulae
in local trivialisations.

Choose trivialisations φ* , φ ~ of R +, R ~ respectively which project to standard
trivialisations of M and M so that on intersections they satisfy

Φa = Φβ bβΛ = Φβ lβΛVβa. (4. 1 6)

Because R+ and R~ lie inside Q we can define Fα by φfFα = φ~ on each UΛ and
we see that

Fβ = b^FΛb~β. (4.17)

In the φϊ trivialisation the section R~ of Q+(G/B) = R+(G/B) is

R- = W;,B]G = [0.+ ,f .BL (4.18)

Let /α = FΛB. Then these are the local representatives for the principal part of the
monopole. We want to now relate these to the diagram (4.3) and ̂  and ξt.

Consider first

(-λi)) = R+ xB(GxsYi(-λi)). (4.19)

R~ determines the section [φα

+,Fα 5] of R+(G/B) and therefore the fibre of (4.19)
over the image of jR ~ is

(4.20)

Local sections of this are given by [</>* , [Fα, c]^]B, where ce 7f( — /l f) and as expected
over intersections we have

, &.,€]£,. (4.21)

The bundles of the form R+(μ\ for some character μ, are, because of the framing,
canonically isomorphic to W+(μ) and therefore have canonical local sections
[0<*> !]L We shall denote all these local sections by σα and similarly for R~.

In local co-ordinates the map defining the spectral curve is then

^:σ'^F"+Z 'σ' (422)



500 J. Hurtubise and M. K. Murray

Let us explain what we mean by this formulae. Recall from the beginning of Sect. 4
that yf is the (finite dimensional) representation of lowest weight — μf and Z is the
sum of all the weight spaces except the lowest so that ΎJZ is a one-dimensional
vector space. The vectors Fa-c + Z and c + Z are vectors in this one dimensional
vector space. The vector FΛ-c + Z is therefore a complex multiple of the non-zero
vector c + Z. We denote this complex multiple by

and note that it is zero when Fx c is in Z.
If d is an element of Yt(— λt + αf) we can define sections of the pullback of

^(-λt,-λi + «l)/^(-λt) (4.24)
by

[ΨMΛ+,fl]. (4.25)

The map ξt is therefore in local co-ordinates

ξ f σ j ^ - σ . . (4.26)

This map is defined on all of UΛ, but only on S fn UΛ does it transform in such a
manner as to be a section of the correct bundle. Next that if we left multiply the
FΛ by maps into V then these definitions are unchanged, and so the ij/i and the ξt

are determined by the principal part of the monopole.
Consider the case of SL(2, C), with Y= C2, B the subgroup of lower triangular

matrices, B the subgroup of upper triangular matrices,

and

d = (ι) (4 28>
Writing Fα as

/ AA; v \
(4.29)

,y z,
we see that the map defining S is

σa^wσβ (4.30)
and ξ is

(4.31)

Notice that at a point of St we have w = 0 and therefore 1 = det FΛ = — yx.
We come now to the proof of the first part of our theorem. Assume that we

have two collections of representatives /α,/α of the principal parts of two monopoles
with the same ψt and ξ g . Then it is sufficient to show that these /α, /α represent
the same principal part, that is there is a collection of maps

va:Ua->V (4.32)
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such that

»./.=/.. (4-33)

Now as the /α and the /„ have the same spectral curves we know that there are maps

*V (4.34)

such that (4.33) holds over Ua — uSf. It suffices to show that these vu extend to
all of UΛ9 moreover as the monopole is general the intersections of the spectral
curves are of codimension 2, so by Hartogs' theorem it suffices to show that the
VΛ extend to UΛ minus the intersections of the spectral curves and the singular
points of the spectral curves. We can work therefore in an open set U as above
which intersects only one curve and contains none of its singular points.

In the SL(2, C) case (which of course we know to be true by Hitchin's original
results (Hitchin (1982)) we have FΛ defined as a matrix as in Eq. (4.29) and similarly
for FΛ with hats on the matrix entries. Because both these monopoles have the
same ψ and the same ξ defined by Eqs. (4.30) and (4.31) we must have that w = vi>
over UΛ and y = j> over Sn l/β. Then from (4.34) we have, away from S,

v.FaB = FxB. (4.35)

Writing this as

c :χ; XH; xa
gives

w = yw, p = , (4.37)

and hence y = 1. The curve Sr\U is the divisor of w = 0, which vanishes with
multiplicity one, so that p and therefore v extends to all of U.

Returning to the general case we choose an open set U a UΛ which only
intersects St and denote restriction from ί/β to U by removing the subscript α. If
we compose f=fi\v with the projection from G/B to G/P, where P is the parabolic
whose Lie algebra is the sum of the Lie algebra of B and the ith simple root space,
then the image lies in the open cell of G/P. This open cell is an orbit of K, the
subgroup of V generated by all the simple root spaces except that corresponding
to the Γh simple root. The fibre over P of G/B -» G/P is G /B^P^C), where Gt is
the SL(2, C) generated by the ith simple root and its negative and B, = G£n B. Hence
there is a map u: U -> Ksuch that

u ~ lf: U -+ GJBi c G/B. (4.38)

We have seen above that the \l/t and ξt depend only on the principal part of the
monopole so we can replace FΛ and FΛ by u~iFa and ύ~ 1FΛ so that / and / take
their values in G/Bf c= G/B. This means that we have FB = g-β for some gt taking
values in Gt and similarly with hats so

F = gfr F = gf, (4.39)
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where gt and 0( take their values in Gt, and b, b take their values in B. The vectors
c and d in y( span a two dimensional subspace which is a representation of G, ;
using this to write gi and $f in matrix form as in (4.29) we have

(4.40)
y z/

and similarly with hats. From Eq. (4.22) we see that ψt is

( ^f. c + Z
*imσjr* c + Z σ°"

so taking into account the action of the Borel B this becomes

over U and similarly for F we obtain

over U. As ,̂ = ifo we must have

(-Aί)(5)w = (-Ai)(S)vί) (4.42)

over U.
For the section ξf we have

and therefore

and similarly for ̂ . As £ =

Consider now the t; = ι?α.| UΛ defined on U — St such that

vF = F. (4.43)

As we have replaced F and F by u~1F and ίί"1/5 the function v now takes its
values in KnG f.

Proceeding as in the SL(2, C) case we have, away from Si9

M>m- (444)

As 5 acts by scalars on c we can absorb this into γ and we have that v extends
over St if the p defined by

w = yιfr, p = ̂ ^ (4.45)

extends over Sf. Note that we have y = x"1 over ί/nSj and the same with hats.
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Also the b and b stabilize the span of c and d and act there by determinant 1 so that

~λi(b)'((-λi-
and

Moreover from (4.42) and (4.45)

y = (-^(5))(-A£(δ))-1, (4.46)
so that using (4.46)

= y. (4.47)

As the monopole is general, w vanishes with multiplicity one on St and it follows
that va extends and the two monopoles have the same principal parts so by the
theorem in Sect. 3 they are the same monopole.

Next we want to consider the ^£. We see from Murray (1984) that in R3 the
bundle EΪ over a line y is the space of solutions of

Vys-iΦs = Q (4.48)

which decay like exp( - Al(Φco(*)))ί as t -> oo along y. Here s is a map from γ to Y/.
Moreover the decay conditions for the monopole mean that as we move y away
to infinity, keeping it parallel to * the solutions approach solutions whose
asymptotic value (as ί->oo) (suitably renormalized) lies in Y^ — λt). (See Murray
(1984) p. 547 and references therein for more details.) A similar description applies
to El El and we see that as y approaches oo the map ̂  approaches the projection
Yi( — h) -> Yi/Z. Of course here we are implicitly trivializing L~λi(φi } along the fibre
of lines parallel to *. So any two φt for the same S£ are constant multiples of each
other with the same asymptotic form in some suitable trivialization, so they must
be equal.

Lastly consider the framing. The torus T acts on the framing and therefore on
the φ+ and φ~ . If we follow this action through the discussion above we see that
it leaves ̂  unchanged (as we would hope!) and acts on the ξt by a phase. The real
structure mapping W+ to W~ can be used to define a conjugate linear map

covering the action of τ on ^~. If we denote by ξf the result of applying this map
and τ to ξi9 then ξtξf is a section over S, with divisor Y cίΛSt nSfc. This means

kφi
that ξtξf is a multiple of Y[ gc

k

ik and this multiple is the same for different monopoles.
k*i

For more details see Hurtubise and Murray (1989). The important thing is that
the different possible ξi9 given the spectral curves and the Sij9 are related by phases
and correspond to the action of the torus on the framing.
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5. Spectral Data and Nahm's Equations

Let K now be a compact connected Lie group, and let χ:K-*SU(N) be a
representation, with χ:G-»S/(JV,C) its complexifϊcation. This also induces a map
χ on Lie algebras, and we fix

χ(Φ™(*)) = μ = idiag(μl9μl9...9μl9μ29...9μ29...9μk9...9μk)9 (5.1)

with μl > μ2 > μ3 > > μk, and μ} repeated s} times. Let rj , = sl + s2 + — h Sj. We
will suppose that Φ°°(*) lies in the fundamental Weyl chamber. Now let L be the
centraliserjaf μ in Sl(N9 C), P be the group generated by L and the upper triangular

matrices, P be the group generated by I and the lower triangular matrices, f be
the diagonal matrices in Sl(N9 C). We can suppose that T maps to f , P to P, etc.,
and so G/P is mapped to S/(N,C)/P, etc.

Under χ, the K-monopole we were considering becomes an S(7(ΛΓ)-monopole.
The corresponding G-bundle over y is then an Sl(N9 C)-bundle, and^so defines a
rank N vector bundle over y. The induced reductions JR+, R~ to P, P define flags
of subbundles £+ c: £+ c ••• c ££ = £ and £^_Γk_ , c £# _ Γ k _ 2 c ••• c £^_rι c

- = £, with rank (£/ ) = j.
One then has SU(N) spectral curves Srj9 ;e{ 1, . . . , k}9 defined (set-theoretically)

as the set of those points of y over which £* and EU-ΓJ are not transversal; the
sheaf £/(£* + £jί-ΓJ) is supported on SΓJ.

In Hurtubise and Murray (1989), solutions to Nahm's equations on the intervals
(μ} + ! , μj) were defined for each SU(N) monopole. These are matrix-valued functions
TI(Z\ i = 1, 2, 3, zε(μj+l9μj)9 satisfying

Γ, = 0. (5.2)

Invariantly, the Tt(z) appear as endomorphisms of H°(#'9(E/(E++Eή-.rj))®
<£-*( - 1)), where &s(k) is the line bundle over y with transition function e'sηlζζk.

(In Hurtubise and Murray (1989), only the case of maximal symmetry breaking
was considered; it is straightforward, however, to generalise to this case, at least
to obtain solutions; what is less easy is deducing their boundary behaviour.)

In the principal bundle formalism that we are working with, E*9Eΰ-rj an^
£/(£r"^ -h £^_r.) can be interpreted as follows. Over the flag manifold Sl(N9C)/P>
the trivial bundle VN is filtered by trivial bundles Vr. chosen so that they are
stabilised by P, and also by the tautological bundles WN,r.. The quotient
VN/(VTJ + WN-ΓJ) is Λen a sheaf supported over the jth codimension one Schubert

variety in Sl(N9C)/P. Given an SU(N) monopole, one then has vector bundles

R+(Vfj)9R
+(WN.r.) over R+(Sl(N9C)/P)9 defined by lifting the action of P on

Sl(N9 C)/P in the standard way to the fibers of Vr. and in the trivial way to the
fibers of WN.r.. One then obtains E^R~*(R+(VfJ))9E^.rj^R-'*(R + (WN.rj))9

and E/(E^E^^.) = R-*(R^(VN/(Vr.+ WN.r.))9 where JT is considered as a
section R~:&~-+R + (Sl(N9C)/P). Alternatively given G and χ, one can use χ to pull
back Vrj9 WN.fj9 and VN/(Vr. + WN_r.) to G/P, and think of these "standard sheaves"

as being supported over G/P, instead of Sl(N9 C)/P. Given a X-monopole, the
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associated sheaves are then obtained by applying R~*(R+( )), e.g. E/(E+ 4- £#_P.) =
R-*(R + (VN/(Vrj+WN.rj)).

i) Spectral Curves. The sheaf E/(E* 4- E^r.) is supported over the curves SΓj.; by
results of Murray (1984), these are a sum, with multiplicity, of the K-spectral curves
5V. If λr. is the r/h fundamental weight of S/(ΛΓ,C), corresponding to the action of

S/(ΛΓ,C) on Λ (CN), let the pullback of λrj to the torus of G be the sum Σn r.,vAv,
where λv are the fundamental weights of G. One then has Sr. = £nrj.jVSv.

There exists a way of computing the nΓj.)V in terms of the weight diagram of
the representation, which, as we shall see is quite suggestive of the structure of the
solutions to Nahm's equations. The weight diagram is the labelled graph whose
vertices are weights of the representation, and in which two vertices are joined by
an (oriented) edge if their difference is a positive simple root of G. The labelling
of the edges is by the positive simple roots.

Let us give the edge corresponding to the simple root αv, the length αv(Φ°°(*)).
We note that in the case of non-maximal symmetry breaking, some αv(Φ °°(*))'s have
zero length (see (2.4), and the paragraphs following it). One can project the diagram
onto the line, mapping a weight ω onto ω(Φ°°(*)). This map then naturally is
length preserving on_the edges. (See Fig. 1.)

We can express ~λr. as the sum of the rs "first" weights of the representation,
i.e. if t is a point in (μj+l9μj\

λr.= Y mult(ω)ω, (5.3)

where mult (ω) is the multiplicity of the weight ω.
We shall consider for each weight ω0 and each simple root αv the "αv-string"

through ω0. This is a connected subgraph of the weight diagram, whose vertices
are the ω0 + jαv, jeZ which are weights. Let <ω, αv> = 2(ω, αv)/(αv, αv) be the form
used to define the Cartan matrix. One has (Humphreys (1972), p. 122)

00

£ mult (ω0 4- nαv) < ω0 4- nαv, αv > = 0. (5.4)
n= — ao

We assign to the edge of the string between ω0 4- ;αv,α>0 4- (j 4- l)αv the number

00

+ix." Σ mult(<uo + nav)<co0 + nav,av>. (5.5)

One can show that these numbers are positive on the edges of the weight diagram,
and zero if (ω0 + ;αv,ω0 4- (j 4- l)αv) is not an edge of the weight diagram. One
then has, for all :

mult(ω0 4- jαv)<ω0 + jαv,αv> = fcωo+(;._lκ>ωo+;.αv- ^o+^o+u+i)*/ (5 6)

As for the fundamental weights λp9 </lp,αv> = δpv, (5.6) tells us that

mult K)ω0 = X (fcωo_αv>ωo - fcωo>ωo+αv)/lv. (5.7)
V

As (ω0 4- αv)(Φ°°(*)) ̂  ω0(Φ°°(*)) ̂  (ω0 - αv)(Φ°°(*)), an inductive argument then
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1 3 2 5 5 9 11 9 13 11 14 14 11 12 8 7 3

Fig. 1. Weight diagram of the irreducible representation of SU(3) with highest weight λ = λί + 3λ2

Notes on Fig. 1." The segments in the direction \ are labelled by α^ those in the direction ^ are labelled
by α2. The weights are of multiplicity 1 with the exception of those surrounded by boxes which are of
multiplicity 2. The "lengths" of segments in the diagram are their lengths in the horizontal projection.
The numbers on the segments of the diagram are the fcωθfωo+βy's. The number above the ι'th segment
from the right on the line is nrj>1 and that below is nrιι2.

gives

ω(Φ)>f ))<ί<ω(Φco(*))}
Av, (5.8)

and similarly for the spectral curves, replacing 1 by S9 λ by S.
Referring to our weight diagram and its projection to the line, the spectral

curve Srj corresponding to the flow over (μj+1,μj) is a sum of contributions of the
segments of the weight diagram lying above that interval.

ii) Nahms Equations. On the interval (μj+ι,μj) a solution to Nahm's equation (a
"flow") is defined as a section of the endomorphism bundle of a bundle whose fiber
at t is the space of sections of Qr.tt = (E/(E+ +£^_r.))®L~ί(- 1). This sheaf is
supported over 5Γj. = ̂ nrj jVSv; the dimension of its space of sections is £nrj.>vwv,

V V

where mv is the magnetic charge corresponding to λv. Considering the above
computation of the nfjtV9 it seems reasonable to conjecture that the flow is actually
a "pushdown" of some sort of flow defined over the weight diagram.

In support of this conjecture, we note that in the general SU(N) case, the
existence of sections of &-**φ<"M\(2λv - αv)(2*F°°(*))) over the curve 5V was crucial
in showing that the appropriate boundary conditions were satisfied on intervals
of length αv(Φ°°(*)) = (μv+1,μv). In this more general case, one again has such
sections, but here the intervals (μi+1,μi) are not of these lengths; on the other hand,
the edges of the diagram associated to αv are of length αv(Φ°°(*)).



Spectral Data 507

An examination of the simplest non-trivial case, however, that of SO(2ri) and
its standard representation, suggests that the "pushdown" is nothing so trivial as
a direct sum. In this case, studied in Hurtubise and Murray (1989), one has a
parallelogram ABCD in the weight diagram, with AB9CD indexed by a..9AD,BC
indexed by α+. (The corresponding weights λ+,λ- are the highest weights of the
spin representations.) On the line, C,D,B9A project to the line in this order to
-μ^^-μ^μ^μ^^ Over the intervals (-μ»-ι> -μn\(μn,μn,^ the spectral
curve is S++S_; over (-μπ,μn), it is 2S+. For general monopoles, there is
an isomorphism u:<5fμn-+&~μn over S+ nS_. If one sets

K± = HQ(S±9y*-t(m + + m _ - 1)),

W* = H°(S±, J2T *"-'(m+ + ro_ - 1)), (5.9)

associating Vt

+ to CB, V~ to BA, Wt

+ to AD, W~ to CD, we find:

+nS.}. (5.10)

Thus the relevant bundles on the line are not products of bundles defined over
each edge of the diagram over that portion of the line, but rather subbundles of
such products defined by constraints associated to the intersections of the curves.
This should be typical of the general situation; after all, sections of Qr.tt over a
union of curves can be thought of as sections of Qr.t over each curve, constrained
by equality at the intersections.
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